The *p***-hyperbolicity of infinity volume ends and applications**

M. Batista · M. P. Cavalcante · N. L. Santos

Received: 6 May 2013 / Accepted: 13 August 2013 / Published online: 23 August 2013 © Springer Science+Business Media Dordrecht 2013

Abstract In this paper we prove a characterization of *p*-hyperbolic ends on complete Riemannian manifolds which carries a Sobolev type inequality

Keywords p-Hyperbolicity · Sobolev type inequality · Cheng type inequality

Mathematics Subject Classification (1991) Primary 31C12, 58C40 · Secondary 47J10, 53C26

1 Introduction

Let M^n be a complete noncompact Riemannian manifold. Given $p \geq 1$, we recall that the *p*-Laplacian operator on *M* is defined by

$$
\Delta_p u := \operatorname{div}(|\nabla u|^{p-2} \nabla u),
$$

for $u \in W_{loc}^{1,p}(M)$. It is the Euler-Lagrange operator associated to the *p*-energy functional, $E_p(u) := \int_M |\nabla u|^p dM$. This non-linear operator appears naturally in many situations, and we refer the reader to [\[5,](#page-8-0)[7,](#page-8-1)[16](#page-8-2)] and the references cited therein for further information. As usual, we say that a function *u* is *p*-harmonic if $\Delta_p u = 0$.

Let $E \subset M$ be an *end* of M, that is an unbounded connect component of $M \setminus \Omega$, for some compact subset, $\Omega \subset M$, with smooth boundary. We say that *E* is *p*-*parabolic* (see Definition 2.4 of $[10]$ $[10]$ for $p = 2$ and Theorem 2.5 of $[19]$ $[19]$ for the general case) if it does not admit a *p*-harmonic function, $f : E \to \mathbb{R}$, satisfying:

M. Batista \cdot M. P. Cavalcante (\bowtie)

Instituto de Matemática, Universidade Federal de Alagoas, Maceió, AL CEP 57072-970, Brazil e-mail: marcos@pos.mat.ufal.br

M. Batista e-mail: mhbs@mat.ufal.br

N. L. Santos

Departamento de Matemática, Universidade Federal do Piauí, Teresina, PI CEP 64049-550, Brazil e-mail: newtonls@ufpi.edu.br

$$
\begin{cases}\nf|_{\partial E} = 1; \\
\liminf_{y \in E} \n\end{cases}
$$

Otherwise, we say that *E* is a *p*-*hyperbolic* end of *M*.

In [\[12\]](#page-8-4) Li and Wang obtained the following characterization of the ends of complete manifolds.

For simplicity, we omit the volume element of integrals.

Theorem A (Corollary 4 of [\[12\]](#page-8-4)) *Let E be an end of a complete manifold. Suppose that, for some constants* $v \ge 1$ *and* $C > 0$, *E satisfies a Sobolev-type inequality of the form*

$$
\left(\int\limits_E |u|^{2\nu}\right)^{\frac{1}{\nu}} \le C \int\limits_E |\nabla u|^2,\tag{1}
$$

for all compactly supported Sobolev function $u \in W_0^{1,2}(E)$ *. Then E must either have finite volume or be* 2*-hyperbolic.*

In our first result, we extend the above theorem for *p*-hyperbolic ends. Namely

Theorem 1.1 *Let E be an end of a complete Riemannian manifold. Assume that for some constants,* $1 < p \leq q < \infty$ *and* $C > 0$, *E satisfies a Sobolev-type inequality of the form*

$$
\left(\int\limits_E |u|^q\right)^{\frac{p}{q}} \le C \int\limits_E |\nabla u|^p,\tag{2}
$$

for all $u \in W_0^{1,p}(E)$. Then E must either have finite volume or be p-hyperbolic.

To prove this theorem we apply the techniques developed in [\[12](#page-8-4)] and a lemma due to Cacciopolli (see Lemma [2.1](#page-2-0) in Sect. [2\)](#page-2-1). Some application for Cheng's type inequalities are given in the Sect. [5](#page-5-0)

Our next result is characterization of *p*-hyperbolic ends in the context of submanifolds as recently obtained in [\[4\]](#page-8-5). Bellow, let us denote by *H* the mean curvature vector field of an isometric immersion $x : M^m \to \overline{M}$ and by $||H||_{L^q(E)}$ its Lebesgue L^q -norm on $E \subset M$.

