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Abstract We investigate the solutions to the Yamabe problem on globally hyperbolic space-
times. On standard static spacetimes, we prove the existence of global solutions and show
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1 Introduction and summary of main results

Let (M", g) be an n-dimensional Lorentzian manifold with metric signature (— + --- ).
We want to solve the Yamabe problem on (M", g), which is concerned with the existence
of a metric with constant scalar curvature in the conformal class of g. We first recall its
analytical formulation. Denote by O := §, od = —try(V od) the scalar d’ Alembert operator
on (M", g).1If Sg stands for the scalar curvature of (M", g), then the transformation formulas
for scalar curvature under conformal change of metric read respectively (see e.g. [8, Sec. 1.J])

¢Sz =S, +20u (1)
forn =2 and g := e*g (here u € C®°(M, R)) and
N2 o 3 e Tl )
An— )T T T 4o

forn >3 and g := (pﬁg (here p € C® (M, RY)).
From both identities above, the purely geometric question set by the Yamabe problem
is equivalent to an analytical one, namely to solving (1) in dimension n = 2 and (2) in
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dimension n > 3 respectively: find a constant S € R such that a solution u € C*°(M, R) of
(1) (resp. ¢ € C®°(M, RY) of (2)) exists.

Both (1) and (2) are semilinear (and nonlinear in case Sz # 0) wave equations. Since
such an equation can be locally put into the form of a symmetric hyperbolic system and
such systems always have local smooth solutions (see e.g. [35, Ch. 16]), both (1) and (2) are
locally solvable on any spacetime.

To investigate global existence (and possibly uniqueness) of solutions, it is reasonable to
fix the geometric category of Lorentzian manifolds. We shall always assume M to be endowed
with a time-orientation (such Lorentzian manifolds are usually called spacetimes). Moreover,
we shall mainly restrict ourselves to so-called globally hyperbolic spacetimes, which are
diffeomorphic to the product of a spacelike hypersurface (called Cauchy hypersurface) with
an interval, see Definition 2.1.

We first show (Theorem 2.4) that, for 2-dimensional globally hyperbolic spacetimes, the
equation (1) always has a global solution for Sg = 0, whereas for Sz # 0 only short-time-
existence holds.

In higher dimensions, we focus on the case where a—hence any—Cauchy hypersurface
of M is closed (i.e., compact without boundary) and make a Cauchy-problem-ansatz, that
is, we look for suitable values of the function and its first time derivative along a given
Cauchy hypersurface such that the evolution equation (2) admits a global smooth positive
solution on M. Due to local existence and uniqueness for solutions, given any initial data
(@0, ¢1) with g9 > 0 on some Cauchy hypersurface X, there exists in M a maximal globally
hyperbolic subdomain of existence for the solution ¢ of the corresponding Cauchy problem
with ¢, = ¢o and %—‘flz = @1 (Theorem 2.6). The proof of Theorem 2.6 requires a few
geometric considerations about global hyperbolicity that we expose in detail to keep the
article as self-contained as possible.

To see what kind of conditions can ensure the global existence of solutions, we first look for
model examples and consider the simplest globally hyperbolic spacetimes at hand, namely the
standard static ones. In that case, a separation of variables reduces (2) to a subcritical nonlinear
eigenvalue equation on the Cauchy hypersurface (Proposition 3.3). In particular (2) always
possesses a global solution on such spacetimes (Theorem 3.6) where, up to scale, the constant
conformal scalar curvature coincides with the smallest eigenvalue of a Schrédinger operator
on the Cauchy hypersurface. Next, we test the limits of this existence result by considering
the question whether the constant conformal scalar curvature may be arbitrarily prescribed
or not. Not surprisingly when compared to the Riemannian setting, the global existence of
a solution to (2) with prescribed constant Sz depends on the sign of the above-mentioned
smallest eigenvalue (Theorem 3.9). However, as an unexpected consequence, the de Sitter
spacetime is (globally) conformally scalar-flat only in dimensions up to 4 (Corollary 3.10).

Still in the framework of standard static spacetimes, we address the question of unique-
ness of solutions. Although we cannot presently make any general statement, for numer-
ous situations we consider in Sect. 3.2—in particular the case where the scalar curvature
of the spacetime is constant negative—uniqueness never holds, see Corollary 3.13, Theo-
rem 3.14 and Example 3.15. We conjecture that the solutions of the Yamabe equation are never
unique.

We conclude by discussing briefly the difficulties we face when coming back to arbitrary
globally hyperbolic spacetimes. We insist on the fact that the present paper should be seen
as a first step in solving the Yamabe problem and that there is still a lot to be done to fully
understand the globally hyperbolic setting.

This article is based on [14, Ch. 5].
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2 Preliminaries and the 2-dimensional case

In this section, we recall the main concepts we need throughout the paper and treat the
2-dimensional case. The first notion to be introduced is that of global hyperbolicity.

Definition 2.1 A spacetime (M", g) is called globally hyperbolic if and only if there exists
a Cauchy hypersurface in M, that is, a subset ¥ of M which is met exactly once by every
inextendible timelike curve in M.

By [7, Thm. 3.2], a spacetime is globally hyperbolic if and only if it has no closed (future-
or past-directed) causal curve and all subsets of the form J ff’ (pynJM (@), p,q € M, are
compact. If X is a smooth spacelike Cauchy hypersurface of M, then actually it is met exactly
once by any inextendible causal curve in M. We also recall the following smooth splitting
theorem for globally hyperbolic spacetimes:

Theorem 2.2 (Bernal and Sanchez [5,6]) Let (M", g) be a spacetime.

i) If (M", g) is globally hyperbolic, then it is isometric to (R x =, —Bdt2 @ g,), where each
{t} x X corresponds to a smooth spacelike Cauchy hypersurface of M, € C°(R x
X, RY) and (g); is a smooth 1-parameter family of Riemannian metrics on .

ii) If ¥ C M is any given smooth spacelike Cauchy hypersurface in the (globally hyper-
bolic) spacetime (M", g), then for any ty € R there is an isometry (M", g) = (R x
IR —,3dt2 @ g:) as above and where % identifies with {tp} x X.

For instance, the warped product (M, g) = (I x X, —di’ e b(t)2gg) of an open interval
I C R with a Riemannian manifold (X, gx) (where b € C*°(1, Ri) is arbitrary) is globally
hyperbolic if and only if (2, gx) is complete, see e.g. [4, Thm. 3.66] or [3, Lemma A.5.14].
This class contains for instance all Robertson—Walker spacetimes, in particular the Minkowski
and the de Sitter spacetimes. It is however important to note that, in general, Theorem 2.2
only implies the existence of a smooth splitting in the form (R x £, —Bdt*> @ g;), and that the
induced Riemannian metric g; on X need not be complete, see e.g. [1, Sec. 2.5] for concrete
examples. Let us also mention that any product of the form (I x %, —Bdt> @ g,) with closed
2 is globally hyperbolic and that every {¢} x X is a Cauchy hypersurface in M [31, Cor. 3.3].

Since the causal type for vectors does not change when rescaling pointwise the metric, it is
easy to see that (M", g) is globally hyperbolic if and only if (M", g) is globally hyperbolic,
for any metric g conformal to g. By conformal invariance of the Yamabe problem, we can
therefore—and will in most cases—assume that 8 = 1, that is, that ¢ = —dr? @ g, on
I x X. Before studying the above equations in particular cases, we give the following useful
formulas, which can be proved in an elementary way:

Lemma 2.3 Let a spacetime (M", g) be of the form (I x X, —Bdt* & g,) where B €
C®(I x %, Ri) and (g;); is a smooth I-parameter family of Riemannian metrics on X.
Then the following identities hold.

1. Forevery f € C®°(M,R),
19%2f 1 ( dg; 1aﬁ)af

=g T\ ) T ) e
1
—ﬁgz(gradg, (B(z,-)), grady, (f(1,-))) + Ag, f(2, ), 3)

where Ag, 1= 8;:' od = —trg[(Hessgt(J) :C®(Z,R) — C®(Z,R).
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2. Incase p = 1, we have
92 1 9g . 9
= + —trg, (—)— .
a2 T3y )5 T A

3. Incase B = 1and g; = b(t)*gsx, for some b € C*(I, Ri) and some Riemannian metric
gs on X, one has

“

92 v 1
DSy =gp+ =Dy g+ e
a
er—g(sgZ F2n— Db + (n— D)(n — 2)(1/)2), 5)
where a, = 4(”%_21) and where S, and Sgy. are the scalar curvatures of (M, g) and

(2, gx) respectively.
4. Incase B =1 and g; = g5 for some Riemannian metric gs on ., one has
2

DtanSs =35

+ Lgy, (©)
where Lgy, := Agy + aySgy.

