
Geom Dedicata (2014) 171:149–186
DOI 10.1007/s10711-013-9893-7

ORIGINAL PAPER

Fusion: a general framework for hierarchical
tilings of R

d

Natalie Priebe Frank · Lorenzo Sadun

Received: 29 June 2012 / Accepted: 15 July 2013 / Published online: 4 August 2013
© Springer Science+Business Media Dordrecht 2013

Abstract We introduce a formalism for handling general spaces of hierarchical tilings, a cat-
egory that includes substitution tilings, Bratteli–Vershik systems, S-adic transformations, and
multi-dimensional cut-and-stack transformations. We explore ergodic, spectral and topolog-
ical properties of these spaces. We show that familiar properties of substitution tilings carry
over under appropriate assumptions, and give counter-examples where these assumptions are
not met. For instance, we exhibit a minimal tiling space that is not uniquely ergodic, with
one ergodic measure having pure point spectrum and another ergodic measure having mixed
spectrum. We also exhibit a 2-dimensional tiling space that has pure point measure-theoretic
spectrum but is topologically weakly mixing.
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1 Introduction

Hierarchical structures are ubiquitous in the real world. Typically there are a finite number of
levels, ranging from the tiny (say, subatomic particles) to the huge (say, clusters of galaxies).
In many cases the smallest level is so small that it makes sense to extrapolate mathematically to
infinitely small hierarchical structures—fractals. In this paper we consider the complementary
situation where the smallest scale may not be small, but the largest scale is so large that it
makes sense to extrapolate to infinite size.
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There is an extensive literature devoted to expanding hierarchies, dating back to the
1800s [46], with applications to dynamics dating back to the early 1900s [39]. Most of
the aperiodic sets of tiles that were discovered over the years, from Berger [11] to Robin-
son [52] to Penrose [30] to Goodman-Strauss [31] and others, used hierarchy as means of
proving aperiodicity. Tiles group into clusters that group into larger clusters, etc., so that the
resulting patterns exhibit structure at arbitrarily large length scales and cannot be periodic.

In most of the literature, it is assumed that the hierarchies have essentially the same
structure at each level, so that the system can be described by a single substitution map.
Indeed, there has been tremendous progress on substitution sequences, substitution subshifts,
and substitution tilings. However, there is much to be said about hierarchical systems where
the structure is not necessarily repeated at each level.

The idea of studying general hierarchical systems can be seen in the cut-and-stack formal-
ism of ergodic theory. The first example of Chacon [14], which exhibited a weakly mixing
system that was not strongly mixing, is a fusion of the sort discussed in this paper. Over
the years the technique has been used to construct many interesting examples, and it has
been shown [5] that all interval exchange transformations, and indeed all aperiodic measure
preserving transformations, can be obtained by cutting and stacking. Cutting and stacking
has been generalized to higher dimensions for Z

d actions [35,53], for R
d -actions on rec-

tangular domains [17], and for general locally compact second countable groups [18] and
amenable groups. Progress has recently been made on nonstationary Bratteli–Vershik sys-
tems [12,23,24], most of which can be viewed as a discrete 1-dimensional version of the
fusion tilings described in this paper [10].

This paper provides a framework for studying the ergodic theory and topology of hier-
archical tilings. Our formalism encompasses, among other things, substitution tilings and
substitution subshifts, cut-and-stack transformations, S-adic transformations [22], and sta-
tionary and non-stationary Bratteli–Vershik systems [12,24].

Taken to extremes, our formalism can be made too general. Without simplifying assump-
tions, essentially any tiling space can be viewed as a fusion, and almost any sort of dynamical
behavior is possible. For instance, Jewett [34] and Krieger [38] showed that any ergodic mea-
surable automorphism of a non-atomic Lebesgue space system can be realized topologically
as a uniquely ergodic map on a Cantor set; in most cases these can be viewed as subshifts, and
hence as fusion tiling spaces. Downarowicz [21] showed that there exist Cantor dynamical
systems whose invariant measures match an arbitrary Choquet simplex.

In this paper we identify appropriate hypotheses that preserve the essential properties of
substitutions while applying to more general systems. Certain properties, like minimality or
unique ergodicity, hold under very general conditions. Others, like finitely generated (rational
Čech) cohomology or pure point spectrum or (on the other extreme) topological weak mixing,
require stronger assumptions.

In addition, we develop a number of examples that show how these properties can be lost
when the assumptions are too weak. We hope that these examples will help to classify fusion
tilings, and to better organize our understanding of tilings in general.

Some of our proofs are quite simple, yet determining how to apply the techniques of
substitution systems to fusions is far from trivial. The key tools for studying substitution
systems are Perron–Frobenius theory and the existence of a self-map that can be iterated
arbitrarily many times. Neither of these work for general fusions. The new methods devised
in this paper provide us with more insight into how properties of tiling spaces are related to
properties of tilings. Some properties of a hierarchical tiling space are directly related to the
geometry of the individual tiles. Others come from the details of how the tiles are assembled
into bigger and bigger clusters. Still others can be deduced from coarser numerical data,
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such as from the matrices that count how many of each kind of tile appear in each kind
of cluster. Because the hierarchy in fusion rules is less rigid than that of their substitutive
counterparts, combinatorics, geometry, algebra, and topology can have effects that need to be
teased apart. The challenge is to understand which properties come from which information,
and to organize that information effectively.

2 Definitions

In this work a prototile is a labelled, closed topological disk in R
d . The label, which can

be thought of as a color or a marking, is necessary when we wish to distinguish between
prototiles that are geometrically similar. In general we assume that we have a finite set P of
prototiles to use as building blocks for our tilings. (This assumption is useful but not entirely
necessary. In a separate work [28] we consider tilings built from an infinite but compact set
P .) We also assume that we have fixed a closed subgroup G of the Euclidean group E(d) that
contains a full rank lattice of translations; this group G will be used to construct our tiles,
patches, and tilings and can also serve as the group action of our dynamical system. (The two
standard translation subgroups that appear in tiling theory are Z

d and R
d .) It is possible to

act on a prototile by an isometry in G by applying the isometry to the closed set defining the
prototile and carrying the labelling information along unchanged. A prototile which has been
so moved is called a tile. We will abuse notation by denoting the application of an isometry
g ∈ G to a prototile p as g(p); when the isometry is translation by �v ∈ R

d we denote the
translated tile by p + �v. A P-patch (or patch, for short) of tiles is a connected, finite union
of tiles that only overlap on their boundaries; the support of the patch is the closed set in
R

d that it covers. Two tiles or patches are considered equivalent or copies of one another if
there is an element of G taking one to the other. A tiling T of R

d is a collection of tiles that
completely cover R

d and overlap only on their boundaries.
A tiling is said to have finite local complexity (FLC) with respect to the group G if it

contains only finitely many connected two-tile patches up to motions from G. Most of the
literature on tiling dynamical systems uses finite local complexity as a key assumption. This
work in this paper is limited to FLC fusion tilings. Fusion tilings with infinite local complexity
(ILC) will be considered in [28].

2.1 Fusion tilings

Given two P-patches P1 and P2 and two isometries g1 and g2 in G, if the patches g1(P1) and
g2(P2) overlap only on their boundaries, and if the union g1(P1)∪ g2(P2) forms a P-patch,
we call that union the fusion of P1 to P2 via g1 and g2. When we do not wish to specify the
isometries we may call it a fusion of P1 to P2. Notice that there will be many ways to fuse two
patches together and that we may attempt to fuse any finite number of patches together. We
may even fuse a patch to copies of itself. Patch fusion is simply a version of concatenation
for geometric objects.

The idea behind a “fusion rule” is an analogy to an atomic model: we have atoms, and
those atoms group themselves into molecules, which group together into larger and larger
structures. In this analogy we think of prototiles as atoms and patches as molecules. Let
P0 = P be our prototile set, our “atoms”. The first set of “molecules” they form will be
defined as a set of finite P-patches P1, with notation P1 = {P1(1), P1(2), . . . , P1( j1)}. Next
we construct the structures made by these “molecules”: the set P2 will be a set of finite
patches that are fusions of the patches in P1. That is P2 = {P2(1), P2(2), . . . , P2( j2)} is a
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set of patches, each of which is a fusion of patches from P1. While the elements of P2 are
technically P-patches, we can also think of them as P1-patches by considering the elements
of P1 as prototiles. We continue in this fashion, constructing P3 as a set of patches that are
fusions of patches from P2 and in general constructing Pn as a set of patches which are fusions
of elements of Pn−1. The elements of Pn are called n-fusion supertiles or n-supertiles, for
short.1 We collect them together into an atlas of patches we call our fusion rule:

R = {Pn, n ∈ N} = {Pn( j) | n ∈ N and 1 ≤ j ≤ jn} .
A patch is admitted by R if a copy of it can be found inside some supertile Pn( j) for some

n and j . A tiling T of R
d is said to be a fusion tiling with fusion rule R if every patch of

tiles contained in T is admitted by R. We denote by XR the set of all R-fusion tilings. Given
a fusion rule, we can obtain another fusion rule R′ with j ′n = jn+1 and P ′n( j) = Pn+1( j).
We simply ignore the lowest level and treat the 1-fusion supertiles as our basic tiles. The
resulting tiling space is denoted X1

R. Likewise, Xk
R is the space of tilings obtained from R

in which the k-fusion supertiles are considered the smallest building blocks.
Standing assumption (for this entire paper): If none of the supertiles in R have inner radii

approaching infinity then XR will be empty, so for that reason we restrict our attention to
fusion rules that have nontrivial tiling spaces.

When d = 1 and G = Z, with all tiles having unit length, fusion tilings correspond to
Bratteli–Vershik systems, modulo complications having to do with edge sequences that have
no predecessors or no successors. See [10] for more about the correspondence. (In addition to
subshifts, Bratteli–Vershik systems can model non-expansive maps on Cantor sets; these can
also be viewed as 1-dimensional fusion tilings, albeit with infinitely many tile types [28].)

Example 2.1 (The Chacon transformation.) In [14] there is an early example of a transfor-
mation that is weakly mixing but not strongly mixing. The original cutting-and-stacking
construction is a self-map on an interval; the stacking portion can be seen as a sort of fusion.
However for the purposes of an immediate example we use the fact that the Chacon space
can be viewed symbolically using the substitution rule

a→ aaba b→ b,

which can be iterated by substituting each letter and concatenating the blocks. If we begin
with an a we have:

a→ aaba→ aaba aaba b aaba→ · · ·
In order to make a Chacon tiling of R we only need to assign closed intervals to the

symbols a and b and place them on the line according to the symbols in a Chacon sequence.
We can view a Chacon tiling of R as a fusion tiling as follows. Consider la and lb to be

two positive numbers and let a denote a prototile with support [0, la] and b denote a prototile
with support [0, lb]. (If la = lb then we use the symbols a and b as labels to tell the tiles
apart). We define P1(a) = a ∪ (a + la) ∪ (b + 2la) ∪ (a + 2la + lb) and P1(b) = b. The
length of P1(a) is 3la+ lb. To make P2(a) we simply fuse three copies of P1(a) and one copy
of P1(b) together in the correct order, and of course P2(b) = b still. The length of the new
a supertile is three times that of the previous a supertile plus the length of b. We continue
recursively to construct all of the n-fusion supertiles.

1 If we wish, we can also add labels to the supertiles, so that the information carried in an n-supertile is more
than just its composition as a patch in a tiling. This generalization is useful for collaring constructions, as in
Sect. 5.
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2.1.1 Transition matrices and the subdivision map

Given a fusion rule R there is a family of transition matrices that keep track of the number and
type of (n−1)-fusion supertiles that combine to make the n-supertiles. The transition matrix
for level n, denoted Mn−1,n , has entries Mn−1,n(k, l) = the number of (n − 1)-supertiles of
type k, that is, equivalent to Pn−1(k), in the n-supertile of type l, Pn(l). If there is more than
one fusion of Pn−1-supertiles that can make Pn(l), we fix a preferred one to be used in this and
all other computations. For levels n < N ∈ N, we likewise define the transition matrix from
n- to N -supertiles as Mn,N = Mn,n+1 Mn+1,n+2 . . . MN−1,N . The (i, j) entry of Mn,N is the
number of n-supertiles of type i in the N -supertile of type j . Another way to think about this
is to imagine a “population vector” v ∈ Z

jN of a patch of N -supertiles: the entries represent
the number of N -fusion supertiles of each type appearing in the patch. Then MN−1,N v gives
the population of this patch in terms of (N − 1)-supertiles, MN−2,N−1 MN−1,N v gives the
population in terms of (N − 2)-supertiles, and Mn,N v gives the population of this patch in
terms of n-supertiles.

Any self-affine substitution tiling, in any dimension, can be viewed as a fusion tiling.
An n-supertile is what we get by applying the substitution n times to an ordinary tile,
and can be decomposed into (n − 1)-supertiles according to the pattern of the substitu-
tion. For such tilings, the matrix Mn,N is just the (N − n)th power of the usual substitution
matrix. However, there is an important difference in perspective between substitutions and
fusions.

A substitution can be viewed as a map from a tiling space to itself, in which all tiles
are enlarged and then broken into smaller pieces. This map can be repeated indefinitely.
In a fusion tiling, we can likewise break each n-fusion tile into level (n − 1)-supertiles
using the subdivision map σn , which is a map from Xn

R to Xn−1
R . Unlike the substitution

map for self-affine tilings, it cannot go from XR to itself, and this map cannot be repeated
more than n times. Once you are down to the atomic level (i.e., ordinary tiles), you cannot
subdivide further! The proofs of theorems about substitution tilings often involve taking
an arbitrary tiling and applying a substitution, or sometimes its inverse, enough times to
achieve a desirable result. For general fusion tilings, this line of reasoning usually does not
work.

2.1.2 Induced fusions

Let {N (n)}∞n=1 be an increasing sequence of positive integers. The induced fusion on
N (n) levels, Rind , is obtained from a given fusion R by composing the fusions for lev-
els N (n) + 1, . . . , N (n + 1) into one step. In this case the supertiles of Rind are given by
P ind

n = PN (n), where the N (n)-supertiles are seen as fusions of N (n − 1)-supertiles. The
transition matrices for Rind are given by Mind

n,n+1 = MN (n),N (n+1).