Theorem 1.2 *Let* $x : M^m \to \overline{M}$, with $m \geq 3$, *be an isometric immersion of a complete* $non-compact$ manifold M in a manifold \overline{M} with nonpositive sectional radial curvature. *Given,* $1 \leq p \leq m$, let E be an end of M such that the mean curvature vector satisfies $\|H\|_{L^q(E)}$ < ∞, for some $q \in [p, m]$. Then *E* must either have finite volume or be p*hyperbolic.*

As a direct consequence, we have:

Corollary 1.1 *Let* $x : M^m \to \overline{M}$, with $m \geq 3$, be a minimal isometric immersion of a *complete manifold M in a manifold* \overline{M} *with nonpositive sectional radial curvature. Then, each end of M is p-hyperbolic, for each* $p \in (1, m)$ *.*

The main tool in the proof of Theorem [1.2](#page-1-0) is the Hofmann-Spruck inequality [\[6\]](#page-8-6) and its refinement given in [\[2\]](#page-8-7).

2 Preliminaries on *p***-harmonic function**

In this section we prove two basic results which will be used to prove Theorems [1.1](#page-1-1) and [1.2](#page-1-0) as well for Cheng's inequalities in Sect. [5.](#page-5-0) We first refine a technical lemma due to Caccioppoli (see Lemma 2.9 of $[14]$ $[14]$).

Lemma 2.1 (Caccioppoli) Let $\Omega \subset M$ be a compact set and let Γ be a connect component *of* $\partial \Omega$. Given $p > 1$, if u is a weak solution for the p-Laplace equation in Ω such that u *vanishes on* Γ *, then*

$$
\int_{\Omega} \varphi^p |\nabla u|^p \leq p^p \int_{\Omega} u^p |\nabla \varphi|^p,
$$

for all smooth function φ *such that* $0 \leq \varphi \leq 1$ *and* φ *equals zero in* $\partial \Omega \setminus \Gamma$ *.*

Proof Since $\Delta_p u = 0$ weakly in Ω and $\varphi^p u$ vanishes on $\partial \Omega$ we have

$$
\int_{\Omega} \langle \nabla(\varphi^p u), |\nabla u|^{p-2} \nabla u \rangle = 0.
$$

Thus, using Hölder inequality,

$$
\int_{\Omega} \varphi^{p} |\nabla u|^{p} = -p \int_{\Omega} \varphi^{p-1} u \langle |\nabla u|^{p-2} \nabla u, \nabla \varphi \rangle
$$
\n
$$
\leq p \int_{\Omega} |\varphi \nabla u|^{p-1} |u \nabla \varphi| \leq p \left(\int_{\Omega} \varphi^{p} |\nabla u|^{p} \right)^{(p-1)/p} \left(\int_{\Omega} |u|^{p} |\nabla \varphi|^{p} \right)^{1/p}.
$$

This completes the proof of the lemma. 

The next lemma is a well known result for the Laplacian operator and the proof follows closely the one in [\[9\]](#page-8-9). We include the proof here for the sake of completeness.

Lemma 2.2 *Let M be a complete noncompact Riemannian manifold. If M has a polynomial volume growth, then* $\lambda_{1,p}(M) = 0$.

Proof By hypothesis, there exist $C > 0$ and $k \ge 0$ such that

$$
V(r) := Vol(B_r) \leq C r^k,
$$

for all $r > 0$ big enough. On the other hand, from the variational characterization of $\lambda_{1,p}(M)$ we have

$$
\lambda_{1,p}(M)\int\limits_M|\varphi|^p\leq \int\limits_M|\nabla\varphi|^p,
$$

for any $\varphi \in W_0^{1,p}(M)$. Given $x \in M$, let us denote by $r(x)$ the distance function on M from a fixed point. So, given $r > 0$, if we choose

$$
\varphi(x) = \begin{cases} \frac{1}{2r - r(x)} & \text{on } B_r, \\ \frac{2r - r(x)}{r} & \text{on } B_{2r} \setminus B_r, \\ 0 & \text{on } M \setminus B_{2r}, \end{cases}
$$

 $\hat{\mathfrak{D}}$ Springer

$$
\Box
$$

we obtain

$$
\lambda_{1,p}(M)V(r) \le r^{-p}V(2r),\tag{3}
$$

for all $r > 0$. Assuming, by contradiction, that $\lambda_{1,p}(M)$ is positive and applying the volume growth assumption to *V*(2*r*) we get *V*(*r*) $\leq Cr^{k-p}$, for *r* > 0 big enough.

