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Abstract Let M be a compact connected orientable 3-manifold, with non-empty boundary
that contains no two-spheres. We investigate the existence of two properly embedded disjoint
surfaces S1 and S2 such that M − (S1 ∪ S2) is connected. We show that there exist two such
surfaces if and only if M is neither a Z2 homology solid torus nor a Z2 homology cobordism
between two tori. In particular, the exterior of a link with at least three components always
contains two such surfaces. The proof mainly uses techniques from the theory of groups,
both discrete and profinite.
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1 Introduction

In 3-manifold theory, properly embedded surfaces play a key role. It is particularly interesting
when a compact 3-manifold M contains two properly embedded disjoint surfaces S1 and S2

such that M − (S1 ∪ S2) is connected. It is this scenario that we will investigate in this paper.
Our aim is to show that the 3-manifolds where this situation occurs are actually very plentiful.
Moreover, we will see how algebraic methods can be profitably used to detect the existence
of such a pair of surfaces. In particular, the infinite dihedral group Z2 ∗ Z2 will play a central
role. This is because a compact connected 3-manifold M contains a pair of such surfaces if
and only if π1(M) admits a surjective homomorphism onto Z2 ∗ Z2 (see Theorem 3.1.)

Note that we do not require that S1 and S2 are two-sided. The existence of two disjoint
properly embedded two-sided surfaces S1 and S2 in a 3-manifold M with M − (S1 ∪ S2)

connected appears to be a much more rare occurrence, and is equivalent to the existence of a
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surjective homomorphism π1(M) → Z ∗ Z. (See [1] for example, where obstructions to the
existence of such a homomorphism are given.)

The following is our main result.

Theorem 1.1 Let M be a compact connected orientable 3-manifold, and suppose that ∂M
is non-empty and contains no 2-spheres. Then M contains two properly embedded disjoint
surfaces S1 and S2 such that M − (S1 ∪ S2) is connected if and only if M is neither a Z2

homology solid torus nor a Z2 homology cobordism between two tori.

Corollary 1.2 Let L be a link in S3. Then the exterior X of L contains two properly embedded
disjoint surfaces S1 and S2 such that X − (S1 ∪ S2) is connected if and only if one of the
following holds:

(i) L has at least three components, or
(ii) L has two components, which have even linking number.

It is an interesting and not completely straightforward exercise to construct such surfaces
in the exterior of the Whitehead link. We will do so explicitly in Sect. 4.

The case of two-component links was studied by Hillman in [3], where he stated Corol-
lary 1.2 in this case. (It appears in the middle of the second full paragraph on p. 176 in [3].)

The plan of the paper is as follows. In Sect. 2, we prove the foundational result that the
existence of a surjective homomorphism from a finitely generated group G onto Z2 ∗ Z2

is equivalent to the existence of an index two subgroup K of G with b1(K ) > b1(G).
In Sect. 3, we first prove that, for a compact connected 3-manifold M , the existence of a
surjective homomorphism π1(M) → Z2 ∗ Z2 is equivalent to the existence of two properly
embedded disjoint surfaces as in the statement of Theorem 1.1. We then use these two
facts to prove one direction of Theorem 1.1. The starting point is the well-known inequality
b1(M) ≥ b1(∂M)/2 for any compact orientable 3-manifold M (see Lemma 3.5 in [2] for
example). Assuming that M is a 3-manifold as in Theorem 1.1 which is neither a Z2 homology
solid torus nor a Z2 homology cobordism between two tori, we find a double cover M̃ of
M such that b1(∂ M̃) > b1(∂M), and, after some work, we deduce that b1(M̃) > b1(M).
The results in Sect. 2 and earlier in Sect. 3 then give the required surfaces. The existence
of these two surfaces is thereby proved, but the construction is group-theoretic and far from
explicit. In Sect. 4, we give a more geometric way of finding these surfaces, which can be
used easily in practice. We examine the case of the exterior of the Whitehead link, which
is an instructive example. In Sect. 5, we introduce methods from profinite group theory. We
show that the existence of a surjective homomorphism from a finitely generated group G to
Z2 ∗Z2 is detected by the pro-2 completion of G. These profinite techniques are used to prove
the other direction of Theorem 1.1, which establishes that certain 3-manifolds as described
in the theorem do not contain two disjoint properly embedded surfaces whose union is non-
separating. In Sect. 6, we also use profinite group theory to control the Z2 homology classes
of the surfaces for certain 3-manifolds. For example, we show that in the case where M is a
compact orientable 3-manifold that has the same Z2 homology as a handlebody (other than a
solid torus), then S1 and S2 may be chosen to represent any pair of distinct non-trivial classes
in H2(M, ∂M; Z2). The key input here is the fact that, in this case, π1(M) has the same
pro-2 completion as a non-abelian free group. In Sect. 7, we pose some questions, which
may stimulate further research in this area.
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2 Surjections to the infinite dihedral group

