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Abstract We prove that the twisted Reidemeister torsion of a 3-manifold corresponding to
a fibered class is monic and we show that it gives lower bounds on the Thurston norm. The
former fixes a flawed proof in Friedl and Vidussi (2010), the latter gives a quick alternative
argument for the main theorem of Friedl and Kim (Topology 45:929–953, 2006).
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1 Introduction

A 3-manifold pair is a pair (N , φ) which consists of an orientable, connected, compact
3-manifold N with empty or toroidal boundary and a primitive class φ ∈ H1(N ; Z) =
Hom(π1(N ), Z). The Thurston norm (see [15]) of φ is defined as

‖φ‖T = min{χ−(�) | � ⊂ N properly embedded surface dual to φ}.

Here, given a surface � with connected components �1 ∪ · · · ∪ �k , we define

χ−(�) =
k∑

i=1

max{−χ(�i ), 0}.

We furthermore say that φ is a fibered class if there exists a fibration p : N → S1 such that
the induced map p∗ : π1(N ) → π1(S1) = Z coincides with φ.
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The Thurston norm can be viewed as a generalization of the genus of a knot and fibered
classes are a generalization of fibered knots. It is well known that the Alexander polynomial
of a knot contains information about the knot genus and about fiberedness.

This relationship has been generalized lately to twisted invariants. Recall that given a
3-manifold pair (N , φ) and a representation α : π1(N ) → GL(k, R) over a domain R we can
consider the twisted Reidemeister torsion τ(N , φ ⊗ α) ∈ Q(t), where Q(t) is the quotient
field of R[t±1]. Note that τ(N , φ ⊗ α) ∈ Q(t) is well-defined up to multiplication by an
element in Q(t) of the form ±r tk where r ∈ det(α(π1(N ))) and k ∈ Z. We refer to Sects.
2.1 and 2.2 and to [5] for details. This invariant can be viewed as the generalization of the
Alexander polynomial of a knot and it is closely related to the twisted Alexander polynomials
of Lin [12] and Wada [19]. See [11] and [5] for details.

Given

f (t) = ar tr + ar+1tr+1 + · · · + asts ∈ R[t±1]
with ar , as 	= 0 we define deg( f (t)) = s − r . We furthermore say f (t) is monic if ar and as

are equal to ±1. Given f (t) = p(t)/q(t) ∈ Q(t) \ {0} we define

deg( f (t)) = deg(p(t)) − deg(q(t)).

We say f (t) ∈ Q(t) is monic if it is the quotient of two monic polynomials in R[t±1].
We start out with the following result.

Theorem 1.1 Let (N , φ) be a fibered 3-manifold pair with N 	= S1 × D2 and N 	= S1 × S2.
Let α : π1(N ) → GL(k, R) be a representation. Then τ(N , φ ⊗ α) ∈ Q(t) is monic and we
have

deg(τ (N , φ ⊗ α)) = k · ‖φ‖T .

The following special cases have been proved before:

1. Cha [1] showed that twisted Alexander polynomials (which have in general a much larger
indeterminacy) of fibered knots are monic.

2. Goda et al. [9] showed that the twisted Reidemeister torsion of a fibered knot is monic,
the same proof also works for any fibered 3-manifold with non-trivial boundary.

3. In [3] it is shown that twisted Alexander polynomials of fibered 3-manifolds are monic.

None of the above proofs can be extended in a clear way to provide a proof of Theorem 1.1.
Theorem 1.1 was given in [5] and a sketch of a short proof was given. Unfortunately the
sketch was too simple-minded and we now give a correct proof of this result.

In this paper we also give a quick proof of the following theorem which was first obtained
in [3].

Theorem 1.2 Let (N , φ) be a 3-manifold pair and let α : π1(N ) → GL(k, R) be a repre-
sentation over a domain R. If τ(N , φ ⊗ α) 	= 0, then

deg(τ (N , φ ⊗ α)) ≤ k · ‖φ‖T .