Iterating this argument $\begin{bmatrix} k \\ -p \end{bmatrix}$ times we obtain $V(r) \leq Cr^a$, with $a < p$. Now, we use the inequality [\(3\)](#page-3-0) to obtain

$$
\lambda_{1,p}(M)V(r) \le Cr^{a-p}.
$$

Letting $r \to \infty$, we conclude that $V(M) = 0$, which is a contradiction.

3 Proof of Theorem [1.1](#page-1-1)

Given $r > 0$, let B_r be a geodesic ball in *M* centered at some point $p \in M$. We set $E_r = E \cap B_r$ and $\partial E_r = E \cap \partial B_r$.

Let f_r be the solution of the following Dirichlet problem

$$
\begin{cases}\n\Delta_p f_r = 0 & \text{in } E_r, \\
f_r = 1 & \text{in } \partial E, \\
f_r = 0 & \text{in } \partial E_r.\n\end{cases}
$$

By the arguments used in the proof of Lemma 2.7 in [\[19\]](#page-9-0) $f_r \in C_{loc}^{1,\alpha}(E_r) \cap C(\bar{E}_r)$, $0 < f_r < 1$ in E_r , it is increasing and converges (locally uniformly) to a *p*-harmonic function *f* with $f \in C_{loc}^{1,\alpha}(E) \cap C(\overline{E})$ satisfying $0 < f \le 1$ and $f = 1$ on ∂E .

For a fixed $0 < r_0 < r$ such that $E_{r_0} \neq \emptyset$, let φ be a nonnegative cut-off function satisfying the properties that

$$
\begin{cases}\n\varphi = 1 & \text{on } E_r \setminus E_{r_0}, \\
\varphi = 0 & \text{on } \partial E, \\
|\nabla \varphi| \leq C.\n\end{cases}
$$

Applying the inequality [\(2\)](#page-1-2) of the assumption and using the fact that f_r is p -harmonic, we obtain

$$
\left(\int_{E_r} |\varphi f_r|^p \right)^{p/q} \le C \int_{E_r} |\nabla(\varphi f_r)|^p = C \int_{E_r} |\varphi \nabla f_r + f_r \nabla \varphi|^p
$$

\n
$$
\le C_1 \int_{E_r} |\varphi \nabla f_r|^p + |f_r \nabla \varphi|^p
$$

\n
$$
\le C_2 \int_{E_r} |f_r|^p |\nabla \varphi|^p
$$

\n
$$
\le C_3 \int_{E_r} |f_r|^p,
$$

 \circledcirc Springer

where we have used that $(a + b)^p \le C(a^p + b^p)$, for a fixed constant $C = 2^{p-1}$, and every positive numbers *a*, *b* in the second inequality, Cacciopoli's Lemma, [2.1,](#page-2-0) in the third inequality and $|\nabla \varphi| \leq C$, in the last inequality.

In particular, for a fixed r_1 satisfying $r_0 < r_1 < r$, we have

$$
\left(\int\limits_{E_{r_1}\setminus E_{r_0}} f_r^q\right)^{p/q} \leq C_3 \int\limits_{E_{r_0}} f_r^p.
$$

If *E* is *p*-parabolic, then the limiting function *f* is identically 1. Letting $r \to \infty$, we obtain

$$
(V_E(r_1) - V_E(r_0))^{p/q} \le C_3 V_E(r_0),
$$

where $V_F(r)$ denotes the volume of the set E_r . Since $r_1 > r_0$ is arbitrary, this implies that *E* has finite volume. This conclude proof of the theorem. 

4 Proof of Theorem [1.2](#page-1-0)

Let f_r be the sequence given above and f its limit. Let us suppose, by contradiction, that *f* ≡ 1 and vol(*E*) is infinite. This implies that, given any *L* > 1, there exists $r_1 > r_0$ such that vol $(E_{r_1} - E_{r_0}) > 2L$. Since $f_r \to 1$ uniformly on compact subsets, there exists $r_2 > r_1$ such that $f_r^{\overline{m-p}} > \frac{1}{2}$ everywhere in E_{r_1} , for all $r > r_2$. Thus, defining $h(r) := \int_{E_r - E_{r_0}} f_r^{\overline{m-p}}$, with $r > r_0$, we obtain

$$
h(r) \ge \int_{E_{r_1} - E_{r_0}} f_r^{\frac{pm}{m-p}} > L,
$$
\n(4)

for all $r > r_2$. In particular, we have that $\lim_{n \to \infty} h(r) = \infty$.