We first deal with the case n = 2. The following theorem can be seen as the 2-dimensional
analogue of Theorem 3.9.

Theorem 2.4 Let (M2, g) be a connected 2-dimensional globally hyperbolic spacetime.

1) Then (M2, g) is globally conformally flat, i.e., (1) with Sg = 0 always has a global
smooth solution on M.
2) If Sg € R, then there is no solution to (1) on (R x S!, —dt? @ ds?).

Proof Theorem 2.2 yields a smooth splitting (M2, g) = (I x ¥, —Bdt>* ® g;), where I C R
isanopeninterval, B € C°°(M, RY), each {t} x ¥ is asmooth spacelike Cauchy hypersurface
in M and (g;);es is a smooth one-parameter family of Riemannian metrics on X. Since (1)
with Sg = 01is a linear wave equation, we may solve directly the Cauchy problem associated
to it: fixing #o € I, a future unit normal v along {#p} x ¥ and ug, u; € C*°(X, R), the Cauchy
problem with smooth (but non-necessarily compactly-supported) data Ou = — S—Zg, Uixs =
uop, 3\)”\(;0)@ = u is linear (inhomogeneous), hence always solvable on globally hyperbolic
spacetimes, see e.g. [13, Cor. 5]. This shows 1).

LetSz € R* be arbitrary.

Assume the existence of u € C®°(R x S', R) solving (1), i.e., Ou = %62“ onR x Sk
Settingy : R — R,  — fSl u(t, x)dx, the function y is smooth with

9%u
"(t) = —(t,x)d
') = [ s

82
= /1(‘:‘”)([’ X)dx since/1 a—xlg(t, x)dx =0
S S

= ﬁ/ €2M(I’x)dx,
2 Jsi

compare with the proof of Theorem 3.9. Assume Sz > 0. Denoting by L > 0 the length of
S, Jensen’s inequality yields

SsL 1 SeL 2
vy > &2 exp (Z/Sl 2u(t,x)dx) = 52 et
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on R. But no function satisfying that differential inequality can exist on R, see also the proof
of Theorem 3.9. Namely, up to replacing y by ¢ +> y(ar) for a suitable o € R, we assume

that y satisfies y” > %e L . Since in particular y is strictly convex, we may assume up to

changing ¢ into +7 + 7 for a constant fop € R that y’ > 0 on [0, co[. Multiplying with y’
29(1) 2y(0)

yields y”y’ > %ezfv, so that (y)2(t) — (y)%(0) > %(e et ) for every ¢ > 0, which

in turn gives
/y(’) dz L
z 2y(0
y(0) ezf — e%
00 dz
for every t > 0. Because of f},(o) —S

eL —e L
above, or in other words y () — oo in finite time. In particular, y is not defined on R. The

case where Sz < 0 is analogous (this time y is concave and goes to —oo in finite time). This
shows 2) and concludes the proof. O

< 00, the existence interval of y is bounded

Notes 2.5 1. Since the Cauchy data for (1) along a given Cauchy hypersurface may be
prescribed arbitrarily, there are actually infinitely many conformal flat metrics which are
non homothetic to each other on a given globally hyperbolic 2-dimensional spacetime.
Alternatively—and as is well-known—all solutions to Ou = 0 on (M 2, g) = x
¥, —dt? @ ds?) are of the form u(z,s) = v(t + s) + w(t — s), with arbitrary (and
periodic if ¥ = S1) smooth functions v, w on R, see also Note 3.7.2.

2. For Sz € R*, Theorem 2.4 states that there is no solution to (1) on M 2 = I xS! when the
time interval / is long enough. But solutions exist for short /, as we know anyway from the
local theory mentioned above. For example, the 2-dimensional de Sitter spacetime, which
can be described as the warped product (R x S', —d*> @ cosh(¢)?ds?), is conformally
equivalent to the flat cylinder (]— 5, [ xS!, —dt* ®ds?), see Corollary 3.10. In particu-
lar, there exists a conformal metric with scalar curvature 2 on (] — % , % [xS!, —dt*@ds?).

3. In case of Cauchy-compact globally hyperbolic surfaces, the existence of a flat confor-
mal metric can also be proven by purely geometrical means. Namely using transversal
lightlike foliations of the surface, one can define a conformal immersion of that surface
into the flat 2-dimensional torus, see e.g. [22, Prop. 2.1] or [23, Lemma 2.4]. Actually,
such a surface embeds conformally into a flat Lorentzian cylinder [22, Theorem 2.2].

In the non globally hyperbolic setting, conformal flatness may or may not hold. For
instance, the 2-dimensional anti de Sitter spacetime (S!' x SL, Xiz(—dt2 ® ds?)) (where
2

(x1, xp) are the cartesian coordinates for the second factor SL_ = {(x1,x2) € S' |x2 > O} is
obviously conformally flat. On M = R? or the 2-torus T2, Miguel Sdnchez has shown that
an arbitrary metric g is conformally flat if and only if it admits a non-zero conformal Killing
vector field which is everywhere timelike or everywhere spacelike [30, Thm. 2.3]. Moreover,
he constructed whole families of metrics on T2 (and R?) without any such conformal Killing
vector field and which hence are not conformally flat [30, Sec. 3]. Note that none of those
metrics on R? can be globally hyperbolic by Theorem 2.4.

Let us mention that there is still a lot of freedom left when prescribing scalar curvature
functions in 2 dimensions: generalizing previous work by John Burns [10, Thm. 2.2], Marc
Nardmann proved that any function which is either identically vanishing or sign-changing
on a closed Lorentzian surface M is the scalar curvature of some Lorentzian metric on M
[27, Thm. 1.3.13].
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From now on, we assume n > 3. In that case we know local solutions exist by the remarks
above. One can do a bit better: as for the existence problem for solutions to the Einstein
equations [11, Thm. 3], there is a maximal domain of existence for solutions to the Yamabe
problem:

Theorem 2.6 Let (M", g) be an n(> 3)-dimensional globally hyperbolic spacetime with
smooth spacelike closed Cauchy hypersurface ¥ C M and Sz € R be an arbitrary constant.
Denote by v € T'(T+X) the future-directed (timelike) unit normal along %. Then for any
@00, 1 € C®(X, R) with ¢y > 0, there exists a unique maximal globally hyperbolic open
subset IA)E of M in which % is a Cauchy hypersurface and on which the Cauchy problem (2)
with ¢|x = @o and 3,¢ = @1 has a unique smooth positive solution.

Proof The proof mainly relies on local existence and (global) uniqueness for solutions to the
Cauchy problem

n+2

O¢ + anSgp = anSgpn-2
Plz = 0 M
av(p = (pla

which both follow from the theory of symmetric hyperbolic systems. Namely for any ¢g, ¢1 €
C° (X, R) with ¢ > 0 consider the set

Mz go,01 = {Dz C M, Dxopen, X Cauchy hypersurface of Dy,
J¢ € C*(Dy, Ri)solving(7)oan}.

Note that, by uniqueness of solutions to symmetric hyperbolic systems, for each Dy €
M 4,01 > there is a unique positive smooth solution ¢ to (2) on Dy with Cauchy data ¢g, ¢;.
Local existence for the Cauchy problem along the compact Cauchy hypersurface ¥ already
ensures Ms g0 o 7 @:if (M", 8) = Rx X, —Bdt*> @ g,) is split as in Theorem 2.2, where
say ¥ >~ {0} x X, then there is a nonempty open interval J/ C R about 0 for which a smooth
positive solution to the Cauchy problem (7) exists on the open subset J x X of M; but with the
induced metric and time orientation, J x X is clearly globally hyperbolic with X as a Cauchy
hypersurface, therefore J/ x £ € My 4 o, . Nextdefine Ds := U Dx € Msx 4y,0, Dz C M,
which is open in M and contains X. We claim that Dy € M go,¢, - First, we show that X is
a Cauchy hypersurface of 52 (hence 52 is globally hyperbolic). The proof of this is based
on the following two claims.

Claim 1 Let Q C M be any nonempty open subset which is causally compatible in M
(for any p € Q, Jf (p)NQ = Jiz (p)). Then 2 itself—with the induced metric and time
orientation—is globally hyperbolic if and only ifJ_{YI (p)NJIM(g) Cc Qforall p,q € Q.