2.1.3 All FLC tilings are fusion tilings

It is possible to view any tiling T of R
d from a given prototile set P0 as a fusion tiling, as long

as it has finite local complexity. Let the set Pn consist of all connected patches containing
n tiles or less. By finite local complexity this is a finite set. Each element of Pn is either
an element of Pn−1 or is the fusion of two elements of Pn−1. (The fact that these fusions
typically are not unique does not matter).
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2.2 Common assumptions

The previous section shows that the category of fusion tilings is extremely general. To prove
meaningful results, we have to impose additional conditions on our fusion rules. We collect
several of them into this section.

2.2.1 Prototile- and transition-regularity

These are the cases that are most similar to the usual definitions of symbolic and tiling
substitution. When the number of supertiles at each level is constant, we can associate each
n-supertile to a specific prototile, regardless of whether there is a geometric connection
between the two. When we do this we call the fusion rule prototile-regular and rewrite it as:

R = {Pn(p) | n ∈ N and p ∈ P0} .
If the number jn of supertiles at the nth level of a fusion rule R has J = lim inf jn for

some finite J , then the fusion rule is equivalent to a prototile-regular fusion rule by inducing
on the levels for which jn = J . The price we pay for taking such an induced fusion is that
the transition matrices can become wildly unbounded.

In the special case where the number of supertiles at each level is a fixed constant J , if the
transition matrices are all equal to a single matrix we call the fusion rule a transition-regular
fusion rule. Being transition-regular is considerably stronger than being prototile-regular.
All substitution sequences and self-affine tilings as defined in, for instance, [50,57] are
transition-regular, but not every transition-regular fusion tiling comes from a substitution.
The combinatorics and geometry of how the (n − 1)-supertiles join to form n-supertiles can
change from level to level.

Example 2.2 (A fusion that is transition-regular but not a substitution.) Consider a 1-

dimensional fusion rule with transition matrix

(
2 1
1 2

)
in which Pn(a) is always given by the

word Pn−1(a)Pn−1(a)Pn−1(b), and in which Pn(b) is given by Pn−1(b)Pn−1(b)Pn−1(a) if
n is prime, and is given by Pn−1(a)Pn−1(b)Pn−1(b) if n is composite.

Remarks (1) Pseudo-self-similar (or self-affine) tilings, such as the Penrose tiling with kites
and darts, are also transition-regular fusion tilings. In many cases these are asymptotically
self-similar, and this asymptotic structure was used [27,49] to show that such tilings are
topologically equivalent to self-similar tilings with fractal boundaries.

(2) In the correspondence between one-dimensional fusion tilings with G = Z and Bratteli–
Vershik systems, prototile-regular tilings correspond to finite Bratteli diagrams. The
finite list of vertices on the nth level of the Bratteli diagram represents the finite set of
n-supertiles.

(3) The one-dimensional S-adic substitution sequences of Durand [22] can be recast as fusion
tilings, as can the linearly recurrent Delone sets and tower systems in [3,9]. Example 2.2
is S-adic.

(4) The “non-constructive” combinatorial substitutions in [25] are exactly the class of
prototile-regular fusion tilings.

2.2.2 Primitivity

A fusion rule is said to be primitive if, for each non-negative integer n, there exists another
integer N such that every n-fusion supertile is contained in every N -supertile. When the
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fusion rule is transition-regular this is equivalent to some power of the transition matrix
having strictly positive entries. In general it is equivalent to there existing an N for each n
such that Mn,N has all positive entries. A fusion rule is called strongly primitive if for every
n ≥ 1, each (n + 1)-supertile contains at least one copy of every n-supertile. That is, all
of the transition matrices Mn,n+1 have strictly positive entries. Any primitive fusion rule is
equivalent to a strongly primitive one by inducing on enough levels.

Primitivity is one of the most common assumptions used in the literature on substitution
sequences and tilings. It allows for Perron–Frobenius theory to be applied to the systems to
determine natural frequencies, volumes, and expansion rates. We will adapt this analysis to
the fusion situation in Sect. 3.

2.2.3 Recognizability

A fusion rule R is said to be recognizable if, for each n, the subdivision map σn from Xn
R to

Xn−1
R is a homeomorphism. If so, then every tiling in XR can be unambiguously expressed

as a tiling with n-supertiles for every n. The uniform continuity of the inverse subdivision
maps then implies that there exists a family of recognizability radii rn (n = 1, 2, . . .), such
that, whenever two tilings in XR have the same patch of radius rn around a point �v ∈ R

d ,
then the n-supertiles intersecting �v in those two tilings are identical.

For substitution sequences and tilings, recognizability is closely related to non-
periodicity [40,58]. Recognizability implies that none of the tilings are periodic. Conversely,
if G consists only of translations [58], or if G contains a set of rotation about the origin with
no invariant subspaces then the absence of periodic tilings in XR implies recognizability [32].
However, it is easy to construct fusion rules that are nonperiodic but not recognizable. For
instance, the Fibonacci tiling can be generated either from the substitution a → ab, b→ a
or from the substitution a → ba, b → a. By including both sets of supertiles in our fusion
rule, we obtain a description of the non-periodic Fibonacci tiling space in which each tiling
has at least two (actually more) decompositions into n-supertiles for n > 0.

We now show that fusion tiling spaces are topological factors of recognizable fusion tiling
spaces using a construction inspired by the work of Robinson [52] and Mozes [41].

Example 2.3 (Constructing a recognizable extension.) Let R0 be a 1-dimensional fusion rule
on the letters a and b, each of which is viewed as a tile of length 1. If we let the n-supertiles
be all possible sequences of as and bs of length 5n , then the space XR0 is just the space of
all bi-infinite tilings by a’s and b’s and R0 is clearly not recognizable.

Now let R be a 1-dimensional fusion with four letters, a1, a2, b1 and b2. We call a1 and
b1 “type 1”, and write x1 to mean either a1 or b1. Likewise x2 means either a2 or b2. The
1-supertiles are all 5-letter words of the general form x2x1x1x1x1 (where each xi denotes a
separate choice of ai or bi ) or x2x1x2x2x1. We will use s1

1 are shorthand for supertiles of the
first type and s1

2 for the second. Note that each supertile begins with an isolated x2, and that
isolated x2’s appear only at the beginning of supertiles. This makes the map from X1

R to XR
invertible.

We repeat the coding at higher levels. Second-order supertiles can either take the form
s2

1 = s1
2 s1

1 s1
1 s1

1 s1
1 or s2

2 = s1
2 s1

1 s1
2 s1

2 s1
1 , and generally (n + 1)-supertiles can either take the

form sn+1
1 = sn

2 sn
1 sn

1 sn
1 sn

1 or sn+1
2 = sn

2 sn
1 sn

2 sn
2 sn

1 . By the same reasoning, all decomposition
maps are invertible, and R is recognizable. Finally, the factor map XR → XR0 just erases
the subscripts on all of the letters.

The details of the construction will be different for different examples and can get compli-
cated if the supertiles have wild shapes or combinatorics, but the basic idea is universal. Pick
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sufficiently many copies of your original tile set. Use some of the labels within a first-order
supertile to indicate which tiles are in the supertile, and the rest to give the first-order super-
tiles labels. Use some of those first-order labels to define the boundaries of the second-order
supertiles, and the rest to label the second-order supertiles. By continuing the process ad
infinitum we obtain a recognizable fusion tiling space that factors onto the original. How
close to this factor map is to being one-to-one becomes an important question.

2.2.4 Van Hove sequences and fusion rules

A van Hove sequence {Am} of subsets of R
d consists of sets whose boundaries are increas-

ingly trivial relative to their interiors in a precise sense. In many cases it will be convenient
to consider only fusion rules where the supertiles share this property. The use of van Hove
sequences, which for R

d is equivalent to Følner sequences, is adopted from statistical mechan-
ics. We follow the notation of [57] here and define, for any set A ∈ R

d and r > 0:

A+r = {x ∈ R
d : dist (x, A) ≤ r},

where “dist” denotes Euclidean distance. A sequence of sets {An} of sets in R
d is called a

van Hove sequence if for any r ≥ 0

lim
n→∞

Vol
(
(∂ An)+r

)
Vol (An)

= 0,

where ∂ A is the boundary of A and Vol is Euclidean volume.
Given a fusion rule R, we may make a sequence of sets in R

d by taking one n-supertile
for each n and calling its support An . We say R is a van Hove fusion rule if every such
sequence is a van Hove sequence. Equivalently, a fusion rule is van Hove if for each ε > 0
and each r > 0 there exists an integer n0 such that each n-supertile A, with n ≥ n0, has
Vol(∂ A)+r < ε Vol(A).

2.3 Notational conventions

Entries of vectors and matrices are indicated as arguments, while subscripts are used to
distinguish between different vectors and matrices. Thus, M1,2(3, 4) is the (3, 4) entry of the
matrix M1,2 and v5(2) is the second entry of v5. Vectors are viewed as columns, so that the
product Mv of a matrix and a vector is well-defined. Groups are denoted by capital letters,
as are subsets of groups, while elements of groups are lower case. Collections of patches of
tilings are given by calligraphic letters P, R, etc., and in particular our fusion rules are so
denoted. Tilings are bold face. Elements of physical space R

d are marked with arrows, and
the dot product is reserved for this setting.

3 Dynamics of fusion tilings

Let G = Gt � Gr , where Gt is the translation subgroup and Gr is the point group G/Gt .
By assumption G contains a full rank lattice of translations, and Gr is a closed subgroup of
O(n). Let V ol be Haar measure on Gt , a product of Lebesgue measure in the continuous
directions of Gt and counting measure in the discrete directions, and let λ0 be normalized
Haar measure on Gr . Let λ be a measure on G with λ(Ut � Ur ) = V ol(Ut )λ0(Ur ) for every
pair of measurable sets Ut ∈ Gt , Ur ∈ Gr . We assume that we have a metric on G whose
restriction to Gt is Euclidean distance and whose restriction to Gr is bounded by 1.
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3.1 Tiling metric topology and dynamical system

Let XP be the set of all possible tilings using some fixed prototile set P and some group G of
isometries. (That is, a point in this space is an entire tiling of R

d .) We turn XP into a metric
space using the so-called “big ball” metric using the metric on G as follows. Two tilings T1

and T2 are ε-close if there exist group elements g1 and g2, each of size less than or equal to
ε, such that g1(T1) and g2(T2) exactly agree on the ball of radius 1/ε around the origin.

This metric is not G-invariant, as it gives greatest weight to points close to the origin,
but the resulting topology is G-invariant. A sequence of tilings Ti converges to a tiling T if
there exists a sequence of group elements gi , converging to the identity, such that for every
compact subset K of Euclidean space, the tilings gi (Ti ) eventually agree with T on K .

Definition 3.1 Let G ′ ⊆ G contain Gt and let X be a closed, G ′-invariant subset of XP .
A tiling dynamical system (X, G ′) is the set X together with the action of G ′ on X .

It is usually assumed in the tiling literature that G ′ = Gt . This can be assumed without
loss of generality when Gr is a finite group simply by making extra copies of each prototile,
one for each element of Gr . The situation is more complicated in cases such as the pinwheel
tiling, where Gr is infinite.

3.2 Minimality

A topological dynamical system (X, G ′) is minimal if X is the orbit closure of any of its
elements.

Proposition 3.2 If the fusion rule R is primitive, then the dynamical system (XR, G) is
minimal.

Proof Let T ∈ XR be any fixed tiling. We will show that given T′ ∈ XR and ε > 0 there
is a group element g such that d(g(T), T′) < ε. Denote by [T′]r the patch of tiles in T′ that
intersect the ball of radius r centered at the origin. By definition we know that any such patch
is admissible by R and so there is an n ∈ N and a i ∈ {1, . . . , jn} for which [T′]1/ε is a
subpatch of Pn(i).

On the other hand, primitivity means that there is an N such that every N -supertile contains
a copy of Pn(i). Since T is a union of N -supertiles, it contains many copies of Pn(i). Pick g
to bring some particular copy of Pn(i) to the origin in agreement with [T′]1/ε . Since T′ and
g(T) are identical on the ball of radius 1/ε about the origin, d(g(T), T′) < ε. ��
Remarks (1) It is not necessarily true that (XR, Gt ), i.e. the dynamical system with only

translations acting, is minimal. Consider any fusion rule having only finitely many relative
orientations of the prototiles, but which for some reason we took G to be the full Euclidean
group. In this case (X, G) would be minimal but (XR, Gt ) would not. No tiling could
approximate an irrational rotation of itself.

(2) On the other hand, the pinwheel tilings [48] provide an example where G is the full
Euclidean group but (X, Gt ) is minimal.

(3) Primitivity is sufficient but not necessary for minimality. In particular, the Chacon trans-
formation is not primitive, but is minimal. For each n there does not exist an N for which
PN (b) contains Pn(a). However, there does exists a radius rn such that every ball of
radius n contains at least one Pn(a) and at least one Pn(b), so the patch [T′]1/ε can be
found in every T.
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3.3 Invariant measures in general tiling dynamical systems

We begin our treatment of the ergodic theory of fusion tilings with a discussion of how
invariant measures work for a general FLC tiling dynamical systems X , with a focus on
patch frequency. For convenience, we assume for the remainder of Sect. 3 that our action is
by G = R

d only. See Sect. 3.7 for the modifications needed to apply this theory to other
subgroups of the Euclidean group.

Let P be any patch of tiles containing the origin. Let U be a measurable subset of R
d ,

let X P,U be the cylinder set of all tilings in X that contain P − �v for some �v ∈ U , and
let χP,U to be the indicator function of this cylinder set. The sets X P,U , plus translates of
these sets, generate our σ -algebra of measurable sets in X . Let μ be an invariant measure
on X . If U is sufficiently small, then for every tiling T ∈ X , there is at most one �v ∈ U for
which P − �v ⊂ T. Since the measure is additive and translation-invariant, μ(X P,U ) must be
proportional to the volume of U and we define

f reqμ(P) = 1

V ol(U )
μ(X P,U ), (3.1)

a quantity that is independent of U .
For any A ⊂ R

d we denote the number of times an equivalent copy of P appears in
T, completely contained in the set A, as #(P in A ∩ T). As a special case, if P ′ is another
patch (usually some supertile), we denote by #(P in P ′) the number of equivalent copies of
P completely contained in P ′. Next we pick a specific U0 that is a small ball centered at the
origin and define the function

fP (T) = 1

V ol(U0)
χP,U0(T). (3.2)

This is a smeared δ-function that counts the appearances of P .
∫

A fP (T− �v)d �v is essentially
#(P in A∩T), with small corrections for patches that come within the diameter of U0 of the
boundary of A. Note that

∫
X fP (T)dμ = 1

V ol(U0)
μ(X P,U0) = f reqμ(P).