Now, for each $r > r_0$, let $\varphi = \varphi_r \in C_0^{\infty}(E)$ be a cut-off function satisfying:

$$
\begin{cases} 0 \le \varphi \le 1 \text{ everywhere in } E; \\ \varphi \equiv 1 \text{ in } E_r - E_{r_0}. \end{cases}
$$

By modified Hoffmann-Spruck Inequality [\[6](#page-8-6)] or [\[2\]](#page-8-7) we have

$$
S^{-1}\left(\int\limits_{E_r}(\varphi f_r)\frac{Pm}{m-p}\right)^{\frac{m-p}{m}}\leq \int\limits_{E_r}|\nabla(\varphi f_r)|^p+\int\limits_{E_r}(\varphi f_r)^p|H|^p,
$$

where *S* is a positive constant and $p \in (1, m)$.

Using that $f_r \varphi$ vanishes on ∂E_r and the Cacciopoli's Lemma [2.1](#page-2-0) we obtain

$$
S^{-1}\left(\int\limits_{E_r}(\varphi f_r)^{\frac{pm}{m-p}}\right)^{\frac{m-p}{m}}\leq C\left(\int\limits_{E_r}f_r^p|\nabla\varphi|^p+\int\limits_{E_r}(\varphi f_r)^p|H|^p\right),\,
$$

 $\circled{2}$ Springer

where $C = 1 + p^p$. Thus, since $0 \le \varphi \le 1$ in *E* and $\varphi \equiv 1$ in $E_r - E_{r_0}$, we obtain

$$
(SC)^{-1}h(r)^{\frac{m-p}{m}} \le (SC)^{-1} \left(\int\limits_{E_r} (\varphi f_r)^{\frac{pm}{m-p}} \right)^{\frac{m-p}{m}} \le \int\limits_{E_{r_0}} f_r^p |\nabla \varphi|^p + \int\limits_{E_r} f_r^p |H|^p. \tag{5}
$$

First, assume that $\|H\|_{L^p(E)}$ is finite. Then, since $0 \le f_r \le 1$, we have

$$
(SC)^{-1}h(r)^{\frac{m-p}{m}} \leq \int\limits_{E_{r_0}} |\nabla \varphi|^p + \int\limits_E |H|^p.
$$

Thus, $\lim_{r \to \infty} h(r) < \infty$, which is a contradiction. Now, assume that $\|H\|_{L^q(E)}$ is finite, for some $p < q \le m$. Note that $\frac{m}{m-p} \le \frac{q}{q-p}$. Since $0 \le f_r \le 1$ and $h(r) > 1$, for all $r > r_2$, we have:

$$
\begin{cases} f_r^{\frac{pq}{p-p}} \leq f_r^{\frac{pm}{m-p}}; \\ h(r)^{\frac{q-p}{q}} \leq h(r)^{\frac{m-p}{m}}, \text{ for all } r > r_2. \end{cases}
$$

Thus, using Hölder Inequality, we have

$$
\int_{E_r - E_{r_0}} f_r^p |H|^p \le ||H||_{L^q(E_r - E_{r_0})}^p \left(\int_{E_r - E_{r_0}} f_r^{\frac{pq}{q-p}} \right)^{\frac{q-p}{q}}
$$
\n
$$
\le ||H||_{L^q(E - E_{r_0})}^p h(r)^{\frac{m-p}{m}}, \tag{6}
$$

for all $r > r_2$.

Choose $r_0 > 0$ large enough so that $\|H\|_{L^q(E-E_{r_0})}^p < \frac{1}{2SC}$. Using [\(5\)](#page-5-1) and [\(6\)](#page-5-2) we get:

$$
(SC)^{-1}h(r)^{\frac{m-p}{m}} \leq \int\limits_{E_{r_0}} |\nabla \varphi|^p + \int\limits_{E_{r_0}} |H|^p + \frac{(SC)^{-1}}{2}h(r)^{\frac{m-p}{m}}.
$$

This shows that $\lim_{r \to \infty} h(r) < \infty$, which is a contradiction and Theorem [1.2](#page-1-0) are proved.

