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Abstract Higgs bundles over a closed orientable surface can be defined for any real reductive
Lie group G. In this paper we examine the case G = SO∗(2n). We describe a rigidity
phenomenon encountered in the case of maximal Toledo invariant. Using this and Morse
theory in the moduli space of Higgs bundles, we show that the moduli space is connected
in this maximal Toledo case. The Morse theory also allows us to show connectedness when
the Toledo invariant is zero. The correspondence between Higgs bundles and surface group
representations thus allows us to count the connected components with zero and maximal
Toledo invariant in the moduli space of representations of the fundamental group of the
surface in SO∗(2n).
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1 Introduction

Higgs bundles over a Riemann surface are intrinsically holomorphic objects. Their moduli
spaces can nevertheless be identified with representation varieties for the fundamental group
of the surface even if the target group for the representations, or equivalently the group defin-
ing the Higgs bundles, is a real reductive Lie group. If the group, say G, is of Hermitian type,
i.e. if the homogeneous space G/H (where H is a maximal compact subgroup) is a Her-
mitian symmetric space, then the associated G-Higgs bundles have especially rich structure.
The real connected semisimple classical groups with this property are SU(p, q),Sp(2n,R),
SO(2, n), and SO∗(2n). In this paper we examine in detail the case of G = SO∗(2n). In
particular, we give proofs of the results that were announced in [6].

The theory of G-Higgs bundles with G a real Lie group goes back to Hitchin’s seminal
papers [23,24] in which split real forms were considered. Since then, the G-Higgs bundles
for many other real forms have been examined. Among the real groups of Hermitian type,
Sp(2n,R) is special because it is also a split real form and therefore a particular case of the
situation studied by Hitchin. Higgs bundles for the groups Sp(2n,R) and SU(p, q) have been
studied (in chronological order) in [5–7,14,17,18,20,37] and also, most recently and from
a different point of view in [25,33]. In the paper [6] we announced results on SO(2, n) and
SO∗(2n); the recent preprint [26] addresses some aspects of the SO∗(2n) case from a different
point of view. Higgs bundles for all the groups of Hermitian symmetric type, including the
two exceptional cases found among the real forms of E6 and E7, have also been studied
in [32], where the first steps towards a unified treatment were taken. The group SO(2, n)
falls into the more general (but not in general Hermitian symmetric) case of SO(p, q)-Higgs
bundles, which were studied in [1,2]. On the other side of the correspondence between
Higgs bundles and surface group representations, the groups of Hermitian type have been
extensively studied, notably recently in [3,9,21].

In some ways the work described in this paper is one more in a series of case-by-case
analyses of G-Higgs bundles for different G. Adding to its interest, however, is the fact
that the analysis of SO∗(2n)-Higgs bundles unavoidably involves other reductive groups.
Any discussion of SO∗(2n)-Higgs bundles is thus a showcase for several types of G-Higgs
bundles.

The most direct way that other groups enter the picture is through the structure of polystable
SO∗(2n)-Higgs bundles. In general (see Theorem 3.25) such Higgs bundles decompose as
a sum of G-Higgs bundles where G can be one of a number of different groups, including
SO∗(2m) for m < n, but also U∗(m),U(p, q), and U(m) for suitable values of m, p, q .
At the level of Lie theory, these are the groups which appear as factors in Levi subgroups
of SO(2n,C) intersected with SO∗(2n). Note that this list of groups includes both compact
and non-compact real forms. In the latter case the corresponding symmetric space may be
Hermitian or not.

The group U∗(m) appears in a second way that depends on a key feature of G-Higgs
bundles for non-compact real forms of Hermitian type. In these cases a discrete invariant
known as the Toledo invariant can be defined. The invariant has several interpretations (see
[6,9–12,26,29,33]) but all lead to a bound that generalizes the Milnor inequality on the Euler
class of flat SL(2,R)-bundles. The G-Higgs bundles with maximal Toledo invariant all have
special properties but these fall into two categories, depending on whether the Hermitian
symmetric space is of tube type or not. In the tube cases, a correspondence emerges between
polystable G-Higgs bundles with maximal Toledo invariant and objects called K 2-twisted
G ′-Higgs bundles, where G ′ is a new reductive group. We call this G ′ K 2-twisted G ′-Higgs
bundle the Cayley partner to the original G-Higgs bundle. In the non-tube cases, the maximal
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G-Higgs bundles do not have Cayley partners but decompose into two parts, one of which
has a Cayley partner and the other of which corresponds to a compact group. This imposes
constraints which we refer to as ‘rigidity’ on the moduli spaces. For G = SO∗(2n) we see
both types of phenomena, depending on whether n is even or odd. In the odd case, the group
is not of tube type and we see rigidity (see Sect. 4.2). For n = 2m, the group is of tube type
and the Cayley partner to SO∗(2n) is the group U∗(n).

There is one more group that enters the discussion, namely Sp(2n,R). While the nature
of the relation between SO∗(2n)-Higgs bundles and Sp(2n,R)-Higgs bundles is more subtle
than in the case of the groups which appear in Levi subgroups, the comparison between the
two cases is instructive and unavoidable. In both cases the maximal compact subgroups are
isomorphic to U(n), and the complexified isotropy representations are{

�2(Cn)⊕�2((Cn)∗) for SO∗(2n)

Sym2(Cn)⊕ Sym2((Cn)∗) for Sp(2n,R)
(1.1)

These structural similarities between SO∗(2n) and Sp(2n,R) carry over to the theory of
Higgs bundles. In both cases a G-Higgs bundle over a Riemann surface is defined by triple
(V, β, γ ) where V is a rank n holomorphic bundle, and β and γ are homomorphisms

β : V ∗ −→ V ⊗ K and γ : V −→ V ∗ ⊗ K .

The difference between the cases G = SO∗(2n) and G = Sp(2n,R) is that in the former
case the maps β and γ are skew-symmetric, while in the latter case the maps are symmetric.
However in both cases, the quadruple (V, V ∗, β, γ ) defines a SU(n, n)-Higgs bundle.1 (see
Sect. 8.2.1, where U(n, n)-Higgs bundles (V,W, β, γ ) are defined. One has here the extra
condition det W = (det V )−1 since the group is SU(n, n)). Indeed both types of Higgs
bundles appear in the moduli space of SU(n, n)-Higgs bundles as fixed points of involutions,
namely

(V,W, β, γ ) �→ (W ∗, V ∗,±β t ,±γ t ).

The similarities between the two cases mean that many of the details worked out in [14] for
Sp(2n,R)-Higgs bundles require only minor modification in order to be applied to SO∗(2n)-
Higgs bundles. However, we believe that the presentation in this paper naturally benefits from
a more systematic understanding of the theory. Our main results show that the outcomes in the
two cases are significantly different in at least two respects. First, the parity of n plays a role
if G = SO∗(2n) (but not if G = Sp(2n,R)), and second the moduli space of Higgs bundles
with maximal deg(V ) has just one connected component if G = SO∗(2n) but has several
connected components distinguished by ‘hidden’ topological invariants revealed through the
Cayley correspondence in the case G = Sp(2n,R).

We now describe the contents of the paper in a bit more detail. Let X be a Riemann surface
of genus g ≥ 2. After some general definitions in Sect. 2, in Sect. 3 we describe the main
features of the groups SO∗(2n) and SO∗(2n)-Higgs bundles. We give structure results for
stable and polystable objects. As in the case G = Sp(2n,R), the moduli space of polystable
SO∗(2n)-Higgs bundles, denoted by M(SO∗(2n)), is not connected. The Toledo invariant,
which in the case of SO∗(2n)-Higgs bundles corresponds to the the degree of the bundle
V , separates the moduli space into components Md (where d = deg V ). In Sect. 3.7 we
establish the bounds on this invariant, namely

0 ≤ |d| ≤
⌊n

2

⌋
(2g − 2). (1.2)

1 This corresponds to the fact that both SO∗(2n) and G = Sp(2n,R) embed as subgroups in SU(n, n)
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In Sect. 4 we study the case d = 
 n
2 �(2g − 2) (the case d = −
 n

2 �(2g − 2) is analogous).
The special feature in this maximal situation is that the component

γ : V −→ V ∗ ⊗ K

of the Higgs field has maximal rank. Since γ is skew-symmetric, this means that it defines a
symplectic structure on either V ⊗ K −1/2 (if n is even) or on a rank n − 1 quotient of this (if
n is odd). This leads to the Cayley correspondence we describe in Sect. 4.1 and to the rigidity
result in Sect. 4.2.

The moduli spaces of Higgs bundles come equipped with a natural function that can
be used in a Morse-theoretic way to detect topological properties. First described by
Hitchin [23], this function measures the L2-norm of the Higgs field. For each d , the
function provides a proper map from Md to R and thus attains its minimum on each
connected component. In Sect. 5 we examine the minima and show that they are pre-
cisely the polystable Higgs bundles in which β = 0 or γ = 0 (depending on the sign
of d). This reduces the problem of the connectivity of the components to one of the
connectivity of the locus of minima. Unfortunately for most values of d this is itself
a difficult problem. The only exceptions are the cases where d = 0 or where |d| has
its maximum value. In Sect. 5 we also examine these exceptional cases and show the
following.

Theorem 1.1 For d = 0 or |d| maximal, the components Md(SO∗(2n)) of the moduli space
of polystable SO∗(2n)-Higgs bundles are connected.

In Sect. 6 we invoke the non-abelian Hodge theory correspondence between the moduli
space of SO∗(2n)-Higgs bundles over X and the moduli space of representations of the fun-
damental group of X in SO∗(2n) to count the number of connected components of the latter
in the zero and maximal Toledo invariant cases, and to give a rigidity result for maximal
representations when n is odd.

In Sect. 7 we examine some special features of SO∗(2n)-Higgs bundles and their moduli
spaces in the low rank cases, i.e. for n = 1, 2, 3. These features are mostly reflections of spe-
cial low rank isomorphisms between Lie groups, but they yield interesting relations between
Higgs bundle moduli spaces.

Finally, in the “Appendix” we summarize salient features of G-Higgs bundles for the
groups other than SO∗(2n) which come up in the discussion of the case G = SO∗(2n).

We conclude this introduction by pointing out that a number of works which appeared
after the first version of this paper was posted on the arXiv exploit an interesting com-
plementary approach to G-Higgs bundles via the Hitchin fibration. These include [25,26,
30,33]. The comparison between the two approaches is instructive and deserves further
investigation.

2 G-Higgs bundles

The original notion of a G-Higgs bundle when G is a real reductive Lie group can be traced
back to [23,24]. For the convenience of the reader we summarize the basic definitions and
constructions. These have appeared at various levels of explicitness in several places including
[6,14,19].
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2.1 Moduli space of G-Higgs bundles

Let G be a real reductive Lie group. By this we mean2 that we are given the data
(G, H, θ, B), where H ⊂ G is a maximal compact subgroup, θ : g → g is a Cartan involu-
tion and B is a non-degenerate bilinear form on g, which is Ad(G)-invariant and θ -invariant.
The data (G, H, θ, B) has to satisfy in addition that

(1) the Lie algebra g of G is reductive,
(2) θ gives a decomposition (the Cartan decomposition)

g = h ⊕ m

into its ±1-eigenspaces, where h is the Lie algebras of H ,
(3) h and m are orthogonal under B, and B is positive definite on m and negative definite

on h,
(4) multiplication as a map from H × exp m into G is an onto diffeomorphism.

We will refer sometimes to the data (G, H, θ, B) as the Cartan data.
The group H acts linearly on m through the adjoint representation of G. Complexifying,

we get the isotropy representation ι : HC → GL(mC).

Definition 2.1 A G-Higgs bundle on X is a pair (E, ϕ), where E is a holomorphic HC-
principal bundle over X and ϕ is a holomorphic section of E(mC) ⊗ K , where E(mC) =
E ×HC mC is the mC-bundle associated to E via the isotropy representation and K is the
canonical bundle of X . The section ϕ is called the Higgs field. Two G-Higgs bundles (E, ϕ)

and (E ′, ϕ′) are isomorphic if there is an isomorphism f : E
−→ E ′ such that ϕ = f ∗ϕ′

where f ∗ is the obvious induced map.

More generally, replacing K by an arbitrary line bundle on X in the preceding definition,
we obtain the notion of a L-twisted G-Higgs pair on X .

Just as for vector bundles, there are notions of stability, semistability and polystability for
G-Higgs bundles (and more generally for L-twisted Higgs pairs). In this paper we consider
only the particular cases we need (cf. Sect. 3.2) and refer the reader to [15] for the general
definitions.

Henceforth, we shall assume that G is connected. Then the topological classification of
HC-bundles E on X is given by a characteristic class

c(E) ∈ π1(H
C) = π1(H) = π1(G).

Definition 2.2 For a fixed d ∈ π1(G), the moduli space of polystable G-Higgs bundles
Md(G) is the set of isomorphism classes of polystable G-Higgs bundles (E, ϕ) such that
c(E) = d .

The moduli space Md(G) has the structure of a complex analytic variety. This can be
seen by the standard slice method (see, e.g., Kobayashi [28]). Moreover, it is a consequence
of the general constructions of Schmitt [34,35] that for all the groups which appear in this
paper the moduli space Md(G) is actually algebraic.

2 Our definition follows Knapp [27, p. 384], except that we do not impose the condition that for every g ∈ G
the automorphism Ad(g) of gC is inner, i.e. Ad(g) = Ad(x) for some x in the identity component of the
adjoint form of G. In fact this condition, which plays a role only if non-connected groups must be considered,
is automatically satisfied by the groups which appear in this paper.
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2.2 The Hitchin equation

In general, i.e. for any real reductive group G, the Hitchin equations for a G-Higgs bundle, say
(E, ϕ), can be regarded as conditions for a reduction of the structure group of E . Recall that
E is a principal holomorphic HC-bundle, where HC is the complexification of H (a maximal
compact subgroup of G). A reduction of structure group to H defines a principal H -bundle,
EH , such that E = EH ×H HC. Then, together with the holomorphic structure on E , the
reduction to EH defines a unique connection (the Chern connection) on E . We denote the
curvature of this connection by Fh . Assume now that G is a real form of its complexification
GC, and let τ : gC −→ gC denote the involution which defines the compact real form of
GC. The relation between τ , the involution which defines the real form G, and the Cartan
involution on g, ensures that the combination [mC, τ (mC)] takes values in h. Using the
reduction E(gC) = EH ×H gC we can extend τ to a bundle map τh : E(gC) −→ E(gC).
Combined with conjugation on the canonical bundle K this defines a bundle map (also
denoted by τh) on E(gC) ⊗ K . Applying this map to the Higgs field ϕ allows us to form a
h-valued (1,1)-form [ϕ, τ(ϕ)].
Definition 2.3 If G is semisimple the G-Hitchin equation for a reduction of structure group
to H of a G-Higgs bundle (E, ϕ) is

Fh − [ϕ, τh(ϕ)] = 0 (2.1)

where Fh and τh are as above.

The following result can be found in [15] (see also [8]).

Theorem 2.4 (Theorem 3.21 in [15]) Let (E, ϕ) be a G-Higgs bundle. The bundle E admits
a reduction of structure group from HC to H satisfying the Hitchin equation for a G-Higgs
bundle if and only if (E, ϕ) is polystable.

2.3 Deformation theory of G-Higgs bundles

In this section we recall some standard facts about the deformation theory of G-Higgs bundles
(see [14] and [15] for more detail). We also take care of issues that arise considering general
reductive groups, rather than just semisimple ones. In particular we introduce a reduced
deformation complex which is relevant in analyzing smoothness of the moduli space.

Definition 2.5 Let (E, ϕ) be a G-Higgs bundle. Let dι : hC → End(mC) be the derivative at
the identity of the complexified isotropy representation ι = Ad|HC : HC → Aut(mC). The
deformation complex of (E, ϕ) is the following complex of sheaves:

C•(E, ϕ) : E(hC)
dι(ϕ)−−−→ E(mC)⊗ K . (2.2)

Proposition 2.6 The space of infinitesimal deformations of a G-Higgs bundle (E, ϕ) is natu-
rally isomorphic to the hypercohomology group H

1(C•(E, ϕ)). The Lie algebra of Aut(E, ϕ),
denoted by aut(E, ϕ), can be identified with H

0(C•(E, ϕ)).

Next we introduce two concepts which are important for understanding smoothness of the
moduli space (cf. Proposition 2.14 below).

Definition 2.7 A G-Higgs bundle (E, ϕ) is called simple if Aut(E, ϕ) = Z(HC) ∩ ker(ι)
where Z(HC) denotes the center. A G-Higgs bundle (E, ϕ) is said to be infinitesimally
simple if the infinitesimal automorphism space aut(E, ϕ) is isomorphic to H0(X, E(ker dι∩
Z(hC)) where Z(hC) denotes the Lie algebra of Z(HC).
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Thus a G-Higgs bundle is (infinitesimally) simple if its (infinitesimal) automorphism
group is as small as possible.

Remark 2.8 It is clear that a simple G-Higgs bundle is infinitesimally simple. If G is complex
then ι is the adjoint representation and (E, ϕ) is simple (resp. infinitesimally simple) if
Aut(E, ϕ) = Z(G) (resp. aut(E, ϕ) = Z(hC)).

Example 2.9 View a GL(n,C)-Higgs bundle a Higgs vector bundle (E,
) with 
 ∈
H0(X,End(E)⊗ K ). Then (E,
) is simple if its automorphism group is Aut(E,
) = C

∗
and infinitesimally simple if its infinitesimal automorphism space End(E,
) = C. In this
case the two notions coincide, but this is not the case for all groups. Indeed, this phenomenon
already occurs for principal bundles without a Higgs field: as an example, let L be a line bundle

of degree zero such that L2 �= O. Then the SO(2,C)-bundle (V, Q) =
(

L ⊕ L−1,

(
0 1
1 0

))
has Aut(V, Q) = {±1} and aut(V, Q) = 0 so it is infinitesimally simple but not simple.

In order to study smoothness of the moduli space in the general case of reductive groups
(i.e. for non-semisimple G), we introduce a reduced deformation complex.

