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Abstract In this paper we prove a characterization of p-hyperbolic ends on complete Rie-
mannian manifolds which carries a Sobolev type inequality
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1 Introduction

Let Mn be a complete noncompact Riemannian manifold. Given p ≥ 1, we recall that the
p-Laplacian operator on M is defined by

�pu := div(|∇u|p−2∇u),

for u ∈ W 1,p
loc (M). It is the Euler-Lagrange operator associated to the p-energy functional,

E p(u) := ∫
M |∇u|p dM. This non-linear operator appears naturally in many situations, and

we refer the reader to [5,7,16] and the references cited therein for further information. As
usual, we say that a function u is p-harmonic if �pu = 0.

Let E ⊂ M be an end of M , that is an unbounded connect component of M \ �, for
some compact subset, � ⊂ M , with smooth boundary. We say that E is p-parabolic (see
Definition 2.4 of [10] for p = 2 and Theorem 2.5 of [19] for the general case) if it does not
admit a p-harmonic function, f : E → R, satisfying:
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⎧
⎪⎨

⎪⎩

f |∂ E = 1;
lim inf

y → ∞
y ∈ E

f (y) < 1.

Otherwise, we say that E is a p-hyperbolic end of M .
In [12] Li and Wang obtained the following characterization of the ends of complete

manifolds.
For simplicity, we omit the volume element of integrals.

Theorem A (Corollary 4 of [12]) Let E be an end of a complete manifold. Suppose that, for
some constants ν ≥ 1 and C > 0, E satisfies a Sobolev-type inequality of the form

⎛

⎝
∫

E

|u|2ν

⎞

⎠

1
ν

≤ C
∫

E

|∇u|2, (1)

for all compactly supported Sobolev function u ∈ W 1,2
0 (E). Then E must either have finite

volume or be 2-hyperbolic.

In our first result, we extend the above theorem for p-hyperbolic ends. Namely

Theorem 1.1 Let E be an end of a complete Riemannian manifold. Assume that for some
constants, 1 < p ≤ q < ∞ and C > 0, E satisfies a Sobolev-type inequality of the form

⎛

⎝
∫

E

|u|q
⎞

⎠

p
q

≤ C
∫

E

|∇u|p, (2)

for all u ∈ W 1,p
0 (E). Then E must either have finite volume or be p-hyperbolic.

To prove this theorem we apply the techniques developed in [12] and a lemma due to
Cacciopolli (see Lemma 2.1 in Sect. 2). Some application for Cheng’s type inequalities are
given in the Sect. 5

Our next result is characterization of p-hyperbolic ends in the context of submanifolds
as recently obtained in [4]. Bellow, let us denote by H the mean curvature vector field of an
isometric immersion x : Mm → M̄ and by ||H ||Lq (E) its Lebesgue Lq -norm on E ⊂ M .

Theorem 1.2 Let x : Mm → M̄, with m ≥ 3, be an isometric immersion of a complete
non-compact manifold M in a manifold M̄ with nonpositive sectional radial curvature.
Given, 1 < p < m, let E be an end of M such that the mean curvature vector satisfies
‖H‖Lq (E) < ∞, for some q ∈ [p, m]. Then E must either have finite volume or be p-
hyperbolic.

As a direct consequence, we have:

Corollary 1.1 Let x : Mm → M̄, with m ≥ 3, be a minimal isometric immersion of a
complete manifold M in a manifold M̄ with nonpositive sectional radial curvature. Then,
each end of M is p-hyperbolic, for each p ∈ (1, m).

The main tool in the proof of Theorem 1.2 is the Hofmann-Spruck inequality [6] and its
refinement given in [2].
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2 Preliminaries on p-harmonic function

In this section we prove two basic results which will be used to prove Theorems 1.1 and 1.2 as
well for Cheng’s inequalities in Sect. 5. We first refine a technical lemma due to Caccioppoli
(see Lemma 2.9 of [14]).