We start with the following group-theoretic result.

Theorem 2.1 Let G be a finitely generated group, and let K be an index two subgroup. Then
the following are equivalent:

(i) There is a surjective homomorphism φ : G → Z2 ∗ Z2 such that K is the kernel of πφ,
where π : Z2 ∗ Z2 → Z2 is the homomorphism which is an isomorphism on each factor.

(ii) b1(K ) > b1(G).

Note that this has the following immediate corollary.

Corollary 2.2 Let G be a finitely generated group. Then the following are equivalent:

(i) There is a surjective homomorphism G → Z2 ∗ Z2.
(ii) For some index two subgroup K of G, b1(K ) > b1(G).

Proof of Theorem 2.1 (i) ⇒ (ii). Suppose that there is a surjective homomorphism φ : G →
Z2 ∗ Z2 such that K is the kernel of πφ. We claim that b1(K ) > b1(G).

Now, the inclusion i : K → G induces a homomorphism i∗ : H1(G; R) → H1(K ; R).
This is clearly an injection. This is because H1(G; R) may be viewed as the set of homo-
morphisms G → R and if a homomorphism G → R is zero when restricted to K , then it is
zero on all of G.

We will show that in fact this injection i∗ is not a surjection. This will prove that b1(K ) >
b1(G) as required.

The kernel of the homomorphism π is a subgroup A of Z2 ∗ Z2 that is infinite cyclic. Let
ψ be the composition K → A → R, where the first map is the restriction of φ to K and the
second map is the standard inclusion of the infinite cyclic group into R. We will show that
ψ is not in the image of i∗.

For suppose that ψ is in this image. This means that ψ extends to a homomorphism
ψ̃ : G → R. Let a and b be generators of the factors of Z2 ∗Z2. Let ga and gb be elements of
G that are sent by φ to these generators. Then ga gb lies in K and its image under ψ is 1, say.
On the other hand, gbga also lies in K and its image under ψ is −1, because ab and ba are
inverses. But, because R is an abelian group, ψ(ga gb) = ψ̃(ga gb) = ψ̃(gbga) = ψ(gbga),
which is a contradiction.

(ii) ⇒ (i). Let K be an index two subgroup of G with b1(K ) > b1(G). Let V be the vector
space H1(K ; R). This acted on by G/K = Z2 via the conjugation action of G on K . Let τ
be the automorphism of H1(K ; R) induced by the non-trivial element of G/K . Since τ is
an involution, it gives rise to a decomposition V = V− ⊕ V+, where V− and V+ are the −1
and +1 eigenspaces of τ .

We claim that the eigenspace V+ consists of precisely the homomorphisms K → R that
extend to G. For suppose that a homomorphism ψ : K → R extends to a homomorphism
ψ̃ : G → R. Let g be an element of G − K . The image of ψ under τ sends k ∈ K to
ψ(g−1kg) = ψ̃(g−1kg) = ψ̃(k) = ψ(k). So, ψ lies in V+. Conversely, suppose that
ψ : K → R lies in V+ and is therefore invariant under τ . Then we extend ψ to ψ̃ : G → R

by defining

ψ̃(k) = ψ(k)

ψ̃(gk) = ψ(k)+ (ψ(g2))/2.