Lemma 2.10 ([27, p. 388]) Let z be the center of g and zC be the center of gC. There are
decompositions z = (h ∩ z)⊕ (m ∩ z) and zC = (hC ∩ zC)⊕ (mC ∩ zC).

In view of this Lemma, we can decompose as H -modules

h = (h ∩ z)⊕ h0, m = (m ∩ z)⊕ m0,

where we have defined

h0 = h/(h ∩ z), m0 = m/(m ∩ z).

Analogously we define hC

0 and mC

0 and we have similar decompositions of hC and mC. Note
also that

[mC, hC ∩ zC] = 0, [mC

0 , h
C

0 ] ⊂ mC

0 .

We can thus define the following reduced complex.

Definition 2.11 Let (E, ϕ) be a G-Higgs bundle. The reduced deformation complex of
(E, ϕ) is the following complex of sheaves:

C•
0(E, ϕ) : E(hC

0 )
ad(ϕ)−−−→ E(mC

0 )⊗ K . (2.3)

Remark 2.12 If G is semisimple the reduced deformation complex (2.3) coincides with the
non-reduced complex (2.2). If G is a complex reductive group, then the reduced complex
C•

0 (E, ϕ) can be identified with the (non-reduced) deformation complex for the PG-Higgs
bundle associated to (E, ϕ), where PG = G/Z(G).

Let (E, ϕ) be a G-Higgs bundle and assume that G is a real form of a complex reductive
group GC. Let

Ẽ = E ×HC GC

be the principal GC-bundle associated by extension of structure group. Note that

Ẽ(gC) = E(gC) = E(hC)⊕ E(mC).

Hence we can let ϕ̃ be the image of ϕ under the inclusion

H0(X, E(mC)⊗ K ) ↪→ H0(X, Ẽ(gC)⊗ K ).
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Definition 2.13 The GC-Higgs bundle (Ẽ, ϕ̃) is called the GC-Higgs bundle associated to
the G-Higgs bundle (E, ϕ).

Proposition 2.14 Let (E, ϕ) be a G-Higgs bundle.

(1) If (E, ϕ) is stable and ϕ �= 0 then it is infinitesimally simple.
(2) If (E, ϕ) is stable and simple and H

2(C•
0 (E, ϕ)) = 0 then (E, ϕ) represents a smooth

point in the moduli space.
(3) If G is complex and (E, ϕ) is stable and simple then (E, ϕ) represents a smooth point in

the moduli space.
(4) Let (Ẽ, ϕ̃) be the GC-Higgs bundle associated to (E, ϕ). If (E, ϕ) is stable then (Ẽ, ϕ̃) is

polystable. If (E, ϕ) is stable, simple and stable as a GC-Higgs bundle then it represents
a smooth point in the moduli space.

Proof (1) See [15, Proposition 3.11].
(2) If (E, ϕ) is simple, there are no singularities coming from automorphisms of the

pair. Therefore the obstruction to smoothness lies in H
2(C•(E, ϕ)). Analyzing the Kuran-

ishi model (as done in Kobayashi [28] in the case of vector bundles on higher dimensional
manifolds, cf. also Friedman–Morgan [13, p. 301]), one sees that the image of the Kuran-
ishi map in fact lies in the hypercohomolgy of the reduced deformation complex, i.e., in
H

2(C•
0 (E, ϕ)) = 0. The point is that the Kuranishi map is given by the quadratic part of the

holomorphicity condition

0 = ∂̄A+ Ȧ(ϕ + ϕ̇) = ∂̄Aϕ + ∂̄Aϕ̇ + [ Ȧ, ϕ] + [ Ȧ, ϕ̇],
which lies in 0,1 E(mC

0 ). This leads to the result. (An alternative method of proof would be
to go through the proof of Theorem 3.1 of [4] and see that the vanishing of H

2(C•
0 (E, ϕ)) = 0

is really what is required in this case.)
(3) By stability we have the vanishing H

0(C•
0 (E, ϕ)) = 0 and Serre duality of complexes

implies H
2(C•

0 (E, ϕ)) = 0. The result now follows by (2).
(4) Stability of (Ẽ, ϕ̃) implies that it is infinitesimally simple, i.e., H0(C•(Ẽ, ϕ̃)) = Z(gC),

where

C•(Ẽ, ϕ̃) : Ẽ(gC)
ad(ϕ̃)−−−→ Ẽ(gC)⊗ K .

It follows that H
0(C•

0 (Ẽ, ϕ̃)) = 0. Moreover,

C•
0(Ẽ, ϕ̃) = C•

0 (E, ϕ)⊕ C•
0(E, ϕ)

∗ ⊗ K

and hence, by Serre duality of complexes, we obtain the vanishing H
2(C•

0 (E, ϕ)) = 0.Again
the result is now a consequence of (2). ��

3 SO∗(2n)-Higgs bundles

3.1 Preliminaries: the group SO∗(2n)

In this section we collect together some basic facts about the group SO∗(2n) (see [22] for more
details). We concentrate on the features that are needed to describe SO∗(2n)-Higgs bundles
and to understand their relation to G-Higgs bundles for related groups such as SL(2n,C)
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and SU(n, n). The group SO∗(2n) may be defined as the the set of matrices g ∈ SL(2n,C)
satisfying

gt Jn ḡ = Jn and gt g = I2n, where Jn =
(

0 In

−In 0

)
. (3.1)

It is thus a subgroup of SO(2n,C)which leaves invariant a skew-Hermitian form. The group
is connected, semisimple, and a non-compact real form of SO(2n,C). The maximal compact
subgroups are isomorphic to U(n). The choice �(g) = Jng J−1

n of Cartan involution on
SO∗(2n) gives the Cartan decomposition

so∗(2n) = u(n)+ m

with

u(n) =
{(

X1 X2

−X2 X1

)
| X1, X2 ∈ Matn,n(R), Xt

1 + X1 = 0, Xt
2 − X2 = 0

}
,

m =
{

i

(
Y1 Y2

Y2 −Y1

)
| Y1, Y2 ∈ Matn,n(R), Y t

1 + Y1 = 0, Y t
2 + Y2 = 0

}
. (3.2)

Remark 3.1 It follows immediately from (3.2) that

u(n)+ im =
{(

A B
−Bt D

)
| A, B, D ∈ Matn,n(C), A + At = D + Dt = 0

}
,

which can be identified with the Lie algebra of SO(2n). This shows that the real form SO∗(2n)
is the non-compact dual to the compact real form SO(2n) ⊂ SO(2n,C).

The complexification of the Cartan decomposition is

so∗(2n)⊗ C = gl(n,C)+ mC, (3.3)

where

gl(n,C) =
{(

Z−Zt

2 − Z+Zt

2i
Z+Zt

2i
Z−Zt

2

)
| Z ∈ Matn,n(C)

}
,

mC =
{(

Y1 Y2

Y2 −Y1

)
| Y1, Y2 ∈ Matn,n(C), Y t

1 + Y1 = 0, Y t
2 + Y2 = 0

}
. (3.4)

It follows that if T is the complex automorphism of C
2n defined by

T =
(

I i I
I −i I

)
, (3.5)

then

T gl(n,C)T −1 =
{(

Z 0
0 −Zt

)
| Z ∈ Matn,n(C)

}
,

T mCT −1 =
{(

0 β

γ 0

)
| β, γ ∈ Matn,n(C), β

t + β = 0, γ t + γ = 0

}
. (3.6)

This reflects the following fact.

Proposition 3.2 With T defined in (3.5),

T SO∗(2n)T −1 ⊂ SU(n, n), (3.7)
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where SU(n, n) ⊂ SL(2n,C) is the subgroup defined by

SU(n, n) = {A ∈ SL(2n,C) | Āt In,n A = In,n, det(A) = 1} (3.8)

with In,n =
(

In 0
0 −In

)
.

Proof Using T̄ t In,nT = 2i J it follows that if g ∈ SO∗(2n) then A = T gT −1 satisfies
Āt In,n A = In,n . Also det(A) = det(g) = 1. ��

Remark 3.3 If g ∈ SO∗(2n), i.e. g satisfies (3.1), and A = T gT −1 then a simple cal-
culation shows that At In,n J A = In,n J . Combined with Proposition 3.2 we can thus
identify SO∗(2n) ⊂ SU(n, n) ⊂ SL(2n,C) as the subgroup defined by the relation
At In,n J A = In,n J . This is the definition given in [27].

3.2 SO∗(2n)-Higgs bundles and stability

When HC is a classical group we prefer to work with the vector bundle V associated to the
standard representation rather than the HC-principal bundle. We take this point of view for
SO∗(2n)-Higgs bundles, for which HC = GL(n,C) and V is a rank n vector bundle. In view
of (3.6), Definition 2.1 then becomes the following.

Definition 3.4 A SO∗(2n)-Higgs bundle over X is a pair (V, ϕ) in which V is a rank
n holomorphic vector bundle over X , and the Higgs field ϕ = (β, γ ) has components
β ∈ H0(X,�2V ⊗ K ) and γ ∈ H0(X,�2V ∗ ⊗ K ). We will sometimes write ϕ = β + γ ,
where the sum is interpreted as being in End(V ⊕ V ∗) ⊗ K , viewing β and γ as skew-
symmetric maps β : V ∗ → V ⊗ K and γ : V → V ∗ ⊗ L . We will also sometimes use the
notation (V, ϕ) = (V, β, γ ).

In order to state the (semi,poly)stability condition for a SO∗(2n)-Higgs bundle we need
to introduce some notation.

Let V → X be a holomorphic vector bundle. Then there is an isomorphism V ⊗ V 
�2V ⊕ S2V . Let U and W be subbundles of V . We define U ⊗A W to be the sheaf theoretic
kernel of the projection V ⊗ V → S2V restricted to U ⊗ V :

0 → U ⊗A W → U ⊗ W → S2V .

Since U ⊗ W is locally free and X is a curve, U ⊗A W can be viewed as a subbundle of
�2V . We define U⊥ ⊂ V ∗ to be the kernel of the restriction map V ∗ → U∗, i.e.

0 → U⊥ → V ∗ → U∗ → 0.

Definition 3.5 Let k be an integer satisfying k ≥ 1. We define a filtration of V of length
k − 1 to be any strictly increasing filtration by holomorphic subbundles

V = (0 � V1 � V2 � · · · � Vk = V ).

Let λ = (λ1 < λ2 < · · · < λk) be a strictly increasing sequence of k real numbers. Define
the subbundle

N (V , λ) =
∑

λi +λ j ≤0

K ⊗Vi ⊗AVj ⊕
∑

λi +λ j ≥0

K ⊗V ⊥
i−1⊗AV ⊥

j−1 ⊂ K ⊗(�2V ⊕�2V ∗). (3.9)
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Define also

d(V , λ) = λk deg Vk +
k−1∑
j=1

(λ j − λ j+1) deg Vj . (3.10)

We say that the pair (V , λ) is trivial if the length of V is 0 and λ1 = 0. We say that the
pair (V , λ) is ϕ-invariant if ϕ = β + γ ∈ H0(X, N (V , λ)).

The general results of [15] allow us to express stability, semistability and polystability for
SO∗(2n)-Higgs bundles in terms of filtrations, as follows.

Definition 3.6 The Higgs bundle (V, ϕ) is semistable if for any integer k ≥ 1, any filtration
V of length k − 1 of V and any strictly increasing sequence λ of k real numbers such that
(V , λ) is ϕ-invariant we have

d(V , λ) ≥ 0. (3.11)

The Higgs bundle (V, ϕ) is stable if under the same conditions as above with the additional
condition that (V , λ) be non-trivial we have the strict inequality

d(V , λ) > 0. (3.12)

The Higgs bundle (V, ϕ) is polystable if it is semistable and for any integer k ≥ 1, any
filtration V of length k − 1 of V and any strictly increasing sequence λ of k real numbers
such that (V , ϕ) is ϕ-invariant and d(V , λ) = 0 there is an isomorphism of holomorphic
bundles

V  V1 ⊕ V2/V1 ⊕ · · · ⊕ Vk/Vk−1

with respect to which

β ∈ H0

⎛
⎝X,

⊕
λi +λ j =0

K ⊗ Vi/Vi−1 ⊗A Vj/Vj−1

⎞
⎠

and

γ ∈ H0

⎛
⎝X,

⊕
λi +λ j =0

K ⊗ (Vi/Vi−1)
∗ ⊗A (Vj/Vj−1)

∗
⎞
⎠ .

We follow the convention that a direct sum of vector bundles over an empty indexing set is
the zero vector bundle.

Remark 3.7 In general the notion of (semi,poly)stability depend on a real parameter related
to the fact that the center of the maximal compact subgroup of SO∗(2n) is isomorphic to
U(1) (see [14]). However, since our main interest is in relation to representations of the
fundamental group, we have the value of this parameter to be zero.

Following the same arguments given in [15] for the group Sp(2n,R), the stability condi-
tions for SO∗(2n)-Higgs bundles can be simplified. Before we give the simplified conditions
are given in Proposition 3.13 we need some preliminaries.

Definition 3.8 Let (V, ϕ) be a SO∗(2n)-Higgs bundle with ϕ = (β, γ ). A filtration of
subbundles

0 ⊂ V1 ⊂ V2 ⊂ V
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such that

β ∈ H0(X, K ⊗ (�2V2 + V1 ⊗A V )), γ ∈ H0(X, K ⊗ (�2V ⊥
1 + V ⊥

2 ⊗A V ∗)), (3.13)

is called a ϕ-invariant two-step filtration.

Remark 3.9 It is important to note that the summands in the bundles �2V2 + V1 ⊗A V and
�2V ⊥

1 + V ⊥
2 ⊗A V ∗ intersect non-trivially, so they do not form a direct sum.

Remark 3.10 We allow equality between the terms of the filtration in order to avoid having
to consider separately filtrations that are length one or zero. For example the filtration 0 ⊂
V1 ⊂ V is included as the two-step filtration in which V1 = V2.

It is sometimes convenient to reformulate the ϕ-invariance condition using the following
lemma, which is easily proved.

Lemma 3.11 Let (V, ϕ) be a SO∗(2n)-Higgs bundle with ϕ = (β, γ ). A two-step filtration
0 ⊂ V1 ⊂ V2 ⊂ V is ϕ-invariant if and only if the following conditions are satisfied:

β(V ⊥
2 ) ⊂ V1 ⊗ K , γ (V2) ⊂ V ⊥

1 ⊗ K ,

β(V ⊥
1 ) ⊂ V2 ⊗ K , γ (V1) ⊂ V ⊥

2 ⊗ K .

There is yet another useful interpretation of the ϕ-invariance of a two step filtration that
will be used later. To explain this, let γ : V × V → K be the K -twisted skew-symmetric
bilinear pairing defined by γ as

γ (u, v) := (γ (v))(u), for u, v ∈ V,

and denote, for a subbundle V ′ ⊂ V ,

V ′⊥γ := {v ∈ V |γ (u, v) = 0 for every u ∈ V ′}.
The following lemma is immediate.

Lemma 3.12 For any filtration 0 ⊂ V1 ⊂ V2 ⊂ V , we have that γ (V1) ⊂ K ⊗ V ⊥
2 is

equivalent to V1 ⊂ V
⊥γ

2 . This is equivalent to V2 ⊂ V
⊥γ

1 which, in turn, is equivalent to
γ (V2) ⊂ K ⊗ V ⊥

1 . Similar statements apply to β.

The following simplified version of the stability conditions follows in the same way as the
analogous results for Sp(2n,R)-Higgs bundles (see [15]).

Proposition 3.13 A SO∗(2n)-Higgs bundle (V, ϕ) with ϕ = (β, γ ) is semistable if and only
for every ϕ-invariant two-step filtration 0 ⊂ V1 ⊂ V2 ⊂ V we have that

deg(V )− deg(V1)− deg(V2) ≥ 0. (3.14)

A SO∗(2n)-Higgs bundle (V, ϕ) with ϕ = (β, γ ) is stable if and only if for every ϕ-
invariant two-step filtration 0 ⊂ V1 ⊂ V2 ⊂ V except the filtration 0 = V1 ⊂ V2 = V we
have that

deg(V )− deg(V1)− deg(V2) > 0. (3.15)
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A SO∗(2n)-Higgs bundle (V, ϕ) with ϕ = (β, γ ) is polystable if is semistable and for any
ϕ-invariant filtration 0 ⊂ V1 ⊂ V2 ⊂ V , distinct from the filtration 0 = V1 ⊂ V2 = V such
that

deg(V )− deg(V1)− deg(V2) = 0,

there exists an isomorphism of holomorphic vector bundles

V  V1 ⊕ V2/V1 ⊕ V/V2

with respect to which we have:

(a) V2  V1 ⊕ V2/V1,
(b) β ∈ H0(X, K ⊗ (�2(V2/V1)⊕ V1 ⊗A (V/V2)),
(c) γ ∈ H0(X, K ⊗ (�2(V2/V1)

∗ ⊕ V ∗
1 ⊗A (V/V2)

∗).

Remark 3.14 If β = γ = 0 then the semistability condition is equivalent to the requirements
that deg V = 0 and V is semistable.

3.3 The SO∗(2n)-Hitchin equations

Using the vector bundle picture, in which a SO∗(2n)-Higgs bundle is specified by data
(V, β, γ ), we now make explicit the Hitchin equations in this case. A reduction of structure
group to H = U(n) corresponds to a choice of Hermitian metric h on the holomorphic bundle
V . The Hitchin equations now become

Fh
V + ββ∗ + γ ∗γ = 0. (3.16)

Here we denote the curvature for the Chern connection on V by Fh
V and the adjoints are with

respect to the hermitian metric h (combined with complex conjugation dz �→ dz̄ on the form
component).

We refer to Eq. (3.16) as the SO∗(2n)-Hitchin equation. Theorem 2.4 thus becomes the
following.

Theorem 3.15 Let (V, β, γ ) be a SO∗(2n)-Higgs bundle. The bundle V admits a metric
satisfying the SO∗(2n)-Hitchin equation (3.16) if and only if (V, β, γ ) is polystable.

