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Abstract In this note, we prove that the infimum of the norm of the mean curvature vector on
a symplectic translating soliton or an almost-calibrated Lagrangian translating soliton must
be zero.
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1 Introduction

In recent years, symplectic mean curvature flow and Lagrangian mean curvature flow have
attracted much attention. Chen and Li [1,2] and Wang [15] proved that there is no finite time
Type-I singularity for symplectic mean curvature flow and almost-calibrated Lagrangian
mean curvature flow. Therefore, it is important to study the properties of Type-II singularity.
It is well known that [7,10,11,16] translating solitons play important role in classifying
Type-II singularity of mean curvature flow. Thus, we need to study translating solitons to
symplectic and Lagrangian mean curvature flows.

Recall that a surface �n in Rn+k is called a translating soliton (or translator) of the mean
curvature flow, if it satisfies

T⊥ = H, (1.1)

where H is the mean curvature vector of � in Rn+k . Let V be the tangent part of T. Then we
have

T = V + H. (1.2)
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There are several results on symplectic and Lagrangian translating solitons. In [8], Han
and Li proved that if the Kähler angle on a symplectic translating soliton is not too large,
then it must be a plane. Using the equations in [8] and maximum principle, we proved that
([9]) any symplectic translating soliton with nonpositive normal curvature must be a plane.
Neves and Tian ([12]) proved that almost-calibrated Lagrangian translating soliton must be
a plane under some assumptions.

In this note, we continue to study symplectic and almost-calibrated Lagrangian translating
solitons. We first give one decay property about the mean curvature vector:

Main Theorem 1 Suppose � is a complete symplectic translating soliton in C2 with cos α ≥
δ > 0 and quadratic area growth. Then:

inf
�

|H|2 = 0. (1.3)

Main Theorem 1 will follow immediately from the following stronger result:

Theorem 3.1 Suppose � is a complete symplectic translating soliton in C2 with cos α ≥
δ > 0 and quadratic area growth. Then:

inf
�

|∇ J |2 = 0, (1.4)

where J is the complex structure on C2 and ∇ is the connection on C2.

It is known that on blow-up limits, the norm of the mean curvature vector is always
uniformly bounded from above. Main Theorem 1 says that any translator which arises as
a blow-up limit of symplectic mean curvature flow cannot have a positive lower bound for
the norm of the mean curvature vector. Note that in Main Theorem 1, we do not assume a
uniform upper bound for the second fundamental form. A similar argument gives us the same
result for almost calibrated Lagrangian translating solitons:

Main Theorem 2 Suppose � is a complete almost-calibrated Lagrangian translating soli-
ton in C2 with cos θ ≥ δ > 0 and quadratic area growth. Then:

inf
�

|H|2 = 0. (1.5)

Recall that in [14], the author showed that any almost-calibrated Lagrangian translating
soliton with sup |H| small comparable to |T| must be a flat plane.

As applications of the Main Theorem 1, we can give a nonexistence result of graphic
translating solitons in R3. For hypersurface case, (1.1) is equivalent to the following

− 〈T, ν〉 = H, (1.6)

where ν and H are the unit outer normal and the mean curvature, respectively. By definition,
after a translation and rotation, any translating soliton �n in Rn+1 with positive mean cur-
vature can be represented as a graph of some function u. It is easy to see that (1.6) can be
written as

div

(
Du√

1 + |Du|2
)

= 1√
1 + |Du|2 . (1.7)

In this case, T = (0, . . . , 0, 1).
Using the Main Theorem 1, we can prove that

Corollary 1.1 When n = 2, there is no entire solution to the equation (1.7) with bounded
gradient.

Note that Corollary 1.1 is also implicitly implied by [6].
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2 Preliminaries

In this section, we recall some basic facts on symplectic and almost calibrated Lagrangian
mean curvature flows and translating solitons.

Suppose M is a Kähler–Einstein surface. Let � be a smooth surface in M , and ω, 〈·, ·〉 be
the Kähler form and the Kähler metric on M respectively. The Kähler angle α of � in M is
defined by

ω|� = cos αdμ�,

where dμ� is the area element of the induced metric from 〈·, ·〉. We call � a symplectic
surface if cos α > 0, a Lagrangian surface if cos α = 0, a holomor phic curve if cos α = 1.
One question in symplectic geometry is that given a symplectic surface � in a Kähler–Einstein
surface M , whether there is a symplectic minimal surface in the homotopy class of �. One
natural approach to this problem is to use the negative gradient flow of the area functional,
i.e., the mean curvature flow.