Lemma 2.1 (Caccioppoli) Let � ⊂ M be a compact set and let � be a connect component
of ∂�. Given p > 1, if u is a weak solution for the p-Laplace equation in � such that u
vanishes on �, then

∫

�

ϕ p|∇u|p ≤ p p
∫

�

u p|∇ϕ|p,

for all smooth function ϕ such that 0 ≤ ϕ ≤ 1 and ϕ equals zero in ∂� \ �.

Proof Since �pu = 0 weakly in � and ϕ pu vanishes on ∂� we have
∫

�

〈∇(ϕ pu), |∇u|p−2∇u〉 = 0.

Thus, using Hölder inequality,
∫

�

ϕ p|∇u|p = −p
∫

�

ϕ p−1u 〈|∇u|p−2∇u,∇ϕ〉

≤ p
∫

�

|ϕ∇u|p−1|u∇ϕ| ≤ p

⎛

⎝
∫

�

ϕ p|∇u|p

⎞

⎠

(p−1)/p ⎛

⎝
∫

�

|u|p|∇ϕ|p

⎞

⎠

1/p

.

This completes the proof of the lemma. �
The next lemma is a well known result for the Laplacian operator and the proof follows
closely the one in [9]. We include the proof here for the sake of completeness.

Lemma 2.2 Let M be a complete noncompact Riemannian manifold. If M has a polynomial
volume growth, then λ1,p(M) = 0.

Proof By hypothesis, there exist C > 0 and k ≥ 0 such that

V (r) := V ol(Br ) ≤ C rk,

for all r > 0 big enough. On the other hand, from the variational characterization of λ1,p(M)

we have

λ1,p(M)

∫

M

|ϕ|p ≤
∫

M

|∇ϕ|p,

for any ϕ ∈ W 1,p
0 (M). Given x ∈ M , let us denote by r(x) the distance function on M from

a fixed point. So, given r > 0, if we choose

ϕ(x) =

⎧
⎪⎨

⎪⎩

1 on Br ,
2r − r(x)

r
on B2r \ Br ,

0 on M \ B2r ,

123



400 Geom Dedicata (2014) 171:397–406

we obtain

λ1,p(M)V (r) ≤ r−pV (2r), (3)

for all r > 0. Assuming, by contradiction, that λ1,p(M) is positive and applying the volume
growth assumption to V (2r) we get V (r) ≤ Crk−p, for r > 0 big enough.

Iterating this argument

[
k

p

]

times we obtain V (r) ≤ Cra, with a < p. Now, we use the

inequality (3) to obtain

λ1,p(M)V (r) ≤ Cra−p.

Letting r → ∞, we conclude that V (M) = 0, which is a contradiction. �

3 Proof of Theorem 1.1

Given r > 0, let Br be a geodesic ball in M centered at some point p ∈ M . We set Er = E∩Br

and ∂ Er = E ∩ ∂ Br .
Let fr be the solution of the following Dirichlet problem

⎧
⎪⎨

⎪⎩

�p fr = 0 in Er ,

fr = 1 in ∂ E,

fr = 0 in ∂ Er .

By the arguments used in the proof of Lemma 2.7 in [19] fr ∈ C1,α
loc (Er )∩C(Ēr ), 0 < fr < 1

in Er , it is increasing and converges (locally uniformly) to a p-harmonic function f with
f ∈ C1,α

loc (E) ∩ C(Ē) satisfying 0 < f ≤ 1 and f = 1 on ∂ E .
For a fixed 0 < r0 < r such that Er0 �= ∅, let ϕ be a nonnegative cut-off function satisfying

the properties that
⎧
⎪⎨

⎪⎩

ϕ = 1 on Er \ Er0 ,

ϕ = 0 on ∂ E,

|∇ϕ| ≤ C.