3.4 The moduli spaces

The topological invariant attached to a SO∗(2n,R)-Higgs bundle (V, β, γ ) is an element in
the fundamental group of U(n) (see Sect. 2.1). Since π1(U (n))  Z, this is an integer. This
integer coincides with the degree of V . Under the correspondence between Higgs bundles and
surface group representations (see Sect. 6), this integer corresponds to the Toledo invariant of
a representation.3 Following Definition 2.2 we let Md(SO∗(2n)) denote the moduli space
of polystable SO∗(2n)-Higgs bundles (V, β, γ ) with deg(V ) = d . For brevity we shall
sometimes write simply Md for this moduli space. We have the following result (cf. [15,
Theorem 3.4 and Proposition 3.19]).

Proposition 3.16 Assume n ≥ 2. The moduli space Md of SO∗(2n)-Higgs bundles over
a compact Riemann surface X of genus g ≥ 2 is a complex algebraic variety of expected

3 It is interesting to note that this invariant has recently been interpreted in terms of fixed point data on the
spectral curve associated to the Higgs bundles—see [26]. This also sheds new light on the bounds described
in Proposition 3.27.
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n(2n − 1)(g − 1) (where g is the genus of X). The dimension is exactly n(2n − 1)(g − 1) if
the stable locus is nonempty.

The reason for excluding n = 1 in the preceding proposition is that SO∗(1)  SO(2)
which is not semisimple. In this case the dimension of the moduli space is g (cf. Sect. 7.1).

One has the following easily proven duality result.

Proposition 3.17 The map (V, β, γ ) �→ (V ∗, γ, β) gives an isomorphism Md  M−d .

3.5 Structure of stable SO∗(2n)-Higgs bundles

The kernel of the isotropy representation

ι : GL(n,C) → Aut(�2(Cn)⊕�2(Cn)∗)

for SO∗(2n) is formed by the central subgroup {±I } ⊂ GL(n,C). Moreover the infinitesimal
isotropy representation has injective differential: ker(dι) = 0. Thus Definition 2.7 specializes
to the following.

Definition 3.18 A SO∗(2n)-Higgs bundle (V, β, γ ) is simple if Aut(V, β, γ ) = {±I } and
it is infinitesimally simple if aut(V, β, γ ) = 0.

Contrary to the cases of vector bundles and U(p, q)-Higgs bundles, stability of an
SO∗(2n)-Higgs bundle does not imply that it is simple. However, we have the following.

Theorem 3.19 Let (V, ϕ) be a stable SO∗(2n)-Higgs bundle. If (V, ϕ) is not simple, then
one of the following alternatives occurs:

(1) The bundle V is a stable vector bundle of degree zero andϕ = 0. In this case Aut(V, ϕ) 
C

∗.
(2) There is a nontrivial decomposition, unique up to reordering,

(V, ϕ) =
( k⊕

i=1

Vi ,

k∑
i=1

ϕi

)

with ϕi = βi + γi ∈ H0(X, K ⊗ (�2Vi ⊕ �2V ∗
i )), such that each (Vi , ϕi ) is a stable

and simple SO∗(ni )-Higgs bundle. Furthermore, each ϕi �= 0 and (Vi , ϕi ) � (Vj , ϕ j )

for i �= j . The automorphism group of (V, ϕ) is

Aut(V, ϕ)  Aut(V1, ϕ1)× · · · × Aut(Vk, ϕk)  (Z/2)k .

Proof The proof is precisely the same as for the corresponding result for Sp(2n,R)-Higgs
bundles (Theorem 3.17 in [14]). ��

In view of Theorem 3.19 we can shift our attention to SO∗(2n)-Higgs bundles which
are stable and simple. Unlike in the case of G-Higgs bundles for complex reductive G, the
combination of stability and simplicity is not necessarily sufficient to guarantee smoothness in
the moduli space. Our analysis involves the relation between SO∗(2n)-Higgs bundles and G-
Higgs bundles for various other4 groups G. We begin by noting that a SO∗(2n)-Higgs bundle
can be viewed as a Higgs bundle for the larger complex groups SO(2n,C) and SL(2n,C).

4 See “Appendix” for a summary of results for the relevant groups.
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Theorem 3.20 Let (V, ϕ) be a SO∗(2n)-Higgs bundle with ϕ = (β, γ ). Let (E,
) be the
SL(2n,C)-Higgs bundle given by

E = V ⊕ V ∗, 
 =
(

0 β

γ 0

)

and let ((E, Q),
) be the SO(2n,C)-Higgs bundle given by E and
 as above and with Q
defined by

Q
(
(v, ξ), (w, ζ )

) = ξ(w)+ ζ(v), for v,w ∈ V and ξ, ζ ∈ V ∗.

Then

(1) The following are equivalent:

(a) (E,
) is semistable (resp. polystable).
(b) ((E, Q),
) is semistable (resp. polystable).
(c) (V, ϕ)is semistable (resp. polystable).

(2) If (E,
) is stable then ((E, Q),
) is stable.
(3) If ((E, Q),
)is stable then (V, ϕ) is stable.
(4) If (V, ϕ) is stable and simple then

(a) (E,
) is stable unless there is an isomorphism f : V
−→ V ∗ such that β f = f −1γ ;

(b) ((E, Q),
) is stable unless there is an isomorphism f : V
−→ V ∗ which is skew-

symmetric and with β f = f −1γ .

Proof The equivalences in (1) can be proved in exactly the same way as done for Sp(2n,R)-
Higgs bundles in [14] (see Theorems 3.26 and 3.27). Although the equivalence analogous to
the equivalence between (a) and (b) is not explicitly stated in [14] in the case of semistability,
it is implicit in the proof of the equivalence analogous to the equivalence between (a) and
(c).

The implication in (2) follows directly from the stability conditions.
For the implication in (3) note that aϕ-invariant two-step filtration 0 ⊂ V1 ⊂ V2 ⊂ V gives

rise to an isotropic subbundle V1 ⊕ V ⊥
2 of (E, Q) which, by Lemma 3.11, is 
-invariant.

These are exactly the subbundles which enter the stability condition for SO(2,C)-Higgs
bundles (see Proposition 8.2). Note that V1 ⊕ V ⊥

2 ⊂ E is non-zero and proper if and only if
the filtration 0 ⊂ V1 ⊂ V2 ⊂ V is distinct from the filtration 0 = V1 ⊂ V2 = V . Moreover,

deg(V1 ⊕ V ⊥
2 ) = deg(V1)+ deg(V2)− deg(V ),

so the stability conditions coincide.
The statements in (4) can be proved in the same way as the analogous result for Sp(2n,R)-

Higgs bundles (see Theorem 3.27 in [14]). ��
Remark 3.21 If deg V �= 0, then it follows from (3) of Theorem 3.20 that (E,
) (and
hence ((E, Q),
)) is stable if (V, ϕ) is stable and simple. Similarly, if the rank n is odd,
then ((E, Q),
) is stable if (V, ϕ) is stable and simple. On the other hand, in the situation
described in Theorem 3.19(2), the SO(2n,C)-Higgs bundle ((E, Q),
) is not stable, because
Vi ⊕ V ∗

i ⊂ E = V ⊕ V ∗ is an isotropic φ-invariant subbundle of degree 0).

Proposition 3.22 Let (V, ϕ) be a SO∗(2n)-Higgs bundle which is stable and simple and

assume that there is no skewsymmetric isomorphism f : V
−→ V ∗ intertwining β and γ (i.e.

such that γ = ( f ⊗ 1K ) ◦β ◦ f ). Then (V, ϕ) represents a smooth point of the moduli space
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of polystable SO∗(2n)-Higgs bundles. In particular, if d = deg V is not zero or n is odd, then
all stable and simple SO∗(2n)-Higgs bundles represent smooth points of the moduli space
Md .

Proof By (3b) of Theorem 3.20 the SO(2n,C)-Higgs bundle corresponding to (V, ϕ) is
stable and hence by (4) in Proposition 2.14 it represents a smooth point in Md . ��

It remains to analyze the case in which (V, ϕ) is stable and simple but admits a skewsym-

metric isomorphism f : V
−→ V ∗ intertwining β and γ . By (3b) of Theorem 3.20 this

is equivalent to the associated SO(2n,C)-Higgs bundle being non-stable. Furthermore
d = deg V = 0 and n is even.

Proposition 3.23 Let (V, ϕ) be a SO∗(2n)-Higgs bundle with φ = (β, γ ) which admits a

skewsymmetric isomorphism f : V
−→ V ∗ such that β f = f −1γ . Then with ψ := β f , the

data ((V, f ), ψ) defines a U∗(n)-Higgs bundle (as defined in Sect. 8.2.2).
Let (V, ϕ) be stable. Then ((V, f ), ψ) is stable. Assume moreover that (V, ϕ) is simple.

Then ((V, f ), ψ) is stable and simple and the corresponding GL(n,C)-Higgs bundle (V, ψ)
is stable. Hence ((V, f ), ψ) represents a smooth point in the moduli space of U∗(n)-Higgs
bundles.

Proof The fact that ((V, f ), ψ) defines a U∗(n)-Higgs bundles follows directly from the
definition given in Sect. 8.2.2. The argument to prove the stability result is similar to the one
given in the proof of Theorem 3.22 in [14]. The statement about simplicity follows directly
from the fact that for both SO∗(2n)- and U∗(n)-Higgs bundles simplicity means that the only
automorphisms are ± Identity. ��
Notation We shall, somewhat imprecisely, say that a SO∗(2n)-Higgs bundle of the form
described in Proposition 3.23 is a U∗(n)-Higgs bundle.

3.6 Structure of polystable SO∗(2n)-Higgs bundles

A general structure theorem for polystable G-Higgs bundles was given in [15], where it is
shown that any strictly polystable G-Higgs bundle admits a reduction to a stable G ′-Higgs
bundle for a uniquely determined reductive subgroup G ′ ⊂ G. Here we give an elementary
argument in the case G = SO∗(2n), identifying explicitly this reduction, without recourse
to Lie theory. Our result is the following.

Proposition 3.24 A SO∗(2n)-Higgs bundle (V, ϕ) with ϕ = (β, γ ) is polystable if and only
if there are decompositions

V = V1 ⊕ · · · ⊕ Vk,

ϕ = ϕ1 + · · · + ϕk,

such that each (Vi , ϕi ) is a SO∗(2ni )-Higgs bundle i.e.ϕi = (βi , γi )withβi ∈ H0(X,�2Vi ⊗
K ) and γi ∈ H0(X,�2V ∗

i ⊗ K ), and is of one of the following mutually exclusive types:

(1) a stable SO∗(2ni )-Higgs bundle with ϕ �= 0;

(2) Vi = Ṽi ⊕ W̃ ∗
i , with respect to this decomposition βi =

(
0 β̃i

−β̃ t
i 0

)
and γi =(

0 −γ̃ t
i

γ̃i 0

)
where β̃i ∈ H0(X,Hom(W̃i , Ṽi )⊗K ) and γ̃i ∈ H0(X,Hom(Ṽi , W̃i )⊗K ),

and (Ṽi , W̃i , β̃i , γ̃i ) is a stable U(pi , qi )-Higgs bundle in which pi qi �= 0, deg Ṽi +
deg W̃i = 0 and at least one of β̃i , γ̃i is non-zero.
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(3) ϕi = 0 and Vi is a degree zero stable vector bundle.

Proof Suppose (V, β, γ ) is polystable. If it is stable then the result is trivially true (with
k = 1). Suppose that (V, β, γ ) is not stable. Then by Definition 3.6 we can find a non trivial
filtration (i.e. with l ≥ 2) V = (0 � V ′

1 � V ′
2 � · · · � V ′

l = V ) and a sequence of weights
λ = (λ1 < λ2 < · · · < λl) such that

• ϕ ∈ H0(X, N (V , λ))
• d(V , λ) = 0
• there is a splitting of vector bundles

V  V ′
1 ⊕ V ′

2/V ′
1 ⊕ · · · ⊕ V ′

l /V ′
l−1

with respect to which

β ∈ H0

⎛
⎝X,

⊕
λi +λ j =0

K ⊗ V ′
i /V ′

i−1 ⊗A V ′
j/V ′

j−1

⎞
⎠

and

γ ∈ H0

⎛
⎝X,

⊕
λi +λ j =0

K ⊗ (V ′
i /V ′

i−1)
∗ ⊗A (V

′
j/V ′

j−1)
∗
⎞
⎠ .

We can write the set of weights as a disjoint union

{λ1, . . . , λl} = I1 ∪ I2 ∪ I3,

where each of the sets, if non-empty, can be written as follows:

I1 = {0},
I2 = {μ1,−μ1, . . . , μr ,−μr },
I3 = {η1, . . . , ηs},

where μi > 0 and ηi �= 0 for all i , and |ηi | �= |η j | for i �= j . In other words, I2 contains
pairs of non-zero weights ±μi and I3 contains non-zero weights that cannot be paired. Note
that I2 ∪ I3 �= ∅ since at least one weight is non-zero.

We can now rewrite the splitting of V as

V  U0 ⊕ (U−μ1 ⊕ Uμ1)⊕ · · · ⊕ (U−μr ⊕ Uμr )⊕ Uη1 ⊕ · · · ⊕ Uηs , (3.17)

where Uν = V ′
i /V ′

i−1 if ν = λi for some i = 1, . . . , l and zero otherwise.
If I1 is not empty, let β0 be the component of β in H0(X, K ⊗ U0 ⊗A U0) and similarly

define γ0. If both β0 = 0 and γ0 = 0 then the vector bundle U0 is a U(n0)-Higgs bundle.
Otherwise, (U0, β0, γ0) defines an SO∗(2n0)-Higgs bundle, where n0 = rk(U0).

For each positive element μi ∈ I2, let β̃i be the component of β in H0(X, K ⊗ Uμi ⊗A

U−μi ) and similarly define γ̃i . If both β̃i = 0 and γ̃i = 0 then the vector bundles Uμi and U−μi

are U(pi )- and U(qi )-Higgs bundles respectively, where pi = rk(Uμi ) and qi = rk(U−μi ).
Otherwise,

(Ṽi , W̃i , β̃i , γ̃i )) = (Uμi ⊕ U∗−μi
, β̃i , γ̃i )

defines a U(pi , qi )-Higgs bundle, where pi = rk(Uμi ) and qi = rk(U−μi ). In order to see
that deg Ṽi + deg W̃i = 0, we note that we can write the decomposition (3.17) as

V = U−μi ⊕ V ′ ⊕ Uμi ,
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where we have pulled out U−μi and Uμi and we denote the rest by V ′. Now con-
sider the induced filtration V ′ of V with the weights λ′ = (−1 < 0 < 1). Clearly
ϕ ∈ H0(X, N (V ′, λ′)). Hence semistability implies that

d(V ′, λ′) = deg(Uμi )− deg(U−μi ) ≥ 0.

Similarly, considering the filtration induced by V = Uμi ⊕ V ′ ⊕ U−μi with weights (−1 <
0 < 1) we obtain deg(U−μi )− deg(Uμi ) ≥ 0, and hence we conclude that

deg Ṽi + deg W̃i = deg(Uμi )− deg(U−μi ) = 0

Finally, for each ηi ∈ I3, the vector bundle Uηi is a U(ni )-Higgs bundle and we see that
deg(Uηi ) = 0 by a similar argument, using the decomposition V = Uηi ⊕ V ′.

Altogether, this leads to a decomposition with summands of the type in the statement
of the Proposition. Now we show that each summand is polystable as a G-Higgs bundle,
where G is the appropriate group, i.e, G = SO∗(2n0), G = U(pi , qi ) or G = U(ni ). By
Proposition 8.5, it follows that the U(pi , qi ) and U(ni ) summands are direct sums of stable
ones. Suppose one of the SO∗(2n0) summands is not polystable. Then there is a filtration
and weight system violating polystability of this summand. This filtration and weight system
can be extended by adding the remaining summands in V to each term and by taking the
same weights. The resulting filtration and weight system violates polystability for the original
SO∗(2n)-Higgs bundle (V, ϕ). Moreover, n0 < n because I2 ∪ I3 �= ∅. Hence we can iterate
the procedure until all summands are stable.

Finally, we show that the three types are mutually exclusive. The conditions on ϕ clearly
make (1) and (3) mutually exclusive. Suppose that (Vi , βi , γi ) is of type (2). Since it is stable,
it must have ϕi �= 0 and hence cannot be of type (3). Suppose that (Vi , βi , γi ) is also stable as
a SO∗(2n)-Higgs bundle. Then it is infinitesimally simple and thus aut(Vi , βi , γi ) = 0. But
if (Vi , βi , γi ) is of type (2) then C

∗ ⊂ aut(Vi , βi , γi ). Thus cases (1) and (2) are mutually
exclusive. ��
Notation We shall write (V, ϕ) = (V, ϕ1)⊕ · · · ⊕ (V, ϕk) for a SO∗(2n)-Higgs bundle of
the kind described in Proposition 3.24. Moreover, somewhat imprecisely, we shall say that a
SO∗(2n)-Higgs bundle of the form described in (2) of Proposition 3.24 is a U(p, q)-Higgs
bundle (here n = p + q).

By Theorem 3.19 and Propositions 3.22 and 3.23, case (1) in Proposition 3.24 divides
further into two cases. The resulting refinement, given in the next theorem, will be essential
for proving our connectedness results in Sect. 5.

Theorem 3.25 A SO∗(2n)-Higgs bundles (V, ϕ = β + γ ) is polystable if and only if there
is a decomposition (V, ϕ) = (V1, ϕ1)⊕· · ·⊕ (Vk, ϕk) such that each (Vi , ϕi ) is a SO∗(2ni )-
Higgs bundle of one of the following mutually exclusive types:

(1) (Vi , ϕi ) is a stable and simple SO∗(2ni )-Higgs bundle with ϕi �= 0 which is stable as an
SO(2ni ,C)-Higgs bundle;

(2) (Vi , ϕi ) is a stable and simple SO∗(2ni )-Higgs bundle with ϕi �= 0 which admits a
skewsymmetric isomorphism as in Proposition 3.23 and thus defines a stable U∗(ni )-
Higgs bundle;

(3) (Vi , ϕi ) is as described in (2) of Proposition 3.24) and thus defines a stable U(pi , qi )-
Higgs bundle where pi qi �= 0, deg Ṽi + deg W̃i = 0 and ϕi �= 0;

(4) ϕi = 0 and Vi defines a degree zero stable vector bundle.
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3.7 Bounds on d = deg(V ).