We use the following version of the pointwise ergodic theorem:

Theorem 3.3 Let (X, R
d) be a tiling dynamical system with invariant Borel probability

measure μ. Let {Am} be a sequence of balls centered at the origin, with radius going to
infinity, and let P be any finite patch. Then for μ-almost every tiling T the limit

lim
m→∞

1

V ol(Am)

∫
Am

fP (T− �v)dλ(�v) = f̄ P (T), (3.3)

exists. Furthermore,
∫

X f̄P (T)dμ = ∫
X fP (T)dμ = f reqμ(P). If μ is ergodic, then for

μ-almost every T, f̄ P (T) = f reqμ(P).

The quantity f̄ P (T) corresponds to the usual notion of frequency as “number of occur-
rences per unit area” in T, as computed with an expanding sequence of balls around the
origin.2 We will use the term “frequency” for this quantity, and will call f reqμ(P) an
“abstract frequency”. The ergodic theorem (see [42] for a general version) says that almost
all tilings have well-defined frequencies, and that the abstract frequency f reqμ(P), while

2 Ergodic theorems are often stated not with balls, but in terms of Følner or van Hove sequences that have
special properties, such as being “regular” or “tempered”. That generality is useful for computing frequencies
using different sampling regions, or when considering more complicated groups than R

d . For our purposes,
however, balls are sufficient.
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not necessarily the frequency of P in any specific tiling, is the average over all tilings of
the frequency of P . Thus, any upper or lower bounds on the frequency of P that apply to
μ-almost every T result in upper or lower bounds on the abstract frequency. If every tiling
has the same frequency of P , then there is only one possible value for the abstract frequency
of P , and thus for the measure of any X P,U . Tiling spaces where all tilings have the same
set of frequencies are uniquely ergodic.

For an FLC tiling, the set of all patches (up to translation) is countable, and the intersection
of a countable number of sets of full measure has full measure. As a result, μ-almost every
tiling T has well-defined frequencies for every patch P .

Conversely, if a tiling T has well-defined patch frequencies, then we can construct a
probability measure on X by taking μ(X P,U ) = f̄ P (T)V ol(U ) for small U and extending
by additivity to larger U ’s. The additivity properties of measures follow from the additivity
of frequencies. For instance, if a patch P can be extended in two ways, to P ′ or P ′′, then
X P,U = X P ′,U

∐
X P ′′,U . The identity μ(X P,U ) = μ(X P ′,U ) + μ(X P ′′,U ) follows from

f̄ P (T) = f̄ P ′(T)+ f̄ P ′′(T). Countable additivity is not an issue, since the tiling space is locally
the product of Euclidean space (where Lebesgue measure has all the desired properties) and
a Cantor set (where the σ -algebra is based on finite partitions into clopen sets).

A measure defined in this way may or may not be ergodic. For instance, if T is a one-
dimensional tiling with the pattern a∞b∞, with a tiles to the left of the origin and b tiles
to the right, then the resulting measure on the orbit closure of T is the average of the two
ergodic measures.

3.4 Invariant measures and fusion tilings

The possibilities for invariant measures of fusion tilings are intimately connected to the
asymptotic behavior of the transition matrices Mn,N as N → ∞. Our analysis of these
matrices takes the place of the standard Perron–Frobenius theory used so fruitfully for sub-
stitution systems. The results of this section and the next closely parallel those of [12,24], the
difference being that those papers consider discrete systems in 1 dimension, while we con-
sider continuous systems in an arbitrary number of dimensions. We assume that our fusion
rule is van Hove, recognizable, and primitive; these properties are essential.

We define the frequency f̃ Pn( j) of a supertile Pn( j) in a tiling T to be its frequency
as a supertile, not as a patch. In other words, f̃ Pn( j)(T) is obtained by viewing T as an
element of Xn

R, thereby excluding patches that have the same composition as Pn( j), but
are actually proper subsets of another n-supertile or straddle two or more n-supertiles. The
abstract supertile frequency of Pn( j) is obtained by averaging f̃ Pn( j) over all tilings. By
recognizability, each occurrence of a supertile Pn( j) is marked by an element of a set of
larger patches Si . We then have f̃ Pn( j)(T) =∑

i f̄Si (T), and the abstract supertile frequency
of Pn( j) is

∑
i f reqμ(Si ).

Consider a sequence ρ = {ρn} where each ρn ∈ R
jn has all nonnegative entries. We say

that ρ is volume-normalized if for all n we have
∑ jn

i=1 ρn(i)V ol(Pn(i)) = 1. We say that it has
transition consistency if ρn = Mn,N ρN whenever n < N . A transition-consistent sequence
ρ that is normalized by volume is called a sequence of well-defined supertile frequencies.
This terminology will be justified by the proof of Theorem 3.4.

Theorem 3.4 Let R be a recognizable, primitive, van Hove fusion rule. There is a one-to-one
correspondence between the set of all invariant Borel probability measures on (XR, R

d) and
the set of all sequences of well-defined supertile frequencies with the correspondence that,
for all patches P,
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f reqμ(P) = lim
n→∞

jn∑
i=1

# (P in Pn(i)) ρn(i). (3.4)

Proof Suppose μ is an invariant measure. For each n ∈ N and each i ∈ {1, 2, . . . , jn}, define
ρn(i) to be the abstract supertile frequency of Pn(i). For a fixed n, XR is the union of cylinder
sets given by which n-supertile is at the origin. Since the measure of XR is 1 and the measure
of each of these cylinder sets is ρn(i)V ol(Pn(i)), the sequence ρ is volume-normalized.

The set of tilings where the origin lies in an n-supertile of type i is the union of disjoint
sets where the origin lies in a supertile of type i , which in turn sits in an particular way in
an N -supertile. There are Mn,N (i, j) ways for Pn(i) to sit in PN ( j). The additivity of the
measure implies that ρn(i) =∑ jN

j=1 Mn,N (i, j)ρN ( j). Hence μ gives rise to a sequence of
well-defined supertile frequencies.

To see that Eq. (3.4) applies, let P be any patch and call its diameter L P . Since the fusion
rule is van Hove, we can pick an n large enough that the fraction of each n-supertile within
L P of the boundary is so small that P patterns appearing in this region can only contribute
ε or less to the frequency of P’s in a union of n-supertiles.

To count the number of P’s in a large ball Am around the origin, we must count the
number of P’s in each n-supertile contained in that ball, plus the number of P’s that straddle
two of more n-supertiles, plus the P’s in an n-supertile that is only partially in the ball.
As a fraction of the whole, the third set goes to zero as m → ∞ and the second goes to
zero as n → ∞. Thus #(P in Am ∩ T) = ∑ jn

i=1 #(P in Pn(i))#(Pn(i) in Am)+ boundary
occurrences. Dividing by V ol(Am) and taking limits, first as m →∞ and then as n →∞,
gives the identity

f̄ P (T) = lim
n→∞

jn∑
i=1

# (P in Pn(i)) f̃ Pn(i)(T),

for all tilings T with well-defined patch frequencies. Integrating this identity over all tilings
then gives Eq. (3.4).

Now suppose that {ρn} is a sequence of well-defined supertile frequencies. To establish
the existence of an invariant measure μ for which {ρn} represents the abstract supertile
frequencies, we simply define f reqμ(P), and hence the measure of each cylinder set X P,U ,
by Eq. (3.4).

To see convergence of the limit on the right hand side, note that, if n < N , the num-
ber of P in PN ( j) is the sum of the number of P in each n-supertile in PN ( j), plus a
small contribution from P’s that straddle two or more supertiles. That is, #(P in PN ( j)) ≈∑

i #(P in Pn(i))Mn,N (i, j), so∑
j

#(P in PN ( j))ρN ( j) ≈
∑
i, j

#(P in Pn(i))Mn,N (i, j)ρN ( j) =
∑

i

#(P in Pn(i))ρn(i).

As n → ∞ the contribution of P’s that straddle two n-supertiles goes to zero, so the right
hand side of (3.4) is a Cauchy sequence.

The non-negativity of the measure follows from the non-negativity of each ρn . The
identity μ(XR) = 1 follows from volume normalization. Finite additivity follows from
the observation that, if a patch P can be extended to P ′ or P ′′, then #(P in Pn(i)) =
#(P ′ in Pn(i)) + #(P ′′ in Pn(i)), plus a small correction for the situations where P is com-
pletely contained in Pn(i) but P ′ or P ′′ is not, a correction that does not affect the limit as
n →∞. As noted earlier, countable additivity is not an issue for tiling spaces. Thus μ is a
well-defined measure. ��
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3.4.1 Parameterization of invariant measures

In Theorem 3.4 we showed how measures relate to well-defined sequences of supertile
frequencies. We now give an explicit parametrization of the invariant measures in terms of
the transition matrices Mn,N , a parametrization that we will then use to investigate unique
ergodicity.

The direction of each column of Mn,N is defined to be the volume-normalized vector in
R

jn collinear with it, and we define the direction matrix Dn,N to be the matrix whose columns
are the directions of the columns of Mn,N . That is,

Dn,N (∗, k) = Mn,N (∗, k)∑ jn
l=1 Mn,N (l, k)V ol(Pn(l))

.

Let 	n,N be the convex hull of the columns of Dn,N , sitting within the hyperplane of
volume-normalized vectors in R

jn . Note that the extreme points of 	n,N are columns of
Dn,N , but not every column need be an extreme point. Since each column of Mn,N+1 is a
sum of columns of Mn,N , each column of Dn,N+1 is a weighted average of the columns of
Dn,N , so 	n,N+1 ⊂ 	n,N . Let 	n = ∩∞N=n+1	n,N .

The matrix Mn,N defines an affine map sending 	N to 	n , since if ρN is volume-
normalized in R

jN , then so is Mn,N ρN ∈ R
jn . We define 	∞ to be the inverse limit of

the polytopes 	n under these maps.

Corollary 3.5 Let (XR, R
d) be the dynamical system of a recognizable, primitive, van Hove

fusion rule. The set of all invariant Borel probability measures is parameterized by 	∞.

Proof By Theorem 3.4, we need only show that each element of 	∞ gives rise to a sequence
{ρn} of well-defined supertile frequencies and vice versa.

By construction, each point in 	∞ is a sequence of well-defined supertile frequencies,
since each point in 	n is volume-normalized and non-negative, and since the sequence has
transition consistency. For the converse, suppose that {ρn} is a sequence of well-defined
supertile frequencies. We must show that ρn ∈ 	n . Since ρn = Mn,N ρN , ρn is a non-
negative linear combination of the columns of Mn,N , and so is a weighted average of the
columns of Dn,N . Thus ρn ∈ 	n,N . Since this is true for every N , ρn ∈ 	n . ��

3.4.2 Measures arising from supertile sequences

In this section we provide a concrete way of visualizing certain invariant measures, in partic-
ular the ergodic ones. The way to do it is by looking at frequencies of patches as they occur
in specific sequences of nested supertiles.

Definition 3.6 Let κ = {kn} be a sequence of supertile labels, with kn ∈ {1, 2, . . . , jn}. For
each n < N , we consider the frequency of each n-supertile Pn(i) within PN (kN ):

ρn,N (i) = Mn,N (i, kN )/V ol(PN (kN )).

We say that κ has well-defined supertile frequencies if ρn(i) = limN→∞ ρn,N (i) exists for
every n and every i ∈ {1, . . . , jn}.

Note that the vectors ρn(i), if they exist, do indeed form a sequence of well-defined
supertile frequencies. For n < n′ < N , ρn,N = Mn,n′ρn′,N . Taking a limit as N → ∞
gives ρn = Mn,n′ρn′ , so the sequence has transition consistency. Likewise, it is easy to check
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volume normalization. We can therefore associate an invariant measure to every sequence κ

that has well-defined supertile frequencies.
The purpose of using a sequence κ is to visualize a measure. Given such a sequence,

one can imagine a tiling T where the origin sits inside a k1 1-supertile, which sits inside
a k2 2-supertile, etc. Under mild assumptions, the supertile frequencies f̃ Pn(i)(T) will then
equal ρn(i), and for any patch P, f̄ P (T) will equal f reqμ(P), where μ is constructed from
the sequence {ρn}. The concept of using sequences κ to obtain measures applies even to
non-primitive fusions, as long as the supertile frequencies are well-defined.

Example 3.7 (A minimal fusion rule with two ergodic measures.) This is a variation on
an example found in [23] and illustrates the results of [21]. Consider a prototile-regular
1-dimensional fusion rule with two unit length tiles a and b and let G = R. Let Pn(a) =
(Pn−1(a))10n

Pn−1(b) and Pn(b) = (Pn−1(b))10n
Pn−1(a), so that P1(a) = aaaaaaaaaab

and P1(b) = bbbbbbbbbba, etc. Mn−1,n =
(

10n 1
1 10n

)
which has eigenvalues 10n − 1

and 10n + 1. Elementary linear algebra allows us to compute the frequencies as follows. Let

αn =∏n
k=1

10k−1
10k+1

, which approaches a limit of just over 0.8 as n→∞. The fraction of a’s
in Pn(a) is (1+ αn)/2 ≈ 0.9, while the fraction of a’s in Pn(b) is (1− αn)/2 ≈ 0.1.

There are exactly two ergodic measures on this system. 	n is an interval for every value of
n, with endpoints defined by the limits of the first and second columns of Dn,N . Likewise, 	∞
is an interval, whose endpoints μa and μb can be obtained from the supertile sequences κ =
(a, a, a, a, . . .) and κ = (b, b, b, b, . . .). The first ergodic measure, μa , sees the frequencies
of a’s and b’s as measured in the type-a supertiles and thus is a-heavy; the second, μb,
reverses the roles of a and b and is b-heavy. The measure μ = (μa + μb)/2 is invariant but
not ergodic; this measure corresponds to Lebesgue measure when the system is seen as a
cut-and-stack transformation.