Here, g is a fixed element of G − K , and k is an arbitrary element of K . It is easy to check
that ψ̃ is a homomorphism, which clearly extends ψ . This proves the claim.
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So, the dimension of V+ is b1(G). Now, we are assuming that b1(K ) > b1(G), and so V−
is therefore non-zero. We can view H1(K ; Z) as a lattice in H1(K ; R), consisting of those
homomorphisms K → R that have image in Z. The action of G/K on H1(K ; R) leaves
this lattice invariant as a set, simply because it sends a homomorphism K → Z to another
such homomorphism. Thus, we may find non-zero elements of H1(K ; Z) ∩ V−, as follows.
Take any element α of H1(K ; Z) not in V+, and consider α − τα, where τα is the image
of α under the action of τ . Thus, as we know that H1(K ; Z) ∩ V− is non-zero, we may find
a primitive element ψ in H1(K ; Z) ∩ V−. This corresponds to a surjective homomorphism
ψ : K → Z. We now use this to define a surjective homomorphism φ : G → Z2 ∗ Z2. Pick
any element g in G − K . Note that g2 ∈ K and that ψ(g2) = ψ(g−1g2g) = −ψ(g2), and
hence ψ(g2) = 0. Define a function

G
φ−→ Z2 ∗ Z2

k 
→ (ab)ψ(k),

gk 
→ a(ab)ψ(k).

Here k is an arbitrary element of K . This is easily checked to be a homomorphism. For
example, suppose that k1, k2 ∈ K . We check that φ(k1)φ(gk2) = φ(k1gk2):

φ(k1)φ(gk2) = (ab)ψ(k1)a(ab)ψ(k2)

φ(k1gk2) = φ(g(g−1k1g)k2) = a(ab)−ψ(k1)(ab)ψ(k2) = a(ba)ψ(k1)(ab)ψ(k2).

We also check that φ(gk1)φ(gk2) = φ(gk1gk2):

φ(gk1)φ(gk2) = a(ab)ψ(k1)a(ab)ψ(k2) = (ab)−ψ(k1)+ψ(k2)

φ(gk1gk2) = φ(g2(g−1k1g)k2) = (ab)ψ(g
2)(ab)−ψ(k1)(ab)ψ(k2).

This homomorphism φ is surjective. This can be seen as follows. Since ψ is surjective, there
is some k ∈ K such that ψ(k) = 1. So, φ(gk) = aab = b, and φ(kgk) = φ(k)φ(gk) =
abb = a.

Finally, note that Ker(π) = A consists of precisely those elements of Z2 ∗ Z2 of the form
(ab)m for some m ∈ Z. So, the kernel of πφ is exactly K , as required. This proves the
theorem. ��

3 Constructing disjoint surfaces in 3-manifolds

The following is fairly well known. See, for example [4], where a related result is proved.

Theorem 3.1 Let M be a compact connected 3-manifold. Then, the following are equivalent:

(i) There is a surjective homomorphism π1(M) → Z2 ∗ Z2.
(ii) There are two disjoint properly embedded surfaces S1 and S2 in M such that M−(S1∪S2)

is connected.

Proof (ii) ⇒ (i). Suppose that there are surfaces S1 and S2 as in (ii). We will use these to define
a continuous map f : M → (RP3)∨ (RP3) such that f∗ : π1(M) → π1((RP3)∨ (RP3)) =
Z2 ∗ Z2 is surjective.