Applying the inequality (2) of the assumption and using the fact that fr is p-harmonic, we
obtain

⎛

⎜
⎝

∫

Er

|ϕ fr |p

⎞

⎟
⎠

p/q

≤ C
∫

Er

|∇(ϕ fr )|p = C
∫

Er

|ϕ∇ fr + fr∇ϕ|p

≤ C1

∫

Er

|ϕ∇ fr |p + | fr∇ϕ|p

≤ C2

∫

Er

| fr |p|∇ϕ|p

≤ C3

∫

Er

| fr |p,
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where we have used that (a + b)p ≤ C(a p + bp), for a fixed constant C = 2p−1, and
every positive numbers a, b in the second inequality, Cacciopoli’s Lemma, 2.1, in the third
inequality and |∇ϕ| ≤ C , in the last inequality.

In particular, for a fixed r1 satisfying r0 < r1 < r , we have

⎛

⎜
⎝

∫

Er1 \Er0

f q
r

⎞

⎟
⎠

p/q

≤ C3

∫

Er0

f p
r .

If E is p-parabolic, then the limiting function f is identically 1. Letting r → ∞, we obtain

(VE (r1) − VE (r0))
p/q ≤ C3 VE (r0),

where VE (r) denotes the volume of the set Er . Since r1 > r0 is arbitrary, this implies that E
has finite volume. This conclude proof of the theorem. �

4 Proof of Theorem 1.2

Let fr be the sequence given above and f its limit. Let us suppose, by contradiction, that
f ≡ 1 and vol(E) is infinite. This implies that, given any L > 1, there exists r1 > r0 such
that vol(Er1 − Er0) > 2L . Since fr → 1 uniformly on compact subsets, there exists r2 > r1

such that f
pm

m−p
r > 1

2 everywhere in Er1 , for all r > r2. Thus, defining h(r) := ∫
Er −Er0

f
pm

m−p
r ,

with r > r0, we obtain

h(r) ≥
∫

Er1 −Er0

f
pm

m−p
r > L , (4)

for all r > r2. In particular, we have that lim
r→∞ h(r) = ∞.

Now, for each r > r0, let ϕ = ϕr ∈ C∞
0 (E) be a cut-off function satisfying:

{
0 ≤ ϕ ≤ 1 everywhere in E;
ϕ ≡ 1 in Er − Er0 .

By modified Hoffmann-Spruck Inequality [6] or [2] we have

S−1

⎛

⎜
⎝

∫

Er

(ϕ fr )
pm

m−p

⎞

⎟
⎠

m−p
m

≤
∫

Er

|∇(ϕ fr )|p +
∫

Er

(ϕ fr )
p|H |p,

where S is a positive constant and p ∈ (1, m).
Using that frϕ vanishes on ∂ Er and the Cacciopoli’s Lemma 2.1 we obtain

S−1

⎛

⎜
⎝

∫

Er

(ϕ fr )
pm

m−p

⎞

⎟
⎠

m−p
m

≤ C

⎛

⎜
⎝

∫

Er

f p
r |∇ϕ|p +

∫

Er

(ϕ fr )
p|H |p

⎞

⎟
⎠ ,
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where C = 1 + p p. Thus, since 0 ≤ ϕ ≤ 1 in E and ϕ ≡ 1 in Er − Er0 , we obtain

(SC)−1h(r)
m−p

m ≤ (SC)−1

⎛

⎜
⎝

∫

Er

(ϕ fr )
pm

m−p

⎞

⎟
⎠

m−p
m

≤
∫

Er0

f p
r |∇ϕ|p +

∫

Er

f p
r |H |p. (5)

First, assume that ‖H‖L p(E) is finite. Then, since 0 ≤ fr ≤ 1, we have

(SC)−1h(r)
m−p

m ≤
∫

Er0

|∇ϕ|p +
∫

E

|H |p.

Thus, lim
r→∞ h(r) < ∞, which is a contradiction. Now, assume that ‖H‖Lq (E) is finite, for

some p < q ≤ m. Note that m
m−p ≤ q

q−p . Since 0 ≤ fr ≤ 1 and h(r) > 1, for all r > r2,
we have:

⎧
⎨

⎩
f

pq
q−p

r ≤ f
pm

m−p
r ;

h(r)
q−p

q ≤ h(r)
m−p

m , for all r > r2.