In general, a prototile-regular fusion with j species of tiles can have at most j ergodic
measures. Of course, there can be fewer, if one or more columns of Dn,N are in the convex
hull of the others for large N . The following example shows how a sequence κ may lead to
a measure that is not ergodic.

Example 3.8 (A non-ergodic measure coming from a sequence κ .) Consider the following
variant of the previous example. Instead of having two species of tiles or supertiles, we have
three, with the fusion rules

Pn(a) = (Pn−1(a))10n
Pn−1(b)Pn−1(c)(Pn−1(a))10n

,

Pn(b) = (Pn−1(b))10n
Pn−1(a)Pn−1(c)(Pn−1(b))10n

,

Pn(c) = (Pn−1(a))10n
Pn−1(c)Pn−1(c)(Pn−1(b))10n

,

with transition matrix Mn−1,n =
⎛
⎝ 2× 10n 1 10n

1 2× 10n 10n

1 1 2

⎞
⎠. As before, the measure μa

coming from the sequence a, a, . . . is ergodic and describes the patterns in a high-order a
supertile, which is rich in a tiles, while the measure μb describes the patterns in a high-order
b supertile, which is similarly rich in b tiles. The measure μc from c, c, . . . describes a high-
order c supertile, which is (essentially) half high-order a supertiles and half high-order b
supertiles. In other words, μc = (μa + μb)/2 is not ergodic.
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3.5 Unique ergodicity

A system is uniquely ergodic if it has exactly one ergodic probability measure, in which
case this measure is the only invariant probability measure whatsoever. Tiling dynamical
systems are uniquely ergodic when there are uniform patch frequencies that can be computed
regardless of the tiling (see e.g. Theorem 3.3 of [57]).

For each n, we say that the family of matrices Dn,N is asymptotically rank 1 if there is
a vector dn ∈ R

jn such that the columns of Dn,N all approach dn as N → ∞. Put another
way, Dn,N is asymptotically rank one if 	n consists of a single point.

Theorem 3.9 If a primitive fusion rule R is van Hove and recognizable, then Dn,N is asymp-
totically rank 1 for every n if and only if the tiling dynamical system (XR, R

d) is uniquely
ergodic.

Proof By Corollary 3.5, having a unique measure is the same as 	∞ being a single point,
which is equivalent to each 	n being a single point. ��
Corollary 3.10 The tiling dynamical system of a transition-regular fusion rule that is recog-
nizable, van Hove and primitive is uniquely ergodic.

What remains is to find checkable conditions on the transition matrices Mn,N that imply
that the direction matrices Dn,N are asymptotically rank one. For the nth transition matrix
Mn−1,n , let

δn = min
k

(
mini Mn−1,n(i, k)

maxi Mn−1,n(i, k)

)
(3.5)

This measures the extent to which the columns of Mn−1,n are unbalanced.

Theorem 3.11 If
∑

n δn diverges, then R is primitive and for each n the family Dn,N is
asymptotically rank 1.

Proof First we show that the diameter of 	n,N+1 is bounded by (1−δN+1) times the diameter
of 	n,N . Let vn,N be the sum of the columns of Mn,N , and let v̂n,N be the direction of vn,N .
Let m N+1,i be the smallest entry of the i th column of MN ,N+1 (which may be zero). The i th

column of MN ,N+1 is then m N+1,i

⎛
⎜⎝

1
...

1

⎞
⎟⎠, plus additional terms, so the i th column of Mn,N+1

is m N+1,ivn,N , plus an additional linear combination of columns of Mn,N . This means that
the direction of the i th column of Mn,N+1 is a weighted average of v̂n,N and an unknown
element of 	n,N , with v̂n,N having weight at least δN+1. Thus the direction of each column
of Mn,N+1, and hence 	n,N+1 lies in the convex set δN+1v̂n,N + (1 − δN+1)	n,N , a set
whose diameter is (1− δN+1) times the diameter of 	n,N .

If
∑

δn diverges, then δn is nonzero infinitely often, so the fusion rule is primitive. Fur-
thermore, the infinite product

∏∞
k=n+1(1− δk) equals zero. Thus 	n has diameter zero, and

is a single point. ��
Corollary 3.12 If R is a strongly primitive, van Hove and recognizable fusion rule whose
transition matrices Mn−1,n have uniformly bounded elements, then (XR, R

d) is uniquely
ergodic.

Proof If the smallest matrix element of Mn−1,n is at least 1 and the largest is at most K ,
then each δn ≥ 1/K . Thus

∑
n δn diverges and every Dn,N is asymptotically rank 1. By

Theorem 3.9, (XR, R
d) is uniquely ergodic. ��
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3.6 Transversals, towers, and rank

In tiling theory, especially the aperiodic order and quasicrystal branches, the concept of
the transversal is an essential component to many arguments. For instance, it is used for
computing the C∗-algebras and K -theory as in [36] and references therein, and it is used
for gap-labelling in [9]. In ergodic theory, the concept of towers and especially the Rohlin
Lemma (also called the Kakutani–Rokhlin or Halmos–Rokhlin Lemma) is a tool that has been
used to great effect (see for instance [44,45]). One notable result [5] that uses towers and
the lemma is that any aperiodic measure-preserving transformation on a standard Lebesgue
space can be realized as a cutting and stacking transformation. Towers are used to define the
notion of rank, which is intimately related to spectral theory.

For convenience, we will assume that G = Gt and that our supertile sets Pn are described
as follows. We position each prototile in P0 so that the origin is in its interior, and the place
where the origin sits is called the control point of the prototile. In a prototile that has been
translated by some element �v ∈ R

d we call �v the control point of the new tile. Each element of
P1 is positioned such that the origin is on the control point of one of the prototiles it contains,
and this point will be considered to be the control point of the 1-supertile. Likewise, we
situate the elements of P2, P3, etc. in such a way that the origin forms the control point of
the n-supertile and lies atop the control point of the Pn−1-tile at the origin.

Definition 3.13 The transversal of XR is the set of all tilings positioned with the origin at
the control point of the tile that contains it. If R is recognizable, the n-transversal of XR
is the set of all tilings positioned so that the origin is at the control point of the n-supertile
containing it.

(If Gr is nontrivial, the situation is only slightly more complicated. For each prototile,
we fix a preferred orientation. The transversal of a tiling space is the set of tilings with the
origin at a control point, and with the tile containing the origin in the chosen orientation. The
n-transversals are defined similarly.)

The transversal of XR has a natural partition into j0 disjoint sets, one for each type of
tile. Each of these can be decomposed into pieces, one for each way that the tile containing
the origin can sit in a 1-supertile, and this partitioning process can be continued indefinitely.
The n-transversal of XR can be thought of as the transversal of Xn

R, and can likewise be
partitioned. When the fusion rule has finite local complexity, the transversal is a totally
disconnected set. The n-transversals will form the base for the nth tower representation.

In one-dimensional discrete dynamical systems, phase space can be visualized as a stack
of Borel sets placed one above the other with the transformation taking each set to the one
directly above it, except the top one, on which the action is not visualized. This representation
of the system is known as a Rohlin tower. When the action is continuous, multidimensional,
or by an unusual group, the “towers” no longer resemble physical towers, but the term still
applies. The concept of Rohlin towers for groups other than Z, and in particular for R

d , is
investigated in [18,35,44,51] and our definitions are drawn from these. Let (X, B, μ) be
a probability space acted on by some amenable group G to produce an ergodic dynamical
system.

Definition 3.14 (1) Let B ⊂ B and let F ⊂ R
d be relatively compact, and suppose that

g(B) ∩ h(B) = ∅ for any g �= h ∈ F . In this case we call (B, F) a Rohlin tower with
base B, shape F , and levels g(B).

(2) A tower system is a finite list of towers F = (B1, F1), . . . , (Bn, Fn) such that all levels
are pairwise disjoint.
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(3) The support of a tower system is the union of its levels and the residual set is the
complement of the support in X .

(4) A sequence Fk of tower systems is said to converge to B if for every Borel set A ∈ B

and every ε > 0 there is an N such that for all k > N there is a union of levels of Fk

whose symmetric difference from A measures less than ε.

Recognizable fusion tiling dynamical systems come automatically equipped with tower
systems that converge to the Borel σ -algebra B(XR). The nth tower system will have one
tower for each prototile Pn( j) ∈ Pn , for a total of jn towers. The base of the j th tower is the
set Bn( j) of all tilings in the n-transversal that have a copy of Pn( j) with its control point at
the origin. The shape of the j th tower, denoted Fn( j), depends on whether Gr is trivial. If so,
then the shape is the set of all �v ∈ Gt such that the origin is in the interior of Pn( j)+ �v. This
shape is, up to sign, the same as the interior of Pn( j) itself, thus earning the name “shape”.
If instead Gr is nontrivial, the tower construction must be modified to accomodate tilings
that have discrete rotational symmetry. In this case Fn( j) is the set of all g ∈ G for which
the origin is in g(Pn( j)), provided Pn( j) has no symmetry. If it does, we must restrict the
rotational portion of Fn( j) to keep the levels disjoint.

In ergodic theory an important idea is that of rank. A dynamical system is said to have
rank r if for every ε > 0 there is a tower system (B1, F1), . . . , (Br , Fr ) that approximates all
elements of B up to measure ε, where r is the smallest integer for which this is possible. It is
well-known for substitution sequences and self-affine tilings that the rank is bounded by the
size of the alphabet or the number of prototiles, since every tile type gets its own tower for
each application of the substitution. In the case of fusion tilings, the situation is only slightly
more complicated and we can say

rank (XR, G) ≤ lim inf
n→∞ jn (3.6)

In general, rank bounds spectral multiplicity.

3.7 Groups other than R
d

For much of this section we have assumed that G = R
d . However, the results can readily be

adapted to tiling spaces that involve other groups. In this section we indicate what changes
have to be made when Gt is a proper subgroup of R

d , when Gr is nontrivial, or both.
In general, Gt is the product of two groups, namely a continuous translation in a subspace

E of R
d , and a discrete lattice L in the orthogonal complement of E . In place of Lebesgue

measure on R
d , the measure on Gt is the product of Lebesgue measure on E and counting

measure on L . Frequencies are defined as before as occurrences per unit volume in Gt . In
fact, the ergodic theorem and Rohlin towers were first developed for discrete group actions
and only later extended to continuous groups.

Having Gr nontrivial is more of a complication, especially if Gr is continuous, as with
the pinwheel tiling. The ergodic theorem still applies, since we can first average over Gr

and then average over Gt , but the G-orbit of a tiling can no longer be identified with
Euclidean R

d . When Gr is continuous, the frequency of a patch is no longer “number
per unit volume”, but is “number per unit volume per unit angle”, and may depend on
angle.

If the group G ′ that defines our dynamics is the same as the group G used to construct the
tiling, then invariant measures are parametrized exactly as before, by 	∞, or equivalently by
sequences of well-defined supertile frequencies. The only difference is that ρn(i) is the sum
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or integral over angle of the frequency of the supertile Pn(i). That is, it counts the average
number per unit area of Pn(i)’s appearing in any orientation.

If G ′ is different from G, then we must distinguish between the G-invariant measures,
which are parametrized by 	∞, and the G ′-invariant measures, which may not be. Deter-
mining whether every G ′-invariant measure is Gr -invariant is a separate computation.

4 Spectral theory, entropy, and mixing

A vector �α ∈ R
d is a topological eigenvalue of translation if there is a continuous map

f : XR → S1, where S1 is the unit circle in C, such that, for every T ∈ XR and every
�v ∈ R

d ,

f (T− �v) = exp(2π i �α · �v) f (T). (4.1)

The map f is called a topological eigenfunction. Measurable eigenvalues and eigenfunctions
are defined similarly, only for f measurable rather than continuous. Of course, since con-
tinuous functions are measurable, every topological eigenvalue is a measurable eigenvalue.
Given a translation-invariant measure μ on XR, one can also ask how translations act on
L2(XR, μ). The pure point part of the spectral measure of the translation operators is closely
related to the set of measurable eigenvalues. (XR, μ) is said to have “pure point spectrum”
if the span of the eigenfunctions is dense in L2(XR, μ).

The set of topological eigenvalues, the set of measurable eigenvalues, and the spec-
tral measure of the translation operators are all Gr -invariant. If g ∈ Gr and f is
an eigenfunction with eigenvalue �α, then f ◦ g is an eigenfunction with eigenvalue
g−1(�α). If Gr is continuous, then this means that the number of nontrivial eigenvalues
is either uncountable or zero. The first is impossible, as L2(XR, μ) is separable, and
as every topological eigenvalue is a measurable eigenvalue. The search for (topological
or measurable) eigenvalues only has meaning, then, when Gr is discrete, in which case
we can increase our prototile set by counting each orientation separately and take Gr

trivial.
Standing assumption for Sect. 4: For the remainder of this section, we assume G = R

d .
A measurable dynamical system is said to be weakly mixing if there are no nontrivial

measurable eigenvalues. A topological dynamical system is topologically weakly mixing if
there are no nontrivial topological eigenvalues. For primitive substitution tiling spaces there is
no distinction between the two sorts of weak mixing, as it has been proven [15,33] that every
measurable eigenfunction (with respect to the unique invariant measure) can be represented
by a continuous function. For fusion tilings, the situation is more subtle. In Theorem 4.1 we
develop necessary and sufficient conditions for a vector to be a topological eigenvalue. This
theorem is similar to Theorem 3.1 of [13], and of earlier 1-dimensional results of [8]. The
key differences are that we work with R

d actions rather than Z
d actions and that we do not

assume linear repetitivity.
Unlike the substitution situation it is possible for a fusion tiling space to have a measurable

eigenvalue that is not a topological eigenvalue. In Example 4.4 we exhibit a fusion tiling space
that has pure point measurable spectrum but that is topologically weakly mixing. After this
example was announced, it was noted [37] that the vertices of this tiling form a diffractive
point pattern that is not Meyer.
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4.1 Topological eigenvalues

For self-affine substitution tilings there are well-established criteria for a vector being an
(topological or measurable) eigenvalue [57]. Given a substitution with stretching map L ,
there is a finite list of vectors �vi such that �α is an eigenvalue if and only if

�α · Ln(�vi )→ 0 (mod 1), (4.2)

for each i .
Our first task is to construct an analogous criterion for topological eigenvalues of fusion

tilings. Assuming strong primitivity, each (n + 2)-supertile contains multiple copies of each
n-supertile (at least one per (n + 1) supertile). Let Vn be the set of relative positions of two
n-supertiles, of the same type, within an (n + 2)-supertile. This is a finite set, since there
are only finitely many kinds of (n + 2)-supertiles and each (n + 2)-supertile contains only
finitely many n-supertiles. We call the elements of Vn return vectors. For each �α ∈ R

d , let
ηn(�α) = max�v∈Vn | exp(2π i �α · �v)− 1|.
Theorem 4.1 Let R be a strongly primitive and recognizable van Hove fusion rule with
finite local complexity. A vector �α ∈ R

d is a topological eigenvalue if and only if
∑

n ηn(�α)

converges.