Proof of Claim 1 There exists no closed causal curve in €2 since there is already none in M.
If Q2 is globally hyperbolic, then for all p, g € 2 the subset Jf (p) N J%(q) is compact; but
by causal compatibility of , J$2(p) N J%(q) = JM (p)NIM () N Q;now JM (p)NJM (q)
is by construction (path-)connected, so that the intersection J. _ﬂ" (p)NJM(q)NQ, being open
and closed in J (p) N JM(q), is either empty or the whole subset J¥ (p) N J¥ (g); in the
first case, necessarily Jf(p) N Jf/’(q) = @ holds (otherwise g € Ji’[(p) N Jﬁ”(q) N Q)
and hence Jf (N J&g) = Jf (p) N JM(g); in the second case, we also obtain Jff(p) N
J£(q) = JY(p) N JM(g). In both cases, we have JM (p) N JM(q) C Q. Conversely, if
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JM(p)nJIM(g) c Qforall p,qg € Q, then JE(p) N J%(q) = IM(p)NIMgNQ =
J _ﬂ’[ (p) N JM(q) is compact for all p, g €  and thus Q2 is globally hyperbolic. O

Claim 2 If X is a Cauchy hypersurface of an open subset Q@ C M, then Q2 is automatically
causally compatible in M.

Proof of Claim 2 Let p € Qandg € J ﬁ” (p) N Q be arbitrary. Pick a future-directed causal
curve ¢ : [0, 1] - M with ¢(0) = p and ¢(1) = g in M and extend it to an inextendible
future-directed causal curve ¢ : R — M. We consider the following cases. First, let p €
JE(E). Since X is a spacelike Cauchy hypersurface of M, there exists a unique #p € R
with ¢(f9) € X; note that 7o < 0 because of p € Jf(E) C Ji”(E) N Q. Define tyin :=
inf{t < 1|¢c(s) € QVs €[t, 1]} and tmax := sup{t > 1|c(s) € Q Vs € [1,r]}. Note that
tmin € [—00, 1 and fax €]1, 00] are well-defined and that ¢(1fmin, fmax[) C €2. The curve
[ P— tmins tmax[— €2 is future-directed causal and inextendible as a curve in Q by
construction of fpin and fmax, therefore it meets the Cauchy hypersurface X of €2 in exactly
one point. But since 1y is the unique ¢t € R with ¢(¢) € X, one necessarily has i, < fo, in
particular tryin < 0, from which ¢(s) = c(s) € Q for all s € [0, 1] Cltmin, fmax[ follows.
This implies g € Jf(p)‘ The case where ¢ € J#(X) is analogous (just “reverse” time). The
last case where p and ¢ are on two different sides of = (i.e., p € I¥(X) and ¢ € If(E)) is
also similar: one may assume c(%) € ¥ and then one shows as above that both restrictions

c‘lo,%J and ql%” run entirely in Q. Therefore g € Jf(p) in all three cases. Obviously

Jf(p) C Jfr”(p) N Q always holds true, thus we have shown Jf(p) = Jf’(p) N Q for all
p € Q. Reversing time we also show J%(p) = IM(p) N Q forall p € Q and hence K is
causally compatible. O

To show that ¥ is a Cauchy hypersurface of Ds,letc : R — Dy be any inextendible
future-directed timelike curve. Then its intersection with each Dy—that we denote by ¢ N
Dy —is again a curve (and remains inextendible, timelike and future-directed): for any s <
t € R with c(s), c(t) € Dy, one has c(u) € JM(c(s)) N JM(c(r)) for all u € [s, 1] and,
because Dy is causally compatible by Claim 2, we have Jf[ (c(s)) N JM(c(r)) C Ds by
Claim 1 and hence c¢(u) € Dy. Therefore ¢ N Dy meets X in (exactly) one point, from which
follows that ¢ meets ¥ in one point, which must be unique since X can anyway be met only
once by causal curves. Therefore ¥ is a Cauchy hypersurface of 52.

It remains to show the existence of a ¢ € Coo(ﬁz, Rfr) solving (7) on 52. For this, we
first show that My 4 o, is stable under finite intersection. For any DL, D% € Mx py.01
consider any inextendible timelike curve ¢ in DlZ N D% . Then one can extend c to inextendible
causal curves ¢ in D% ,i = 1, 2 (of course it may happen that one- or both—extension already
coincides with c itself), each of which meets X in exactly one point. Gluing ¢ with ¢> along ¢
one obtains a future-directed causal curve ¢ in D)1: U D%—this is a (piecewise smooth) curve
since no two extensions can come out of the same end of ¢ unless c is already extendible—
which is also inextendible in Dl2 U D%. By the above argument (applicable to any union of
elements of My ¢, ), X is a Cauchy hypersurface of DlZ U D%, therefore ¢ meets ¥ in
exactly one point, which by uniqueness must lie in both D)1: and DZE; in turn this implies
that ¢ meets X in exactly one point. Therefore Yisa Cauchy hypersurface in DlE N D%.
It remains to notice that the solutions ¢' and ¢ to (7) on D): and D2 respectively have to
coincide on Dl N D2 by uniqueness of solutions to (7) on the globally hyperbolic spacetime
D] N D2 Therefore D1 n D2 € Mz gy,¢,- Coming back to the Cauchy problem on Ds.
deﬁne @ on Dz via <p(p) =¢ (p) for p € D’ , where ¢' € C®(DL,, R+) solves (7) on D.;

i i j
since D5, N DY € My g4, forany D%, DL € My 4 ;. We have ¢ i Conl =’ Lonl”
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so that the function ¢ is well-defined, positive, smooth and solves (7) on 52. This shows
Dy € Mz gy,0- By construction, Dy is maximal and is unique since it contains every
element of M o ¢, . This concludes the proof of Theorem 2.6. O

Theorem 2.6 could be cast into a much more general result, where instead of the Yamabe
equation an abstract PDE with an arbitrary number of Cauchy data along a Cauchy hyper-
surface is considered. Namely only local existence and global uniqueness of solutions are
required for the existence of a unique maximal domain of the underlying spacetime where
the PDE can be solved with the given Cauchy data. We chose to restrict ourselves to the
Yamabe problem not to make the presentation heavier.

Of course, the maximal domain 52 of Theorem 2.6 depends on X, on the metric g, on Sz
and on the Cauchy data ¢y, ¢;. Note also that the analogous statement from Theorem 2.6 also
holds true in dimension 2 for the Cauchy problem corresponding to (1). In the next sections,
we discuss when Dy = M for M ina particular subcategory of spacetimes.

3 Conformally standard static spacetimes

In this section, we start with the particular case where (M", g) is conformally equivalent
to the product (I x ¥, —dt> @ gx) of an open interval I C R with a closed Riemannian
manifold ("1, gx).

Following the literature, products are a particular case of so-called standard static space-
times:

Definition 3.1 A spacetime (M", g) is called

i) static if and only if it admits a timelike Killing vector field whose orthogonal distribution
is integrable.

il) standard static if and only if it is isometric to a product (I x X, —Bdt*> @ gx) for some
openinterval I C R,some Riemannian manifold (£"~!, gx)andsome 8 € C®(Z, ]RJXF).

Any standard static spacetime is static (take e.g. é% as timelike Killing vector field with
integrable orthogonal distribution) and any static spacetime is locally standard static. A
simply connected static spacetime (M", g) is standard static if and only if at least one of its
static vector fields (Killing, timelike, with integrable orthogonal distribution) is complete [32,
Thm. 2.2]. Note that a standard static spacetime (I x =, —dt? @ g5 ) is globally hyperbolic
if and only if the metric %gz is complete, in particular any standard static spacetime with
closed X is globally hyperbolic. We refer to the excellent survey [32] for further geometric
and causal aspects of standard static spacetimes.

Thus, we shall consider in this section spacetimes that are conformally equivalent to
standard static ones. Since we may first want a conformal characterisation of such spacetimes,
we give the following

Proposition 3.2 A spacetime (M™, g) is conformally equivalent to a standard static space-
time if and only if there exists a smooth functiont : M — R such that grad (1) is everywhere
past-directed timelike and for the induced splitting (M", g) = (I x =, —Bdt> & g;) via the

d
flow of I grad (1)

———~— the Riemannian metric lg, on X does not depend on t.
grad, (12 B

A smooth function # : M — R whose gradient is everywhere past-directed timelike is
called temporal, see e.g. [21, Def. 3.48]; a temporal function is in particular a time function,
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i.e., it is monotonously increasing on any future-directed causal curve in (M", g). Note that
grad (t)
7 the conditions ¢ be a temporal

the vector field—and hence the induced flow———~—-
[erad, (1)

function and 2 ( B g,) = 0 all only depend on the conformal class of g.

Clearly, a spacetlme (M", g) that is conformally equivalent to a standard static one has a
(future-directed) timelike conformal Killing vector field, the converse being wrong in general
(though a globally hyperbolic spacetime with complete timelike conformal Killing vector
field is conformally equivalent to a so-called standard stationary spacetime [32, Prop. 3.3]).
In particular, globally hyperbolic spacetimes with trivial or even discrete conformal group
cannot be conformally equivalent to a standard static one.