5 Cheng's theorems for the *p***-Laplacian**

Now we describe how we can apply Theorem [1.1](#page-1-1) to obtain new Cheng's type inequalities. For that, we use the Li-Wang approach as in [\[13](#page-8-10)].

Given a regular domain $\Omega \subset M$ let $\lambda_1(\Omega)$ be the first Dirichlet eigenvalue of the Laplacian operator. That is,

$$
\lambda_1(\Omega) = \inf \left\{ \frac{\int_{\Omega} |\nabla \varphi|^2}{\int_{\Omega} \varphi^2} : \varphi \in W_0^{1,2}(\Omega) \setminus \{0\} \right\}.
$$

We recall that the *bottom of the spectrum* of *M* is given by

$$
\lambda_1(M)=\lim_{i\to\infty}\lambda_1(\Omega_i),
$$

where ${\Omega_i}_i$ is an exhaustion of *M*, and this definition does not depend on the exhaustion.

Let B_r^M denote a geodesic ball on M with radius $r > 0$ and centered at some point of *M*. The classical Cheng's comparison theorem asserts that, if Ric_{*M*} $\geq -(n-1)$, then $\lambda_1(B_r^M) \leq \lambda_1(B_r^{\mathbb{H}^n})$, where \mathbb{H}^n denotes the *n*-dimensional hyperbolic space \mathbb{H}^n . One of the consequences is a sharp upper bound for the bottom of the spectrum on a complete manifold with Ricci curvature bounded from below. Precisely

Theorem B (Cheng [\[3](#page-8-11)]) *Let M^m be a complete noncompact Riemannian manifold such that the Ricci curvature of M has a lower bound given by*

$$
Ric_M \geq -(m-1).
$$

Then, the bottom of the spectrum of the Laplacian must satisfy the upper bound

$$
\lambda_1(M) \le \frac{(m-1)^2}{4} = \lambda_1(\mathbb{H}^m).
$$

The Cheng's theorem still holds for the *p*-Laplacian operator.

An eigenfunction for the Dirichlet problem of the *p*-Laplacian on $\Omega \subset M$ is a nonzero function *u* such that

$$
\begin{cases} \Delta_p u + \lambda |u|^{p-2}u = 0 & \text{in } \Omega, \\ u = 0 & \text{on } \partial \Omega, \end{cases}
$$

for some number $\lambda \in \mathbb{R}$.

We shall denote by $\lambda_{1,p}(\Omega)$, the smallest eigenvalue of Δ_p in Ω for the Dirichlet problem. It is well known that $\lambda_{1,p}(\Omega)$ has a variational characterization, analogous to the first eigenvalue of the Laplacian (see [\[17](#page-9-1)])

$$
\lambda_{1,p}(\Omega) = \inf \left\{ \frac{\int_{\Omega} |\nabla u|^p}{\int_{\Omega} |u|^p} : u \in W_0^{1,p}(\Omega) \setminus \{0\} \right\}.
$$

Using standard comparison ideas, Matei [\[17\]](#page-9-1) generalized Cheng's result for the *p*-Laplacian operator, with $p \geq 2$.

Using Theorem A and the growth rate of the volume of 2-hyperbolic ends with positive spectrum (Theorem 1.4 of [\[11\]](#page-8-12)), Li and Wang proved Cheng's comparison theorem for Kähler manifolds under an assumption on the bisectional curvature. Latter, Kong, Li and Zhou [\[8\]](#page-8-13) solved the case of quaternionic Kähler manifolds.

Here we use Theorem [1.1](#page-1-1) and the volume estimates of Buckley and Koskela in [\[1](#page-8-14)] to prove Cheng's inequalities for the *p*-Laplacian on Kähler and Kähler quaternionic manifolds and thus, we complete the picture for theses cases. More precisely

Theorem 5.1 *Let M*2*^m be a complete noncompact Kähler manifold, of real dimension* 2*m, such that the bisectional curvature of M has a lower bound given by* $BK_M \ge -1$. *Then, for each p* > 1*, the bottom of the spectrum of the p-Laplacian must satisfy the upper bound*

$$
\lambda_{1,p}(M) \leq \frac{4^p m^p}{p^p}.
$$

Moreover, this estimate is sharp since equality is achieved by the complex hyperbolic space form \mathbb{CH}^{2m} .