For primitive substitution tilings, Vn+1 = LVn and ηn(�α) either goes to zero exponentially
fast, or does not go to zero at all [57]. In such cases, the convergence of

∑
n ηn(�α) is equivalent

to ηn(�α)→ 0, which is equivalent to the criterion (4.2), where the vectors �vi range over V0.

Proof Since XR is minimal, a continuous eigenfunction with a given eigenvalue is deter-
mined by its value on a single tiling T. Fix T ∈ XR and �α ∈ R

d and define f (T) = 1. For
each �x ∈ R

d let f (T− �x) = exp(2π i �α · �x). If this function is continuous on the orbit of T,
then it extends to an eigenfunction on all of XR. If it is not continuous, then �α cannot be a
topological eigenvalue.

Suppose that
∑

n ηn(�α) converges. We will show that f is continuous on the orbit of T.
Choose ε > 0 and pick n large enough that

∑∞
k=n ηn(�α) < ε. We will show that if T− �x and

T− �y agree to the nth recognizability radius ρn , then f (T− �x) and f (T− �y) are within ε.
The following lemma states that �y − �x can be expressed as a sum of return vectors.

Lemma 4.2 Suppose that �x and �y are corresponding points in n-supertiles of the same type
within the same N-supertile, with N ≥ n+ 2. Then �y− �x can be written as

∑N−2
k=n �vk , where

�vk ∈ Vk .

Proof of lemma For each n, we work by induction on N . The base case N = n + 2 follows
from the definition of Vn . Now suppose the lemma is true for N = N0, and suppose that
�x and �y sit in the same (N0 + 1)-supertile. The point �x sits in an (N0 − 1) supertile Sx ,
say of type i , and �y sits in an N0-supertile, say of type j . By strong primitivity, there is an
(N0 − 1) supertile Sy of type i in the N0-supertile that contains �y. Let �z be the point in Sy

corresponding to where �x sits in Sx . (See Fig. 1.) Then �z − �x is a return vector from Sx to
Sy which we denote �vN0−1 ∈ V N0−1. Meanwhile, �y and �z sit in the same kind of n-supertile

within the same N0-supertile, so �y − �z = ∑N0−2
k=n �vk . This means that �y − �x = ∑N0−1

k=1 �vk ,
as desired. ��

If �x and �y lie in the same N th order supertile, the lemma implies that �y − �x =∑N−2
k=n �vk ,

so
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Fig. 1 The induction step identifies a return between the n-supertiles (shown as shaded triangles) inside their
(N0 + 1)-supertile

| f (T− �y)− f (T− �x)| = |exp (2π i �α · (�y − �x))− 1|

≤
N−2∑
k=n

| exp(2π i �α · �vk)− 1| ≤
N−2∑
k=n

ηn(�α) < ε.

Even if �x and �y do not lie in the same N -supertile of T for any N , it is still true that any
patch containing �x and �y is congruent to a patch that lies within an N -supertile, so �y− �x still
takes the form

∑N−2
k=n �vk for some N and we still obtain that | f (T − �y) − f (T − �x)| < ε.

This estimate proves that f is continuous on the orbit of T. By minimality, it extends to a
continuous eigenfunction on all of XR. This proves half of Theorem 4.1.

For the converse, suppose that
∑

n ηn(�α) diverges. Then there exists a subsequence∑
k ηn+3k(�α) that also diverges. We have the following lemma, that states that any finite sum

of return vectors separated by three levels appears in XR as the return of some n-supertile
to itself.

Lemma 4.3 For a given n, pick N such that N + 1 − n is divisible by 3. For k = n, n +
3, . . . , N − 2 pick �vk ∈ Vk and let �v = �vn + �vn+3 + · · · + �vN−2. For every such set of
choices, there exists an N-supertile containing two n-supertiles of the same type, such that
the relative position of the two n-supertiles is �v.

Proof Again we work by induction on N . If N = 2, then this follows from the definition of
Vn . Now suppose it is true for N = N0, and we shall attempt to prove it for N = N0+ 3. By
the inductive hypothesis, there exist points �x0 and �y0 in corresponding n-supertiles within
the same N0-supertile S1 such that �y0 − �x0 = �v = �vn + �vn+3 + · · · + �vN0−2, and there exist
two (N0 + 1)-supertiles S2 and S3, of the same type and with relative position �vN0+1, within
an (N0 + 3) supertile. (See Fig. 2). By primitivity, S2 and S3 each contain copies of S1 (in
corresponding positions). Let �x be the point corresponding to �x0 in the copy of S1 inside S2,
and let �y be the point corresponding to �y0 in the copy of S1 inside S3. Then �y − �x = �v. ��

Thus for any ε and for infinitely many values of n, one can find vectors �vn, �vn+3, . . . , �vN−2

with �vk ∈ Vk , such that | exp(2π i �α ·∑ �vk) − 1| > 2ε. By restricting to a subsequence we
can assume that the complex numbers exp(2π i �α · �vk) are either all in the first quadrant or all
in the fourth quadrant, and that | exp(2π i �α ·∑ �vk)− 1| > ε. By Lemma 4.3 there then exist,
for n arbitrarily large, two n-supertiles of the same type with relative position

∑ �vk . Pick �x
and �y to be corresponding points of these supertiles in T, such that a big ball around �x and �y
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Fig. 2 The induction step gives a return vector �y − �x between two copies of S1, shown shaded inside an
(N0 + 3)-supertile

lies entirely in the supertile. (This is possible since the supertiles form a van Hove sequence.)
Then f (T− �x) and f (T− �y) differ in phase by at least ε, so our purported eigenfunction is
not continuous. ��

4.2 Measurable eigenvalues

In this section we provide an example that has pure discrete spectrum from a measurable
standpoint while being weakly mixing from a topological one.

Example 4.4 (The scrambled Fibonacci tiling.) We consider four fusions, denoted by the
letters F, A, E and S, with the last being the “scrambled Fibonacci” fusion whose tiling
space has the desired properties. All use the prototile set {a, b} where the length of a is the
golden mean φ and the length of b is 1.

The first fusion rule is the usual Fibonacci rule F , which is prototile- and transition-
regular with (n + 1)-supertiles given by Fn+1(a) = Fn(a)Fn(b), Fn+1(b) = Fn(a). This
fusion rule generates the self-similar Fibonacci tiling space XF , which is known to have
measurable and topological pure point spectrum with eigenvalue set 1√

5
Z[φ]. Importantly

for our calculations, the Euclidean length of Fn−1(a) and Fn(b) is φn , which deviates from
an integer by±φ−n , and differs from an integer multiple of 1/φ by±φ−(n+2). The transition

matrix is M0 =
(

1 1
1 0

)
. To make the second fusion rule, called “accelerated” Fibonacci,

we first fix some increasing sequence of positive integers {N (n)}∞n=1, where we assume
N (n) − N (n − 1) > 2. We define A to be the induced fusion rule on N (n) levels so that
An(a) = FN (n)(a) and An(b) = FN (n)(b). The lengths of the a and bn-supertiles for A
are φN (n)+1 and φN (n), respectively. This fusion rule is prototile-regular but not necessarily
transition-regular, since now the transition matrices Mn are given by M N (n)−N (n−1)

0 .
The third fusion, which we call “exceptional”, is derived from the accelerated rule by

introducing a third supertile type on all odd levels and using it to introduce a relatively small
defect in the next (even) level. On both the odd and even levels of E , the supertiles En(a)

and En(b) are constructed with the same populations of prototiles and (n − 1) supertiles
as An(a) and An(b). When n is odd, and only when n is odd, there is an additional tile
En(e) with the same population of (n−1)-supertiles as En(b). The fusion rules for En are as
follows:
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When n is odd, En(a) and En(b) are built from En−1 in exactly the same way that the
An-supertiles are built from An−1. The exceptional supertile En(e) is obtained from En(b)

by permuting the (n − 1)-supertiles so that all of the En−1(a)-supertiles come before any
of the En−1(b)-supertiles. When n is even, En(a) and En(b) are built from En−1 in exactly
the same way that the An-supertiles are built from An−1, except that one copy of En−1(b) is
replaced with En−1(e).

We can make the fusion rule prototile-regular by taking the induced fusion of E on even
levels. We call this last fusion rule the scrambled Fibonacci S, but most of our proofs center on
the equivalent space XE . By controlling the sequence N (n) we can change spectral properties
of the scrambled Fibonacci fusion.

The space XF is well known to be recognizable, and the recognizability of XA is similar.
The same patterns that allow us to recognize supertiles in XF also work (with small modi-
fications) in XE and XS . We can thus freely speak of the (unique) n-supertile containing a
particular tile.

Proposition 4.5 If N (2n)− N (2n− 1) goes to infinity fast enough that
∑

n φN (2n−1)−N (2n)

converges, then all four fusion spaces have pure point measurable spectrum with eigenvalues
1√
5
(Z+ φZ) = 1√

5
Z[φ].

Proof We will show that the four spaces XF , XA, XE and XS are all measurably conjugate.
Then, since XF is well known to have pure point spectrum with eigenvalue set 1√

5
Z[φ], the

others must as well. Since XF and XA are manifestly the same, and since XE = XS , we
need only show that XA and XE are measurably conjugate.

In the tilings in XE , we call a supertile of any level exceptional if it lies in an Em(e)-
supertile of some level. Note that E2m+2(a) and E2m+2(b) each contain only one E2m+1(e)
supertile and a large number (of order φN (2m+2)−N (2m+1)) of supertiles of type E2m+1(a)

and E2m+1(b). The fraction of (2n)-supertiles that are exceptional in X2n
E is thus bounded

by a constant times εn = ∑∞
m=n φ−(N (2m+2)−N (2m+1)), which by assumption goes to zero

as n→∞.
Suppose T is a tiling in XE . If the origin lies in an unexceptional supertile of some level

n, and hence also at levels n + 1, n + 2, etc., and if the union of these supertiles is the
entire line,3 then we can convert this to a tiling in XA by replacing each unexceptional E-
supertile containing the origin with the corresponding A-supertile. From the definitions of the
supertiles, this operation on n+ 1-supertiles is consistent with the operation on n-supertiles.

The measure of the tilings for which the origin is in an exceptional n-supertile is bounded
by a constant times εn , and so goes to zero as n →∞. Thus, with probability 1, the origin
lies in an unexceptional supertile of some level. Likewise, with probability 1, the union of
the supertiles containing the origin is all of R. Thus we have a map from XE to XA that is
defined except on a set of measure zero. This map is readily seen to preserve measure and to
commute with translation. ��
Proposition 4.6 If limn→∞ N (2n + 1)− 2N (2n) = +∞, then XS is topologically weakly
mixing.

Proof First we show that elements of 1√
5
Z[φ] cannot be topological eigenvalues. Then we

show that real numbers that are not of this form cannot be topological eigenvalues.
The supertiles Sn(a) = E2n(a) and Sn(b) = E2n(b) have length φN (2n)+1 and φN (2n),

respectively. For α ∈ 1√
5
Z[φ], | exp(2π iα|Sn(a)|) − 1| and | exp(2π iα|Sn(b)|) − 1| are

3 Note that this condition is translation-invariant, as every point in T would then lie in a sequence of unex-
ceptional supertiles whose union is the entire line.
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bounded above and below by constants (depending on α) times φ−N (2n). Each supertile
E2n+1(e) contains the Fibonacci number fN (2n+1)−N (2n) consecutive copies of E2n(b), since
that is how many N (2n)-supertiles of type b there are in the N (2n+1)-supertile FN (2n+1)(b).
We thus find at least that many consecutive copies of E2n(b) in Sn+2(a) and Sn+2(b), so
there exist vectors vk = k|Sn(b)| between n-supertiles of the same type in the same (n+ 2)-
supertile, where k is any positive integer up to fN (2n+1)−N (2n). Since | exp(2π iα|Sn(b)|)−1|
is bounded below by a constant times φ−N (2n), and since fN (2n+1)−N (2n) is of order
φN (2n+1)−N (2n), and since φN (2n+1)−2N (2n) grows without bound, there are k for which
for which exp(2π iαvk) is not close to 1. In fact, by taking n sufficiently large and picking k
appropriately, we can get exp(2π iαvk) to be as close as we want to any number on the unit
circle.

On the other hand, if α is not in 1√
5
Z[φ], then by Pisot’s theorem, exp(2π iφnα) does not

approach 1 as n → ∞. Since for arbitrarily large patches P there exist return vectors of
length φn for n sufficiently large, α cannot be a topological eigenvalue. ��

It is simple to construct sequences N (n) that meet the conditions of both Propositions (4.5)
and (4.6). For instance, we could take N (n) = 3n . Thus there exist fusion tilings that are
topologically weakly mixing but are measurably pure point.

4.3 Pure point spectrum

An important and widely studied problem in substitution sequences and substitution tilings is
determining when the (measure-theoretic) tiling dynamics have pure point spectrum. A key
tool is Dekking’s coincidence criterion [19], first developed for 1-dimensional substitutions
of constant length and later extended to arbitrary substitutions, with generalizations in higher
dimensions such as Solomyak’s overlap algorithm [57]. In this section we explore the extent to
which the analog of Dekking’s criterion determines spectral type for fusions. The differences
between substitutions and fusions are already apparent in the simplest category, namely one
dimensional fusions of constant length.