For instance, any warped product spacetime (M", g) = (I x X, —dr* e b(t)zgg), where
b e C™®(l, Ri), admits such a temporal function (fix so € [ and set #(s, x) := fs; b‘Z)) and
hence is conformally equivalent to a standard static spacetime. More concretely, if (M", g) =
(lo—, 0 [xX X, —dt? ®b(t)*gx) forsome b € C®(Ja—, at[, RY), then fixing 1y €la—, ot [,
the map

Do, a0y [xE — Ja_,ai[xZ
(#,x) —> (Y (@), x),

where a4 = tz‘* b‘g) and w(t) = flo 50y 15 a smooth diffeomorphism with O*(—dt? @

gs) = —b2di* @ gy = b 2g.
3.1 Existence of solutions to the Yamabe problem

The first and most natural ansatz to solve the Yamabe problem in a product spacetime consists
in separating variables. In the following, recall that Lg,. = Agy +a,Sey, where a, = 4(”%721)
and S, is the scalar curvature of (X, gx).

Proposition 3.3 Let (M", g) = (I x £, —dt> @ gx), where I C R is an open interval,
(X771, gx) is a closed Riemannian manifold and n > 3. Let SgeR,yeC®(, RX 1) and
u € C®(x%, R+) be arbitrary. Then the function ¢ € C*°(M, R+) o(t,x) = y() - u(x),
solves (2) if and only if

i) either y or u is constant in case Sg # 0; if y is constant, then u solves Lgsu =

a,,Sgyf”Zup’l where p = nz_”z; if u is constant, then Sgy is constant and y solves

V' 4 @nSeyy = anSguP~2yP~L.
ii) the functions y and u satisfy y" + p1(Lgy)y = 0 and Lgzu = w1 (Lgs )u respectively
in case Sg = 0, where j11(Lgs) € R is the smallest eigenvalue of Lgs,.

2
Proof By (6), the Yamabe equation (2) reads ‘ZT‘{’ + Lgyp =ay Sg(p”". For ¢ of the form
@(t,x) := y(t) - u(x), this becomes y” - u +y - Loy u = a,Sg(y - u)P~!. Dividing out by
y - u, this identity is equivalent to
y// ng u

— 4

= a,Sg(y - wP2,
y

In case Sg # 0, the first t-derivative of that identity gives ( 5 ) (p—2)anSguP~ 2yr=3y/,

whose Lh.s. hence does not depend on x € X, so that either y’ = O on / or u is constant on X.
If yis constanton /, thenu solves y-Lgou = anSg(y~u)P_l, thatis, Lgou = ay Sgyp_zup_l.
If u is constant on X, then by the identity just above S, must be constant and y solves the
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ODE y" + a,Sgysy = anSgu?~2y?~1. This proves i).

In case Sz = 0, we obtain after differentiating w.r.t. t the existence of a constant . € R
with 2= = 4 and hence also # = —A. In particular, —A is an eigenvalue with associated
eigenfyunction u for the elliptic self-adjoint linear operator L,;. on X; but since we require
u > 0, the eigenvalue —A can only be the smallest one (1 (L gy, ) by Courant’s nodal domain
theorem. This shows ii) and concludes the proof. O

We concentrate on the equation Lgyu = AuP~! on X, for which existence results are
well-known, see e.g. [20, Sec. 4] or [2, Sec. 2.3]:

Theorem 3.4 (Yamabe [36]) Forn > 3 let ("', gx) be any closed Riemannian manifold.
As above, let Lgy : C°(X,R) —> C*®(X, R) be defined by Lgy ¢ := Ags ¢ + a,Sg5 @,
where a, = 4&77_21) and Sgy. is the scalar curvature of (X, gx). For p € [2, o0 consider the
functional

HY2(EN0) 5 R, E(f) = M,

117 cs)

where do is the Riemannian density associated to gy, on X. Then we have the following:

i) An f € HY2()\{0} is a critical point of E if and only if it satisfies Lgo f = E()

1170 cs)
o
ii) If p € [2, p*[, where p* = % €]2, oo, then there exists a minimizer of E on
H'2(2)\{0}.
In particular, there exists a ¢ € C®°(Z, RY) with (w.l.o.g.) l¢llLrx) = 1 satisfying Lgs ¢ =
)»,,(E,gz)-w”’l on X, where L,(%, gs2) :=  inf (E) e R.
H2(2)\{0)

The sign of A, (X, gx) turns out to be that of the smallest eigenvalue of the elliptic self-
adjoint operator L :

Lemma 3.5 With the notations of Theorem 3.4 and p € [2, p*[, the constant 1 ,(Z, gx) and
the smallest eigenvalue | of Lgy have the same sign: the one is positive (resp. 0, negative)
if and only if the other is positive (resp. 0, negative).

Proof The negative case is clear: by definition of the constant A,(X, gx), it is negative
if and only if there exists an f € H'2(X)\{0} with f): fLgy fdo < 0, which, by the
min-max principle, is equivalent to ©; < 0. Now the condition p > 2 provides a trivial
inequality between A, (X, gx) and p: since X is closed, we have, using Holder’s inequality,
| -ll2<C-| -, for some constant C = C(X, gx), hence

f): fLgy fdo > . fz fLgy fdo
I£113 B 1713

for some constant C’ = C'(Z, gx) and for every f € H'?(X)\{0}; the min-max principle
yields 1 > C’ - A,(Z, gx). So,if A,(X, gx) = 0, then this inequality implies 1 > 0; on
the other hand, Theorem 3.4 provides the existence of an f € C® (X, Rfr) with Ly, f =0,
in particular O is an eigenvalue of L, and hence 1 < 0, so 1 = 0. Conversely, if u; = 0,
then the above inequality provides A,(X, gs) < 0; on the other hand, [ fLgy fdo > 0
holds by the min-max principle, so that A ,(X, gx) > 0 and therefore 1, (%, gx) = 0. This
concludes the proof. O

>C'ap(T, gx)
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For instance, if Sy, = 0, then it is clear that u; = 1,(X,gs) = 0 (take ¢ to be
constanton X). If So;. > Oon X, then A, (X, gx) > 0, as one can deduce from the bounded
Sobolev embedding H L2(3) < LP(Z) (recall that p < %): there exists a constant
C = C(Z, gx) > Osuch that, for every f € H?(Z)\{0},

/ [Lgs fdo = min(1, a, min(Se; ) / ldf)? + f2do
> >

—_——

7112

HL2(%)

> Cmin(l, ay min(Sg;)) - 1115,

from which we deduce 1 ,(%, gs) > C-min(1, a, minyx, (S,y)). Inparticular, A, (2, gz) > 0
as soon as miny (S,s) > 0. More generally, if S,5, > 0 and does not identically vanish on
¥, then f 5, u1(Lgguy)do > 0 for any (non-zero) eigenfunction u; associated to the smallest
eigenvalue ju1, in particular ;1 > 0 and hence A,(X, gx) > 0. Note that, if u; < 0—or,
equivalently, A, (%, g5) < O—implies miny (S,;.) < 0, however the other implication is
wrong (use e.g. a continuity argument: perturb appropriately the standard metric on S” so
as to make the scalar curvature negative somewhere while keeping A, positive). Beware
also that A, (X, gx) is not a conformal invariant—it is in particular not the infimum of the
standard Yamabe functional.
The first global existence result of that section is the following

Theorem 3.6 Let a spacetime (M™, g) be conformally equivalent to the Lorentzian product

(I x £, —dt*> & gx) of an open interval I C R with a closed Riemannian manifold "',

wheren > 3. Let Ap(X, gs) :=  inf (E) € R (see Theorem 3.4) and p = n2_n2~ Then
HL2(2)\{0)

for Sz = #ﬂ’gw there exists a ¢ € C*°(M, ]R_T_) solving (2).

Proof By conformal invariance of the Yamabe problem, we may assume that (M", g) =

(IxX,—di*® gx). In that case, (2) becomes %27‘; + Lgsop = anSg,gup_l by Lemma 2.3.
2(n—1)
n—3
onXYof Lesp =4,(%,g5) - @P~1. This ¢ does not depend on ¢, hence solves (2). O

Since p € [2,

[, Theorem 3.4 provides the existence of a smooth positive solution ¢

As a consequence, every warped product spacetime admits at least one solution to the
Yamabe problem.

Notes 3.7 1. The proof of Theorem 3.6 actually shows that the same statement as in Theo-
rem 3.6 holds true for any (necessarily non globally hyperbolic) spacetime conformally
equivalent to (S! x £"~!, —dr? @ gx) with closed =, where S! is a circle of arbitrary
length: the solution we construct does not depend on time and is therefore periodic.