In this section we give an inequality which bounds the number of non-empty moduli spaces
Md = Md(SO∗(2n)). The inequality corresponds to the Milnor-Wood inequality for surface
group representations into SO∗(2n) (see Sect. 6).

Proposition 3.26 Let (V, β, γ ) be a semistable SO∗(2n)-Higgs bundle. Then

rank(β)(1 − g) ≤ deg(V ) ≤ rank(γ )(g − 1). (3.18)

In particular,
|deg(V )| ≤ n(g − 1) (3.19)

where deg(V ) = n(g − 1) if and only if γ is an isomorphism, and deg(V ) = −n(g − 1) if
and only if β is an isomorphism.

Proof This is proved by first using the equivalence between the semistability of (V, β, γ )
and the SL(2n,C)-Higgs bundle (W,
) associated to it (see (1) in Theorem 3.20), and then
applying the semistability numerical criterion to special Higgs subbundles defined by the
kernel and image of 
 (see Section 3.4 in [5], and also [18]). ��
Notice that since β and γ are skew-symmetric, they cannot be isomorphisms if n is odd. If
n = 2m + 1 then 2m is the upper bound on rank(β) and rank(γ ). Denote by

⌊ n
2

⌋
the integer

part of n
2 . As a corollary of Proposition 3.26, we obtain the following.

Proposition 3.27 The moduli space Md is empty unless

|d| ≤
⌊n

2

⌋
(2g − 2). (3.20)

In view of this result, we say that d = deg(V ) is maximal when equality holds in (3.20).

4 The case of maximal d

4.1 Cayley correspondence for n = 2m

In this section we will assume that n = 2m is even and we will describe the SO∗(2n)
moduli space for the extreme value |d| = 2m(g − 1). In fact, for the rest of this section we
shall assume that d = 2m(g − 1). This involves no loss of generality, since, by Proposition
3.17 there is an isomorphism between the moduli spaces for d and −d . The main result is
Theorem 4.3, which we refer to as the Cayley correspondence.

Let (V, β, γ ) be a SO∗(4m)-Higgs bundle such that γ ∈ H0(X, K ⊗ �2V ∗) is an iso-
morphism. Let L0 = K −1/2 be a fixed square root of K −1, and define W := V ⊗ L0. Then
ω := γ ⊗ IL0 : W → W ∗ is a skew-symmetric isomorphism defining a non-degenerate sym-
plectic on W , in other words, (W,) is a Sp(2m,C)-holomorphic bundle. The K 2-twisted
endomorphismψ : W → W ⊗K 2 defined byψ := β⊗ IL−1

0
◦(γ⊗ IL0) is-skewsymmetric

and hence (W,,ψ) defines a K 2-twisted U∗(2m)-Higgs pair (in the sense of Sect. 8.2.2,
suitably modified to incorporate a twisting by an arbitrary line bundle), from which we can
recover the original SO∗(4m)-Higgs bundle.

Definition 4.1 With (V, β, γ ) and (W,,ψ) as above, we say that (W,,ψ) is the Cayley
partner to (V, β, γ ).
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Theorem 4.2 Let (V, β, γ ) be a SO∗(4m)-Higgs bundle with d = 2m(g − 1) such that γ
is an isomorphism. Let (W,,ψ) be the corresponding K 2-twisted U∗(n)-Higgs pair. Then
(V, β, γ ) is semistable (resp. stable, polystable) if and only if (W,,ψ) is semistable (resp.
stable, polystable).

Proof The proof is similar to that of Theorem 4.2 in [14], so we will just sketch the main
arguments. We will used the simplified stability notions given in Propositions 3.13 and 8.7.
We first show that if (V, β, γ ) is semistable then the corresponding U∗(2m)-Higgs pair is
semistable. Suppose otherwise, then there exists an isotropicψ-invariant subbundle W ′ ⊂ W

such that deg W ′ > 0. Let V1 := W ′ ⊗ L−1
0 and let V2 = V

⊥γ

1 (see Lemma 3.12 for the
definition of ⊥γ ). We can check that the filtration 0 ⊂ V1 ⊂ V2 ⊂ V is ϕ-invariant and
deg(V )− deg(V1)− deg(V2) < 0, contradicting the semistability of (V, β, γ ).

To prove the converse, i.e., that (V, β, γ ) is semistable if the corresponding U∗(2m)-
Higgs pair is semistable, suppose that there is a ϕ-invariant filtration 0 ⊂ V1 ⊂ V2 ⊂ V
such that deg(V ) − deg(V1) − deg(V2) < 0. From this filtration we cannot immediately
obtain a destabilizing isotropic subbundle of the U∗(2m)-Higgs pair, but we can construct
an appropriate filtration giving the destabilizing subobject of the U∗(2m)-Higgs pair. To do
this, we first observe that the ϕ-invariance condition for γ (second condition in (3.13)) is

equivalent, by Lemma 3.12, to V2 ⊂ V
⊥γ

1 . We define two new filtrations as follows:

(0 ⊂ V ′
1 ⊂ V ′

2 ⊂ V ) := (0 ⊂ V1 ⊂ V
⊥γ

1 ⊂ V )

(we indeed have V1 ⊂ V
⊥γ

1 because V1 ⊂ V2 and V2 ⊂ V
⊥γ

1 ) and

(0 ⊂ V ′′
1 ⊂ V ′′

2 ⊂ V ) := (0 ⊂ V2 ∩ V
⊥γ

2 ⊂ V2 + V
⊥γ

2 ⊂ V ).

One can check (see Theorem 4.2 in [14]) that these two filtrations are ϕ-invariant and that
one of the two inequalities

deg V − deg V1 − deg V
⊥γ

1 < 0, deg V − deg(V2 ∩ V
⊥γ

2 )− deg(V2 + V
⊥γ

2 ) < 0

holds. These two filtrations give ψ-invariant isotropic subbundles W ′ := V ′
1 ⊗ L0 and

W ′′ := V ′′
1 ⊗ L0 such that either deg W ′ > 0 or deg W ′′ > 0, contradicting the semistability

of (W,,ψ).
The proof of the statement for stability is basically the same, observing that the trivial

filtration 0 = V1 ⊂ V2 = V corresponds to the trivial subbundle 0 ⊂ W . The proof of the
equivalence of the polystability conditions follows word by word the argument for Sp(2n,R)
given in Theorem 4.2 in [14]. ��
Theorem 4.3 Let Mmax(SO∗(4m)) be the moduli space of polystable SO∗(4m)-Higgs bun-
dles with d = 2m(g−1) and let MK 2(U∗(2m)) be the moduli space of polystable K 2-twisted
U∗(2m)-Higgs pairs. The map (V, β, γ ) �→ (W,,ψ) defines an isomorphism of complex
algebraic varieties

Mmax(SO∗(4m))  MK 2(U∗(2m)).

Proof Let (V, β, γ ) be a semistable SO∗(4m)-Higgs bundle with d = 2m(g −1). By Propo-
sition 3.26, γ is an isomorphism and hence the map (V, β, γ ) �→ (W,,ψ) is well defined.
The result follows now from Theorem 4.2 and the existence of local universal families (see
[35]). ��
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Remark 4.4 Note that a maximal SO∗(2n)-Higgs bundle (V, β, γ ) has β = 0 if and only
if the Cayley partner (W,,ψ) has ψ = 0. Thus, in particular, Theorem 4.2 implies that
a maximal SO∗(2n)-Higgs bundle of the form (V, 0, γ ) is polystable if and only if the cor-
responding Sp(n,C)-bundle (W,) is polystable. Hence, the isomorphism of Theorem 4.3
restricts to an isomorphism between the subspace of SO∗(2n)-Higgs bundles with β = 0
in Mmax(SO∗(2n)) and the moduli space of polystable Sp(n,C)-bundles (note that there is
only one topological class of such bundles, since Sp(n,C) is simply connected.) This will
be important in the proof of Theorem 5.2.

4.2 Rigidity for n = 2m + 1

In this section we consider the case in which n = 2m + 1 and describe the SO∗(2n) moduli
space for the extreme value |d| = 2m(g − 1). As in Sect. 4.1, we assume without loss of
generality that d is positive. The main result is the following theorem.5

Theorem 4.5 Let Mmax(SO∗(4m + 2)) be the moduli space of polystable SO∗(2n)-Higgs
bundles with n = 2m + 1 and d = 2m(g − 1). If m > 0 and g ≥ 2 then the stable locus of
Mmax(SO∗(4m + 2)) is empty and

Mmax(SO∗(4m + 2))  Mmax(SO∗(4m))× Jac(X),

where Jac(X) is the Jacobian of X.

Proof Let (V, β, γ ) be a polystable SO∗(2n)-Higgs bundle with n = 2m + 1. The map
γ : V −→ V ∗ ⊗ K defines kernel and image sheaves:

0 −→ ker(γ ) −→ V −→ im(γ ) −→ 0. (4.1)

The kernel ker(γ ) is a subbundle of V , while im(γ ) is in general a subsheaf of V ∗ ⊗ K . Let
Wγ denote the saturation of im(γ )⊗ K −1 ⊂ V ∗, so that we have

0 −→ im(γ )⊗ K −1 −→ Wγ −→ T −→ 0, (4.2)

where T is a torsion sheaf.
Let ker(γ )⊥ denote the annihilator of ker(γ ), i.e. let it be defined by

0 −→ ker(γ )⊥ −→ V ∗ −→ ker(γ )∗ −→ 0 (4.3)

The skew-symmetry of γ implies the following:

ker(γ )⊥ = Wγ , (4.4)

rank(γ ) ≤ 2m (4.5)

Combining (4.4) with (4.3), we get

deg(ker(γ ))− deg(Wγ ) = d (4.6)

In addition, we get linear relations from (4.1) and (4.2), namely

deg(ker(γ ))+ deg(im(γ )) = d (4.7)

and
deg(im(γ ))− deg(Wγ ) = l(2g − 2)− t (4.8)

5 Announced without proof as Theorem 4.8 in [6].
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where t = deg(T ) and l = rank(γ ). The system (4.6), (4.7), (4.8) can be solved, giving in
particular

deg(ker(γ )) = d + deg(Wγ ) = d − l(g − 1)+ t

2
. (4.9)

Consider now the subobject V ⊕ Wγ ⊂ V ⊕ V ∗. This clearly satisfies

(1) W ⊥
γ ⊂ V ,

(2) β(Wγ ) ⊂ V ⊗ K ,
(3) γ (V ) ⊂ Wγ ⊗ K .

Thus, setting V1 = W ⊥
γ and V2 = V , we get a filtration which is ϕ-invariant, i.e. satisfies

condition (3.13) in Definition 3.8. The semistability condition thus yields the inequality
deg(W ⊥

γ ) ≤ 0 or, equivalently,
d + deg(Wγ ) ≤ 0. (4.10)

Combined with (4.9) this gives

d − l(g − 1)+ t

2
≤ 0. (4.11)

It follows immediately from (4.11) and (4.9)—and the non-negativity of t—that if d =
2m(g−1) = l(g−1) then T = 0, i.e. im(γ )⊗ K −1 is a subbundle of V ∗, and deg(ker(γ )) =
0.

By Theorem 2.4 the SO∗(2n)-Higgs bundle (V, β, γ ) is polystable if and only if V admits
a Hermitian metric h satisfying the SO∗(2n)-Hitchin equations. As described in Sect. 3.3,
these equations take the form

FV + ββ∗ + γ ∗γ = 0 (4.12)

where FV is the curvature of the metric connection determined by h, and the adjoints β∗
and γ ∗ are with respect to h. Fix a local frame for V and take the dual frame for V ∗. With
respect to these frames, β and γ are represented by a skew-symmetric matrices. If the frame
for V is compatible with the smooth decomposition V = ker(γ ) ⊕ V⊥, where V⊥ denotes
the complement to ker(γ ), then the matrices have the form

γ =
(

0 0
0 γ

)
, β =

(
β1 β2

−β2 β3

)
(4.13)

with respect to the decompositions V = ker(γ )⊕ V⊥ and V ∗ = (ker(γ ))∗ ⊕ (V⊥)∗.
The metric connection decomposes as

DV =
(

Dker A
− ĀT D⊥

)
(4.14)

where A ∈ 0,1(Hom(V⊥, ker(γ ))) is the second fundamental form for the embedding of
the subbundle ker(γ ) ⊂ V . The corresponding decomposition of the curvature is

FV =
(

Fker − A ∧ ĀT ∗
∗ FV⊥ − ĀT ∧ A

)
. (4.15)

Applying i�Tr to Eq. (4.12), and using (4.13) thus yields

deg(ker(γ ))+�+ ||β1||2 + ||β2||2 = 0 (4.16)

deg(V⊥)−�+ ||β2||2 + ||β3||2 − ||γ ||2 = 0 (4.17)
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where � = −i�Tr(A ∧ ĀT ). Notice that, since the second fundamental form is of type
(0, 1), we get that

� ≥ 0 . (4.18)

But if d = 2m(g − 1) and rank(γ ) = 2m then deg(ker(γ )) = 0. It thus follows from (4.16)
that � = 0 and also that β1 = β2 = 0. This immediately implies that the SO∗(2n)-Higgs
bundle (V, β, γ ) decomposes as a sum

(V, β, γ ) = (ker(γ ), 0, 0)⊕ (V⊥, β3, γ ). (4.19)

Notice that with V1 = 0 and V2 = V⊥ we get a ϕ-invariant two-step filtration (see definition
3.8) with

deg(V )− deg(V1)− deg(V2) = 0 (4.20)

By Proposition 3.13 (V, β, γ ) is thus not stable. Moreover, ker(γ ) is a holomorphic line
bundle, while (V⊥, β3, γ ) is a SO∗(4m)-Higgs bundle. The data thus define a Higgs bundle
with structure group

SO∗(4m)× SO(2) = SO∗(4m)× U(1) .

This completes the proof of Theorem 4.5. ��
Remark 4.6 It follows from Theorem 4.5 that Mmax(SO∗(4m +2)) has dimension 2m(2m −
1)(g − 1)+ g. Comparing with the expected dimension given in Proposition3.16 we see that
dim(Mmax(SO∗(4m + 2))) is smaller than expected if g ≥ 2 and m > 0. This explains why
we refer to Theorem 4.5 as a rigidity result.

5 Connected components of the moduli space

5.1 The Hitchin functional and connected components of the moduli space

The method we shall use for studying the topology of the moduli space goes back to Hitchin
[23]. In the following, we very briefly outline the general aspects of this approach, applied to
the count of connected components (more details can be found in, for instance, [5,6,14,24]).
We then apply this programme (in Theorem 5.2 below) to show that Md is connected for
d = 0 and the maximal value of |d| (where Md = Md(SO∗(2n), as in Sect. 3.4).

The method rests on the gauge theoretic interpretation of the moduli space (provided
by Theorem 2.4) as the moduli space of solutions to the Hitchin equations (2.1). Given
defining data for a SO∗(2n)-Higgs bundle, namely (V, β, γ ), the solution to the equations is
a Hermitian metric on the vector bundle V .

Thus it makes sense to define the Hitchin function

f : Md → R

(V, β, γ ) �→ ‖β‖2 + ‖γ ‖2 (5.1)

where the L2-norms of β and γ are computed using the metric which satisfies the Hitchin
equation. The function f is proper and therefore attains a minimum on each connected
component of Md . Hence, if the subspace of local minima of f restricted to Md can be
shown to be connected, then it will follow that Md itself is connected.

Theorem 5.1 Let (V, β, γ ) be a poly-stable SO∗(2n)-Higgs bundle.

123



24 Geom Dedicata (2015) 175:1–48

(1) If d > 0, then (V, β, γ ) represents a local minimum on Md if and only if β = 0.
(2) If d < 0, then (V, β, γ ) represents a local minimum on Md if and only if γ = 0.
(3) If d = 0, then (V, β, γ ) represents a local minimum on Md if and only if β = 0 and

γ = 0.

Before giving the proof of this result (at the end of Sect. 5.2 below), we apply it to prove
our main theorem on the connectedness of M0 and Mmax.

Theorem 5.2 The moduli space Md is non-empty6 and connected if d = 0 or |d| =⌊ n
2

⌋
(2g − 2).

Proof Consider first the case d = 0. From (3) of Theorem 5.1 it is immediate that the
subspace of local minima of the Hitchin function on M0 consists of polystable SO∗(n)-
Higgs bundles (V, β, γ ) with β = γ = 0. Furthermore, we conclude from Theorem 3.25
that such an SO∗(2n)-Higgs bundle is polystable if and only if V is a polystable vector bundle.
Therefore, the subspace of local minima of the Hitchin function on M0 can be identified
with the moduli space of polystable vector bundles of degree zero, which is known to be
connected. This completes the proof of the case d = 0.

Next we turn to the case |d| = 
 n
2 �(2g − 2), i.e., the proof of connectedness of Mmax.

By Proposition 3.17 we may assume, without loss of generality, that d is positive. From (1)
of Theorem 5.1, we have that the subspace of local minima of the Hitchin function on Mmax

can be identified with the subspace of (V, β, γ ) with β = 0. Suppose now that n is even.
Then, using Remark 4.4, we have that this subspace is isomorphic to the moduli space of
polystable Sp(n,C)-bundles. This space is connected by Ramanathan [31, Proposition 4.2]
and hence Mmax is connected when n is even. The connectedness of Mmax for odd n now
follows from the rigidity result of Theorem 4.5 and the connectedness of Mmax for even n.

Finally, non-emptiness of the moduli spaces follows from the non-emptiness of the sub-
spaces of local minima of the Hitchin functional, which in turn follows from the identifications
given in the course of the present proof. ��
5.2 Minima of the Hitchin functional

The purpose of this section is to prove Theorem 5.1. For this we need to show various
preliminary results and, using these, we give the proof of the Theorem at the end of the
section.