We say a 1-dimensional fusion (or substitution) has constant length if, for each n, all of
the n-supertiles Pn(i) have the same size. This implies that tiles all have the same length and
that, for fixed n, each n-supertile contains the same number Ln of (n − 1)-supertiles. The
fusion is coincident if, for each n, there exists an N such that any two N -supertiles agree
on at least one n-supertile. The fusion is coincident with finite waiting if there exists a fixed
integer k such that N = n + k works for every n. For substitution tilings, coincidence is
equivalent to coincidence with finite waiting, but for fusions it is not.

To each fusion of constant length we associate a solenoid SR, obtained as the inverse limit
of the circle R/Z under a series of maps, with the nth map being multiplication by Ln . SR
is a topological factor of XR, with a point in SR describing where the origin lies in a tile,
a 1-supertile, a 2-supertile, etc, but not generally determining which type of n-supertile the
origin sits in. There is a natural translational action on SR, and the span of the eigenfunctions
of this action is dense in L2(SR). If the factor map from XR to SR is a measurable conjugacy,
or equivalently if there is a set of full measure on XR where the factor map is 1:1, then XR
has pure point spectrum. If the factor map is not a conjugacy, and if every eigenfunction on
XR is obtained from an eigenfunction on SR,4 then XR does not have pure point spectrum.

For substitutions of constant length, the situation is clear-cut:

4 This is connected to the height of a substitution or fusion. If a substitution has height one, then all eigenvalues
of XR are eigenvalues of SR [47]. One can similarly define a notion of height for fusions.

123



172 Geom Dedicata (2014) 171:149–186

Theorem 4.7 ([19]) A one dimensional tiling space obtained from a primitive and recog-
nizable substitution of constant length and height one has pure point measurable spectrum
if and only if it is coincident.

There are two reasons why this theorem does not apply to general fusions. First, a coin-
cident fusion may not be uniquely ergodic. For each ergodic measure, the question isn’t
whether a generic point in SR corresponds to a single tiling, but whether it corresponds to a
single tiling in a suitably chosen set of full measure. Second, a coincidence, or even a coin-
cidence with finite waiting, only implies that supertiles agree somewhere. Unless we have
some control over the transition matrices, we cannot conclude that high-order supertiles agree
on a fraction approaching 1 of their length, which is what is needed to obtain a measurable
conjugacy between XR and SR.

In Example 3.7, the fusion is not coincident, as Pn(a) and Pn(b) disagree at every site.
The map from XR to SR is nowhere 1:1, being 4:1 over the orbit where there exist two
infinite-order supertiles, and 2:1 over all other orbits.

However, for each ergodic measure, XR does have pure point spectrum. For instance, for
the ergodic measure that comes from the supertile sequence {a, a, . . .}, the measure of the
tilings where the origin sits in a supertile Pn(a) is exponentially close to 1. With probability
1, for all sufficiently large n the nth order supertile containing the origin is of type a. Also
with probability 1, the infinite-order supertile containing the origin covers the entire line.
The set of tilings with both these properties has full measure, and the factor map to SR is 1:1
on this set.

Example 4.8 To see how coincidence with finite waiting is insufficient to prove pure point
spectrum we make a fusion based on the substitution σ(b) = bc5b4, σ (c) = cb5c4. Repeated
substitution produces words σ n(b) and σ n(c); by abusing notation we write σ n(Pn−1(b))

and σ n(Pn−1(c)) to mean the fusion of (n− 1)-supertiles of types b and c in the order given
by the letters of σ n(b) and σ n(c). We introduce coincidence with finite waiting by defining
the fusion rule to be

Pn(b) = Pn−1(b)σ n(Pn−1(b))Pn−1(c), Pn(c) = Pn−1(b)σ n(Pn−1(c))Pn−1(c).

The transition matrix Mn−1,n =
(

5 5
5 5

)n

+
(

1 1
1 1

)
= (5× 10n−1 + 1)

(
1 1
1 1

)
has rank

1, so the system is uniquely ergodic. The length of an n-supertile is
∏n

j=1(10 j + 2), and

Pn(b) and Pn(c) differ on 10 j (n−1)-supertiles, implying that they differ on
∏n

j=1 10 j tiles.

Thus Pn(b) and Pn(c) agree on a positive fraction of their tiles, namely 1 −∏n
j=1

10 j

10 j+2
.

As n → ∞, this fraction increases but does not approach 1. This implies that one can find
disjoint measurable sets of positive measure that map to the same set on the solenoid. Any
function that distinguishes between these sets cannot be approximated by a function on the
solenoid, so the span of the eigenfunctions is not dense and the spectrum is not pure point.
For an example of such a function, let f (T) equal 1 if the origin is in a b tile and 0 if the
origin is in a c tile.

Example 4.9 It is also possible for different ergodic measures for the same fusion to have
different spectral types. Consider the 1-dimensional non-primitive substitution

σ(a) = a10, σ (b) = bc5b4, σ (c) = cb5c4

of constant length 10. Next consider a 1-dimensional fusion tilings with three prototiles
a, b, c, each of unit length. Using the same abuse of notation as in the previous example we
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define the fusion rule as

Pn(a) = Pn−1(a)σ n(Pn−1(a))Pn−1(b)Pn−1(c)

Pn(b) = Pn−1(a)σ n(Pn−1(b))Pn−1(b)Pn−1(c),

Pn(c) = Pn−1(a)σ n(Pn−1(c))Pn−1(b)Pn−1(c),

This fusion is coincident with waiting time 1, in that all n-supertiles begin with Pn−1(a) and
end with Pn−1(b)Pn−1(c). However, that is only 3 out of Ln = 10n + 3(n − 1)-supertiles,
and the n-supertiles disagree on the rest! For large n, the supertiles Pn(a), Pn(b) and Pn(c)
disagree at roughly 70 % of their tiles, 97 % of their 1-supertiles, 99.7 % of their 2-supertiles,
etc.

The transition matrices

Mn−1,n =
⎛
⎝10n + 1 1 1

1 5 · 10n−1 + 1 5 · 10n−1 + 1
1 5 · 10n−1 + 1 5 · 10n−1 + 1

⎞
⎠

have rank 2. There are two ergodic measures, one coming from the supertile sequence
{a, a, . . .} and the other coming from an arbitrary sequence of b’s and c’s.

When we take the ergodic measure from the sequence {a, a, . . .}, XR is measurably
conjugate to the solenoid SR and has pure point spectrum. When we take the other ergodic
measure, however, there is a set of full measure where, for all sufficiently large n, the origin is
either in Pn(b) or Pn(c), but is not in the two right-most n−1 supertiles within Pn(b or c). This
set admits a measure-preserving involution where, for all sufficiently large n, the supertiles
Pn(b) containing the origin are replaced by Pn(c) and vice-versa. On any set of full measure,
the factor map is (almost everywhere) at least 2:1, and the tiling dynamical system does not
have pure point spectrum.

In other words, almost every point of the solenoid corresponds to three tilings. One set of
preimages has full measure with respect to the {a, a, . . .} ergodic measure, while the other
two preimage sets have full measure with respect to the other ergodic measure. Since the
first ergodic measure only “sees” one preimage, it has pure point spectrum. Since the other
measure “sees” two preimages, it does not have pure point spectrum.

To get pure point spectrum from coincidence, we must control the transition matrices.

Theorem 4.10 Let R be a primitive, recognizable, prototile-regular, 1-dimensional fusion
of constant length. If the fusion is coincident with finite waiting, and if the transition matrices
Mn−1,n are uniformly bounded, then XR is uniquely ergodic and has pure point spectrum.

Proof Suppose that there are J species of prototiles, that the fusion is coincident with waiting
k, and that Mn−1,n(i, j) ≤ C for all n, i, j . Then Ln ≤ C J . Any two nk-supertiles agree on at
least one (n−1)k-supertile, at least one (n−2)k-supertile in each remaining (n−1)k-supertile,
at least one (n − 3)k-supertile in each remaining (n − 2)k-supertile, etc. This means that

any two nk-supertiles agree on at least a fraction 1−
(

Ck J k−1
Ck J k

)n
of their tiles, a fraction that

approaches 1 as n→∞. In particular, the density of tiles (and likewise, of n-supertiles for any
fixed n) is asymptotically the same in all N -supertiles as N →∞, implying unique ergodicity.

A point in SR thus determines all but a set of density zero of the tiles in the infinite-order
supertile containing the origin. The probability of there being an undetermined tile in any
fixed bounded region is thus zero. Since the real line is a countable union of bounded regions,
and since the probability of having two infinite-order supertiles in a single tiling is also zero,
almost every point in SR corresponds to a tiling with no undetermined tiles. Thus the factor
map XR → SR is a measurable conjugacy, and XR has pure point spectrum. ��
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Theorem 4.10, while modest in scope, is typical of the theorems that can be proven about
fusions that are not of constant length, or that are not 1-dimensional. Given any conincidence-
based test for pure point spectrum in the category of substitution tilings (e.g., the balanced
pair algorithm or the overlap algorithm), one can construct an analogous test for fusions.
However, a positive result from such a test will only demonstrate pure point spectrum if one
can also show that the coincidences happen frequently enough. This requires estimates both
on how long one must wait for a coincidence, and on how much the system has grown in the
process.

4.4 Entropy

Standard results in symbolic and tiling substitution dynamics say that such systems cannot
have positive entropy. The obstruction is that the transitions from level to level do not contain
much ‘new’ information. This continues to be the case for fusion tilings when one assumes that
both the number and shapes of supertiles remain fairly well-controlled. This section contains
a simple example of a minimal and uniquely ergodic fusion rule with positive entropy and a
sufficient condition for a fusion space to have zero entropy.

Configurational entropy is based on counting configurations, and for this we need G to be
discrete. We therefore assume that G = Z

d , so we are essentially dealing with subshifts. Let
#n be the number of configurations that can appear in a d-dimensional cube of side n (this is
the complexity function). The configurational entropy is

lim
n→∞

log #n

nd
.

For subshifts, configurational entropy is known to be the same as topological entropy.
Positive entropy implies that there is a lot of randomness in the system, while unique

ergodicity means that all patterns appear with well-defined frequencies. These ideas might
seem to be in conflict, but Jewett [34] and Krieger [38] showed that uniquely ergodic dynam-
ical systems can exhibit a very wide range of dynamical properties, and in particular can have
positive topological entropy. The following example is in the spirit of their construction.

Example 4.11 (A strictly ergodic fusion rule with positive entropy.) We construct a fusion
rule R with P0 = {a, b} recursively. Let P1 be all words of length 3 in which each letter
appears at least 1 time but no more than 2 times; we have j1 = 6 distinct 1-supertiles. Now

let P2 be all fusions of
3 j2

1
2 = 54 1-supertiles in which each supertile appears between j1 and

2 j1 times. The expected number of 1-supertiles in any fusion of
3 j2

1
2 of them is 3 j1

2 , so we
are including the highest-probability fusions in our set P2.

In general, let jn be the number of n-supertiles and let Pn+1 be all fusions of 3 j2
n

2 n-
supertiles in which each n-supertile appears between jn and 2 jn times. Since having more

than 2 jn or fewer than jn occurrences in a span of size 3 j2
n

2 is already highly improbable,
restricting to these (n+1)-supertiles only reduces the number of configurations slightly, and
the system so constructed has positive entropy. The transition matrices are enormous and
grow super-exponentially but always have all nonzero entries, making the system strongly
primitive and hence minimal. Moreover, the constant δn used in Eq. (3.5) (to measure how
balanced the columns of the transition matrices are) is always jn

2 jn
= 1/2, so the tiling space

is uniquely ergodic.

The fusion rule R is not recognizable, but we can build a recognizable fusion rule R′
from R as in Example 2.3. Since the entropy of the factor XR is bounded by the entropy
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of XR′ , XR′ has positive entropy. It is easy to check that the addition of subscripts does not
affect unique ergodicity.

This example involved the number jn of n-supertile types growing exponentially with
the size of the supertiles. If the growth is slower than exponential, and if the shapes of the
supertiles are not too distorted, then the system will have zero entropy.

Proposition 4.12 Let dn be the diameter of the largest n-supertile, let jn be the number of
n-supertile types and suppose that there exist constants β, K such that each cube of side βdn

touches at most K n-supertiles. If limn→∞ log jn
dd

n
= 0, then the configurational entropy of XR

is zero.

Proof To determine the configuration in a cube of side βdn , one must specify the kinds of
n-supertiles that intersect that cube, and also specify the locations of those supertiles. There
are at most j K

n choices for the first, and at most V K choices for the second, where V is the
volume of the largest n-supertile, which is bounded by dd

n . Thus the log of the number of
configurations, divided by the volume of the cube, is bounded by K log( jn)+K d log dn

βd dd
n

, which
goes to zero as n→∞. ��

The upshot of Proposition 4.12 is that positive entropy either requires the number jn
of n-supertiles to grow exponentially with volume, or for the shapes and relative sizes of
supertiles to be so wild, and for the ways that supertiles fit together be so varied, that there
are many ways for supertiles to fit together. The geometric issues do not apply to dimension
1, where supertiles simply concatenate, but could in principle apply in dimensions 2 or more.
However, we know of no examples where positive entropy is achieved without jn growing
exponentially fast.

4.5 Strong mixing

A (measurable) dynamical system is strongly mixing if for any pair of measurable sets A, B,
and for any sequence of vectors �vn tending to infinity, lim μ(A ∩ (B − �vn)) = μ(A)μ(B).
The dynamical systems of primitive substitution sequences and self-similar tilings are never
strongly mixing [20,57]. Because of the rigidity of the substitution process, knowing the
location of one copy of a patch gives a higher probability that it will be seen again at certain
intervals. However, there are “staircase” cut-and-stack transformations in one and several
dimensions that have been shown to be strongly mixing [1,2], thus it is possible to have
strongly mixing fusion tiling systems. As in the case of entropy, this is only possible when
the system has increasing complexity at higher levels of the hierarchy.

In this section we establish sufficient criteria for fusion tilings not to be strongly mixing.
These criteria involve both uniform bounds on the number of supertiles and on the transi-
tion matrices, and are not necessary criteria. For instance, the accelerated Fibonacci fusion
discussed in Example 4.4 does not have bounded matrices, but is essentially the same as
ordinary Fibonacci and is not strongly mixing.

Theorem 4.13 The dynamical system of a strongly primitive van Hove fusion rule with a
constant number of supertiles at each level and bounded transition matrices, and with group
G = R

d , cannot be strongly mixing.