Thus, using Hölder Inequality, we have

∫

Er −Er0

f p
r |H |p ≤ ‖H‖p

Lq (Er −Er0 )

⎛

⎜
⎝

∫

Er −Er0

f
pq

q−p
r

⎞

⎟
⎠

q−p
q

≤ ‖H‖p
Lq (E−Er0 )h(r)

m−p
m , (6)

for all r > r2.
Choose r0 > 0 large enough so that ‖H‖p

Lq (E−Er0 ) < 1
2SC . Using (5) and (6) we get:

(SC)−1h(r)
m−p

m ≤
∫

Er0

|∇ϕ|p +
∫

Er0

|H |p + (SC)−1

2
h(r)

m−p
m .

This shows that lim
r→∞ h(r) < ∞, which is a contradiction and Theorem 1.2 are proved.

5 Cheng’s theorems for the p-Laplacian

Now we describe how we can apply Theorem 1.1 to obtain new Cheng’s type inequalities.
For that, we use the Li-Wang approach as in [13].

Given a regular domain � ⊂ M let λ1(�) be the first Dirichlet eigenvalue of the Laplacian
operator. That is,

λ1(�) = inf

{∫
�

|∇ϕ|2
∫
�

ϕ2
: ϕ ∈ W 1,2

0 (�) \ {0}
}

.

We recall that the bottom of the spectrum of M is given by

λ1(M) = lim
i→∞ λ1(�i ),

where {�i }i is an exhaustion of M , and this definition does not depend on the exhaustion.
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Let B M
r denote a geodesic ball on M with radius r > 0 and centered at some point

of M . The classical Cheng’s comparison theorem asserts that, if RicM ≥ −(n − 1), then
λ1(B M

r ) ≤ λ1(BH
n

r ), where H
n denotes the n-dimensional hyperbolic space H

n . One of the
consequences is a sharp upper bound for the bottom of the spectrum on a complete manifold
with Ricci curvature bounded from below. Precisely

Theorem B (Cheng [3]) Let Mm be a complete noncompact Riemannian manifold such that
the Ricci curvature of M has a lower bound given by

RicM ≥ −(m − 1).

Then, the bottom of the spectrum of the Laplacian must satisfy the upper bound

λ1(M) ≤ (m − 1)2

4
= λ1(H

m).

The Cheng’s theorem still holds for the p-Laplacian operator.
An eigenfunction for the Dirichlet problem of the p-Laplacian on � ⊂ M is a nonzero

function u such that
{

�pu + λ|u|p−2u = 0 in �,

u = 0 on ∂�,

for some number λ ∈ R.
We shall denote by λ1,p(�), the smallest eigenvalue of�p in � for the Dirichlet problem. It

is well known that λ1,p(�) has a variational characterization, analogous to the first eigenvalue
of the Laplacian (see [17])

λ1,p(�) = inf

{∫
�

|∇u|p
∫
�

|u|p
: u ∈ W 1,p

0 (�) \ {0}
}

.

Using standard comparison ideas, Matei [17] generalized Cheng’s result for the p-Laplacian
operator, with p ≥ 2.

Using Theorem A and the growth rate of the volume of 2-hyperbolic ends with positive
spectrum (Theorem 1.4 of [11]), Li and Wang proved Cheng’s comparison theorem for Kähler
manifolds under an assumption on the bisectional curvature. Latter, Kong, Li and Zhou [8]
solved the case of quaternionic Kähler manifolds.

Here we use Theorem 1.1 and the volume estimates of Buckley and Koskela in [1] to
prove Cheng’s inequalities for the p-Laplacian on Kähler and Kähler quaternionic manifolds
and thus, we complete the picture for theses cases. More precisely

Theorem 5.1 Let M2m be a complete noncompact Kähler manifold, of real dimension 2m,
such that the bisectional curvature of M has a lower bound given by BKM ≥ −1. Then, for
each p > 1, the bottom of the spectrum of the p-Laplacian must satisfy the upper bound

λ1,p(M) ≤ 4pm p

p p
.