The proof in [3], as basically all proofs relating (twisted) Alexander polynomials to the knot
genus and the Thurston norm, relies on a Mayer–Vietoris sequence which relates the (twisted)
Alexander module to the homology of a Thurston norm minimizing surface. The proof we give
in this paper is quite different. It uses an appropriately chosen CW-complex structure for N to
calculate the twisted Reidemeister torsion. This approach allows us to give a proof which is
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considerably shorter than the proof in [3]. Our proof of Theorem 1.2 can also be easily adapted
to give alternative proofs of [18, Theorem 1], [10, Theorem 10.1] and [2, Theorem 1.2].

Note that a converse to Theorem 1.2 was proved in [7] (or alternatively, see [4, Theo-
rem 1] combined with [14, Theorem 1.1]), namely given a non-fibered class φ there exists a
representation α such that τ(N , φ ⊗α) is zero. (See also [6] for an earlier and weaker result.)
Also, in [8] it is shown that if N is irreducible and not a closed graph manifold, e.g. if N
is hyperbolic, then there exists a representation such that the twisted Reidemeister torsion
detects the Thurston norm of a given φ.

Convention All manifolds are assumed to be connected, compact and oriented, unless it says
specifically otherwise.

2 Definitions and preliminaries

2.1 Definition of twisted Reidemeister torsion

Let N be a 3-manifold and X ⊂ N a subspace. We write π = π1(N ). Let γ : π → GL(k, Q)

be a representation over a field Q. We endow N with a finite CW-structure such that X is a
subcomplex. We denote the universal cover of N by p : Ñ → N and we write X̃ := p−1(X).
Recall that there exists a canonical left π -action on the universal cover Ñ given by deck
transformations. We consider the cellular chain complex C∗(Ñ , X̃) as a right Z[π]-module
by defining σ · g := g−1σ for a chain σ and some g ∈ π .

Using the representation γ we can view Qk as a left module over Z[π]. We can therefore
consider the Q-complex

C∗(Ñ , X̃) ⊗Z[π ] Qk .

We now endow the free Z[π ]-modules C∗(Ñ , X̃) with a basis by picking lifts of the cells
of N \ X to Ñ . Together with the canonical basis v1, . . . , vk for Qk we can now view the
Q-complex C∗(Ñ , X̃) ⊗Z[π ] Qk as a complex of based Q-vector spaces.

If this complex is not acyclic, then we define τ(N , X, γ ) = 0. Otherwise we denote by
τ(N , X, γ ) ∈ Q \ {0} the Reidemeister torsion of this based Q-complex. We will not recall
the definition of Reidemeister torsion, referring instead to the many excellent expositions,
e.g. [13] and [16,17]. (Note that we follow the convention of [16,17], the torsion as in [13]
is the multiplicative inverse of our torsion.) If X is the empty set, then we write of course
τ(N , γ ) instead of τ(N , X, γ ).

It follows from standard arguments (cf. the above literature) that the Reidemeister torsion
τ(N , γ ) is well-defined up to multiplication by an element of the form ±r where r ∈
det(γ (π)). Put differently, up to that indeterminacy τ(N , γ ) is independent of the choice of
underlying CW-structure, the ordering of the cells and the choice of the lifts of the cells.

Note that γ extends to a map γ : Z[π ] → M(k × k, Q). Given an r × s-matrix A over
Z[π] we denote by Aγ the rk × sk-matrix which is given by applying γ to each entry of A. If
B is the matrix over Z[π ] which represents the boundary map of Ci (Ñ , X̃) → Ci−1(Ñ , X̃)

with respect to the bases given by the lifts, then Bγ represents the boundary map of

Ci (Ñ , X̃) ⊗Z[π ] Qk → Ci−1(Ñ , X̃) ⊗Z[π ] Qk

with respect to the aforementioned bases.
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2.2 Twisted Reidemeister torsion of manifold pairs