Assume that � is a real surface and we consider the immersion

F0 : � −→ M

of smooth surface � in M . Suppose that � evolves along the mean curvature in M , then there
is a one-parameter family Ft = F(·, t) of immersions which satisfy the mean curvature flow
equation: {

d
dt F(x, t) = H(x, t),

F(x, 0) = F0(x).

Here H(x, t) is the mean curvature vector of �t = Ft (�) at F(x, t) in M .
Recall that [1] the Kähler angle α of � in M satisfies the parabolic equation:(

∂

∂t
− 	

)
cos α = |∇ J |2 cos α + R sin2 α cos α, (2.1)

where J is the complex structure of M , ∇ is the connection on M , and in local orthonormal
frame |∇ J |2 = |h2

1i + h1
2i |2 + |h2

2i − h1
1i |2 which depends only on the orientation of � and

does not depend on the choice of the frame. By direct computation, we have [1]

2|A|2 ≥ |∇ J |2 ≥ 1

2
|H|2, (2.2)

where A is the second fundamental form of � in M . If the initial surface is symplectic, i.e.,
cos α(·, 0) has a positive lower bound, then by applying the parabolic maximum principle
to this evolution equation, one concludes that cos α remains positive as long as the mean
curvature flow has a smooth solution. In this case, the mean curvature flow is called symplectic
mean curvature flow.

Chen and Li [1] and Wang [15] proved that there is no finite time Type-I singularity
for symplectic mean curvature flow. Suppose the symplectic mean curvature flow develops
Type-II singularity at finite time T . Then applying maximum principle to (2.1), we see that
for t ∈ [0, T ),

cos α ≥ δ > 0. (2.3)

As Kähler angle is invariant under scaling, we conclude that any blow-up flow of symplectic
mean curvature flow must satisfy (2.3). In particular, any translating soliton arising as a
blow-up limit of the symplectic mean curvature flow must satisfy (2.3).
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In Lagrangian case, we assume that M is a Calabi–Yau manifold of complex dimension
2 with a parallel holomorphic (2,0) form 
. The fact that a surface � in M is Lagrangian
implies that


|� = eiθ dμ� = cos θdμ� + i sin θdμ� (2.4)

for some θ called the Lagrangian angle which is a multivalued function and is well-defined
up to an additive constant 2kπ, k ∈ Z. If cos θ > 0, then � is called almost-calibrated. If θ

is constant, then � is called special Lagrangian.
It is proved in [13] that if the initial surface is Lagrangian, then along the mean curvature

flow, at each time the surface is still Lagrangian. The evolution equation of Lagrangian angle
is given by (

∂

∂t
− 	

)
cos θ = |H |2 cos θ. (2.5)

If the initial Lagrangian submanifold �0 is almost-calibrated, then �t is almost-calibrated
along a smooth mean curvature flow by the parabolic maximum principle.

Chen and Li [2] and Wang [15] proved that there is no finite time Type-I singularity for
almost-calibrated Lagrangian mean curvature flow. Suppose the Lagrangian mean curvature
flow develops Type-II singularity at finite time T . Then applying maximum principle to (2.5),
we see that for t ∈ [0, T ),

cos θ ≥ δ > 0. (2.6)

As Lagrangian angle is also invariant under scaling, we conclude that any blow-up flow of
almost-calibrated Lagrangian mean curvature flow must satisfy (2.6). In particular, any trans-
lating soliton arising as a blow-up limit of the almost-calibrated Lagrangian mean curvature
flow must satisfy (2.6).

Let � be a surface in C2, we say it has quadratic area growth, if there exists D0 > 0,
such that for all R ≥ 1,

Area(� ∩ BR(0)) ≤ D0 R2, (2.7)

where BR(0) is the ball of radius R in C2 centered at the origin. From Huisken’s monotonicity
formula, we see that the blow-up limit of symplectic or almost calibrated Lagrangian mean
curvature flow always has quadratic area growth (see, for example, Section 2.1 of [4]).

In [8], Han and Li computed several identities on translating solitons. We recall here some
of them that we will use in the following.