The following result is completely analogous to [5, Proposition 4.5].

Proposition 5.3 The absolute minimum of the Hitchin functional restricted to Md is |d|.
This minimal value is attained at a point represented by (V, β, γ ) (with deg(V ) = d) if and
only if β = 0 (if d ≥ 0) or γ = 0 (if d ≤ 0).

Proof Using the Hitchin equation and Chern–Weil theory we get that

d + ‖β‖2 − ‖γ ‖2 = 0 (5.2)

and hence the Hitchin function can be expressed as

f (V, β, γ ) =
{

d + 2‖β‖2

−d + 2‖γ ‖2 (5.3)

The result follows immediately from (5.3). ��
6 Non-emptiness, also for non-maximal components, follows from the results of [26] which appeared after
the present paper.
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Of course not all local minima are necessarily absolute minima. We thus need to examine
more closely the structure of the local minima.

On the smooth locus of Md , the Hitchin functional f arises as the moment map of the
S1-action given by multiplication of the Higgs field ϕ by complex numbers of modulus
one. Considering the moduli space from the algebraic or holomorphic point of view, this
action extends to the C

∗-action given by (V, φ) �→ (V, wφ) for w ∈ C
∗. The moment map

interpretation shows that, on the smooth locus of Md(SO∗(2n)), the critical points of f are
exactly the fixed points of the C

∗-action. On the full moduli space, the fixed point locus of the
C

∗-action coincides with the locus of Hodge bundles (this can be easily seen by arguments
like the ones used in [23,24,36]), which are defined as follows.

Definition 5.4 A SO∗(2n)-Higgs bundle (V, β, γ ) is called a Hodge bundle if

• there is a decomposition of V into holomorphic subbundles

V =
⊕

i

Fi (5.4)

and, with respect to this decomposition,
• β : F∗−i −→ Fi+1 ⊗ K , and γ : Fi −→ F∗−i+1 ⊗ K

Here F∗
i ⊂ V ∗ is the dual of Fi .

The weight of Fi is i and the weight of F∗
i is −i .

Thus, in view of (4) of Proposition 2.14, we have the following characterization of the
critical points of f .

Proposition 5.5 A simple SO∗(2n)-Higgs bundle, which is stable as an SO(2n,C)-Higgs
bundle, represents a critical point of f if and only if it is a Hodge bundle.

The deformation complex (2.2) for a SO∗(2n)-Higgs bundle (E, ϕ) is

C•(V, ϕ) : End(V )
ad(ϕ)−−−→ �2V ⊗ K ⊕�2V ∗ ⊗ K .

ψ �→ (−βψ t − ψβ, γψ + ψ tγ ). (5.5)

If (V, ϕ) is a Hodge bundle, then the decomposition (5.4) of V induces corresponding weight
decompositions

End(V ) =
⊕

U+
k and �2V ⊕�2V ∗ =

⊕
U−

k

where

U+
k =

⊕
j−i=k

F∗
i ⊗ Fj , and U−

k =
⊕

i+ j=k

Fi ⊗A Fj ⊕
⊕

i+ j=−k

F∗
i ⊗A F∗

j . (5.6)

Moreover, since the Higgs fieldφ has weight one, the deformation complex (5.5) decomposes
accordingly as

C•(V, φ) =
⊕

k

C•
k (V, φ),

where we let C•
k (V, φ) : U+

k
ad(φ)−−−→ U−

k+1 ⊗ K . If we write C•−(V, φ) = ⊕
k>0 C•

k (V, φ) we
then have the corresponding positive weight subspace

H
1(C•−(V, φ)) ⊂ H

1(C•(V, φ))
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of the infinitesimal deformation space. When (V, φ) represents a smooth point of the mod-
uli space, the hypercohomology H

1(C•−(V, φ)) is the negative eigenvalue subspace of the
Hessian of f and so (V, φ) is a local minimum of f if and only if H

1(C•−(V, φ)) = 0.
The key result we need for identifying the minima of f on the smooth locus of the moduli

space is the following ([6, Corollary 5.8]).

Proposition 5.6 Assume that (V, φ) is a SO∗(2n)-Higgs bundle which is stable as a
SO(2n,C)-Higgs bundle. Then (V, φ) represents a local minimum of f in Md if and only if
it is a Hodge bundle and

ad(φ) : U+
k −→ U−

k+1 ⊗ K

is an isomorphism for all k > 0.

Using this result, we can prove the following lemma.

Lemma 5.7 Let (V, β, γ ) be a simple SO∗(2n)-Higgs bundle which is stable as a SO(2n,C)-
Higgs bundle and assume that (V, β, γ ) represents a local minimum of f on Md . Then, if
d = deg(V ) ≥ 0 the vanishing β = 0 holds and, if d = deg(V ) ≤ 0 the vanishing γ = 0
holds.

Proof Let (V, β, γ ) = (V, φ) be a minimum. Then Proposition 5.5 implies that (V, β, γ ) is
a Hodge bundle. Moreover, arguing as in [14, Section 6], we see that (V, β, γ ) being simple
implies the following: there is a decomposition of V into 2p + 1 non-zero holomorphic
subbundles (for some p ∈ 1

2 Z), which is either of the form:

V = F−p+ 1
2

⊕ F−p+2+ 1
2

⊕ · · · ⊕ Fp−2+ 1
2

⊕ Fp+ 1
2
,

β : F∗
p−2 j+ 1

2
−→ F−p+2 j+ 1

2
⊗ K , for 0 ≤ j ≤ p, and

γ : F−p+2 j+ 1
2

−→ F∗
p−2( j+1)+ 1

2
⊗ K , for 0 ≤ j ≤ p.

(5.7)

or of the form

V = F−p− 1
2

⊕ F−p+2− 1
2

⊕ · · · ⊕ Fp−2− 1
2

⊕ Fp− 1
2
,

β : F∗
p−2 j− 1

2
−→ F−p+2 j− 1

2
⊗ K , for 0 ≤ j ≤ p, and

γ : F−p+2 j− 1
2

−→ F∗
p−2( j+1)− 1

2
⊗ K , for 0 ≤ j ≤ p. (5.8)

Let k0 be the largest index such that U+
k0

�= 0. Since otherwise there is nothing to prove,
we may assume that k0 > 0. For definiteness, assume that the decomposition of V is of the
form (5.7)—a similar argument applies when V is of the form (5.8). Using (5.6), we see that
k0 = 2p and thus (by Proposition 5.6) we have an isomorphism

ad(ϕ) : F∗
−p+ 1

2
⊗ Fp+ 1

2
−→ �2 Fp+ 1

2
⊗ K . (5.9)

In this case, since γ = 0 on Fp+ 1
2
, the map ad(φ) is given explicitly by

x �→ φ ◦ x − x ◦ φ = −x ◦ β,
where

β : F∗
p+ 1

2
→ F−p+ 1

2
(5.10)
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for a local section x : F∗
−p+ 1

2
−→ Fp+ 1

2
. Denote the ranks of Fp+ 1

2
and F−p+ 1

2
by a and b

respectively. Then (5.9) implies that ab = a(a−1)
2 and hence that

a = 2b + 1 > b. (5.11)

But then the map β in (5.10) must have a non-trivial kernel and, therefore, the map

−x ◦ β : F∗
p+ 1

2
−→ F−p+ 1

2
−→ Fp+ 1

2

vanishes on ker(β) for any local section x . Now, (5.11) implies that

a = rk(Fp+ 1
2
) ≥ 2.

Hence there are non-zero antisymmetric local sections y of�2 Fp+ 1
2
⊗K which do not vanish

on the kernel of β. This is in contradiction with the existence of the isomorphism (5.9). ��
In order to show that certain singular points of the moduli space are not minima, we need

the following lemma (cf. Hitchin [24, §8]).

Lemma 5.8 Let (V, ϕ) be a polystable SO∗(2n)-Higgs bundle which is a Hodge bundle.
Suppose there is a family (Vt , ϕt ) of polystable SO∗(2n)-Higgs bundles, parametrized by t in
the open unit disk D ⊂ C, such that (V0, ϕ0) = (V, ϕ) and the corresponding infinitesimal
deformation is a non-zero element of H

1(C•−(V, ϕ)). Then (V, ϕ) is not a local minimum of
f on Md .

Using this criterion and Theorem 3.25, we can now extend the result of Lemma 5.7 to
cover all polystable SO∗(2n)-Higgs bundles.

Lemma 5.9 Let (V, β, γ ) be a polystable SO∗(2n)-Higgs bundle and assume that (V, β, γ )
represents a local minimum of f on Md . Then, if d = deg(V ) ≥ 0 the vanishing β = 0
holds and, if d = deg(V ) ≤ 0 the vanishing γ = 0 holds.

Proof Let (V, ϕ) = (V1, ϕ1)⊕ · · · ⊕ (Vk, ϕk) be the decomposition given in Theorem 3.25.
As observed by Hitchin [24], the Hitchin function (5.1) is additive in the sense that

f (V, ϕ) =
k∑

i=1

f (Vi , ϕi ).

It follows that each summand (Vi , ϕi ) represents a local minimum for the Hitchin functional
on its own moduli space.

If a summand (Vi , ϕi ) is of type (1) in Theorem 3.25, then Lemma 5.7 shows that βi = 0 or
γi = 0. Similarly, if a summand (Vi , ϕi ) is of type (3), then it is shown in [5, Theorem 4.6] that
βi = 0 or γi = 0. With regard to summands of type (2), it is shown in [16, Proposition 4.6] that
a stable U∗(ni )-Higgs bundle (Vi , ϕi ) representing a local minimum on the corresponding
moduli space has ϕi = 0. Finally we note that the summands (Vi , ϕi ) of type (4) have ϕi = 0.

Thus each of the summands (Vi , ϕi ) of type (1) or (3) has either βi = 0 or γi = 0 and
each of the summands of type (2) or (4) has ϕi = 0.

To complete the proof, assume that there are summands (V ′, β ′, γ ′) and (V ′′, β ′′, γ ′′)
with β ′ = 0, γ ′ �= 0, β ′′ �= 0 and γ ′′ = 0, and that each of these summands is either of type
(1) or of type (3). If we can construct a family (Vt , ϕt ) of polystable SO∗(2n)-Higgs bundles
such that

(V0, ϕ0) = (V ′, β ′ + γ ′)⊕ (V ′′, β ′′ + γ ′′)
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and satisfying the hypothesis of Lemma 5.8, this proposition guarantees that (V ′, β ′ + γ ′)⊕
(V ′′, β ′′ + γ ′′) is not a minimum (on its own moduli space) and hence (V, ϕ) cannot be a
minimum. In the analogous case of Sp(2n,R)-Higgs bundles, such a family is constructed
in Lemmas 7.2 and 7.3 of [14]. Inspection of the proofs of these two lemmas shows that they
are not sensitive to the symmetry properties of β and γ and so go through unchanged in the
present case of SO∗(2n)-Higgs bundles. This completes the proof. ��
Finally we are in a position to prove Theorem 5.1.

Proof of Theorem 5.1 The “if” part is immediate from Proposition 5.3. In the case |d| =

 n

2 �(2g −2), the “only if” part follows from Lemma 5.9. In the case d = 0 the result follows
from the observation that if one of the Higgs fields β and γ vanishes, then polystability of
(V, β, γ ) forces the other Higgs field to vanish. ��

6 Representations of π1(X) in SO∗(2n)

Let X be a compact Riemann surface of genus g and let

π1(X) =
〈

a1, b1, . . . , ag, bg |
g∏

i=1

[ai , bi ] = 1

〉

be its fundamental group. By a representation ofπ1(X) in SO∗(2n)we mean a homomorphism
ρ : π1(X) → SO∗(2n). The set of all such homomorphisms,

Hom(π1(X),SO∗(2n)),

can be naturally identified with the subset of SO∗(2n)2g consisting of 2g-tuples

(A1, B1, . . . , Ag, Bg)

satisfying the algebraic equation
∏g

i=1[Ai , Bi ] = 1. This shows that Hom(π1(X),SO∗(2n))
is a real algebraic variety.

The group SO∗(2n) acts on Hom(π1(X),SO∗(2n)) by conjugation:

(g · ρ)(γ ) = gρ(γ )g−1

for g ∈ SO∗(2n), ρ ∈ Hom(π1(X),SO∗(2n)) and γ ∈ π1(X). Recall that a representation
is reductive if its composition with the adjoint representation is semisimple. If we restrict the
action to the subspace Homred(π1(X),SO∗(2n)) consisting of reductive representations, the
orbit space is Hausdorff. By a reductive representation we mean one for which the Zariski
closure of the image of π1(X) in SO∗(2n) is a reductive group. Define the moduli space of
representations of π1(X) in SO∗(2n) to be the orbit space

R = Homred(π1(X),SO∗(2n))/SO∗(2n).

Since U(n) ⊂ SO∗(2n) is a maximal compact subgroup, we have

π1(SO∗(2n))  π1(U(n))  Z,

and there is a topological invariant attached to a representation ρ ∈ R given by an element
d = d(ρ) ∈ Z. This integer is called the Toledo invariant and coincides with the first Chern
class of a reduction to a U(n)-bundle of the flat SO∗(2n)-bundle associated to ρ.

123



Geom Dedicata (2015) 175:1–48 29

Fixing the invariant d ∈ Z we consider,

Rd := {ρ ∈ R such that d(ρ) = d}.
Proposition 6.1 The transformationρ �→ (ρt )

−1 in R induces an isomorphism of the moduli
spaces Rd and R−d .

As shown by Domic–Toledo [11], the Toledo invariant d of a representation satisfies the
Milnor–Wood type inequality:

Proposition 6.2 The moduli space Rd is empty unless

|d| ≤
⌊n

2

⌋
(2g − 2).

As a special case of of the non-abelian Hodge theory correspondence (see [15, Theo-
rem 3.32]) we have the following.

Proposition 6.3 The moduli spaces Rd and Md are homeomorphic.

From Proposition 6.3 and Theorem 5.2 we have the main result of this paper regarding
the connectedness properties of R given by the following.

Theorem 6.4 The moduli space Rd is non-empty and connected if d = 0 or |d| = 
 n
2 �(2g−

2).

From Proposition 6.3 and Theorem 6.4 we also have the following rigidity result for
maximal representations.

Theorem 6.5 Let Rmax(SO∗(4m + 2)) be the moduli space of maximal representations in
SO∗(2n) with n = 2m + 1 and d = 2m(g − 1). If m > 0 and g ≥ 2 then the locus of
irreducible representations of Rmax(SO∗(4m + 2)) is empty and

Rmax(SO∗(4m + 2))  Rmax(SO∗(4m))× Hom(π1(X),U(1)).

7 Low rank cases

In this section we exploit well known Lie-theoretic isomorphisms to examine SO∗(2n)-Higgs
bundles for low values of n.

7.1 The case n = 1

The group SO∗(2) is isomorphic to SO(2) and hence, in particular, it is compact. A SO∗(2)-
Higgs bundle is thus simply a bundle (with zero Higgs field). Identifying the maximal compact
subgroup (in this case the group itself) with U(1), we see that a SO∗(2)-Higgs bundle consists
of a GL(1,C)-bundle, or equivalently, a holomorphic line bundle. Using the usual identifica-
tion GL(1,C)  SO(2,C), we see that the associated SO(2,C)-Higgs bundle is equivalent
to the vector bundle L ⊕ L−1 with the standard off-diagonal quadratic form.

Proposition 7.1 As a SO∗(2)-Higgs bundle, a line bundle L is semistable if and only if
deg(L) = 0. Moreover, semistability implies stability for SO∗(2)-Higgs bundles.
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Proof We apply Proposition 3.13. The only two-step filtrations are:

0 ⊂ 0 ⊂ 0 ⊂ L

0 ⊂ 0 ⊂ L ⊂ L

0 ⊂ L ⊂ L ⊂ L

All are ϕ-invariant since the Higgs field is zero. Applying (3.14) to these filtrations in turn
yields deg(L) ≤ 0, 0 ≤ 0, and deg(L) ≥ 0. The first result follows from this. The second
result is a consequence of the fact that there are no ϕ-invariant two-step filtrations in which
at least one of the subbundles is proper. ��
Remark 7.2 Since L and L−1 are isotropic subbundles of L ⊕ L−1, it follows that L ⊕ L−1

is semistable as a SO(2,C)-bundle if and only if deg(L) = 0. This gives an alternative proof
for Proposition 7.1.

It follows that the moduli space of Md(SO∗(2)) is non-empty only for d = 0, in which case
we can identify

M0(SO∗(2))  Jac0(X)

where Jac0(X) denotes the Jacobian of degree zero line bundles over X .

Remark 7.3 It may look paradoxical that we do not obtain the whole moduli space of line
bundles of arbitrary degree over X . This is because, as indicated in Remark 3.7, we are fixing
the parameter of stability to be zero. In order to obtain the other components of the moduli
space we have to consider stability for other integral values of the parameter.

7.2 The case n = 2

In this section we examine the SO∗(2n)-Higgs bundles (V, β, γ ) in which rank(V ) = 2. The
low rank and the isomorphism

so∗(4)  su(2)⊕ sl(2,R) (7.1)

lead us to descriptions that are more explicit than in the general case.

7.2.1 Stability conditions

If rank(V ) = 2 there are no two-step filtrations 0 ⊂ V1 ⊂ V2 ⊂ V in which all the inclusions
are strict. The two-step filtrations with at least one non-zero proper subbundle are thus of one
of the following types:

(1) V1 = 0 and V2 = L where L is a line subbundle, or
(2) V2 = V and V1 = L where L is a line subbundle, or
(3) V1 = V2 = L where L is a line subbundle.