Let (N , φ) be a 3-manifold pair and let α : π1(N ) → GL(k, R) be a representation over a
domain R. We denote by Q the quotient field of R. The representation α and φ : π1(N ) → Z

then give rise to a tensor representation

φ ⊗ α : π → GL(k, Q(t))

g �→ α(g) · tφ(g)

Note that in this case τ(N , φ ⊗α) ∈ Q(t) is well-defined up to multiplication by an element
in Q(t) of the form ±r tk where r ∈ det(α(π1(N ))) and k ∈ Z. In particular if α is a special
linear representation, then τ(N , φ ⊗ α) is well-defined up to multiplication by an element
of the form ±tk, k ∈ Z. Henceforth, when we give an equality for Reidemeister torsion we
mean that there exists a representative for which the equality holds. Similarly, when we say
that τ(N , φ ⊗ α) is monic, then we mean that there exists a representative which is monic.

The twisted Reidemeister torsion corresponding to a 3-manifold pair and a representation
α was first studied, with somewhat different definitions, by Lin [12], Wada [19] and Kitano
[11]. We refer to the survey paper [5] for more information.

2.3 Turaev’s theorem

We will several times make use of the following theorem, which is easily seen to be a special
case of [17, Theorem 2.2].

Theorem 2.1 Let Q be a field and let

C∗ = 0 → Qn3
B3−→ Qn2

B2−→ Qn1
B1−→ Qn0 → 0

be a complex. We pick a subset of rows from B3 and a subset of columns from B1 and we
delete the corresponding columns and rows from B2 in such a way that we obtain square
matrices A3, A2 and A1. If det(A3) 	= 0 and det(A1) 	= 0, then

τ(C∗) = det(A3)
−1 · det(A2) · det(A1)

−1.

3 Proof of Theorem 1.1

Let (N , φ) be a fibered 3-manifold pair with N 	= S1×D2 and N 	= S1×S2. Let α : π1(N ) →
GL(k, R) be a representation over a domain R. We denote by � the fiber of the fibration
and we denote by f : � → � the monodromy. Note that our restriction on N implies that
� 	= D2 and � 	= S2. Since φ is primitive it follows that � is furthermore connected.

We henceforth identify N with (� × [0, 2])/(x, 0) ∼ ( f (x), 2) and we identify � with
� ×{0}. We pick once and for all a base point P for N in � × (1, 2). We furthermore denote
by Ñ the universal cover of N , which we identify with the set of homotopy classes of paths
starting at the base point. We write π = π1(N , P) and 
 := π1(� × [1, 2]). We also pick
a curve μ based at P which intersects � precisely once and such that the intersection is
positive. Note that φ(μ) = 1.

We now endow � with a CW-structure with exactly one 0-cell d0 and exactly one 2-cell
d2. We denote by d11, . . . , d1n the 1-cells of �. We can then endow N = (� × [0, 2])/ ∼
with a CW-structure by extending the product CW-structure on � ×[0, 1] to a CW-structure
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on N . Note that we can extend the CW-structure such that there are no 0-cells in � × (1, 2)

Σ × 0 Σ × 1 Σ × 2

d1j
e2j

d1j

f1

F1

and such that there is precisely one 3-cell in � × (1, 2). (But note that in general one can not
arrange the CW-structure on � × [1, 2] to be again a product structure.) Also note that we
can arrange that there exists a 1-cell f1 of �×(1, 2) such that ∂ f = d0 ∪−d0. Summarizing,
we can endow N = (� ×[0, 2])/(x, 0) ∼ ( f (x), 2) with a CW-structure where the cells are
given as follows:

1. d0 := d0 × {0} and d0 := d0 × {1},
2. d1 j := d1 j × {0} and d1 j := d1 j × {1} for j = 1, . . . , n,
3. d2 := d2 × {0} and d2 := d2 × {1},
4. e1 := d0 × (0, 1),
5. e2 j := d1 j × (0, 1) for j = 1, . . . , n,
6. e3 := d2 × (0, 1),
7. one 1-cell f1 with ∂ f1 = d0 ∪ −d0