2. One need not have uniqueness (up to scaling by a positive constant) of a conformal
metric with constant scalar curvature. Take e.g. (M", g) := (R X ™1 —di? @ can),
where T"~! = R*~1/Z"~! is the n — 1-dimensional torus obtained by modding out
R"~! by the canonically embedded lattice Z"~! < R"~! and can is the induced flat
metric on T" 1, Taking any two 1-periodic functions v, w € C*(R, ]Ri), the function
@ € C®(R x R"~! RY) defined by

(t, x) ==v(t +x1) +w —x1),
forallz € Rand x = (x1,...,x,—1) € R*! satisfies O¢ = 0 and induces a smooth

function (also denoted by @) on R x T"~! satisfying the same equation. Therefore, one
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obtains a whole family of non-trivial conformal metrics with vanishing scalar curvature on
M" . This also shows a big difference with the Riemannian setting, where every conformal
metric with vanishing scalar curvature on R x T"~! must be a constant positive multiple
of the metric dr? @ can by Liouville’s theorem (implying that every positive harmonic
function on R"” must be constant). Uniqueness of the solutions is further discussed in
Sect. 3.2.

Theorem 3.6 shows the existence of at least one conformal metric with constant scalar
curvature on any conformally standard static spacetime. However, we notice that the sign of
that conformal scalar curvature is given by that of the conformal invariant A , (X, gx ) defined
in Theorem 3.4. Therefore, we are led to asking whether any constant scalar curvature may be
prescribed in any conformal class, and if not, how “large” the maximal domain of existence
for solutions is. For this, the following lemma is useful.

Lemma 3.8 (Gronwall) Let«, § : I —> R be continuous functions and ty € I be arbitrary.

. .

D) Iy +a(y <0, then y(t) — y(ig)e” Jo*O" ; 8 5? 2 ;2 '

2) If y" +a(t)y + B(t)y <0, then y(t) < y(t9)yo + ¥ (to)zo for every t € I, where yy, zo
solve the differential equation w" + a(t)w’ + B(t)w = 0 on I with initial conditions
yo(tp) = 1 = zé(to) and y(’)(to) = 0 = z9(tg). In other words, y must be lower than
or equal to the solution of the corresponding differential equation with the same initial
conditions at t.

‘We come to the main existence result of this section.

Theorem 3.9 Let a spacetime (M", g) be conformally equivalent to the Lorentzian prod-
uct (I x ¥, —dt* @ gx) of an open interval I C R with a closed Riemannian manifold
("1, gx), where n > 3. Let mi1(Lgy) € R be the smallest eigenvalue of Lgy and let
Sz € R be an arbitrary constant.

1) If ui(Lgy) <0, then

la) either Sg < 0 and then (2) has a globally defined smooth positive solution on M",
1b) or Sg > 0 and then (2) has no globally defined smooth positive solution on M" =
IxTifl =R
2) If ui(Lgy) = 0, then
2a) either Sg < 0 and then (2) has no globally defined smooth positive solution on
M"=1x3Xifl =R
2b) or Sg = 0 and then (2) has a globally defined smooth positive solution on M",

2c) or Sg > 0 and then (2) has no globally defined smooth positive solution on M" =
I xXifl =R

3) If pi(Lgs) > 0, then
3a) either Sg < 0 and then (2) has a globally defined smooth positive solution on M" =

I x T onlyif|I] < ——2%—,

3b) or Sg = 0and then (2) has a globally defined smooth positive solutionon M" = I x X
. . - 7
if and only if |I]| < N

3c) or Sg > 0 and then (2) has a globally defined smooth positive solution on M".
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Proof of Theorem 3.9 Note that the statements 1a) for the subcase Sz < 0, 2b) and 3c) are
already contained in Theorem 3.6 via Lemma 3.5 and after possibly rescaling the solution so as
to adjust the constant on the r.h.s. We show how to obtain in all cases a necessary condition for
the existence of a global solution to (2). Given any constant Sg € R, assume ¢ € C*°(M, Ri)
is a solution to (2). Again, we may assume that (M, g) = (I x X, —dt* ® gx). Letu be any
positive (necessarily smooth) eigenfunction associated to the smallest eigenvalue 1t1(Lgy)
of Lgy,. Multiplying (2) with u and integrating w.r.t. the Riemannian measure do associated
to gx on X, we obtain, using the formal self-adjointness of Lg..:

ansg/ P71, x)u(x)do (x) @/ (D<p+ansg(p) (t, x)u(x)do (x)
z z

32
© /2 [T;f(t,x)u(x) + (Lex ) (2, x)u(x)] do(x)

d2
= pr) (/2 o(t, ~)udd) + /): @(t,)Lgsudo

d2
=7 (/2 w(t, -)uda) +/L1(ng)/2<p(l, Judo,

where p = nzfnz Therefore, the smooth positive function y : I — Ri, t = f): o(t, Judo,
satisfies

y” + 11 (ng)y = Clnsg/ @pil(l" Judo ®)
x

on /. An immediate consequence of this is that, if Sz = 0, then the existence of a smooth
positive solution to (2) is actually equivalent to that of a smooth positive solution to (8):
it is necessary by the above argument and, conversely, if some y € C*(/,R}) solves
(8), then Proposition 3.3 implies that, for any positive (smooth) eigenfunction u associated
to the smallest eigenvalue (11 (Lgy ) of Lgy, the function ¢(t, x) := y(¢) - u(x) > 0 solves
Og+a, Sgep = 0on M. Since obviously a positive smooth solution to the ODE (8) with Sz = 0
exists for u1 (Lgy) < 0, we obtain la) for the subcase Sg = 0 (as well as 2b)). For i1 (Lgy) >
0, any solution to (8) with Sz = 0 is of the form 7 > A cos(\/p1(Lgs)t +¢), A, c € R, s0
that the existence of (at least) a positive solution (8) is equivalent to the length of / being no

greater than the half of the period of  +— cos(/u1(Lgy)t), i€, to [I]| < ﬁ This
ey
proves 3b).

Assume now Sz < O and py(Lgy) = 0.If o € C*(M, RJXF) solves (2), then by (8) the
function y defined as above from ¢ satisfies y” + 1(Lgs)y < Oon 1. If 1 (Lgs) = 0,
then y” < 0 on I, so that y is strictly concave and hence has to change sign if / = R. This
shows 2a). If j11(Lgs) > 0, then fix any #p € /. By Lemma 3.8 the function y must satisfy
y < z, where z € C*(I,R) solves z” 4+ 1 (Lgy)z = 0 on I with z(fo) = y(to) as well
as 7/ (o) = y'(fo). Since z—and hence also y—can remain positive only on an interval of
length at most ) (see just above), the length |7| of I must satisfy |I]| < \/#732)

b4
Hi(Lgy
This shows 3a).

In the remaining case where Sg > 0 and wui(Lgy) < O, the identity (8) implies that, if
¢ € C®(M, Ri) solves (2), then for any smooth positive u € Ker(Lgy — p1(Lgy)), the
smooth positive function y(¢) := f): o(t, )udo satisfies

1
V' =y +pui(Lgy)y = anS§/ (p(t, yur1)Pdo
>
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on /. Butsince u is continuous and positive on the compact space X, there is a positive constant
2n

n—

1
C (depending on p = -5 and u) such that u »=T > Cu, so that, by Holder inequality,

a SzCP~!

p—1
Vol(Z, gg)P 2"

Y = apSgCP~! / (p(t, )P~ do >
=
on /. This leads to an explosion of y in finite time and hence to a contradiction in case I = R.
Namely we may first assume, up to changing y into ¢ + y(«t) for some o > 0, that
V= Ly ©)
2
on R. Since then y is strictly convex, only two (non disjoint) situations can occur: there is an
interval of the form [#(, oo[ on which y’ > 0 or there is an interval of the form ] — 00, 1]
on which y’ < 0. In the latter case, up to changing 7 into ——which does not modify (9)—
we can again assume that y’ > 0 on some interval of the form [y, co[. Up to translating
by o, we can also assume that #p = 0. Since y’ > 0 on [0, oo[, the identity (9) yields
2y"y" = py?~'y on [0, oo[, hence (y)*(1) — (y)?(0) = yP(t) — y?(0) for any 1 > 0, in
particular y’ > /y? — yP(0) on [0, co[. The latter inequality gives

/y(t) dz
— >t
v V2P —yP(0)

for any + > 0. Now since p > 2 the integral j;,o(%) converges, that is, the domain

dz
2P —yP(0)
where y(¢) is defined is bounded above, or, equivalently, y(f) — oo ast — T for some

T < oo. This shows 1b) and 2¢) and concludes the proof of Theorem 3.9. O

Note that, in the cases 1b), 2a), 2¢) and 3a), local existence of solutions to (2) implies
anyway the existence of a smooth positive solution ¢ to (2) on I x ¥ for sufficiently short
|1].