Remark 1 Munteanu ([\[18](#page-9-2)]) has obtained a Cheng's comparison theorem for Kähler manifolds under the weaker assumption on Ricci curvature when $p = 2$. However, the techniques we used in this note do not work in that case.

Following [\[8\]](#page-8-13), we are able to obtain Cheng's comparison theorem for quaternionic Kähler manifolds, under a weaker hypothesis on the scalar curvature.

Theorem 5.2 *Let M*4*^m be a complete noncompact quaternionic Kähler manifold, of real dimension* 4*m, such that the scalar curvature of M has a lower bound given by*

$$
S_M \geq -16m(m+2).
$$

Then, for each $p > 1$ *, the bottom of the spectrum of the p-Laplacian must satisfy the upper bound*

$$
\lambda_{1,p}(M) \leq \frac{2^p(2m+1)^p}{p^p}.
$$

Moreover, this estimate is sharp as equality is a achieved by the quaternionic hyperbolic space form $\mathbb{O} \mathbb{H}^{4m}$.

Remark 2 We can apply the techniques above to extend the Cheng's comparison theorem of Matei ([\[17\]](#page-9-1)) for $p > 1$. The Theorems [5.1](#page-6-0) and [5.2](#page-7-0) can be obtained by using a *p*-version of Brooks' theorem described in [\[15](#page-8-15)] provided the volume of *M* is infinity.

Below we provide a unified proof of Theorems [5.1](#page-6-0) and [5.2.](#page-7-0)

Without loss of generality, we assume that $\lambda_{1,p}(M)$ is positive. By Theorem [1.1](#page-1-1) and Lemma [2.2](#page-2-2) we have that *M* is *p*-hyperbolic. Now, by Theorem 0.1 in [\[1\]](#page-8-14) we obtain

$$
V(r) \geq C_0 \exp(p\lambda_{1,p}(M)^{1/p}r),
$$

for all $r \gg 1$ and some $C_0 > 0$.

We point out that our hypotheses on the curvature imply volume growth estimates for geodesic balls. Namely, $V(r) < C \exp(ar)$, where $a = 4m$ in Theorem [5.1](#page-6-0) (see [\[13](#page-8-10)]) and $a = 2(2m + 1)$ in Theorem [5.2](#page-7-0) (see [\[8\]](#page-8-13)).

Therefore, we get

$$
C_0 \exp(p\lambda_{1,p}(M)^{1/p}r) \leq C \exp(ar),
$$

for all $r \gg 1$. i.e.,

$$
\lambda_{1,p}(M)^{1/p} \leq \frac{1}{pr} \ln \left(\frac{C}{C_0} \right) + \frac{a}{p}.
$$

Letting $r \to \infty$, we obtain

$$
\lambda_{1,p}(M) \leq \left(\frac{a}{p}\right)^p.
$$

In particular we have

$$
\lambda_{1,p}(\mathbb{CH}^{2m}) \le \left(\frac{4m}{p}\right)^p \quad \text{and} \quad \lambda_{1,p}(\mathbb{Q} \mathbb{H}^{4m}) \le \left(\frac{2(2m+1)}{p}\right)^p. \tag{7}
$$

To proof the equality in the space form case we use Theorem 1.1 of [\[15\]](#page-8-15) applied to the gradient of distance function. Precisely

Lemma 5.1 (Theorem 1.1 of [\[15\]](#page-8-15)) Let $\Omega \subset M$ be a domain with compact closure and $\partial \Omega \neq \emptyset$, in a Riemannian manifold, M. Then

$$
\lambda_{1,p}(\Omega) \ge \frac{c(\Omega)^p}{p^p},\tag{8}
$$

where $c(\Omega)$ *is the constant given by*

$$
c(\Omega) := \sup \left\{ \frac{\inf_{\Omega} \operatorname{div} X}{\|X\|_{\infty}}; \ \ X \in \mathfrak{X}(\Omega) \right\}.
$$

Here $\mathfrak{X}(\Omega)$ *denotes the set of all smooth vector fields, X, on* Ω *with sup norm* $||X||_{\infty} =$ $\sup_{\Omega} \|X\| < \infty$ (where $\|X\| = g(X, X)^{1/2}$) and $\inf_{\Omega} \text{div} X > 0$.

Now, taking $X = \nabla r$ the gradient of the distance function on M, we obtain $||X|| = 1$ and $div X = \Delta r$, and consequently $c(\Omega) \ge \inf_{\Omega} \Delta r$.