8. one 3-cell f3 in � × (1, 2),

together with a collection F1 of 1-cells in M := � × (1, 2) and a collection F2 of 2-cells
in M . For each cell we now pick a base point. Furthermore, for each cell in � × [1, 2] we
pick a path in � × [1, 2] from the base point P to the chosen base points in the cells. We
also pick paths in � × (0, 2] from the base point P to each cell in � × (0, 1) which intersect
� = � × {0} precisely once. Note that these paths define lifts of the cells to Ñ . By a slight
abuse of notation we denote the lifts by the same symbols. Note that we can and will pick
the orientation of our cells and the basings of our cells such that

∂e3 = d2 − μd2

∂e2 j = d1 j − μd1 j , for j = 1, . . . , n,

∂e1 = d0 − μd0,

∂ f3 = d2 − zd2 + linear combination over Z[
] of cells in F2,

∂ f1 = d0 ∪ −xd0

for some z, x ∈ 
. We now write

D1 := {d11, . . . , d1n}, D1 := {d11, . . . , d1n} and E2 := {e21, . . . , e2n}.

For i = 3, 2, 1, 0 we now equip the free Z[π ]-modules Ci (Ñ ) with the bases

{e3, f3}, {E2, d2, d2, F2}, {e1, D1, D1, f1, F1} and {d0, d0}.
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Note that with respect to these bases the chain complex is now of the following form

0→C3(Ñ )

⎛

⎜⎜⎜⎜⎝

∗ 0
1 1
−μ −z
0 ∗

⎞

⎟⎟⎟⎟⎠

−−−−−−−−−→ C2(Ñ )

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

∗ 0 0 0
idn ∗ 0 A
−μidn 0 ∗ A
0 0 0 ∗
0 0 0 B

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

−−−−−−−−−−−−−−→ C1(Ñ )

(
1 ∗ 0 1 ∗
−μ 0 ∗ −x ∗

)

−−−−−−−−−−−−−−−→ C0(Ñ )→0.

Here we view the boundary matrices as block matrices corresponding in an obvious fashion
to the blocks of basis vectors. Note that A, A and B are matrices with entries in Z[
].

We now tensor this chain complex with the Z[π ]-module Q(t)k . As discussed, the bound-
ary matrices are then given by applying φ ⊗ α to the above boundary matrices. We pick the
rows of ∂3 corresponding to d2 ⊗ v1, . . . , d2 ⊗ vk and d2 ⊗ v1, . . . , d2 ⊗ vk and we pick
the columns of ∂1 corresponding to e1 ⊗ v1, . . . , e1 ⊗ vk and f1 ⊗ v1, . . . , f1 ⊗ vk . It now
follows from Theorem 2.1 that

τ(N , φ ⊗ α) = det

(
1 1
−μ −z

)−1

φ⊗α

det

⎛

⎝
idn A
−μ idn A
0 B

⎞

⎠

φ⊗α

det

(
1 1
−μ −x

)−1

φ⊗α

.

Note that (φ ⊗ α)(μ) = tα(μ) and that φ vanishes on 
. We thus obtain the following
equality:

τ(N , φ ⊗ α)

= det

(
idk idk

−tα(μ) −α(z)

)−1

det

⎛

⎝
idnk Aα

(−tμ idn)α Aα

0 Bα

⎞

⎠ det

(
idk idk

−tα(μ) −α(x)

)−1

= det(tα(μ) − α(z))−1
(

(−t)nk det(α(μ))n det

(
A
B

)

α

+ . . . + det

(
A
B

)

α

)

× det(tα(μ) − α(x))−1. (1)

(Here and throughout the rest of the paper all calculations will be performed up to sign.) We
will now prove the following claim.