Even if it looks like it, global existence of solutions has nothing to do with timelike
geodesic completeness of the product metric (which is anyway not a conformal invariant),
see de Sitter spacetime below. For further ODE-like obstructions to the existence of particular
metrics in (pseudo-)Riemannian conformal classes, we refer to [25].

A first application of Theorem 3.9 is the following surprising example, where we see there
exist spacetimes with positive scalar curvature admitting conformal metrics with vanishing
scalar curvature—and this only in low dimensions.

Corollary 3.10 Let a spacetime (M", g) be conformally equivalent to the warped product
(R x =" 1, —dr? @& cosh(t)%gs) of R with a closed Riemannian manifold ("1, g5) of
constant scalar curvature (n — 1)(n — 2) and with warping function b = cosh. Then there
exists a conformal metric with vanishing scalar curvature on (M", g) if and only if n < 4.

Proof Note that, by (5), the scalar curvature of (M", g)is S, = n(n—1) > 0. We have already
constructed an explicit isometry between (M", b2 g) (which is conformally eiuivalent to

(M", g))and (la—, ay[xZ"~ !, —dr* @ gy), where b(t) := cosh(r) and as := [; %:set

D, x) := (Y), x)withyr (r) := f(; %.Itis elementary to compute ¥ (¢) = Zf(; f;;f‘; =
% —2arctan(e "), sothatay = :I:%. Now since Sy = (n—1)(n—2)is constant, 1 (Lgy) =

2
anSes = @ _42) , so that, by Theorem 3.9, there exists a positive solution to (2) with Sg = 0

\/%, that is, if and only if 7 < ’12%2, that is, if and only if n < 4.
O

ifandonly ifay —a_ <
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For instance, if (M", g) := (R x S"~!, —dt? @& cosh(¢)%can) is the de Sitter spacetime of
constant sectional curvature 1, where (§"~!, can) is the round sphere (of constant sectional
curvature 1 if n > 3), then Corollary 3.10 shows that the existence of a conformal metric
with vanishing scalar curvature is equivalent to n < 4.

Notes 3.11 There is something deeply unsatisfying about Theorem 3.9: although the results
we obtain are by nature conformally invariant, the assumptions we work with are not. For
recall that we have first chosen a foliation by spacelike hypersurfaces—or, equivalently, a
temporal function on the spacetime. Even more disturbing is the fact that the sign of the
first eigenvalue of the Laplace-type operator L. on each leaf ¥ can change when fixing the
foliation but changing the metric conformally on the spacetime. This remark is crucial when
wanting to generalise the existence results to arbitrary globally hyperbolic spacetimes.

3.2 Uniqueness of solutions to the Yamabe problem

Next we turn to the uniqueness issue for the Yamabe problem. As we already noticed, given
a globally hyperbolic spacetime M" with closed spacelike Cauchy hypersurface ¥ hav-
ing future unit normal v, the local well-posedness of the Cauchy problem O + a,S,¢ =

an Sggz)% on M, ¢y = ¢o and d,¢ = @1 on X, ensures—at least in a neighbourhood
of X —the existence of infinitely many “independent” local solutions to the Yamabe prob-
lem. Therefore the only interesting question in this respect deals with the global aspects of
uniqueness.

We start with looking at the ODE y” + a,Sgyy = a,Szy?~! from Proposition 3.3 on
I C Rand under the assumption that the scalar curvature Sg;. of (X, gx) is constant. Itis easy
to see what happens for Sg = 0: if Sg. < 0, then there always exists a 2-parameter-family
of positive solutions to y” + anSgsy = 0 on I;if Sgi. = 0, then only constant solutions
y > 0to y” = 0 can remain positive on R; in case Ses > 0, there is no positive solution to
¥’ +a,Sg5y = 0onR (but obviously there is one and even a 2-parameter-family of solutions
on a sufficiently small interval). In the case Sz # 0, we may assume, up to multiplying y by
a positive constant, that a, Sg = 8% with ¢ € {£1}.

Lemma 3.12 Givens € R}, p €12, oo and ¢ € {1}, consider the ODE y" = ‘s(gyf”_1 -
sy) on some open interval I C R.

1
1) Ife = 1, then the only positive solution to that ODE on R is the constant one y = (%) P2,
2) If e = —1, then there are infinitely many non-constant positive solutions to that ODE on

1. More precisely, for any T €] 2 ool, there exists a T-periodic positive solution

toy’ = —gyp’l +syonR.

Proof If y solves y” = &(§ yP~! —sy), then multiplying with y’ and integrating one obtains

O =eF(y) —

for some A € R, where F : Ry — R, F(y) := y? — sy?. Therefore, we just have to
investigate the qualitative behaviour of solutions to the first-order ODE (y’ 2 =¢F (y) — A
dz

according to the value of A. This equation can be solved inthe form¢ = #(y) = + f y NaiGEn

according to the sign of y’ on the interval under consideration. Moreover, any solution to
(y)? = eF(y) — A which is not a critical point of F is a solution to the original equation
y' = 8(% yP~1 —5y). Hence we first have to determine the regular and critical values of F. A
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E(&)ﬁ

short computation gives the two critical values O and — > (5

for F, with corresponding

critical points 0 and ( )l’ 2 respectively.
We start with the case e=1:

1
e Any A € Ri is a regular Value of F and F~'({A}) = {x;} with x;, €]s72, oo[. Because

p > 2 we have j \/; < 00, so that any solution y corresponding to & > 0

At VF(y)
explodes in finite time and therefore cannot exist on R.
e For A = 0, apart from the trivial solution y = 0 (we exclude anyway), the only solution

shows exactly the same behaviour as before.
r_
e For A €] — pl—:z(%) »=2,Q[, the preimage F~1([x, oo[) consists of two intervals of the

+

1 . .
form [0, x, ] and [x;r, oo[ respectively, with 0 < x,” < (%) P=2 < x,” < sP=2.Since A is

aregular value of F, the behaviour of the solution taking its values in [xiIr , o[ is the same
as before (explosion in finite time); for [0, x, ] the solution vanishes in finite time because

X)L
5 dy . .. .
of fo NGoOED < o0o. In both cases, y is not everywhere positive or is not defined on R.

_ _r_ . 1 .
e For A = —%(%) p=2  apart from the constant solution (2;5) »=2_we have two kinds of

1 1
behaviour for y according to one value y(#p) of y lying in ]0, (2;5) r=2[orin ](%)PTZ, ool.

1
If y(tp) e](g)ﬁ ool, then y explodes in finite time on one side and attains the critical
point (ZS)P 2 in infinite time on the other. If y(zy) €]0, (2S)1> 2[, then y vanishes in finite

time on the one side and attains the critical point ( )l’ 2 in infinite time on the other.
Again, no non-constant positive solution is defined on R.
o g P . . .
e For A €] — oo, —%(%) p=2[ the function y’ cannot change sign; the solution y must
vanish in finite time on the one side and explode in finite time on the other.

This shows 1). The case ¢ = —1 can also be divided in different subcases, compare [33, pp.

132-135]:

e For A e]pT_z(%)ﬁ, ool, there is of course no solution to (y’)2 =—F(y) —

e For A = pl—:z(%)#, the only solution to (y)? = —F(y) — A is the constant one
y=(@)re,

e For 1 €]0, P—*z(@)n'—'z[ the preimage (—F)~'([x, 00[) = [x, x;'], where 0 < x, <

1
(2S)P 2 < x;“ < s7-2, This time, y is periodic (in particular defined on R) and
osc1llates between the values x, and x;r . Its period T) (depending on 1) is given by

T, =2 f 5 «/ﬁ which can be easily seen to depend continuously on A (since xljE

2

do) with Tk —> o0 as well as Tj, — To s

> 0, which is the period for
)4
A—0F PN p;z (%)fp,z -

1
the linearized equation y” = —(p — 2)sy at (%)ﬁ.
° For A= 0 apart from the trivial solution y = 0, we obtain the solutions t >

s P 7 cosh( (t +c))” 5 , ¢ € R, which are positive solutions defined on R, symmetric

about their maximum ¢ = —c, with s 72 as maximum value, and which tend to 0 at infinity.

e For A € R, we obtain as above a solution which explodes on both sides in finite time.

n—2

This shows 2) and concludes the proof. O
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Corollary 3.13 Let a spacetime (M", g) be conformally equivalent to the product (I x
S, —dt? @ gx) of an open interval I C R with a closed Riemannian manifold (£, gx,) of
constant negative scalar curvature. Then there exist infinitely many non-homothetic confor-
mal metrics with constant negative scalar curvature on (M", g).