The corresponding conditions in Lemma 3.11 for such two-step filtration to be ϕ-invariant
are:

(1) β(L⊥) = 0 if V1 = 0 and V2 = L ,
(2) γ (L) = 0 if V1 = L and V2 = V , and
(3) β(L⊥) ⊂ L ⊗ K and γ (L) ⊂ L⊥ ⊗ K if V1 = V2 = L .
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Remark 7.4 In case (1) the condition β(L⊥) = 0 implies that β : V ∗ → V ⊗ K has rank
less than two. The skew symmetry of β thus forces β = 0. Similarly, in case (2), γ (L) = 0
implies that γ = 0. In case (3), the skew symmetry of β and γ ensure that the conditions
β(L⊥) ⊂ L ⊗ K and γ (L) ⊂ L⊥ ⊗ K apply for all line subbundles L ⊂ V .

The stability condition for SO∗(4)-Higgs bundles thus reduces to the following.

Proposition 7.5 A SO∗(4)-Higgs bundle (V, β, γ ) with deg(V ) > 0 is (semi)stable if and
only if V is (semi)stable as a bundle and γ �= 0.

A SO∗(4)-Higgs bundle (V, β, γ ) with deg(V ) < 0 is (semi)stable if and only if V is
(semi)stable as a bundle and β �= 0.

A SO∗(4)-Higgs bundle (V, β, γ ) with deg(V ) = 0 is (semi)stable if and only if V is
(semi)stable as a bundle.

Proof Suppose that (V, β, γ ) is a (semi)stable SO∗(4)-Higgs bundle with deg(V ) = d . By
(3.18), if d > 0 then γ cannot be zero and if d < 0 then β cannot be zero. If d = 0 then
( see Remark 3.14) there is no restriction on β or γ . Any line subbundle L ⊂ V defines
a ϕ-invariant two-step filtration in which V1 = V2 = L . Applying Proposition (3.13) we
see that if (V, β, γ ) is semistable then deg(L) ≤ deg(V )/2, and the inequality is strict if
(V, β, γ ) is stable. This proves the ‘only if’ direction.

To prove the converse it remains to check that the inequalities (3.14) and (3.15) are satisfied
by ϕ-invariant two-step filtrations of the form (a) V1 = 0, V2 = L or (b) V1 = L , V2 = V .
By Remark 7.4, the first case occurs only if β = 0 and hence, by (3.18), deg(V ) ≥ 0. Thus
in this case

deg(L) ≤ deg(V )/2 �⇒ deg(L) ≤ deg(V ).

Similarly, the second case occurs only if γ = 0 and hence deg(V ) ≤ 0. Thus

deg(L) ≤ deg(V )/2 �⇒ deg(L) ≤ 0.

The requisite inequalities thus follow from the (semi)stability of V . ��
From Proposition 3.24 we have the following.

Proposition 7.6 A SO∗(4)-Higgs bundle (V, β, γ ) is polystable if and only if

(1) it is stable with ϕ �= 0, or
(2) V decomposes as a sum of two line bundles of degree zero and β = γ = 0, or
(3) V = L1 ⊕ L∗

2 with deg(L1) = − deg(L2) and with respect to this decomposition

β =
(

0 β̃

−β̃ 0

)
and γ =

(
0 γ̃

−γ̃ 0

)
.

Corollary 7.7 Let Md(2) denote the moduli space of rank 2, degree d semistable bundles
and let Ms

d(2) ⊂ Md(2) be the stable locus. There is a map

Md(SO∗(4)) −→ Md(2) (7.2)

[V, β, γ ] �→ [V ]
(1) If d > 0 then the image of the map is the locus of bundles for which h0(det(V )−1 ⊗ K )

is greater than zero. The fiber over [V ] ∈ Ms
d(2) can be identified with OPs (1)⊕r where

r = h0(det(V )⊗ K ) and s = h0(det(V )−1 ⊗ K ).
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(2) If d < 0 then the image is the locus of bundles for which h0(det(V ) ⊗ K ) is greater
than zero. The fiber over [V ] ∈ Ms

d(2) can be identified with OPr (1)⊕s where r =
h0(det(V )⊗ K ) and s = h0(det(V )−1 ⊗ K ).

(3) If d = 0 then the map is surjective.

Proof Everything is immediate from Propositions 7.5 and 7.6 except for the description of
the fibers.

Suppose that d > 0 and consider the fiber over a point in Md(2) represented by the bundle
V . The SO∗(4)-Higgs bundles (V, β, γ ) are semistable for all (β, γ ) ∈ H0(X, det(V )⊗K )⊕
(H0(X, det(V )−1 ⊗ K )− {0}. However, since the points in Md(SO∗(4)) are isomorphism
classes of objects, we need to consider when two objects, say (V, β, γ ) and (V, β ′, γ ′), are
isomorphic as SO∗(4)-Higgs bundles. By definition the object are isomorphic if there exists a
bundle automorphism f : V → V such that f ∗(β ′) = β and f ∗(γ ′) = γ . But if V is stable,
then the only automorphisms are multiples of the identity, say f = t I , and the induced map
on β and γ is

f ∗(β) = t2β , f ∗(γ ) = t−2γ (7.3)

The fiber over [V ] ∈ Md(2) is thus given by (H0(X, det(V ) ⊗ K ) ⊕ (H0(X, det(V )−1 ⊗
K )− {0}))/C∗ where the C

∗-action is given by t (β, γ ) = (t2β, t−2γ ). The results follows
from this.

The description of the fibers in the d < 0 case is similar. ��
Remark 7.8 (1) Brill-Noether theory shows that in fact the map is surjective for all d <

(g − 1).
(2) If deg(V ) is odd then Md(2) = Ms

d(2), so all fibers are direct sums of copies of the
degree one line bundle over a suitable projective space. Note, though, that the number of
summands and the dimension of the projective space need not be constant.

(3) In the case d = 0, the fiber over a point [V ] ∈ Md(2) is the quotient

(H0(X, det(V )⊗ K )⊕ H0(X, det(V )−1 ⊗ K ))/C∗ .

7.2.2 Simplicity and smoothness in Md(SO∗(4))

Applying Theorem 3.19 to the case of SO∗(4)-Higgs bundles yields:

Theorem 7.9 Let (V, ϕ) be a stable SO∗(4)-Higgs bundle. If (V, ϕ) is not simple, then V is
a stable vector bundle of degree zero and ϕ = 0. In this case Aut(V, ϕ)  C

∗.

Proof Theorem 3.19 says that there are two alternatives for stable SO∗(2n)-Higgs bundle
which are not simple and we wish to show that alternative (1) occurs when n = 2. To exlude
alternative (2) we note that it requires (V, ϕ) to decompose into two SO∗(2)-Higgs bundles
with non-zero Higgs fields. This is impossible since the Higgs field necessarily vanishes in
a SO∗(2)-Higgs bundle. ��

By Proposition 3.22 a stable and simple SO∗(4)-Higgs bundle (V, β, γ ) represents a
smooth point inMd(SO∗(4)) (where d = deg(V )) unless d = 0 and there is a skewsymmetric

isomorphism f : V
−→ V ∗ intertwining β and γ . By Lemma 7.11 such an isomorphism can

exist only if det(V ) = O. We thus get:

Proposition 7.10 (1) If d is odd then Md(SO∗(4)) is smooth.
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(2) If d is even and d �= 0 then Md(SO∗(4)) is smooth except possibly at points represented
by SO∗(4)-Higgs bundles (V, β, γ ) of the form:

V = L1 ⊕ L∗
2, with deg(L1) = − deg(L2) and, with respect to this decomposition,

β =
(

0 β̃

−β̃ 0

)
and γ =

(
0 γ̃

−γ̃ 0

)
(7.4)

(3) If d = 0 then Md(SO∗(4)) is smooth except possibly at points represented by SO∗(4)-
Higgs bundles (V, β, γ ) such that

(a) β = γ = 0, or
(b) (V, β, γ ) is of the form (7.4), or

(c) det(V ) = O and fβ = f −1γ where f : V
−→ V ∗ is a skew-symmetric isomorphism.

Proof (1) If d is odd then all semistable and polystable Higgs bundles are stable, simple and
do not admit a skew-symmetric isomorphism intertwining the components of the Higgs field.

(2) If d is even and d �= 0 then all stable Higgs bundles are simple and do not admit
a skew-symmetric isomorphism intertwining the components of the Higgs field. The non-
smooth points can occur only at points represented by polystable Higgs bundles.

(3) The cases (a)–(c) correspond to polystable Higgs bundles (cases (a) and (b)), stable
but not simple Higgs bundles (case (a)), or stable and simple bundles which admit a skew-
symmetric isomorphism intertwining the components of the Higgs field (case (c)). ��

7.2.3 The even degree case

Notice that if V is a rank 2 bundle, then �2(V ) = det(V ). Furthermore if deg(V ) is even
then V can be decomposed as

V = U ⊗ L , with

{
det(U )  O
L2 = det(V )

. (7.5)

Lemma 7.11 If U is a rank 2 holomorphic bundle then the following are equivalent:

(1) det(U )  O,
(2) the structure group of U reduces to SL(2,C),
(3) U∗  U, with the isomorphism defined by a symplectic form  ∈ H0(X,�2U∗).

Proof The equivalence of (1) and (2) is straightforward. The equivalence of (2) and (3)
follows from the fact that SL(2,C)  Sp(2,C). ��

Lemma 7.12 Let (V, β, γ ) be a SO∗(4)-Higgs bundle with deg(V ) even. Let V = U ⊗ L as
in (7.5), and let ∈ H0(X,�2U∗) be the symplectic form on U given by (3) of Lemma 7.11,
with induced symplectic form ∗ ∈ H0(X,�2U ) on U∗. Then we can write

β = ⊗ β̃ where β̃ ∈ H0(X, L2 ⊗ K ),

γ = ∗ ⊗ γ̃ where γ̃ ∈ H0(X, L−2 ⊗ K ). (7.6)

Proof Immediate from�2V  �2U ⊗ L2  L2 and the existence of the nowhere vanishing
section  of �2U . ��
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Applying Definition 2.1 to the case G = SL(2,R), a SL(2,R)-Higgs bundle can be
described as a triple (L , β, γ ) where L is a line bundle and β ∈ H0(X, L−2K ), γ ∈
H0(X, L2 K ). We denote by Ml(SL(2,R)) the component of the moduli space of polystable
SL(2,R)-Higgs bundles in which deg(L) = l.

The following result shows that SO∗(4)-Higgs bundles of even degree are intimately
related to SL(2,R)-Higgs bundles.

Proposition 7.13 Let (V, β, γ ) be a SO∗(4)-Higgs bundle with deg(V ) even. Pick L such
that L2 = det(V ) and define U = V ⊗ L−1. Then

(1) U is a SL(2,C)-bundle and
(2) (L , β̃, γ̃ ) defines a SL(2,R)-Higgs bundle

where β̃, γ̃ are as in Lemma 7.12. The SO∗(4)-Higgs bundle (V, β, γ ) is (semi)stable if
and only if U is (semi)stable as a bundle and (L , β̃, γ̃ ) is (semi)stable as a SL(2,R)-Higgs
bundle.

Proof Properties (1) and (2) follow from Lemmas 7.11 and 7.12, and the fact that a
triple (L , β̃, γ̃ ) (as in Lemma 7.12) defines a SL(2,R)-Higgs bundle. The statement about
(semi)stability follows from Proposition 7.5 and the fact that (semi)stability for a SL(2,R)-
Higgs bundle (L , β̃, γ̃ ) with deg(L) ≥ 0 is equivalent to the condition that γ̃ �= 0 (if
deg(L) > 0). ��

Remark 7.14 The isomorphism (7.1) is the infinitesimal version of a 2:1 homomorphism

η : SU(2)× SL(2,R) −→ SO∗(4) . (7.7)

Proposition 7.13 shows that if deg(V ) is even then the structure group of the SO∗(4)-Higgs
bundle lifts via η to SU(2) × SL(2,R). If deg(V ) is odd, then the structure group does not
lift. The obstruction to the lift can be viewed as an element of H2(X,Z/2). In fact, the
homomorphism η is induced by the homomorphism Spin(4,C) −→ SO(4,C). To see this,
recall that

Spin(4,C)  Spin(3,C)× Spin(3,C)  SL(2,C)× SL(2,C).

Under this homomorphism, the real form SU(2) × SL(2,R) of SL(2,C) × SL(2,C) maps
to SO∗(4).

7.2.4 The Cayley partner

Applying Proposition 3.26 with n = 2, we see that

| deg(V )| ≤ 2g − 2

and that γ is an isomorphism if (and only if) deg(V ) = 2g − 2. As in Proposition 7.13 we
write V = U ⊗ L with det(U ) = O and L2 = det(V ). In particular, if deg(V ) = 2g −2 then
deg(L−2 ⊗ K ) = 0. Moreover, since γ is an isomorphism, it follows that γ̃ is a non-zero
section of L−2 ⊗ K and thus L2 = K . Proposition 7.13 thus becomes the following.

Proposition 7.15 Let (V, β, γ ) be a SO∗(4)-Higgs bundle with deg(V ) = 2g − 2. Pick L
such that L2 = K and define U = V ⊗ L−1. Then
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(1) U is a SL(2,C)-bundle and
(2) (L , β̃, γ̃ ) defines a SL(2,R)-Higgs bundle where γ̃ is a non-zero section in H0(X,O),

and β̃ ∈ H0(X, K 2). In particular, (L , β̃, γ̃ ) defines a Higgs bundle in a Teichmüller
component of Mg−1(SL(2,R)).

Moreover, the polystability of (V, β, γ ) is equivalent to the polystability of U.

Remark 7.16 With  as Lemma 7.12, the data (U,; β̃) as in Proposition 7.15 defines a
K 2-twisted U∗(2)-Higgs bundle. Indeed if (V,;ϕ) is a L-twisted U∗(2)-Higgs bundle then
we can assume that  = J with respect to suitable local frames. Since, by definition of a
U∗(2n)-Higgs bundle, ϕt = −ϕ, we get that ϕ = ϕ̃ I with respect to the same frames. It
follows that locally ϕ = ϕ̃ I , where ϕ̃ ∈ H0(X, L) (see “Appendix” and [16] for details on
U∗(2n)-Higgs bundles). The polystability of the (U, β̃) as a K 2-twisted U∗(2)-Higgs bundle
is equivalent to the polystability of U .

Remark 7.17 The ambiguity in the decomposition V = U ⊗ L corresponds, in this case, to
the choice of a square root of K . This is the same choice as the one which distinguishes the
Teichmüller component of Mg−1(SL(2,R)).

Combining Propositions 7.13 and (7.5) gives rise to a 22g : 1 map

T : M0(2)× Ml(SL(2,R)) −→ M2l(SO∗(4))
([U ], [L , β̃, γ̃ ]) �→ [U ⊗ L , β, γ ] (7.8)

where M0(2) denotes the moduli space of polystable rank 2 bundles with trivial determinant.
This is the Higgs bundle manifestation of isomorphism (7.1).

Proposition 7.18 For each 0 ≤ l ≤ g − 1 the moduli space M2l(SO∗(4)) is connected.

Proof Under the map T , the 22g Teichmüller components in Mg−1(SL(2,R)) are all identi-
fied in the component M2g−2(SO∗(4)). For 0 ≤ l < g − 1 the moduli spaces Ml(SL(2,R))
are connected. ��
7.3 The case n = 3

The Lie algebra of SO∗(6) is isomorphic to su(1, 3), the Lie algebra of SU(1, 3). The groups
differ because they have different centers, with Z(SO∗(6))  Z/2 and Z(SU(1, 3))  Z/4.
Both groups are finite covers of PU(1, 3), the adjoint form of the Lie algebra. The rela-
tionships among the groups SO∗(6),SU(1, 3), and PU(1, 3) leads to relations among the
corresponding Higgs bundles for the groups (see Proposition 7.29). As in the case of SO∗(4),
the relation can be explained in terms of the spin group. Namely, the 2 : 1 homomorphism
Spin(6,C) −→ SO(6,C) restricts to a 2 : 1 homomorphism Spin∗(6) −→ SO∗(6). But
under the isomorphism Spin(6,C)  SL(4,C), one has the isomorphism of the correspond-
ing real forms Spin∗(6) and SU(1, 3).

The key to understanding the relation between the Higgs bundles is the isomorphism

�k(V∗)⊗�n(V) −→ �n−k(V).

where V is a vector space of dimension n > k, and the map is defined by the interior product.
This extends to exterior powers of vector bundles of rank n. In particular, if n = 3 and k = 2
we get �2V ∗ ⊗ det(V )  V or equivalently

�2V ∗  det(V )∗ ⊗ V  Hom(det(V ), V ). (7.9)
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Hence sections γ ∈ H0(X,�2V ∗ ⊗ K ) and β ∈ H0(X,�2V ⊗ K ) define holomorphic
bundle maps γ̃ : det(V ) → V ⊗ K and β̃ : V → det(V )⊗ K by

γ̃ (ω) = ιγ (ω),

β̃(v) = β ∧ v, (7.10)

where ιγ denotes interior product.

Proposition 7.19 A SO∗(6)-Higgs bundle defines a U(1, 3)-Higgs bundle via the map

(V, β, γ ) �→ (det(V ), V, β̃, γ̃ ) (7.11)

where β̃ and γ̃ are related to β and γ as in (7.10).

Proof This follows immediately from the definitions. In general, a U(p, q)-Higgs bundle is
defined by a tuple (V,W, β, γ ) where V and W are bundles of rank p and q respectively,
and β, γ are maps β : V → W ⊗ K and γ : W → V ⊗ K (see [5] and Sect. 8.2.1 for more
details). ��
Remark 7.20 We refer the reader to [5] and Sect. 8.2.1 for more details but note here the
following key features:

(1) The tuple (V,W, β, γ ) represents a SU(p, q)-Higgs bundle if it satisfies the determinant
condition det(V ⊕ W ) = O. In particular, SU(1, 3)-Higgs bundles are represented by
tuples (L ,W, β̃, γ̃ ) with L a line bundle, W a rank three bundle, β̃ : W → L ⊗ K and
γ̃ : L → W ⊗ K and such that det(L ⊕ W ) is trivial.