Lemma 2.1 On the translating soliton to the symplectic mean curvature flow, the Kähler
angle satisfies the following equation

− 	 cos α = |∇ J |2 cos α + V · ∇ cos α. (2.8)

Lemma 2.2 On the translating soliton to the Lagrangian mean curvature flow, the
Lagrangian angle satisfies the following equation

− 	 cos θ = |H |2 cos θ + V · ∇ cos θ. (2.9)

Lemma 2.3 On the two dimensional translating soliton in C2, at the points where |V| �= 0,

|A|2 = |H|2 + 2
|∇H|2
|V|2 + V · ∇|H|2

|V|2 . (2.10)

Corollary 2.1 Any stationary symplectic translating soliton in C2 is a plane.
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3 Proof of the main theorems

In this section, we prove the Main Theorems. The proof of Main Theorem 2 is the same as
that of Main theorem 1 (with Lemma 2.1 replaced by Lemma 2.2). So we will only prove
Main Theorem 1. By (2.2), Main Theorem 1 follows from the following stronger result:

Theorem 3.1 Suppose � is a complete symplectic translating soliton in C2 with cos α ≥
δ > 0 and quadratic area growth. Then:

inf
�

|∇ J |2 = 0. (3.1)

Proof We prove it by contradiction. Suppose there is a symplectic translating soliton � in
C2 with cos α ≥ δ > 0, quadratic area growth and

inf
�

|∇ J |2 ≡ a > 0. (3.2)

Set v = 1
cos α

, then

1 ≤ v ≤ 1

δ
≡ D1. (3.3)

By (2.8), we have

	v = |∇ J |2v + 2v−1|∇v|2 − 〈V,∇v〉, (3.4)

where 	 and ∇ are the Laplacian and gradient operator on � with respect to the induced
metric, respectively.

Let φ be any cutoff function and p be a positive number to be determined later. Multiplying
both sides of (3.4) by φ2v p and integrating by parts yields∫

�

φ2v p+1|∇ J |2dμ + 2
∫
�

φ2v p−1|∇v|2dμ −
∫
�

φ2v p〈V,∇v〉dμ

=
∫
�

φ2v p	v = −p
∫
�

φ2v p−1|∇v|2dμ − 2
∫
�

φv p〈∇φ,∇v〉dμ.

Rearranging this equality and using Young’s inequality, we obtain

(p + 2)

∫
�

φ2v p−1|∇v|2dμ +
∫
�

φ2v p+1|∇ J |2dμ

=
∫
�

φ2v p〈V,∇v〉dμ − 2
∫
�

φv p〈∇φ,∇v〉dμ

≤
∫
�

φ2v p|V||∇v|dμ + 2
∫
�

φv p|∇φ||∇v|dμ

≤ ε

∫
�

φ2v p+1|V|2dμ + 1

4ε

∫
�

φ2v p−1|∇v|2dμ

+
∫
�

φ2v p−1|∇v|2dμ +
∫
�

v p+1|∇φ|2dμ,
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which implies that(
p + 1 − 1

4ε

) ∫
�

φ2v p−1|∇v|2dμ +
∫
�

φ2v p+1(|∇ J |2 − ε|V|2)dμ ≤
∫
�

v p+1|∇φ|2dμ.

(3.5)

From 1 = |T|2 = |H|2 + |V|2 and (3.2), we get that

|∇ J |2 − ε|V|2 ≥ a − ε.

We first choose ε = a so that |∇ J |2 − ε|V|2 ≥ 0, then take p = 1
4a so that p + 1 − 1

4ε
= 1.

Then we obtain from (3.5) that∫
�

φ2v p−1|∇v|2dμ ≤
∫
�

v p+1|∇φ|2dμ. (3.6)

Next, we will choose appropriate cutoff function to deduce that v is a constant function. We
will use the logarithmic cutoff argument (see Chapter 1 of [3]). Let R > 1 be any fixed
number. Define the cutoff function φ on all of R4 and then restrict it to the graph of u as
follows: Let r denote the distance to the origin in R4, define

φ =
⎧⎨
⎩

1, r2 ≤ R;
2 − 2 log r

log R , R < r2 ≤ R2;
0, r2 > R2.

Recall that we assume the translating soliton has quadratic area growth. From (2.7), (3.3)
and (3.6), we have∫

�∩B(0,
√

R)

v p−1|∇v|2dμ ≤
∫
�

φ2v p−1|∇v|2dμ ≤
∫
�

v p+1|∇φ|2dμ

≤ 4D p+1
1

(log R)2

∑
log R

2 ≤l≤log R

∫
�∩(B(0,el )\B(0,el−1))

r−2dμ

≤ 4D p+1
1

(log R)2

∑
log R

2 ≤l≤log R

e−2(l−1) D0e2l

≤ C

log R
,

where C depends only on D0, δ and a. As v ≥ 1, letting R → ∞, we get that v is a constant,
i.e., cos α is a constant on �. Therefore, � is a holomorphic curve with respect to some
complex structure of C2. In particular, � is minimal. By Corollary 2.1, we know that � is a
flat plane, i.e., |A| ≡ 0. But by (2.2) and (3.2),

|A| ≥ |∇ J |2
2

≥ a

2
> 0.