Proof Immediate consequence of Proposition 3.3 and Lemma 3.12. O

We turn to the subcritical equation Lgyu = AuP~! on X. First notice that, if u,v €
C>®(Z, Rfr) solve Lgsu = AuP~1and Lgsv= ,uvp_l on X respectively, forsome A, u € R,
then A and p have the same sign (A > 0 and vanishes if and only if A = u = 0): by formal
self-adjointness of Ly,

k/ uP~Yvdo :/(ngu)vdo :/ u(Lgyv)do :,u/ wPdo.
® b b b

In particular, we only need consider uniqueness of solutions to Lgyu = Au? ~! with constant
A of the same sign as 11 (Lgy).

Theorem 3.14 Let (X"', gx) be a closed connected Riemannian manifold, where n > 3.
Let 1 (Lgy) € R be the smallest eigenvalue of Lgs, and p := 2n

n—2"

1) If ui(Lgy) < O, then for any Sg € RX the equation Lgg ¢ = anSggop_l admits a unique
smooth positive solution on X.

2) If u1(Lgy) = O, then the equation Ly ¢ = 0 admits a unique smooth positive solution
up to scale on %.

3) Forany A € R the set

Spi={u € C®(Z,Ry) | Lgyu = auP~' A < A, ullpes) < A)
is compact in C3(Z,R).

Proof By Courant’s nodal domain theorem, Ker(Lgy, — i1(Lgy)) is areal line generated by
a positive smooth function on X. This already implies 2). Statement 1) relies on the method
of sub- and super-solutions developed in [17, 18] and further in [28,29]. We briefly recall the
concepts and statements we need for the proof. Givena C! function f : ¥ x R — R, a strong
sub- (resp. super-) solution for the equation Au = f (x, u) is a C>-function v on X with Av <
f(x,v) (resp. Av > f(x,v)) on X. A weak sub- (resp. super-) solution for the equation
Au= f(x,u)isav € H'*()NCO(Z, R) satistying [y, (g (dv, dp) — f(x,v)p)do <0
(resp. f): (g=(dv,dp) — f(x,v)p)do > 0)forallp € C*(Z, R;). Of course, every strong
sub- or super-solution is a weak one. The steps in the proof of statement 1) are the following:

a) If vy, va € C3(T,R) are strong super-solutions to Au = f(x, u), then min(vy, va) €
H'“2(2) N C%Z, R) is a weak super-solution to the same equation [28, Prop. 1].

b) Let vy, vz € C3(Z,R) (resp. v_ € C%(T,R)) be strong super-solutions (resp. a strong
sub-solution) to Au = f(x, u) withv_ < min(vy, v2). Then there exists a strong solution
v € C3(Z, R) to the same equation with v_ < v < min(vy, v2), compare e.g. [15, Thm.
7.4.1] or [17, Lemma 2.6] and references therein.

Now letuy, up € C*°(%, RY) both solve Ly u; = Auf’_l for some A € R*. Up to multiply-

ing u1 and u; by a positive constant, we may assume that . = —1. We construct suitable sub-
and super-solutions for Lg, w = —w? ~1in order to be able to assume u1 < up,compare [28,
Lemma 1]. First, if u € Ker(Lgy —u1(Lgy)) is positive, then there is a strong sub-solution to
Leyw = —wP~! of the form u _ := au with appropriate « € Ri: namely Loy u_ < —uf_]
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1
if and only if ap(Lgs)u < —aP~'uP~!, ie., if and only if & < m(—m@gz)) =2

(recall that 111 (Lgy) < 0), whose r.h.s. is positive since X is compact. Therefore u_ = au
is a strong sub-solution to Lgyw = —wP~! for @ > 0 sufficiently small. Again, by com-
pactness of ¥ and continuity of u1, up, one may choose « > 0 small enough such that
u_ <uj,i =1,2.So we are in the situation where u_ is a strong sub-solution and u1, u, are
strong (super-)solutions to Lgy w = —wP ! withu_ < min(u;, uz). By b) just above, there
exists a strong solution v € CZ(E, R)to Lyyw = —wP M withu_ <v < min(uy, up), in
particular v > 0 on X. Actually, classical elliptic regularity yields v € C*(Z,R}). As a
consequence, for bothi =1, 2,

—/ uf’_lvd(f :/(ngui)vda :/ uij(Lgzv)ydo = —/ uivP do,
b » b >

so that [5. uiv(uf’_z —v”"2)do = 0. Because of p —2 > 0, we have uip_z —vP72 > 0and
therefore uf_z — P2 =0, thatis, u; = vfori = 1,2, in particular u; = uy. This proves
statement 1).

The compactness of the set S relies mainly on the following so-called regularity theorem
(actually needed for the proof of Theorem 3.4), see e.g. [20, Thm. 4.1] or [2, Satz 2.3.3]:

Let (=1, gx) be a closed Riemannian manifold withn > 3, p € [2, 00[, h € C*(XZ, R)
and L := A+ h.Then forany A1, Ay > Oandr e]%(p —2), o0, there exists a constant
C =C(%, g, Ihlrecs), A1, Az, 1) = 0and a = a(r) €]0, 1[ such that for all almost
everywhere nonnegative ¢ € H2(Z)NL" () solving (weakly) Lo = AP~V with |A| < A
and ||¢|l1r(z) < Ao, we have: ¢ € C*°(X, R), either ¢ > 0 or ¢ = 0 everywhere on X and
||(/7||C2vw(2) <C.

Fixingr = p = "2_”2 and noticing that p > ”51 (p — 2), the regularity theorem provides,
for any A €]0, oo[, the existence of an @ €]0, 1[ and of a constant C = C(X, gx, A) > 0
with [|¢]lc2e(xy < C forall ¢ € Sp. With other words, Sx is included in the closed C-ball
around the originin C 2e(%, R).But by Arzela-Ascoli theorem, the inclusion C 2e(L R) <>
CX(Z,R)is compact, so that Sy is relatively compact in C%(ZT, R). Thus it remains to show
that S is closed in C 2()Z), R). Consider the map

®:CHZ,Ry) x [-A, Al = CU(Z,R),  (u,A) > Lggu — ruP™l

We show that & is continuous w.r.t. the standard topologies on both sides. Let (uy, Ax)ren be
a sequence of Cci(z, R4) x [—A, A] converging to some (u, A) € C%(z, R;) x [—A, Al
ie,ur — wuin C3(L)and Ay —> A in R. Then Auy —> Au in C°(T) and, because
k— 00 k— 00 k— 00
of [Sexllcozy < 00, we have Lggup —> Lggu in CY(X). Moreover, since uy —> u
k— 00 k— 00
in C(X), we can fix a small ¢ > 0 and use sup (p — DxP~?2 < oo to
x€[0,llull oz Fel

deduce that ||1,t,’:_1 — up_1||co(2) < ¢ lux — ullcocxy for some constant ¢ > 0 (inde-

pendent of k) and all sufficiently large k € N, in particular ||u,‘?71 —ur~! lcocs) k—> 0.
— 00

1

Therefore, Lgyux — Agui = Logu — )P~ i, ®(ug, i) = ®(u, 1) in
—> 00

—00

CY(X). Hence @ is continuous and thus ®~1({0}) is closed in CZ(E,R+) X [—A, Al
But [-A, A] being compact, the first projection pr; (®~1({0})) of ®~1({0}) is also closed
in C?(Z,Ry). By restriction, Sy = pr (@~ 1({0}) N {p € C*(Z,B) | ll@llrr(x) < A}
is closed in C*(Z,Ry) N {p € C2(Z,R) | @llLr(z) < A}. Now the set C*(Z,Ry) N
{(p e CX(Z,R)| lollLrs) < A} is closed in C2(Z, R): the subset C2(Z, Ry) is obviously
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closed in C2(Z, R) and, if uy k—) u in C3(T, R), then also in C°(Z, R) and hence in
—00

LP(%), in particular || - || Lr(x) : C3(Z,R) > R+ is continuous. On the whole, S, is closed
in C2(Z,R) and therefore compact by the above argument. This shows statement 3) and
concludes the proof of Theorem 3.14. O

As for the Riemannian Yamabe problem, uniqueness need not hold in case 141 (Lgs) > 0,
as the following example shows, compare [33, pp. 132—-135].