Moreover, this estimate is sharp since equality is achieved by the complex hyperbolic space
form CH

2m.

Remark 1 Munteanu ([18]) has obtained a Cheng’s comparison theorem for Kähler manifolds
under the weaker assumption on Ricci curvature when p = 2. However, the techniques we
used in this note do not work in that case.

123



404 Geom Dedicata (2014) 171:397–406

Following [8], we are able to obtain Cheng’s comparison theorem for quaternionic Kähler
manifolds, under a weaker hypothesis on the scalar curvature.

Theorem 5.2 Let M4m be a complete noncompact quaternionic Kähler manifold, of real
dimension 4m, such that the scalar curvature of M has a lower bound given by

SM ≥ −16m(m + 2).

Then, for each p > 1, the bottom of the spectrum of the p-Laplacian must satisfy the upper
bound

λ1,p(M) ≤ 2p(2m + 1)p

p p
.

Moreover, this estimate is sharp as equality is a achieved by the quaternionic hyperbolic
space form QH

4m.

Remark 2 We can apply the techniques above to extend the Cheng’s comparison theorem of
Matei ([17]) for p > 1. The Theorems 5.1 and 5.2 can be obtained by using a p-version of
Brooks’ theorem described in [15] provided the volume of M is infinity.

Below we provide a unified proof of Theorems 5.1 and 5.2.
Without loss of generality, we assume that λ1,p(M) is positive. By Theorem 1.1 and

Lemma 2.2 we have that M is p-hyperbolic. Now, by Theorem 0.1 in [1] we obtain

V (r) ≥ C0 exp(pλ1,p(M)1/pr),

for all r � 1 and some C0 > 0.
We point out that our hypotheses on the curvature imply volume growth estimates for

geodesic balls. Namely, V (r) ≤ C exp(ar), where a = 4m in Theorem 5.1 (see [13]) and
a = 2(2m + 1) in Theorem 5.2 (see [8]).

Therefore, we get

C0 exp(pλ1,p(M)1/pr) ≤ C exp(ar),

for all r � 1. i.e.,

λ1,p(M)1/p ≤ 1

pr
ln

(
C

C0

)

+ a

p
.

Letting r → ∞, we obtain

λ1,p(M) ≤
(

a

p

)p

.

In particular we have

λ1,p(CH
2m) ≤

(
4m

p

)p

and λ1,p(QH
4m) ≤

(
2(2m + 1)

p

)p

. (7)

To proof the equality in the space form case we use Theorem 1.1 of [15] applied to the
gradient of distance function. Precisely

Lemma 5.1 (Theorem 1.1 of [15]) Let � ⊂ M be a domain with compact closure and
∂� �= ∅, in a Riemannian manifold, M. Then

λ1,p(�) ≥ c(�)p

p p
, (8)
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where c(�) is the constant given by

c(�) := sup

{
inf� divX

‖X‖∞
; X ∈ X(�)

}

.

Here X(�) denotes the set of all smooth vector fields, X, on � with sup norm ‖X‖∞ =
sup� ‖X‖ < ∞ (where ‖X‖ = g(X, X)1/2) and inf� divX > 0.

Now, taking X = ∇r the gradient of the distance function on M , we obtain ‖X‖ = 1 and
divX = �r , and consequently c(�) ≥ inf� �r .

We point out that, in the space form cases we have

�
CH

r(x) = 2 coth 2r(x) + 2(2m − 1) coth r(x) on CH
2m

and

�
QH

r(x) = 6 coth 2r(x) + 4(m − 1) coth r(x) on QH
4m .

Thus

inf
�

�
CH

r(x) ≥ 4m and inf
�

�
QH

r(x) ≥ 2(2m + 1)

and the result follows from the estimate (8). �
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