Proof Our proof is an adaptation of Solomyak’s [57], which in turn is an adaptation of
Dekking and Keane’s [20]. By Corollary 3.12, XR is uniquely ergodic, so for any patch
P, f reqμ(P) can be computed from the actual frequency of P in any increasing sequence of
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Fig. 3 Each copy of P in Pn(ln) makes a copy of P ∪ (P + �vn) in Pn+2(ln+2)

supertiles. We will find a patch P and a sequence of vectors �vn , tending to infinity, such that the
frequency of P ∪ (P + �vn) is bounded away from zero. Then, supposing that f reqμ(P) = δ

and f reqμ(P ∪ (P + �vn)) > ε, we pick a set U ⊂ R
d whose volume is less than ε

2δ2 ,
and which is small enough that μ(X P,U ) = f reqμ(P)V ol(U ). Let A = B = X P,U . Since
X P∪(P+�vn),U ⊂ A ∩ (B − �vn), we have

μ(A ∩ (B − �vn)) ≥ μ(X P∪P+�vn ,U ) ≥ εV ol(U ) > 2δ2V ol(U )2 = 2μ(A)μ(B), (4.3)

so μ(A ∩ B − �vn) cannot approach μ(A)μ(B) as n→∞.
To find the vectors �v, we suppose the number of supertiles at each level is the constant J .

Since Xn
R can be expressed as the union of J cylinder sets defined by which n-supertile is

at the origin, it must be that at least one of those cylinder sets has measure at least 1/J . For
each n, choose ln ∈ {1, 2, . . . J } corresponding to an n-supertile with this property, so that
V ol(Pn(ln))ρn(ln) ≥ 1/J , where ρn is the supertile frequency vector. Now choose �vn ∈ Vn

to be a return vector for Pn(ln) inside Pn+2(ln+2), as in Theorem 4.1. Because of strong
primitivity and the fact that our transition matrices are uniformly bounded, we can find a
δ′ > 0 for which V ol(Pn(ln))

V ol(Pn+2(ln+2))
≥ δ′ for all n. (Specifically, if each n-supertile contains at

most K (n−1)-supertiles, then the ratio of volume between the largest and smallest n-supertile
is at most K , and V ol(Pn(ln))/V ol(Pn+2(ln+2)) ≥ 1/K 3.)

The patch P is arbitrary. By choosing n large we can make #(P in Pn(ln))
V ol(Pn(ln))

arbitrarily close
to f reqμ(P), and hence greater than a fixed constant f reqμ(P)/2 for all n. The reader
can refer to Fig. 3 to see that #(P ∪ P + �vn in Pn+2(ln+2)) ≥ #(P in Pn(ln)). Since the
fraction of volume from the supertiles Pn(ln) is at least 1/J , this implies that the frequency

of P ∪ (P + �vn) is at least f reqμ(P)V ol(Pn(ln))

2J V ol(Pn+2(ln+2))
, hence at least δ′ f reqμ(P)

2J . ��

Proposition 4.14 The dynamical system of a strongly primitive van Hove fusion rule with a
constant number of supertiles at each level and bounded transition matrices, and with group
G = Z

d , cannot be strongly mixing.

Proof The previous proof does not apply to Z
d actions because we cannot chooseU arbitrarily

small. However, we have already shown that for any patch P and any sufficiently large n,
there exist large �v with f reqμ(P ∪ (P + �v)) ≥ δ′ f reqμ(P)/2J . We then find a patch P
whose frequency is less than δ′/4J , so that f reqμ((P ∪ (P + �vn)) ≥ 2 f reqμ(P)2. Taking
U to consist of one point, this implies that μ(A ∩ (A − �vn)) ≥ 2μ(A)2, where A = X P,U .

��
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5 Inverse limit structures, collaring, and cohomology

In this section we consider topological properties of spaces XR of fusion tilings, including
their structure as inverse limit spaces, their Čech cohomology groups, and the significance
of these groups.

Standing assumptions for Sect. 5: We assume that G = R
d . Unlike in Sect. 4, this is more

for convenience than from necessity. Modifications for other groups can be done exactly as
for substitution tilings [43,55]. We also assume that our fusion rules are recognizable and,
as always, have finite local complexity.

Tiling spaces can always be represented as inverse limits of CW complexes [9,54]. The
challenge is finding a representation that allows for efficient calculation and for the proving of
theorems. To this end we present generalizations of the Anderson–Putnam complex [4] and of
the partial collaring scheme of Barge, Diamond, and their collaborators [6,7]. (See also [29]
for another method of computing the Čech cohomology of transition-regular 1-dimensional
fusion tiling spaces that meet additional assumptions.)

In all cases, we construct a sequence of spaces and maps

�0
f0←− �1

f1←− �2
f2←− �3

f3←− · · · ,
where each approximant �i describes a region of the tiling, each �i+1 describes a larger region
of the tiling, and fi : �i+1 → �i is the forgetful map that loses the additional information
carried in �i+1. The inverse limit lim←−(�, f ) is the set of infinite sequences (x0, x1, . . .) such
that each xi ∈ �i and each xi = fi (xi+1). Such a sequence is a set of consistent instructions
for tiling larger and larger regions of R

d . If the union of these regions is all of R
d for all

sequences in the inverse limit, then there is a natural homeomorphism between lim←−(�, f ) and
XR. The key is to make sure that every tiling in XR can be built up from the approximants
in a unique way. A common obstruction is when the approximants can build an infinite tiling
that covers only a portion of R

d . “Border-forcing” fusions, discussed next, do not have this
obstruction. Later we will describe the technique of “collaring” to make fusion rules become
border-forcing.

5.1 Forcing the border

A fusion rule always tells us how n-supertiles make up the interiors of larger N -supertiles.
But sometimes the N -supertiles also determine which n-supertiles are on their exterior as
well. When this happens we say the fusion rule forces the border, and we have a natural way
to see the space as an inverse limit.

Definition 5.1 A fusion rule forces the border if for each integer n there exists an N with the
following property: If S1 and S2 are two N -supertiles of the same type appearing in tilings
T1 and T2 in XR, then the patch of n-supertiles that touch S1 in T1 is equivalent to the patch
of n-supertiles touching S2 in T2.

Example 5.2 (Compare and contrast: border forcing.) The 1-dimensional substitution a →
abb, b → abbb forces the border in that every n + 1-supertile of type a is preceded by an
n-supertile of type b and followed by an n-supertile of type a, and likewise every n + 1-
supertile of type b is also preceded by an n-supertile of type b and followed by an n-supertile
of type a. By contrast, the substitution a→ ab, b→ aa does not force the border, since an
N -supertile of type a can be preceded either by an n supertile of type a or b.
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5.2 The Anderson–Putnam complex

To build �0, we start out with one copy of each prototile from P0. Then, if somewhere in
some tiling two prototiles meet, we identify the corresponding points on their boundaries.
The resulting branched manifold is compact [4]. (If we take the periodic tiling of unit squares
lined up edge-to-edge, it is easy to see that �0 is the torus.) We build �1 by taking one copy
of each supertile from P1 and identifying the boundaries whenever they meet as above, and
continue making each approximant �n similarly. Put another way, �n for the space XR is �0

for Xn
R.

There is a natural map from XR to �n that maps a tiling to the location of the origin
within its n-supertile. Thus, a point in �n can be viewed as a set of instructions for placing
an n-supertile containing the origin. Or course, if we know the (n + 1)-supertile containing
the origin, then we necessarily know the n-supertile containing the origin, so the forgetful
map fn is well-defined.

Theorem 5.3 If the recognizable fusion rule R forces the border, then XR is homeomorphic
to the inverse limit lim←−(�n, fn) of Anderson–Putnam complexes.

Proof We will construct a homeomorphism from the inverse limit to XR by constructing
maps from each approximant to partial tilings of R

d . Pick an increasing sequence of integers
n1, n2, . . . such that all the ni -supertiles bounding an ni+1-supertile are determined by the
type of the ni+1-supertile. Our map takes a point xN in �N to the N -supertile with the
origin where xN is, together with all of the lower order supertiles that are determined by that
N -supertile. If N ≥ ni , then this includes all the ni−1-supertiles touching the N -supertile,
all the ni−2 supertiles touching the ni−1 supertiles, all the ni−3 supertiles touching the ni−2

supertiles, and so on. If xN is on the boundary of an N -supertile, then there are multiple tilings
that can come from this process, but they all agree on the ni−1-supertiles in all directions
around the origin, as well as the lower-order supertiles determined by the ni−1-supertiles. In
particular, xN determines at least i − 1 layers of supertiles of various sizes around the origin,
and so determines at least i−1 layers of ordinary tiles around the origin. By choosing N large
enough, we can get i to be arbitrarily large. Thus as N →∞ the points in the approximants
determine tilings of larger and larger balls around the origin, so a point in the inverse limit
gives a set of consistent directions for tiling increasing regions of R

d whose union is all of
R

d . Such instructions are clearly in 1:1 correspondence with tilings of R
d . Checking that the

topology of XR corresponds to the topology of the inverse limit (as a subset of the infinite
product

∏
�n) is a straightforward exercise that is left to the reader. ��

Example 5.4 (A short Čech cohomology computation.) Consider a transition-regular fusion
rule in one dimension, with two tile types a and b. Let Pn(a) = Pn−1(a)Pn−1(b)Pn−1(b)

and let Pn(b) be a permutation of two Pn−1(a)’s and three Pn−1(b)’s, with the permutation
depending on the level. As long as a permutation beginning in Pn−1(a) occurs infinitely often
and a permutation ending in Pn−1(b) occurs infinitely often, this fusion rule forces the border.
The approximant �n consists of two intervals, one representing Pn(a) and one representing
Pn(b), with all four endpoints identified to form a Figure-8. The map fn wraps the Pn+1(a)

circle around the Pn(a) circle once and then around the Pn(b) circle twice. It also wraps the
Pn+1(b) circle around the Pn(a) circle twice and around the Pn(b) circle three times, in an
order determined by the fusion rule at level n + 1. By Theorem 5.3, XR is the inverse limit
of these figure-8’s under these maps.

From a Čech cohomology standpoint we can see the figure-8 as the chain complex of
each approximant, so that both Ȟ1(�n) and Ȟ1(�n) are isomorphic to Z

2. The first Čech
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cohomology of the inverse limit (and of XR) is the direct limit of Z
2 under the pullback of

the maps fn , which always come out to be

(
1 2
2 3

)
even though the order for the Pn(b)’s

varies. Since that matrix is invertible over Z, we see that Ȟ1(XR) = Z
2.

5.3 Anderson–Putnam collaring

Most fusion rules, like most substitution rules, do not force the border. However there is a
simple trick, due to Anderson and Putnam in the setting of substitutions, for replacing an
arbitrary fusion rule R0 with a hierarchical rule R that forces the border, such that XR0 is
homeomorphic (and topologically conjugate) to XR. We can then express our original tiling
space XR0 as the inverse limit of the Anderson–Putnam complexes of R.

A collared tile to distance r , or an r -collared tile, is a tile together with a label that describes
the types and relative positions of all of that tile’s neighbors out to distance r . For instance,
in a 1-dimensional tiling with patch abbaba, the three b’s are all different as collared tiles to
distance 1, as one is preceded by an a and followed by a b, one is preceded by a b and followed
by an a, and one is both preceded and followed by a’s. Likewise, a collared n-supertile to
distance r is an n-supertile, together with a label indicating the pattern of nearby n-supertiles
out to distance r .

Take an infinite increasing sequence of radii r0 < r1 < · · · , tending to infinity. We take Pn

to be the set of collared n-supertiles to distance rn . Clearly, any complete tiling can be equally
well-described in terms of (super)tiles or collared (super)tiles. However, by construction, R
forces the border, since if rN is greater than rn plus the diameter of the largest n-supertile,
then a collared N -supertile determines its surrounding rn-collared n-supertiles.

Note that the label of a collared n-supertile contains information about all the neighboring
n-supertiles out to distance rn , and in particular determines all of the neighboring (n − 1)-
supertiles out to distance rn−1. This means that each collared n-supertile is uniquely decom-
posed as a union of collared (n − 1)-supertiles, and gives a well-defined map from Xn

R to
Xn−1

R . The hierarchical rule R is a generalized fusion in the sense of Footnote 1, since the
(n − 1)-supertiles contained in an n-supertile do not determine the n-supertile. The collared
n-supertiles have strictly more information than the collared (n− 1)-supertiles, which is the
whole point of collaring!

If the shapes of the supertiles are not too wild, one can pick the rn’s to grow slowly
compared to the size of the supertiles, so that collaring to distance rn just means specifying
the nearest neighbors of the n-supertile, as is usually done for substitution tilings. However,
for some fusion rules it is possible that knowing the n-supertiles containing the origin and
the ones touching this supertile, for all n, will not determine the tiling of all of R

d .
The process of collaring does have its drawbacks, as R may not have the same transition-

regularity or even prototile-regularity properties as R0. Collaring increases the number of
tile types, and there is no reason to expect the increase to be the same at all levels. Indeed,
even if the number of uncollared supertiles is uniformly bounded it is entirely possible that
the number of collared n-supertiles will grow without bound as n →∞. This happens, for
instance, in Example 6.4.

5.4 Barge–Diamond collaring

The idea behind Barge–Diamond collaring [6,7] is to collar points rather than tiles. As before,
pick an increasing sequence of radii r0 < r1 < · · · tending to infinity. Take a tiling T, and
identify points �x and �y if [Br0 ]T−�x = [Br0 ]T−�y . That is, if the tiling looks the same around
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�x and �y to distance r0 (with �x and �y playing corresponding roles). Let �0 be the quotient
space. To get �1, identify points for which the corresponding tiling in X1

R agrees to distance
r1. That is, points �x and �y for which all of the 1-supertiles that exist within a distance r1 of �x
and �y agree. Likewise, �n is R

d modulo identification of points �x and �y for which all of the
n-supertiles within distance rn of �x and �y agree.

As before, we have a map from XR to �n , taking a tiling to a description of how a ball
of radius rn around the origin sits in one or more n-supertiles. Since rn →∞ as n →∞, a
point in the inverse limit is a consistent set of instructions for tiling all of R

d , so the inverse
limit is homeomorphic to XR as long as the orbit closure of T is XR (which is always the
case when XR is minimal).