This gives the desired contradiction. ��
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4 Proof of Corollary 1.1

In this section, we will consider graphic translating solitons in R3. First we consider general
graph in C2, that is,

F : U ⊂ R2 → R4

(x, y) �→ (x, y, f (x, y), g(x, y)). (4.1)

We will compute the Kähler angle of � = F(U ).
By (4.1), we know the basis of the tangent space and normal space of � are given by

e1 = Fx = (1, 0, fx , gx ), e2 = Fy = (0, 1, fy, gy),

v3 = (− fx ,− fy, 1, 0), v4 = (−gx ,−gy, 0, 1).

Therefore, the induced metric on � is given by

(gi j )1≤i, j,≤2 =
(

1 + f 2
x + g2

x fx fy + gx gy

fx fy + gx gy 1 + f 2
y + g2

y

)
,

and the inverse matrix is

(gi j )1≤i, j,≤2 = 1

det(gi j )

(
1 + f 2

y + g2
y − fx fy − gx gy

− fx fy − gx gy 1 + f 2
x + g2

x

)
.

By direct calculation, we have

det(gi j ) = 1 + f 2
x + g2

x + f 2
y + g2

y + ( fx gy − fy gx )
2. (4.2)

Recall that the standard complex structure in C2 is given by

J1 =

⎛
⎜⎜⎝

0 −1 0 0
1 0 0 0
0 0 0 −1
0 0 1 0

⎞
⎟⎟⎠. (4.3)

By the definition of Kähler angle, we have

cos α = ω1(e1, e2)√
det(gi j )

= 〈J1e1, e2〉√
det(gi j )

= 1 + fx gy − fy gx√
det(gi j )

. (4.4)

We immediately have

Proposition 4.1 A graph in C2 defined by (4.1) is symplectic with respect to the complex
structure J1 if and only if

1 + fx gy − fy gx > 0. (4.5)

In particular, any graph in R3 (i.e., g ≡ 0) is symplectic with respect to the complex structure
J1 in C2 with

cos α = 1√
1 + f 2

x + f 2
y

. (4.6)
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In particular, we see that any graphic translating soliton in R3 given by (x, y, u(x, y)) is
symplectic if we view it as a surface in R4. The Kähler angle is given by

cos α = 1√
1 + |Du|2 . (4.7)

In this case, u will be a solution of (1.7). We will denote � = Graphu .
Now we can prove Corollary 1.1 using the Main Theorem 1.

Proof of Corollary 1.1 We prove it by contradiction. Suppose there is an entire solution u to
the equation (1.7) defined on the whole R2 with

|Du| ≤ D2. (4.8)

From (1.7) and (4.7), we see that

|H|2 = 1

1 + |Du|2 = cos2 α ≥ 1

1 + D2
2

. (4.9)

Next, we will show that � has quadratic area growth. We denote by B̂(0, r) the ball of radius
r centered at 0 in the domain plane R2, while denote by B(0, r) the ball of radius r centered
at 0 in R4. It is obvious that

� ∩ B(0, r) ⊂ Graphu(B̂(0, r)).

Therefore,

Area(� ∩ B(0, r)) ≤ Area(Graphu(B̂(0, r)))

=
∫

B̂(0,r)

√
1 + |Du|2dxdy

≤
√

1 + D2
2πr2 ≡ C1r2. (4.10)

Combining the above together, we find a complete symplectic translating soliton in C2 with
cos α ≥ δ > 0 for some δ, quadratic area growth, and |H|2 ≥ 1

1+D2
2

> 0. This contradicts

the Main Theorem 1. ��
Remark 4.1 Corollary 1.1 can also be proved directly as follows: Set v = √

1 + |Du|2. Then
by Lemma 3.1 of [5], we can obtain

	v = |A|2v + 2v−1|∇v|2 − 〈V,∇v〉, (4.11)

Then by the similar argument as we gave to prove Theorem 3.1, |Du| is constant. Also by
(1.7), 	0u = 1, where 	0 is the standard Laplacian on R2. So by Bochner’s formula,

0 = 	0|Du|2 = 2|D2u|2 + 2〈Du, D	0u〉 = 2|D2u|2.
Thus 	0u = 0, which is a contradiction.

Remark 4.2 Note that the above argument just works for n = 2, because we need the trans-
lating soliton to have quadratic area growth when we use the logarithmic cutoff argument.
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