Claim There exist g, g ∈ π such that

det

(
A
B

)

α

= det(α(g)) and det

(
A
B

)

α

= det(α(g)).

We identify � with � × {0} = � × {2} and equip M = � × [1, 2] with the base point P .

We denote by p : M̂ → M the universal covering of M and we write �̂ := p−1(�). Note

that the cells d1 j , d1 j and f1 j in Ñ are in fact naturally cells in M̂ . For i = 3, 2, 1, 0 we now

equip C∗(M̂, �̂) with the bases

{ f3}, {d2, F2}, {D1, f1, F1} and {d0}.
It follows from the above that the chain complex C∗(M̂, �̂) with the above bases is of the
form

0 → C3(M̂, �̂)

( −z
∗

)

−−−−→ C2(M̂, �̂)

⎛

⎜⎜⎝

∗ A
∗ ∗
∗ B

⎞

⎟⎟⎠

−−−−−−→ C1(M̂, �̂)

( ∗ −x ∗ )

−−−−−−−→ C0(M̂, �̂) → 0.
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We again apply α to the boundary matrices. We then pick the rows of ∂3 corresponding to
d2 ⊗ v1, . . . , d2 ⊗ vk and we pick the columns of ∂1 corresponding to f1 ⊗ v1, . . . , f1 ⊗ vk .
It now follows from Theorem 2.1 that

τ(M, �, α) = det(α(z))−1 · det

(
A
B

)

α

· det(α(x))−1.

On the other hand the inclusion map � → M is a homotopy equivalence. Since the Whitehead
group of a surface group is trivial (see e.g. [20, p .250]) this implies by [13] that the relative
torsion is trivial for any coefficient system, i.e. τ(M, S, φ ⊗α) = 1. We now see that g = xz
has the desired property. This concludes the proof of the first statement of the claim. The
claim regarding the second matrix is proved exactly the same way.

We now return to the proof of the theorem. Note that the first and the third term in (1) are
monic. The claim now implies that the middle term is also monic. Together this implies that
τ(N , φ ⊗ α) is monic. Furthermore, it follows from (1) and the above claim that

deg(τ (N , φ ⊗ α)) = −k + nk − k = k(n − 2) = kχ−(�) = k‖φ‖T .

Here the last equality follows from the well-known fact that a fiber is Thurston norm mini-
mizing. (In fact this is also an immediate consequence of Theorem 1.2). This now concludes
the proof of Theorem 1.1.

4 Proof of Theorem 1.2

Let (N , φ) be a 3-manifold pair and let α : π1(N ) → GL(k, R) be a representation over a
domain R. It follows easily from [18, Section 1] that we can find a surface � ⊂ N with
components �1, . . . , �l and r1, . . . , rl ∈ N with the following properties:

1. r1[�1] + . . . + rl [�l ] is dual to φ,
2.

∑l
i=1 −riχ(�i ) = ‖φ‖T ,

3. N \ � is connected.

The proof of Theorem 1.2 proceeds in a similar fashion to the proof of Theorem 1.1 by
picking a suitable CW-structure. Since the surface is now disconnected the notation becomes
necessarily more heavy.

For i = 1, . . . , l we pick disjoint oriented tubular neighborhoods �i × [−1, 2] and we
identify �i with �i × {0}. We write M := N \ ∪l

i=1�i × [0, 1]. We pick once and for all a
base point P in M and we denote by Ñ the universal cover of N . We write π = π1(N , P)

and 
 := π1(M, P). For i = 1, . . . , l we also pick a curve μi based at P which intersects
�i precisely once in a positive direction and does not intersect any other component of �.
Note that φ(μi ) = ri .

We now build a CW-structure on N as follows. For each i = 1, . . . , l we first endow �i

with a CW-structure with exactly one 0-cell di
0, exactly one 2-cell di

2 and 1-cells di
11, . . . , di

1ni
.