(2) While a PU(p, q)-Higgs bundle is defined by a principal P(U(p)×U(q))-bundle together
with an appropriate Higgs field, the structure group of the bundle can always be lifted to
U(p)× U(q). Together with the Higgs field, the principal U(p)× U(q)-bundle defines
a U(p, q)-Higgs bundle. The lifts are defined up to a twisting by a line bundle.

(3) The notion of polystability and the corresponding Hitchin equations for U(p, q)-Higgs
bundles are described in Sect. 8.2.1 and in [5]. The notions for SU(p, q) and PU(p, q)
are similar.

(4) (a) The components of the moduli space of polystable U(p, q)-Higgs bundles are labeled
by the integer pair (a, b) where a = deg(V ) and b = deg(W ). We will denote these
components by Ma,b(U(p, q)).

(b) For a PU(p, q)-Higgs bundle, the components of the moduli spaces are labeled by the
combination τ = 2 aq−bp

p+q , where (V,W, β, γ ) represents a U(p, q)-Higgs bundles
obtained by lifting the structure group. This combination, known as the Toledo
invariant, is independent of the lifts to U(p, q). We will denote the components with
Toledo invariant τ by Mτ (PU(p, q)).

(c) For SU(p, q)-Higgs bundles, for which deg(V ) = − deg(W ), the components of
the moduli space can be labeled by the single integer a = deg(V ). We will denote
these components by Ma(SU(p, q)).

Proposition 7.21 Let (V, β, γ ) and (det(V ), V, β̃, γ̃ ) be a SO∗(6)-Higgs bundle and cor-
responding U(1, 3)-Higgs bundle, as in (7.11). Then the following are equivalent:

(A) The bundle V admits a metric, say H, satisfying the SO∗(6)-Hitchin equation on
(V, β, γ ), namely (see (3.16))

F H
V + ββ∗H + γ ∗H γ = 0. (7.12)
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(B) The bundles V and det(V ) admit metrics, say K and k, satisfying the U(1, 3)-Hitchin
equation on (det(V ), V, β̃, γ̃ ), namely (see [5])

F K
V + β̃∗K ,k β̃ + γ̃ γ̃ ∗K ,k = −√−1μIVω,

Fk
det(V ) + β̃β̃∗K ,k + γ̃ ∗K ,k γ̃ = −√−1μω. (7.13)

In these equations

• the first terms denote the curvature of the Chern connection with respect to the indicated
metrics,

• the adjoints in (7.12) are with respect to H and the metric it induces on V ∗,
• the adjoints in (7.13) are with respect to K and k

• μ =
√−1

∫
X Tr(F H

V )

2Vol(X)
= π deg(V )

Vol(X)
,

• IV is the identity map on V , and
• ω denotes the Kähler form of the metric on the Riemann surface X.

The proof of Proposition 7.21 uses the following technical Lemma.

Lemma 7.22 Let (det(V ), V, β̃, γ̃ ) be a U(1, 3)-Higgs bundle, as in (7.11). Let H and h be
any metrics on V and det(V ) respectively. Let K be a metric on V which is related to H by
a conformal factor eu, i.e. K (φ, ψ) = eu H(φ, ψ) for any sections φ and ψ of V . Similarly
let k be a metric on det(V ) which is related to h by the same conformal factor eu. Then (in
the notation of Proposition 7.21, and denoting by ∗H,h adjoints with respect to H and h)

(1) γ̃ ∗K ,k = γ̃ ∗H,h ,
(2) β̃∗K ,k = β̃∗H,h ,
(3) F K

V = F H
V − √−1�(u)ωIV , and

(4) Fk
det(V ) = Fh

det(V ) − √−1�(u)ω.

where in (3) and (4) ω denotes the Kähler form on X.

Proof Let a be a point in the fiber of V over a point x ∈ X and let b be a point in the fiber
over x of det(V )⊗ K̄ . Then

h(b, γ̃ ∗K ,k (a)) = e−u(x)k(b, γ̃ ∗K ,k (a))

= e−u(x)K (γ̃ (b), a)

= e−u(x)eu(x)H(γ̃ (b), a) = h(b, γ̃ ∗H,h (a)).

This proves (1). The proof of (2) is similar. The proof of (3) and (4) follows directly from the
definition of the Chern connection. Indeed, if metrics H1 and H2 on a holomorphic bundle
E are related by H1 = H2s where s is a (positive definite) automorphism of E , then the
curvatures of the Chern connections are related by

FH1 = FH2 + ∂̄E (s
−1 D′

H1
(s)) (7.14)

where ∂̄E and D′
H1

are the antiholomorphic and holomorphic parts of the Chern connection

for H1. If s = euI then the second term reduces to −√−1�(u)ω. ��

We now prove Proposition 7.21.
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Proof of Proposition 7.21 Fix a local frame for V and use the dual frame for V ∗. Also, fix a
local complex coordinate on the base. Then γ , as a map from V to V ∗ ⊗ K is given locally
by a matrix of holomorphic 1-forms, which we write as

γ =
⎡
⎣ 0 γ1 γ2

−γ1 0 γ3

−γ2 −γ3 0

⎤
⎦ dz . (7.15)

Using the induced frame for det(V ), the map γ̃ is then given by

γ̃ =
⎡
⎣ γ3

−γ2

γ1

⎤
⎦ dz . (7.16)

Similarly, if β as a map from V ∗ to V ⊗ K is given locally by a matrix of holomorphic
1-forms of the form

β =
⎡
⎣ 0 β1 β2

−β1 0 β3

−β2 −β3 0

⎤
⎦ dz . (7.17)

then the map β̃ is then given by

β̃ = [
β3 −β2 β1

]
dz . (7.18)

Given a metric, say H , on V , we can pick the local frame to be unitary with respect to h.
Then locally

γ ∗H =
⎡
⎣ 0 −γ̄1 −γ̄2

γ̄1 0 −γ̄3

γ̄2 γ̄3 0

⎤
⎦ dz̄ . (7.19)

The metric H induces a metric on det(V ), which we denote by h. With respect to the metrics
H on V and h on det(V ), the adjoint of γ̃ is given locally by

γ̃ ∗H,h = [
γ̄3 −γ̄2 γ̄1

]
dz̃ . (7.20)

Using the metrics H and h, and taking into account that the entries in the matrix are
1-forms, we get that

γ ∗H γ = γ̃ γ̃ ∗H,h + γ̃ ∗H,h γ̃ IV ,

ββ∗H = β̃∗H,h β̃ + β̃β̃∗H,h IV , (7.21)

and also

Tr(γ̃ γ̃ ∗H,h ) = −γ̃ ∗H,h γ̃ ,

Tr(β̃∗H,h β̃) = −β̃β̃∗H,h . (7.22)

Suppose that V admits a metric which satisfies the SO∗(6)-Hitchin equations for (V, β, γ ),
namely equation (7.12). Because of (7.21) this is equivalent to

F H
V + β̃∗H,h β̃ + γ̃ γ̃ ∗H,h = −(γ̃ ∗H,h γ̃ + β̃β̃∗H,h )IV . (7.23)

Taking the trace of this, and using (7.22), we also get

Tr(Fh
V )+ γ̃ ∗H,h γ̃ + β̃β̃∗H,h = −(γ̃ ∗H,h γ̃ + β̃β̃∗H,h ). (7.24)
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We can write the (1, 1)-form γ̃ ∗H,h γ̃ + β̃β̃∗H,h as

γ̃ ∗H,h γ̃ + β̃β̃∗H,h = √−1tω = −
(

3∑
i=1

|γ̃i |2 −
3∑

i=1

|β̃i |2
)

dz ∧ dz̄ (7.25)

where the last expression is in local coordinates. Notice that by (7.24) we get

− 2
√−1

∫
X

tω =
∫

X
Tr(Fh

V ) = −2π
√−1 deg(V ). (7.26)

Since Tr(F H
V ) = Fh

det(V ), Eqs. (7.23) and (7.24) can thus be written as

F H
V + β̃∗H,h β̃ + γ̃ γ̃ ∗H,h = −√−1tωIV

Fh
det(V ) + γ̃ ∗H,h γ̃ + β̃β̃∗H,h = −√−1tω (7.27)

where ∫
tω

Vol(X)
= π deg(V )

Vol(X)
= μ. (7.28)

Equations (7.27) differ from the required U(1, 3)-Hitchin equations only in that the right
hand side is not constant, but instead involves a function whose average value is the required
constant. Lemma 7.22 allows us to remove this discrepancy by rescaling the metrics on V
and det(V ). Indeed if we pick a function u such that it satisfies the condition

�(u) = t − μ

and define metrics K = Heu on V and k = heu on det(V ) then

F K
V + β̃∗K ,k β̃ + γ̃ γ̃ ∗K ,k = −√−1μωIV

Fk
det(V ) + γ̃ ∗K ,k γ̃ + β̃β̃∗K ,k = −√−1μω

as required.
Conversely, suppose that V and det(V ) admit metrics K and k which satisfy the U(1, 3)-

Hitchin equations on (det(V ), V, β̃, γ̃ ), namely (7.13). In general k will differ from the
metric induced by K on det(V ). Denoting the latter by det(K ), we can write

k = det(K )eu (7.29)

where u is a smooth function on X . Now define new metrics on V and det(V ) which are
related to K and k by the conformal factor eu/2, i.e. set

H = K eu/2 and h = keu/2. (7.30)

Notice that det(H) = det(K )e3u/2 = h, where det(H) denotes the metric induced by H on
det(V ). Moreover, since both metrics are modified by the same conformal factor, the adjoints
β̃∗ and γ̃ ∗ are unaffected (see Lemma 7.22). By parts (3) and (4) of Lemma 7.22 and the fact
that K and k satisfy the U(1, 3)-Hitchin equations, we thus get

F H
V + β̃∗H,h β̃ + γ̃ γ̃ ∗H,h = −√−1(μ− �(u)

2
)ωIV = −√−1tωIV

Fh
det(V ) + γ̃ ∗H,h γ̃ + β̃β̃∗H,h = −√−1(μ− �(u)

2
)ω = −√−1tω
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where t = μ− �(u)
2 and h = det(H). Exactly as above (see Eqs. (7.23)–(7.28)) we find that

these two equations combine to yield

F H
V + ββ∗H + γ ∗H γ = 0

as required. ��
Corollary 7.23 Let (V, β, γ ) and (det(V ), V, β̃, γ̃ ) be as in (7.11). Then (V, β, γ ) defines a
polystable SO∗(6)-Higgs bundle if and only if (det(V ), V, β̃, γ̃ ) defines a polystable U(1, 3)-
Higgs bundle. Moreover, the map (7.11) defines an embedding

Md(SO∗(6)) ↪→ Md,d(U(1, 3)) (7.31)

where Md,d(U(1, 3)) denotes the component in the moduli space of polystable U(1, 3)-Higgs
bundles in which the bundles both have degree d.

Proof The first part follows immediately from Proposition 7.21 because of the Hitchin-
Kobayashi correspondence for G-Higgs bundles, i.e. Theorem 2.4. The map defined by
(7.11) is clearly injective, with image given by the subvariety in which the U(1, 3)-Higgs
bundles are defined by tuples (L , V, β, γ ) in which L = det(V ). ��
Remark 7.24 By Proposition 3.16 the dimension of Md(SO∗(6)) is 15(g − 1), while the
dimension of Md,d(U(1, 3)) is 16(g − 1)+ 1 (see [5]). The image of the embedding given
by (7.31) thus has codimension g in Md,d(U(1, 3)).

Proposition 7.25 Let (det(V ), V, β̃, γ̃ ) be a U(1, 3)-Higgs bundle in which deg(V ) is even.
Pick L such that L2 = det(V ) and define maps

β̃L = β̃ ⊗ 1L : V ⊗ L−1 → L ⊗ K

γ̃L = γ̃ ⊗ 1L : L → V ⊗ L−1 ⊗ K (7.32)

where 1L : L−1 → L−1 is the identity map. Then (L , V ⊗ L−1, β̃L , γ̃L) defines an SU(1, 3)-
Higgs bundle and, with the same notation as in Proposition 7.21, the following are equivalent:

(A) The bundles V and det(V ) admit metrics, say H and h, satisfying

F H
V + β̃∗H,h β̃ + γ̃ γ̃ ∗H,h = −√−1μIVω

Fh
det(V ) + β̃β̃∗H,h + γ̃ ∗H,h γ̃ = −√−1μω . (7.33)

(B) The bundles V ⊗ L−1 and L admit metrics, say K and k, satisfying

F K
V ⊗L−1 + (β̃L)

∗K ,k (β̃L)+ (γ̃L)(γ̃L)
∗K ,k = 0

Fk
L + (β̃L)(β̃

∗K ,k
L )+ (γ̃L)

∗K ,k (γ̃L) = 0. (7.34)

Proof Since L2 = det(V ) it follows that

det(L ⊕ V ⊗ L−1) = det(V )⊗ L−2 = O . (7.35)

and hence (L , V ⊗ L−1, β̃L , γ̃L) defines a SU(1, 3)-Higgs bundle.
Let h0 be the Hermitian-Einstein metric on L−1, so that the curvature of the corresponding

Chern connection satisfies Fh0
L = √−1 deg(L)ω. Given metrics H and h which satisfy (A),

define K = H ⊗ h0 on V ⊗ L−1 and k = h ⊗ h0 on L = det(V ) ⊗ L−1. Conversely,
given metrics K and k which satisfy (B), define H = K ⊗ h−1

0 on V = V ⊗ L−1 ⊗ L and
h = k ⊗ h−1

0 on det(V ) = L2. ��
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Remark 7.26 The equations (7.34) are not exactly the SU(1, 3)-Hitchin equations. If
(L ,W, b, c) is any SU(1, 3)-Higgs bundle, the Hitchin equations for metrics k and K on
L and W respectively are equivalent to the condition[

F K
W + b∗K ,k b + cc∗K ,k 0

0 Fk
L + bb∗K ,k + c∗K ,k c

]
0

= 0 (7.36)

where [A]0 denotes the trace free part of the matrix [A]. The pair (7.34) (for the SU(1, 3)-
Higgs bundle (det(V ), V, β̃, γ̃ )) is equivalent to (7.36) together with the extra condition
Tr(F K

V ⊗L−1) + Fk
L = 0. In fact this condition can always be achieved by a simultaneous

conformal transformation of the metrics K and k, as in (7.30). As explained above, such
conformal transformations affect only the curvature terms in the equation but do not change
the trace-free parts of those terms.

Remark 7.27 By defining V = W ⊗ L , any SU(1, 3)-Higgs bundle (L ,W, β, γ ) can be
represented by a tuple (L , V ⊗L−1, β̃L , γ̃L), where the Higgs fields are maps β̃L : V ⊗L−1 →
L ⊗ K and γ̃L : L → V ⊗ L−1 ⊗ K . Notice that

• L2 = det(V ), and hence
• β̃L : V ⊗ L−1 → L ⊗ K defines β ∈ H0(X, V ∗ det(V )⊗ K )  H0(X,�2V ⊗ K ),
• γ̃L : L → V ⊗ L−1 ⊗ K defines γ ∈ H0(X, V ⊗ det(V )∗ ⊗ K )  H0(X,�2V ∗ ⊗ K ).

Corollary 7.28 With notation as in Remark 7.27, the map

(L , V ⊗ L−1, β̃L , γ̃L) �→ (L2, V, β, γ ) (7.37)

defines a map
Ml(SU(1, 3)) → M2l,2l(U(1, 3)) , (7.38)

and the map
(L , V ⊗ L−1, β̃L , γ̃L) �→ (V, β, γ ) (7.39)

defines a 22g : 1 surjective map

Ml(SU(1, 3)) → M2l(SO∗(6)). (7.40)

Here l = deg(L), τ denotes the Toledo invariant, and the notation for the moduli spaces is
as in (4) of Remark 7.20.

Proof The tuple (L2, V, β, γ ) clearly defines a U(1, 3)-Higgs bundle with deg(L2) =
deg(V ) = 2l, while remark 7.27 shows that (V, β, γ ) defines a SO∗(6)-Higgs bundle. In
order to show that the given maps induces maps between the indicated moduli spaces we need
to show that the maps preserve polystability. We do this by invoking the Hitchin–Kobayashi
correspondences for SU(1, 3)-, U(1, 3)-, and SO∗(6)-Higgs bundles, i.e. we show that the
map preserves the conditions for existence of solutions to the Hitchin equations for the Higgs
bundles. Moreover, by Proposition 7.25 together with remark 7.26, (L , V ⊗ L−1, β̃L , γ̃L)

admits a solution to the SU(1, 3)-Hitchin equations if and only if (L2 = det(V ), V, β, γ )
admits a solution to the U(1, 3)-Hitchin equations; and by Proposition 7.21, (det(V ), V, β, γ )
admits a solution to the U(1, 3)-Hitchin equations if and only if (V, β, γ ) admits a solution
to the SO∗(6)-Hitchin equations.

Finally, take any point in M2l(SO∗(6)), represented say by (V, β, γ ). For any L such
that L2 = det(V ), the SU(1, 3)-Higgs bundles (L , V ⊗ L−1, β̃L , γ̃L) is in the pre-image of
(V, β, γ ) under the map. This shows that the map is surjective. The multiplicity comes from
choices of square roots of det(V ). ��
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In addition to the maps (7.31), (7.38), and (7.40), we have the surjective map (see [5])

Ml,b(U(1, 3)) → Mτ (PU(1, 3)),

(L ,W, β, γ ) �→ (P(L ⊕ W ), β, γ ), (7.41)

where l = deg(L), b = deg(W ), and τ = (3l−b)/2. Conversely, any PU(1, 3)-Higgs bundle
in Mτ (PU(1, 3)) is in the image of such a map, where the degrees (l, b) are determined only
up to the Z-action (l, b) �→ (l + k, b + 3k). This corresponds to twisting L ⊕ W by a line
bundle of degree k.

These maps lead to the following relations among Higgs bundles for the groups
SO∗(6),SU(1, 3), and PU(1, 3).

Proposition 7.29 (1) The composition of maps (7.41) and (7.31) defines a surjective map

Md(SO∗(6)) �→ Md(PU(1, 3)) . (7.42)

Moreover a PU(1, 3)-Higgs bundle in Mτ (PU(1, 3)) is in the image of such a map if
and only if τ is an integer.