When the fusion is asymptotically self-similar or self-affine, one can take rn to be much
smaller than the size of an n-supertile, but still to go to infinity. For 2-dimensional tilings,
this means that there are three kinds of points. Most points are farther than rn from the
nearest n-supertile boundary. These points are identified with corresponding points of other n-
supertiles, without regard for the supertile’s neighbors. Some points are within rn of one of the
supertile’s edges. These points are identified with corresponding points of other n-supertiles
that have the same n-supertile neighbor across the specific edge. Finally, some points are
within rn of two or more edges, and hence are close to a vertex. There is a stratification of �

into points-near-vertices, points-near-edges, and interior points, and this stratification makes
for much easier computations of tiling cohomology than Anderson–Putnam collaring.

6 Direct product variations

An easy way to make higher-dimensional substitution sequences is to take the direct product
of two or more one-dimensional substitutions. To break the direct product structure, one
can rearrange the substitution carefully so that at each stage the blocks still fit, creating
what is called a direct product variation or DPV. Introduced as examples of combinatorial
substitutions in [25], DPVs are quite flexible when viewed as examples of fusion rules.

Example 6.1 (The Fibonacci DPV.) This simple example of a prototile- and transition-regular
fusion rule in two dimensions is based on the Fibonacci substitution 0 → 01, 1 → 0. We
use it to illustrate almost all of the ideas and computations discussed for fusion rules.

The prototile set consists of four unit-square tiles with label set {a, b, c, d} and so

.5

For the 1-supertiles we choose , where we list the supertiles

in the obvious order {P1(a), P1(b), P1(c), P1(d)}. To make the 2-supertiles we concatenate
the 1-supertiles in combinatorially the same way:

In general we construct Pn+1 from Pn with exactly the same combinatorics as the rightmost
version of the 2-supertiles shown above. It is not difficult to show that the sides of Pn(a) and

5 There is some flexibility with the geometry of the prototiles. They could be parallelograms or rectangles,
and there are two vertical and two horizontal degrees of freedom for the lengths of the sides.
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Fig. 4 The induced fusion for Pn+2(a)

the long sides of Pn(b) and Pn(c) are the Fibonacci numbers fn+2, while the sides of the
n-supertile of type d and the short sides of the b and c supertiles are the Fibonacci numbers
fn+1 (using the convention that f0 = 0 and f1 = 1). This means that at each stage, the
supertiles fit together to form squares and rectangles with Fibonacci side lengths.

Recognizability is straightforward and proceeds by induction. The Pn+1(a) supertiles are
determined by the presence of a Pn(d), each Pn+1(b) is determined by a Pn(c) that is not in a
Pn+1(a), each Pn+1(c) is determined by a Pn(b) that is not in a Pn+1(a), and each remaining
Pn(a) is a Pn+1(d).

The Fibonacci DPV is transition-regular with M = Mn−1,n =

⎛
⎜⎜⎝

1 1 1 1
1 0 1 0
1 1 0 0
1 0 0 0

⎞
⎟⎟⎠. This is

a primitive matrix so Mn,N = M N−n is asymptotically rank 1; the dynamical system is
uniquely ergodic. The Perron–Frobenius eigenvalue is φ2, where φ is the golden mean; this
number represents the asymptotic volume expansion of the supertiles from level to level.

To compute the ergodic measure, it suffices to compute the frequencies of the n-supertiles
and then use Eq. (3.4) of Theorem 3.4 to get the frequencies of arbitrary patches. The vectors
ρn are the volume-normalized directions of the asymptotic columns of Mn,N = M N−n ,
and thus they are collinear with the right Perron–Frobenius eigenvector of M , which is⎛
⎜⎜⎝

φ2

φ

φ

1

⎞
⎟⎟⎠. Since we have chosen unit square prototiles, the volumes of the n-supertiles are

f 2
n+2, ( fn+2 fn+1), ( fn+2 fn+1), and f 2

n+1 respectively. We compute ρn = φ−(2n+4)

⎛
⎜⎜⎝

φ2

φ

φ

1

⎞
⎟⎟⎠.

Next we turn to computing the topological and measure-theoretic spectrum. Technically
we should take the induced fusion rule that composes two levels at once to get strong primi-
tivity, then go up two more levels at a time to find all of the return vectors in Vn . Fortunately,
in this example there are always return vectors of the form ( fn, 0) and (0, fn) (see Fig. 4).

Any eigenvalue �α = (α1, α2), topological or measure-theoretic, must have the property
that limn→∞ �α · �vn = 0 (mod 1), and this means that limn→∞ αk fn = 0 (mod 1) for
k = 1, 2. Pisot’s theorem then implies that �α ∈ Z[φ] × Z[φ].6 For such �α, the criterion
for topological eigenvalues in Theorem 4.1 is satisfied because the convergence of ηn(�α)

6 The absence of the
√

5 that is present in Example 4.4 is due to the integer size of the prototiles.
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to 0 is exponential. In short, the computations for both topological and measure-theoretic
eigenvalues are exactly the same as for the product of two Fibonacci tilings (built from unit
length prototiles), and we have that both eigenvalue sets are Z[φ] × Z[φ]. In particular, any
measurable eigenfunction can be chosen to be continuous.

Next we compute the Čech cohomology of XR. We use Barge–Diamond collaring [6,7],
picking the collaring radius rn to grow slowly with n. We stratify our tiling space into three
pieces �0 ⊂ �1 ⊂ �2 = XR. �2 is the entire tiling space, �1 is the set of tilings where
the origin is within rn of the boundary of an n-supertile for every n, and �0 is the set of
tilings where the origin is within a distance rn of two supertile edges, and hence is near a
supertile corner. The cohomology of �0 is the cohomology of a CW complex with one cell
for each possible pattern by which three or more high-order supertiles can meet at a vertex.
There are 78 such patterns. The relative cohomology of the pair (�1, �0) is computed from
a CW complex containing 52 cells that describe the ways that two supertiles can meet along
a common edge. The relative cohomology of the pair (�2, �1) is computed from the matrix
M . The techniques for generating these cells and computing the cohomology are similar to
those for substitution tilings, and yield

Ȟ0(�0) = Z; Ȟ1(�0) = 0; Ȟ2(�0) = Z
42

Ȟ0(�1, �0) = 0; Ȟ1(�1, �0) = Z
4; Ȟ2(�1, �0) = Z

18

Ȟ0(�1) = Z; Ȟ1(�1) = Z
4; Ȟ2(�1) = Z

60

Ȟ0(�2, �1) = 0; Ȟ1(�2, �1) = 0; Ȟ2(�2, �1) = Z
4

Ȟ0(XR) = Z; Ȟ1(XR) = Z
4; Ȟ2(XR) = Z

64.

The generators of Ȟ1(XR) = Z
4 are easily described. Pick a value of n ≥ 4. Each edge of

an n-supertile either has length fn+1 or fn+2. The first generator counts the horizontal edges
of the first type, the second generator counts the horizontal edges of the second type, and the
third and fourth generators similarly count vertical edges. The boundaries of two supertiles
may overlap on intervals of size fn = fn+2 − fn+1 or fn−1 = 2 fn+1 − fn+2. The first
(or third) generator assigns the numbers −1 and 2 to these partial edges, while the second
(or fourth) assigns the numbers 1 and −1, as these are the coefficients of fn+1 and fn+2.
Picking different values of n gives different generators, but the group they generate is the same.

Deformations of a tiling, by changing the shape and size of (possibly collared) tiles, are
parametrized up to mutual local derivability by Ȟ1(XR, R

d) [16]. For the Fibonacci DPV,
Ȟ1 is the same as for the product of two 1-dimensional Fibonacci tiling spaces, and the
deformations are the same. Thus, any deformation of the sizes and shapes yields a tiling
space that is topologically conjugate to a linear transformation of R

2 applied to the original
tiling space. In particular, a self-similar version of the DPV, in which the a, b, c, and d tiles
have dimensions φ × φ, φ × 1, 1× φ and 1× 1, is topologically conjugate to a DPV where
all tiles are congruent squares (of side

√
5/φ).

The difference between the Fibonacci DPV and the product of two 1-dimensional
Fibonacci tilings is seen in the second Čech cohomology, where that of the DPV has rank 64
and that of the product has rank 4. The rank of the top cohomology is closely related to the
independent appearance of patterns in the tiling, via the following theorem:

Theorem 6.2 ([56]) If the rank of Ȟd of a d-dimensional tiling space is k, then there exist k
patterns P1, . . . , Pk, such that for any patch P there exist rational numbers c1, . . . , ck and
cP such that, for any region R in any tiling T ,
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#(P in R) =
k∑

i=1

ci #(Pi in R)+ e(P, R),

where the error term e(P, R) is computable from the patterns on the boundary of R, and is
bounded by cP times the (d − 1)-volume of the boundary of R.

We call P1, . . . , Pk control patches. For the product of two 1-dimensional Fibonacci
tilings, we can take our control patches to be the four basic tiles. For the Fibonacci DPV,
however, there are 60 additional control patches. They can be chosen from the generators of
Ȟ2(�0) and Ȟ2(�1, �0). That is, we have 9 control patches that involve supertiles meeting
along horizontal edges, 9 that involve supertiles meeting along vertical edges, and 42 that
involve three or four supertiles meeting at a vertex.

Example 6.3 (A scrambled Fibonacci DPV.) We can construct a scrambled version of the
Fibonacci DPV in much the same way as the 1-dimensional scrambled Fibonacci tiling of
Example 4.4. We pick an increasing sequence N (n) and induce on this sequence to get an
accelerated scrambled Fibonacci rule A. We then introduce an exceptional supertile En(e) at
each odd level, whose population in terms of (n − 1)-supertiles is the same as An(d), but
rearranged so that all of the En−1(a) tiles appear in the lower left corner, all the En−1(b)

appear in the lower right, all the En−1(c) appear in the upper left, and all the En−1(d) appear
in the upper right. On even levels, the n-supertiles are built from the (n−1)-supertiles exactly
as for the accelerated DPV, only with one En−1(d) in each n-supertile replaced by an En−1(e).
Finally, we induce on even levels to obtain a prototile-regular fusion S.

As before, if we choose the sequence N (n) to grow sufficiently fast, and if we give the
prototiles the same shape as the asymptotic supertiles, with the a, b, c, d prototiles having
dimensions φ × φ, φ × 1, 1 × φ and 1 × 1, then the scrambled Fibonacci DPV space is
topologically weakly mixing but has pure point measurable spectrum, being measurably
conjugate to the unscrambled Fibonacci DPV. However, if we choose the prototiles to be unit
squares, then every α ∈ Z× Z is manifestly a topological eigenvalue.

This discrepancy means that the deformation theory for the scrambled DPV is not the
same as for the unscrambled DPV. Either the first cohomologies are different, or, more
likely, the cohomologies are isomorphic but the two tilings have different “asymptotically
negligible” [16] subspaces of Ȟ1(X, R

2) that describe deformations that are topological
conjugacies but that are not mutually locally derivable from the original. As for Ȟ2, the rank
must be at least 64, since the control patches for the Fibonacci DPV are still present in the
scrambled DPV.

This example suggests two directions for future work. One is to understand deformation
theory better, and in particular the role of the asymptotically negligible classes. These are
well-understood for substitution tilings, but not for fusions. Another is to develop new tech-
niques for computing tiling cohomology for spaces that do not come from substitutions. The
Anderson–Putnam and Barge–Diamond complexes were defined in Sect. 5 for all tilings, but
almost every existing method for studying these complexes relies on an underlying substitu-
tion.

Example 6.4 (A non-Pisot DPV.) We base this DPV on the one-dimensional substitution
a → abbb, b → a, which despite its apparent similarity to the Fibonacci DPV exhibits
significantly different dynamical behavior. The prototile set is the same as for the Fibonacci
DPV, and again we choose the fusion to be both prototile- and transition-regular. This time
we choose our fusion rule at each stage to be given by
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Recognizability is easily established, almost exactly as with the Fibonacci DPV.
The transition matrix has ((1 + √13)/2)2 as its largest eigenvalue, which is not a

Pisot number. The side lengths of the supertiles grow as solutions to the recursion ln+1 =
ln + 3sn, sn+1 = ln , which are nontrivial linear combinations of ((1±√13)/2)n . Since both
of those numbers are greater than one in modulus, the side lengths are not well-approximated
by powers of the positive eigenvalue. The effect this has on the system is profound. It
means that the combinatorics of the fusion tilings are exceptionally complicated, in that
the number of ways that n-supertiles can be adjacent to one another grows without bound as
n→∞.

This increasing complexity with scale shows up in the topology of XR. Both Ȟ1 and
Ȟ2 are infinitely generated, the first indicating that there are infinitely many “interesting”
deformations of size and shape, and the second indicating that there are infinitely many
control patterns. Unlike the Fibonacci DPV, changes in tile sizes, while preserving the fusion
rule, can change the dynamics and in fact the topology of the tiling space. If we were to
choose irrationally related side lengths for our prototiles, then the resulting tiling would not
have finite local complexity [26].

Examples 6.1 and 6.4 lead us to a discussion of the combinatorial and geometric behavior
of supertiles as n → ∞. In some cases one or the other will approach a limit as n → ∞.
Consider a prototile-regular fusion rule, and suppose that there is some invertible linear map
L : R

d → R
d such that limn→∞ L−n Pn(p) exists for each prototile type. If in addition

the combinatorics of how the (n − 1)-supertiles lie inside their n-supertiles stabilizes for
large values of n, then we call the fusion rule asymptotically self-affine (or -similar if L is
a similarity). This means that there is a self-affine tiling that is related to the fusion tiling.
The precise nature of the relationship varies, and no general theorems about it are known to
the authors at this time. Both of the previous examples are asymptotically self-similar, with
the limiting prototile sets having edge lengths in the ratios φ : 1 in the Fibonacci case and
(1+√13) : 2 in the non-Pisot case.

A fusion tiling may have finite local complexity in the usual sense while failing to be
locally finite in an asymptotic sense. We call a fusion rule asymptotically FLC if there is a
constant B such that each pair of n-supertiles can form at most B connected two-supertile
patches. Example 6.1 is asymptotically FLC, but Example 6.4 is not. If an asymptotically self-
affine tiling is not asymptotically FLC, then the self-affine tiling obtained from the limiting
shapes will have infinite local complexity.
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