For i = 1, . . . , l we then equip �i × [−1, 0], �i × [0, 1] and �i × [1, 2] with product CW-
structures. Since M is connected we can pick l disjoint curves which connect a point in
di

2 × {−1} with a point in di
2 × {2}. We use these curves to tube the 3-cells di

2 × (−1, 0) and
di

2 × (1, 2). We denote the resulting 3-cells by f 1
3 , . . . , f l

3. We then extend the CW-structure
to a CW-structure on all of N . Since M is connected we can arrange that there are no 0-cells
in M . Furthermore, by ‘swallowing’ other 3-cells we can in fact arrange that f 1

3 , . . . , f l
3 are

the only 3-cells in M . Finally we can arrange that for i = 1, . . . , l there exists a 1-cell f i
1
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such that ∂ f i
1 = di

0 ∪ −d
i
0. Summarizing, we can endow N with a CW-structure where for

i = 1, . . . , l we have the following cells:

1. di
0 := di

0 × {0} and d
i
0 := di

0 × {1},
2. di

1 j := di
1 j × {0} and d

i
1 j := di

1 j × {1} for j = 1, . . . , ni ,

3. di
2 := di

2 × {0} and d
i
2 := di

2 × {1},
4. ei

1 := di
0 × (0, 1),

5. ei
2 j := di

1 j × (0, 1) for j = 1, . . . , ni ,

6. ei
3 := di

2 × (0, 1),

7. one 1-cell f i
1 in M with ∂ f i

1 = di
0 ∪ −d

i
0,

8. one 3-cell f i
3 in M with

∂ f i
3 =

l∑

i=1

di
2 − d

i
2 + linear combination of cells in M.

and there is a collection F1 of 1-cells in M and a collection F2 of 2-cells in M . For each
cell we now pick a base point and for each cell in M we pick a path in M from the base
point P to the chosen base points. Furthermore for each cell in �i × (0, 1) we pick a path
in M ∪ �i × (0, 2] from the cell to the base point P . These paths define lifts of the cells to
Ñ and by a slight abuse of notation we denote the lifts again by the same symbols. Note that
we can and will pick the orientation of our cells and the basings of our cells such that for
i = 1, . . . , l we have

∂ei
3 = di

2 − μd
i
2

∂ei
2 j = di

1 j − μd
i
1 j for j = 1, . . . , ni ,

∂ei
1 = di

0 − μd
i
0

and such that

∂ f i
3 =

l∑

i=1

di
2 − zi d

i
2 + linear combination over Z[
] of cells in F2,

∂ f i
1 = di

0 ∪ −xi d
i
0,

where x1, . . . xl and z1, . . . , zl lie in 
. For i = 1, . . . , l we write

Di
1 := {di

11, . . . , di
1n}, D

i
1 := {di

11, . . . , d
i
1n} and Ei

2 := {ei
21, . . . , ei

2n}.

In the remaining discussion we now only consider the case l = 2 to simplify the notation.
It should be obvious to the reader that the general case can be treated exactly the same way.

Note that the chain groups Ci (Ñ ) are free Z[π ]-modules. For i = 3, 2, 1, 0 we now equip
them with the bases

{e1
3, f 1

3 , e2
3, f 2

3 }, {E1
2 , E2

2 , d1
2 , d

1
2, d2

2 , d
2
2, F2}, {e1

1, e2
1, D1

1, D
1
1, D2

1, D
2
1, f 1

1 , f 2
1 , F1}

and {d1
0 , d

1
0, d2

0 , d
2
0}.
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With respect to these bases the boundary maps are then given by the following matrices:

B3 =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

∗ 0 0 0
0 0 ∗ 0
1 1 0 0
−μ1 −z1 0 0
0 0 1 1
0 0 −μ1 −z2

0 ∗ 0 ∗

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠

B2 =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∗ 0 0 0 0 0 0
0 ∗ 0 0 0 0 0
idn1 0 ∗ 0 0 0 ∗
−μ1 idn1 0 0 ∗ 0 0 ∗
0 idn2 0 0 ∗ 0 ∗
0 −μ2 idn2 0 0 0 ∗ ∗
0 0 0 0 0 0 ∗
0 0 0 0 0 0 ∗
0 0 0 0 0 0 ∗