Example 3.15 Let "~ ! .= E?—z x SY(L) be endowed with the product metric gz = g1 ®
dr?, where (E’l1 -2, g1) is a closed Riemannian manifold of constant positive scalar curvature
S, and SI(L) is the circle of length L > 0. The subcritical equation Loso = a,Sgp? -1
with Sz € ]Rfr can be rewritten in the form

29

a 9.2
where A, 1 C*°(X1, R) — C*°(X, R) is the scalar Laplace operator of (X1, g1). Looking
for solutions of the form ¢ = y € C OO(Sl, Ri), we have to find %—periodic solutions
to the ODE —y” + a,Sg,y = a,Sgy”~! on R, for any k € N\{0}. Up to multiplying y
with a positive constant, we may assume that a, Sg = g, so that the ODE becomes y” =
sy—gy”’l,wheres i=auS,, € Ri.NowLemma3.125tatesthat, forany T e]ﬁ, oo,

there exists a T-periodic (non-constant) positive solution to y” = sy — %yl’_l. Hence,

: 2
if L €] (=T
equation. More precisely, if L €]

+ ANg 0 +a,Se,0 = apSgpP™ r

oo[, then there exists a non-constant L-periodic positive solution to that

2k 2(k+Dm
V(p=2)s’ /(p=2)s

. % respectively to that equation. In particular, the

[ for some k € N\{0}, then there are

positive solutions with periods L, Foen

subcritical equation on E?_Z x S'(L) has more than one solution for L > 0 sufficiently large.
Combined with Proposition 3.3, this fact in turn implies the existence of non-homothetic
conformal metrics with constant positive scalar curvature on any spacetime conformally
equivalent to (I x X, —di’ ® gx) for X as above.

However, if the Ricci curvature of (2, gx) is large enough, then uniqueness for the sub-
critical equation is satisfied:

Theorem 3.16 (Bidaut-Véron and Véron [9]) Ler (X"~ !, gx) be a closed Riemannian man-
ifold with n > 4. Assume there exist A € Ri and q €]2, oo[ such that
i) ricgy > "= 2(q —2)A - gx and
”) g < 2(11_ 1)
with strict inequality ini) orii) if (X"~ 1 gx) is conformally equivalent to (S"L, can). Then

the only solution u > 0 to Au + Au = u?~" is the constant one u = )Ui -2,

Example 3.17 1. Let (-1 gx) beany n — 1 (> 3)-dimensional closed Riemannian mani-

. .. . S
fold with constant positive scalar curvature S,.. and ric,,. > 2= Z. gz .. For instance,
p 8 8z n—1 " n— 8

any Einstein metric—or, more generally, any sufficiently small C 2 -perturbation of an
Einstein metric (think e.g. of small perturbations of the round metric on S?**! into
Berger metrics)—with constant positive scalar curvature satisfies this condition. Then

Theorem 3.16 with A = 4,5y, and g = p = 2—” €2, 2(" 1)[ applies and yields in

particular the uniqueness of solutions to the subcrmcal equatlon Lgsu =uf~ Ton =.
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2. Let (=" 1, gz) = (21 X X2, g1 D g2) withny +ny = n — 1 > 4 be the Riemannian
product of two closed Einstein manifolds with constant positive scalar curvature Sy,
and Sy, respectively. For A = a, Sy = 4(n l)(Sg + S8g,) € ]R andg = p = 2”

12, 2(” l)[ we have 2= 2(q Z)A—

1)2 (8¢, +Sg,). Because of ricys, = rngl@I‘ngz =

,%llgl @ ,%2282, a short computation shows thatricg, > (n_;])z (8g,+Sg,)-gx isequivalent
to

no(ny +np —1) nl—}—nlnz—i—n%
2 g1 S ¥ = ————— g
ni+niny +ny ni(ny +ny —1)
In that case, Theorem 3.16 applies and yields the uniqueness of solutions to the subcritical
equation Lo u = u? ~! on X. Note that the inequality just above is in particular fulfilled

. . .. S Se,
if the Einstein condition nill = %2 g5,

Note that, on any spacetime of the form (R x %, —dt*> @ gx) with Ses constant pos-
itive and ricgy > % . ng - gx, Lemma 3.12 and Theorem 3.16 imply that the only
solutions of the forms go(t x) y(t) - u(x) of (2) are constant (in t and x). Still there
could exist solutions in non-separated form. For instance, if the group of conformal diffeo-
morphisms of the spacetime is strictly larger than its isometry group, then there exists a
non-constant solution of (2). But, if the spacetime is Einstein and lightlike geodesically
complete—e.g. de Sitter spacetime—then there is no non-homothetic conformal metric
which is also Einstein [19, Thm. 1], in particular any conformal transformation is already an

isometry.

4 General case and outlook

In this section we come back to arbitrary globally hyperbolic spacetimes (M", g) with closed
Cauchy hypersurface. We face several kinds of problems when looking for a smooth positive
global solution to (2). First, we must show the existence of a solution—at least in the weak
sense. We have seen that, for standard static spacetimes, we could always reduce the equation
to a subcritical eigenvalue problem for the Laplace operator on a spacelike slice, whose sol-
vability is well-known, at least in the compact setting. In general, it is possible to fix a
spacelike Cauchy hypersurface in M" and to try to solve the Cauchy problem associated to
(2) with initial data along the hypersurface. For the case where M = R* = R x R3 with
standard Minkowski metric, Konrad Jorgens could show [16] (see also [34, Thm. 6.5]) that,
given any p € [2, 6[ and any compactly supported smooth initial data on R ~ {0} x R?,
there always exists a smooth solution to the Cauchy problem associated to the—slightly
different—equation Op = —¢|@|P~2. This works in particular for p = P 2 =4,

Not much is known for arbitrary globally hyperbolic spacetimes, even with closed Cauchy
hypersurface. The subcriticality of the exponent p = nzfz for the embedding of the H'-2-
Sobolev space of the hypersurface is likely to provide at least weak solutions (in the dis-
tributional sense) to (2). The existence of those solutions is tightly connected to the choice
of sign for the conformal scalar curvature: which kind of invariant could determine it? It is
pointless to try to minimize the energy functional whose critical points are the solutions to
the Yamabe problem, for that infimum can be shown to be minus infinity. The regularity of
solutions is also an issue in itself, but the really delicate point—also related to the choice
of conformal scalar curvature—consists in controlling their sign. For we have no maximum
principle available to show that a given solution must be positive. In the particular case of
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standard static spacetimes, the integration of a given solution (possibly against a particular
positive function) along the leaves of the standard foliation by Cauchy hypersurfaces leads to
an ordinary differential equation or inequation, that straightforwardly provides obstructions
for the existence of positive solutions: if the leafwise integral of a function is negative, then
the function itself is negative somewhere.

In general, we cannot expect such an elementary obstruction to the existence of posi-
tive solutions, already because no separation of variables is possible. In fact, we first of
all have to split the spacetime appropriately, or equivalently, choose a “good” temporal
function. There is no canonical choice of temporal function on a given globally hyperbolic
spacetime, though some choices are better adapted than other according to the question
under consideration, see e.g. [24,26]. Besides fixing a temporal function, we also have
to choose a background metric in the given conformal class. Both choices are intimately
connected.

When focussing on the Yamabe equation (2), one could start with an arbitrary splitting
(M",g) = (R x =, —Bdt* & g;) as in Theorem 2.2 and, up to changing the metric g
conformally, assume that § = 1. The first and superficial reason for this is that it makes
the expression of the d’ Alembert operator O relatively simple, see Lemma 2.3. But this is
not necessarily the best choice, as we have already seen: for warped product spacetimes
(I x %, —di*®b(r)? gx), the choice b(r)~2 g of conformal metric leads to the even simpler
setting of standard static spacetimes, where the Yamabe problem can be completely solved.
Still fixing the splitting (M", g) = (R x £, —fdt> @ g;), it is elementary to find a metric
conformal to g such that all hypersurfaces {t} x ¥ are maximal, i.e., trg[(%) = 0—in
particular g—t(dog,) = 0, which is the case for Lorentzian products; and a conformal metric
such that trg, (83%’) = %%—’?, which makes the ﬁrst—order—%—term in O, vanish. Each of those
choices presents technical advantages as well as drawbacks and we have for the moment no
clue about which one could be “best” adapted to the Yamabe equation.

Note that one could also construct for each ¢ a metric with constant scalar curvature in the
conformal class of g; on the Cauchy hypersurface ¥—which is possible by the existence of
a solution to the Riemannian Yamabe problem. But this does not help much in our setting:
even assuming the existence of a smooth! f : I x & —> Ri such that f(z, -)%g, = go does
not depend on ¢ and has constant scalar curvature, a metric of the form — f 2412 @ g is in
general not conformally equivalent to a (standard) static one—unless f is constant.

On the whole, the Lorentzian Yamabe problem remains widely open.
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