(2) The composition of maps (7.41) and (7.38) defines a surjective map

Md(SU(1, 3)) �→ M2d(PU(1, 3)) . (7.43)

Moreover a PU(1, 3)-Higgs bundle in Mτ (PU(1, 3)) is in the image of such a map if
and only if τ is an even integer.

(3) A SO∗(6)-Higgs bundle in Md(SO∗(6)) lies in the image of a map of the form (7.40) if
and only if d is an even integer.

Proof (1) The map to Mτ=d(PU(1, 3)) is surjective since PU(1, 3)-Higgs bundles with
τ = d lift to U(1, 3)-Higgs bundles of the form (L ,W, β, γ ) with 3 deg(L)− deg(W ) = 2d
(see (7.41)). After twisting with a line bundle if necessary, we can assume that deg(L) =
deg(W ) = d . Furthermore, we can assume that L = det(W ) since if not, then twisting by a
square root of det(V )⊗ L−1 will make it so. The assertion that τ must be an even integer is
clear from the definitions of the maps (7.41) and (7.38).

(2) As in (1), any PU(1, 3)-Higgs bundles with τ = 4d lift to U(1, 3)-Higgs bundles of
the form (det(W ),W, β, γ ). Such a Higgs bundle is in the image of (7.38) if and only if
deg(det(W )) is even. This condition is satisfied precisely when deg(W ) = 2d .

(3) This follows from the fact that the map is defined by (7.39) in which det(V ) = L2 and
hence deg(V ) = 2 deg(L). ��

Expressed in terms of the corresponding surface group representations, Proposition 7.29
gives conditions under which reductive surface group representations into PU(1, 3),SO∗(6)
or SU(1, 3) lift from one group to another.

Proposition 7.30 (1) A reductive surface group representation into PU(1, 3) lifts to a repre-
sentation into SO∗(6) if and only if the Toledo invariant of the associated PU(1, 3)-Higgs
bundle is an integer.

(2) A reductive surface group representation into PU(1, 3) lifts to a representation into
SU(1, 3) if and only if the Toledo invariant of the associated PU(1, 3)-Higgs bundle is
an even integer.

(3) A reductive surface group representation into SO∗(6) lifts to a representation into
SU(1, 3) if and only if the Toledo invariant of the associated SO∗(6)-Higgs bundle is an
even integer.
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7.3.1 Maximal components

By Proposition 3.27, the moduli spaces Md(SO∗(6)) are non-empty for |d| ≤ 2g − 2.
The maximal components are thus those with |d| = 2g − 2 (and these are connected by
Theorem 5.2). We discuss here only the case d = 2g − 2, but the case d = −(2g − 2) is
analogous.

By Theorem 4.5, the moduli spaces M2g−2(SO∗(6)) exhibit a rigidity which leads to the
factorization

M2g−2(SO∗(6))  M2g−2(SO∗(4))× Jac(X) (7.44)

given by

(V, β, γ ) = (V⊥, β, γ )⊕ ker(γ ). (7.45)

T4 : M0(2)× Mg−1(SL(2,R)) −→ M2g−2(SO∗(4)) (7.46)

given by
(U, (K 1/2, β, 1K 1/2)) �→ (U ⊗ K 1/2,⊗ β,∗ ⊗ 1K 1/2) , (7.47)

where β ∈ H0(X, K 2), 1K 1/2 denotes the identity map on K 1/2, and  : U∗  U is as in
Lemma 7.11.

We thus get a 22g-fold covering of M2g−2(SO∗(6))

T6 : M0(2)× Mg−1(SL(2,R))× Jac(X) −→ M2g−2(SO∗(6)). (7.48)

Remark 7.31 A choice of K 1/2 defines a section for the map T4—and hence for T6—and
picks out a Teichmüller component of Mg−1(SL(2,R)).

We get a different description of the maximal components if we exploit the embedding of
M2g−2(SO∗(6)) in M(2g−2,2g−2)(U(1, 3)) given by Corollary 7.23:

(V, β, γ ) �→ (det(V ), V, β̃, γ̃ ).

As shown in [6], the component M(2g−2,2g−2)(U(1, 3)) has maximal Toledo invariant for
U(1, 3)-Higgs bundles and, moreover, this moduli space itself exhibits a rigidity. Indeed (see
Theorem 3.32 in [6]) the component M(2g−2,2g−2)(U(1, 3)) factors as

M(2g−2,2g−2)(U(1, 3))  M(2g−2,0)(U(1, 1))× M2g−2(2), (7.49)

where M(2g−2,0) denotes the moduli space of U(1, 1)-Higgs bundles (L ,M, β, γ ) with
deg(L) = 2g − 2 and deg(M) = 0, and Md(2) denotes the moduli space of polystable rank
2 bundles of degree d . The factorization is given by

(L ,W, β, γ ) = (L , L ⊗ K −1, β, 1L)⊕ Q (7.50)

where W = L ⊗ K −1 ⊕ Q. Notice that L = det(W ) if and only if det(Q) = K . In that
case, for any choice of K −1/2 the determinant of Q ⊗ K 1/2 is trivial and we can write
Q = U ⊗ K 1/2 with det(U ) = O.

The image of the embedding of M2g−2(SO∗(6)) in M(2g−2,2g−2)(U(1, 3)) is thus char-
acterized by the condition that Q = U ⊗ K 1/2 with det(U ) = O in (7.50). We define
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MK (2) = {Q ∈ M2g−2(2) | det(Q) = K }. (7.51)

The Toledo invariant is maximal for M(2g−2,0)(U(1, 1)) and hence, by Proposition 3.30 in
[6] we can identify M(2g−2,0)(U(1, 1)) with the moduli space of degree zero, K 2-twisted
C

∗-Higgs bundles7, i.e.

M(2g−2,0)(U(1, 1))
−→ Jac(X)× H0(X, K 2),

(L ,M, β, γ ) �→ (L , β ◦ γ ). (7.52)

Putting together (7.51), (7.52) and (7.49) we thus get an identification of the image of
M2g−2(SO∗(6)) in M(2g−2,2g−2)(U(1, 3)) as

M2g−2(SO∗(6))  Jac(X)× H0(X, K 2)× MK (2). (7.53)

Comparing (7.48) and (7.53) we see that the two descriptions match up via the map

(U, (K 1/2, β, 1), L0) −→ (L0, β, Q = U ⊗ K 1/2).

The fibers of this map are the 22g points of order 2 in Jac(X).
We note finally that the dimension of M±(2g−2)(SO∗(6)) can be computed from the iso-

morphism (7.44). We find dim(M±(2g−2)(SO∗(6)) = 7g−6 whereas the expected dimension
is 15(g − 1).
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8 Appendix: G-Higgs bundles for other groups

We collect here some basic results about G-Higgs bundles for groups other than SO∗(2n)
which play a role in our analysis of SO∗(2n)-Higgs bundles. The groups include three com-
plex reductive groups (GL(n,C), SL(n,C) and SO(n,C)) and two non-compact real forms
(U(p, q) and U∗(2n)).

In all cases the basic definitions of stability properties follow from the general definition
formulated for G-Higgs bundles in [15].

8.1 The groups GL(n,C),SL(n,C) and SO(n,C)

We begin by recalling how the notion of G-Higgs bundle specializes when G is a complex
group. In this case, the complexified isotropy representation is just the adjoint representation
of G on g. Thus, a G-Higgs bundle for a complex group G is a pair (E, ϕ), where E → X
is a holomorphic principal G-bundle and ϕ ∈ H0(X,Ad E ⊗ K ); here Ad E = E ×Ad g is
the adjoint bundle of E . We shall use this observation for all three groups considered in this
section.

7 Note that C
∗ = GL(1,C) so a K 2-twisted C

∗-Higgs bundle is a pair (L , β) consisting of a line bundle L
and a section β ∈ H0(X, K 2)
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Consider first the case of G = GL(n,C). A GL(n,C)-Higgs bundle may be viewed as a
pair consisting of a rank n holomorphic vector bundle E over X and a holomorphic section


 ∈ H0(X, K ⊗ End E).

We refer the reader to [15] for the general statement of the stability conditions for GL(n,C)-
Higgs bundles. The notions of (semi-,poly-)stability in this case are equivalent to the original
notions given by Hitchin in [23] (see [15]). Denote by μ(E) = deg(E)/ rk(E) the slope of
E .

Proposition 8.1 A GL(n,C)-Higgs bundle (E,
) is semistable if and only if for any sub-
bundle E ′ ⊂ E such that 
(E ′) ⊂ E ′ ⊗ K we have μ(E ′) ≤ μ(E). Furthermore, (E,
)
is stable if for any nonzero and strict subbundle E ′ ⊂ E such that 
(E ′) ⊂ E ′ ⊗ K we
have μ(E ′) < μ(E). Finally, (E,
) is polystable if it is semistable and for each subbundle
E ′ ⊂ E such that
(E ′) ⊂ E ′ ⊗ K and μ(E ′) = μ(E) there is another subbundle E ′′ ⊂ E
satisfying 
(E ′′) ⊂ E ′′ ⊗ K and E = E ′ ⊕ E ′′. As a consequence (E,
) = ⊕(Ei ,
i )

where (Ei ,
i ) is a stable GL(ni ,C)-Higgs bundle with μ(Ei ) = μ(E).

The group SL(n,C) is the subgroup of GL(n,C) defined by the usual condition on the
determinant. A SL(n,C)-Higgs bundle may thus be viewed as a GL(n,C)-Higgs bundle
(E,
) with the extra conditions that E is endowed with a trivialization det E  O and

 ∈ H0(X, K ⊗ End0 E) where End0 E denotes the bundle of traceless endomorphisms of
E . The (semi-,poly-)stability condition is the same as the one for GL(n,C)-Higgs bundles
given in Proposition 8.1.

Finally we consider the case G = SO(n,C). A principal SO(n,C)-bundle on X cor-
responds to a rank n holomorphic orthogonal vector bundle (E, Q), where E is a rank n
vector bundle and Q is a holomorphic section of S2 E∗ whose restriction to each fibre of E
is non degenerate. The adjoint bundle can be identified with�2

Q E ⊂ End(E), the subbundle
of End(E) consisting of endomorphisms which are skew-symmetric with respect to Q. A
SO(n,C)-Higgs bundle is thus a pair consisting of a rank n holomorphic orthogonal vector
bundle (E, Q) over X and a section


 ∈ H0(X,�2
Q E ⊗ K ).

The general notions of (semi-,poly-)stability specialize in the case of SO(n,C)-Higgs
bundles to the following (see [1,2]).

Proposition 8.2 A SO(n,C)-Higgs bundle ((E, Q),
) is semistable if and only if for any
isotropic subbundle E ′ ⊂ E such that 
(E ′) ⊂ K ⊗ E ′ we have deg E ′ ≤ 0. Furthermore,
((E, Q),
) is stable if for any nonzero and strict isotropic subbundle 0 �= E ′ ⊂ E such that

(E ′) ⊂ K ⊗ E ′ we have deg E ′ < 0. Finally, ((E, Q),
) is polystable if it is semistable
and for any nonzero and strict isotropic subbundle E ′ ⊂ E such that 
(E ′) ⊂ K ⊗ E ′
and deg E ′ = 0 there is a coisotropic subbundle E ′′ ⊂ E such that 
(E ′′) ⊂ K ⊗ E ′′ and
E = E ′ ⊕ E ′′.

Remark 8.3 Recall that if (E, Q) is an orthogonal vector bundle, a subbundle E ′ ⊂ E is
said to be isotropic if the restriction of Q to E ′ is identically zero, and coisotropic if E ′⊥Q is
isotropic.

Remark 8.4 For complex groups G, Definition 2.7 implies that a G-Higgs bundle (E, ϕ) is
simple if Aut(E, ϕ) = Z(HC). For G = GL(n,C) or SL(n,C) it is well known that stability
implies simplicity. This is not so for SO(n,C)-Higgs bundles. For instance it is possible for
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a stable SO(n,C)-Higgs bundle to decompose as sum of stable SO(ni ,C)-Higgs bundles
(with�ni = n). In all cases though, the Higgs bundles which are stable and simple represent
smooth points in their moduli spaces (see Proposition 2.14).

8.2 The groups U(p, q) and U∗(2n)

8.2.1 U(p, q)-Higgs bundles

The maximal compact subgroups of U(p, q) are isomorphic to H = U(p) × U(q) and
hence HC = GL(p,C) × GL(q,C). The complexified isotropy representation space is
mC = Hom(Cq ,Cp) ⊕ Hom(Cp,Cq). A U(p, q)-Higgs bundle may thus be described by
the data (V,W, ϕ = β+γ ), where V and W are vector bundles of rank p and q , respectively,
β ∈ H0(X,Hom(W, V )⊗ K ) and γ ∈ H0(X,Hom(V,W )⊗ K ).

The following proposition gives the simplified stability conditions for U(p, q)-Higgs
bundles. It can be proved using arguments similar to the ones for other real groups (cf.
Sect. 3.2 and [15, Section 4]).

Proposition 8.5 A U(p, q)-Higgs bundle (V,W, ϕ = β + γ ) is semistable if

μ(V ′ ⊕ W ′) ≤ μ(V ⊕ W ),

is satisfied for all ϕ-invariant pairs of subbundles V ′ ⊂ V and W ′ ⊂ W , i.e. for pairs such
that

β : W ′ −→ V ′ ⊗ K

γ : V ′ −→ W ′ ⊗ K .

A U(p, q)-Higgs bundle (V,W, ϕ) is stable if the slope inequality is strict whenever
V ′ ⊕ W ′ is a proper non-zero ϕ-invariant subbundle of V ⊕ W .

A U(p, q)-Higgs bundle (V,W, ϕ) is polystable if it is semistable and for any ϕ-invariant
pair of subbundles V ′ ⊂ V and W ′ ⊂ W satisfyingμ(V ′⊕W ′) = μ(V ⊕W ) there is another
ϕ-invariant pair of subbundles V ′′ ⊂ V and W ′′ ⊂ W such that V = V ′ ⊕ V ′′ and W =
W ′ ⊕ W ′′. As a consequence there is a decomposition

(V,W, β, γ ) =
⊕

(Vi ,Wi , βi , γi ),

where V = ⊕
Vi , W = ⊕

Wi , β = �βi , γ = �γi and (Vi ,Wi , βi , γi ) is a stable U(pi , qi )-
Higgs bundle with μ(Vi ⊕ Wi ) = μ(V ⊕ W ).

Remark 8.6 In the case q = 0, the group is U(p) and hence ϕ = 0. Thus a U(p)-Higgs
bundle is an ordinary vector bundle. Proposition 8.5 shows that in this case the U(p, q)-Higgs
bundles stability condition coincides with the usual one for vector bundles.

8.2.2 U∗(2n)-Higgs bundles

The group U∗(2n) is a non-compact real form of GL(2n,C) consisting of matrices M veri-

fying that M̄ Jn = Jn M where Jn =
(

0 In

−In 0

)
. A maximal compact subgroup of U∗(2n)

is the compact symplectic group Sp(2n) (or, equivalently, the group of n × n quaternionic
unitary matrices), whose complexification is Sp(2n,C), the complex symplectic group. The
group U∗(2n) is the non-compact dual of U(2n), in the sense that the non-compact symmetric
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space U∗(2n)/Sp(2n) is the dual of the compact symmetric space U(2n)/Sp(2n) in Cartan’s
classification of symmetric spaces (cf. [22]).

The corresponding Cartan decomposition of the complex Lie algebra is

gl(2n,C) = sp(2n,C)⊕ mC,

where mC = {A ∈ gl(2n,C) | At Jn = Jn A}. Hence a U∗(2n)-Higgs bundle over X is a
pair (E, ϕ), where E is a holomorphic Sp(2n,C)-principal bundle and the Higgs field ϕ is a
global holomorphic section of E ×Sp(2n,C) mC ⊗ K .

Given a symplectic vector bundle (W,), denote by S2
W the bundle of endomorphisms

ξ of W which are symmetric with respect to  i.e. such that (ξ ·, ·) = (·, ξ ·). In terms
of vector bundles, we have that a U∗(2n)-Higgs bundle over X is a triple (W,, ϕ), where
W is a holomorphic vector bundle of rank 2n,  ∈ H0(X,�2W ∗) is a symplectic form on
W , and the Higgs field ϕ ∈ H0(X, S2

W ⊗ K ) is a K -twisted endomorphism W → W ⊗ K ,
symmetric with respect to .

Given the symplectic form , we have the usual skew-symmetric isomorphism

ω : W
−→ W ∗

given by

ω(v) = (v,−).
The map f �→ f ω−1 defines an isomorphism between S2

W and�2W . Hence we can think
of a U∗(2n)-Higgs bundle as a triple (W,, ϕ) with ϕ ∈ H0(X, S2

W ⊗ K ) or as a triple
(W,, ϕ̃) with ϕ̃ ∈ H0(X,�2W ⊗ K ) given by

ϕ̃ = ϕω−1. (8.1)

The general (semi-,poly-)stability conditions for U∗(2n)-Higgs bundles are studied in
[16], where simplified conditions (similarly to the case of other groups) are given. We have
the following ([16, Proposition 3.6]).

Proposition 8.7 A U∗(2n)-Higgs bundle (W,, ϕ) semistable if and only if deg W ′ ≤ 0 for
any isotropic and ϕ-invariant subbundle W ′ ⊂ W .

A U∗(2n)-Higgs bundle (W,, ϕ) is stable if and only if it is semistable and deg W ′ < 0
for any isotropic and ϕ-invariant strict subbundle 0 �= W ′ ⊂ W .

The U∗(2n)-Higgs bundle (W,, ϕ) is polystable if and only if it is semistable and, for any
isotropic (respectively coisotropic) and ϕ-invariant strict subbundle 0 �= W ′ ⊂ W such that
deg W ′ = 0, there is another coisotropic (respectively isotropic) and ϕ-invariant subbundle
0 �= W ′′ ⊂ W such that W  W ′ ⊕ W ′′.
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