We point out that, in the space form cases we have

$$
\Delta^{\mathbb{CH}} r(x) = 2 \coth 2r(x) + 2(2m - 1) \coth r(x) \quad \text{on } \mathbb{CH}^{2m}
$$

and

$$
\Delta^{\mathbb{Q} \mathbb{H}} r(x) = 6 \coth 2r(x) + 4(m - 1) \coth r(x) \quad \text{on } \mathbb{Q} \mathbb{H}^{4m}.
$$

Thus

$$
\inf_{\Omega} \Delta^{\mathbb{CH}} r(x) \ge 4m \quad \text{and} \quad \inf_{\Omega} \Delta^{\mathbb{CH}} r(x) \ge 2(2m+1)
$$

and the result follows from the estimate (8) .

Acknowledgments The authors wish to thank Professor S. Pigola for helpful comments about this paper. M. P. Cavalcante was partially supported by CNPq.

References

- 1. Buckley, S., Koskela, P.: Ends of metric measure spaces and Sobolev inequalities. Math. Z. **252**, 275–285 (2006)
- 2. Batista, M., Mirandola, H.: Sobolev and isoperimetric inequalities for submanifolds in weighted ambient spaces. Preprint arXiv:1304.2271
- 3. Cheng, S.Y.: Eigenvalue comparison theorem and its applications. Math. Z. **36**, 289–297 (1975)
- 4. Cavalcante, M.P., Mirandola, H., Vitorio, F.: The non-parabolicity of infinite volume ends (preprint). arXiv:1201.6391. Proc. Am. Math. Soc (to appear)
- 5. Garcia Azorero, J.P., Peral Alonso, I.: Existence and nonuniqueness for the p-Laplacian: nonlinear eigenvalues. Commun. Partial Differ. Equ. **12**, 1389–1430 (1987)
- 6. Hoffman, D., Spruck, J.: Sobolev and isoperimetric inequalities for Riemannian submanifolds. Commun. Pure. Appl. Math. **27**, 715–727 (1974)
- 7. Huang, Y.X.: Existence of positive solution for a class of the p-Laplace equations. J. Aust. Math. Soc. Ser. B **36**, 249–264 (1994)
- 8. Kong, S., Li, P., Zhou, D.: Spectrum of the Laplacian on quaternionic Kähler manifolds. J. Differ. Geom. **78**, 295–332 (2008)
- 9. Li, P.: Harmonic Functions and Applications to Complete Manifolds. XIV School of Differential Geometry, Instituto de MatemÁtica Pura e Aplicada (IMPA), Rio de Janeiro (2006)
- 10. Li, P.: Harmonic Functions on Complete Riemannian Manifolds. Handbook of Geometric Analysis, no. 1, 195–227, Adv. Lect. Math. (ALM), 7, Int. Press, Somerville, MA (2008)
- 11. Li, P., Wang, J.: Complete manifolds with positive spectrum. J. Differ. Geom. **58**, 501–534 (2001)
- 12. Li, P., Wang, J.: Minimal hypersurfaces with finite index. Math. Res. Lett. **9**(1), 95–103 (2002)
- 13. Li, P., Wang, J.: Comparison theorem for Kähler manifolds and positivity of spectrum. J. Differ. Geom. **69**, 43–74 (2005)
- 14. Lindqvist, P.: Notes on the *p*-Laplace Equation. Report. University of Jyväskylä Department of Mathematics and Statistics, 102. University of Jyväskylä, ii+80 pp (2006)
- 15. Lima, B.P., Montenegro, J.F., Santos, N.L.: Eigenvalue estimates for the *p*-Laplace operator on manifolds. Nonlinear Anal. **72**(2), 771–781 (2010)
- 16. Ly, I.: The first eigenvalue for the p-Laplacian operator. J. Inequal. Pure Appl. Math. **6**(3), 12 (2005)
- 17. Matei, A.M.: First eigenvalue for the *p*-Laplace operator. Nonlinear Anal. **39**, 1051–1068 (2000)
- 18. Munteanu, O.: A sharp estimate for the bottom of the spectrum of the Laplacian on Kähler manifolds. J. Differ. Geom. **83**, 163–187 (2009)
- 19. Pigola, S., Setti, A., Troyanov, M.: The Topology at Infinity of a Manifold and *L ^p*,*^q* -Sobolev Inequalities. Preprint arXiv:1007.1761