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

B3 =

⎛

⎜⎜⎝

1 0 ∗ 0 0 0 1 0 ∗
−μ1 0 0 ∗ 0 0 −x1 0 ∗
0 1 0 0 ∗ 0 0 1 ∗
0 −μ2 0 0 0 ∗ 0 −x2 ∗

⎞

⎟⎟⎠

Here we view the boundary matrices as block matrices corresponding in an obvious fashion
to the blocks of basis vectors. Note that all matrices marked by ∗ are matrices with entries in
Z[
].

We now tensor this chain complex with the Z[π ]-module Q(t)k . The boundary matrices
are then given by applying φ ⊗ α to the above boundary matrices. We pick the rows of ∂3

corresponding to di
2 ⊗ v j and d

i
2 ⊗ v j for i = 1, 2, j = 1, . . . , k and we pick the columns

of ∂1 corresponding to ei
1 ⊗ v j and f i

1 ⊗ v j for i = 1, 2, j = 1, . . . , k. It now follows from
Theorem 2.1 that τ(N , φ ⊗ α) equals

det

⎛

⎜⎜⎝

1 1 0 0
−μ1 −z1 0 0
0 0 1 1
0 0 −μ2 −z2

⎞

⎟⎟⎠

−1

φ⊗α

det

⎛

⎜⎜⎝

idn1 0 ∗
−μ1 idn1 0 ∗
0 idn2 ∗
0 −μ2 idn2 ∗

⎞

⎟⎟⎠

φ⊗α

det

⎛

⎜⎜⎝

1 0 1 0
−μ1 0 −x1 0
0 1 0 1
0 −μ2 0 −x2

⎞

⎟⎟⎠

−1

φ⊗α

.

Note that (φ ⊗ α)(μi ) = tri α(μi ). It follows that

det

⎛

⎜⎜⎝

1 1 0 0
−μ1 −z1 0 0
0 0 1 1
0 0 −μ2 −z2

⎞

⎟⎟⎠

φ⊗α

= det(tr1α(μ1) − α(z1)) · det(tr2α(μ2) − α(z2))
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=
(

tkr1 det(α(μ1)) + · · · ± det(α(z1))
)

·
(

tkr2 det(α(μ2)) + · · · ± det(α(z2))
)

is a polynomial of degree kr1 + kr2. The same argument shows that the degree of the deter-
minant of the third matrix in the above calculation of τ(N , φ ⊗ α) equals kr1 + kr2. Also
note that if we apply the representation φ ⊗ α to a matrix over Z[
] we obtain a matrix with
entries in Q. Combining these observations we see that there exists a matrix A over Q such
that

deg τ(N , φ ⊗ α) = −2kr1 − 2kr2 + deg det

⎛

⎜⎜⎝

⎛

⎜⎜⎝

0 0 0
tr1 P1 0 0
0 0 0
0 tr2 P2 0

⎞

⎟⎟⎠ + A

⎞

⎟⎟⎠

where Pi = (−μi idni )α . Note that Pi is a kni × kni -matrix over Q. It is now elementary to
see that

deg det

⎛

⎜⎜⎝

⎛

⎜⎜⎝

0 0 0
tr1 P1 0 0
0 0 0
0 tr2 P2 0

⎞

⎟⎟⎠ + A

⎞

⎟⎟⎠ ≤ kn1r1 + kn2r2.

It follows that

deg(τ (N , φ ⊗ α)) ≤ −2kr1 − 2kr2 + kn1r1 + kn2r2 = k((n1 − 2)r1 + (n2 − 2)r2)

= −k(r1χ(�1) + r2χ(�2)) = k‖φ‖T .

This concludes the proof of Theorem 1.2.
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