Let N (S1) and N (S2) be disjoint regular neighbourhoods of S1 and S2. Then N (Si ) is an
I -bundle over Si in which Si lies as a zero-section. We now define a map fi : N (Si ) → RP3.
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Pick a cell structure on Si . This lifts to a cell structure on S̃i = cl(∂N (Si )−∂M), which is
the (∂ I )-bundle over Si . This extends to a cell structure on N (Si ), as follows. The fibre over
each 0-cell of Si becomes a 1-cell of N (Si ). The interior of each 1-cell of Si has inverse image
in N (Si )− S̃i that is an open disc, which we declare to be the interior of a 2-cell. Similarly,
each 2-cell of Si induces a 3-cell of N (Si ). We define fi one cell at a time, starting with the
0-cells, then the 1-cells and so on. Give RP3 the usual cell structure, with one 0-cell, one
1-cell, one 2-cell and one 3-cell. Now define fi on the 0-cells of N (Si ), by sending them to
the unique 0-cell of RP3. Map each 1-cell of N (Si ) that misses Si also to the 0-cell of RP3.
Send each 1-cell of N (Si ) that intersects Si around the 1-cell of RP3 so that the interior of
the cell is mapped in homeomorphically. There are two different ways of doing this. We pick
one arbitrarily. The 2-cells of N (Si ) come in two varieties. There are 2-cells that lie in S̃i . We
send these to the 0-cell of RP3. The 2-cells that are vertical in N (Si ) we map to the 2-cell of
RP3. This is possible because the boundary of each vertical 2-cell of N (Si ) runs over two
vertical 1-cells, and so its boundary has been mapped to a loop in RP3 that is homotopically
trivial. Finally, the 3-cells of N (Si ) may be mapped in because π2(RP3) = 0.

Thus, we have defined a map fi : N (Si ) → RP3. Note that the image of S̃i is the 0-cell
of RP3.

Now form the wedge RP3 ∨ RP3 by gluing the two copies of RP3 along the 0-cells.
We may define f : M → RP3 ∨ RP3 by sending points outside of N (S1) ∪ N (S2) to the
basepoint of the wedge, and by mapping in N (Si ) to the i th copy of RP3 using fi .

We claim that f∗ : π1(M) → π1((RP3) ∨ (RP3)) is a surjection. Give M a basepoint
that is disjoint from N (S1) ∪ N (S2). We just have to find based loops �1 and �2 in M such
that the image of �i is the generator for the i th factor of π1((RP3) ∨ (RP3)). Pick a path
from the basepoint of M to one of the 0-cells of N (Si ), so that the interior of the path misses
N (S1)∪ N (S2). Then continue this path across the 1-cell that intersects Si . Then run the path
back to the basepoint of M , again with the interior of the path avoiding N (S1)∪ N (S2). This
is possible because we are assuming that M − (S1 ∪ S2) is connected. The result is a based
loop �i with the required properties.

(i) ⇒ (ii). Suppose that there is a surjective homomorphism φ : π1(M) → Z2 ∗ Z2.
Consider RP2 ∨ RP2. Give each copy of RP2 the standard cell structure, and suppose

that these two copies of RP2 are glued along their 0-cells. In the interior of each 1-cell, pick
a point, and in each 2-cell, pick a properly embedded arc with endpoints equal to one of these
points. Let α1 and α2 be the resulting disjoint simple closed curves in RP2 ∨ RP2.

Pick a triangulation T for M , and let T (1) and T (2) be its 1-skeleton and 2-skeleton. It is
shown in the proof of Theorem 3.6 in [4] that φ is induced by a map f : T (2) → RP2 ∨RP2

with the following properties:

(1) For i = 1 and 2, f −1(αi ) is disjoint from the 0-skeleton of T and intersects the 1-skeleton
in finitely many points. Moreover, f −1(αi ) intersects each face of T in a collection of
properly embedded arcs, with boundary equal to f −1(αi )∩T (1). (In [4], this arrangement
is called a regular mod 2 cocycle, where each interior vertex has valence 2. Note also the
space referred to as L(2) in [4] is just RP2.)

(2) f −1(α1 ∪ α2) is non-separating in T (2).

We now extend f −1(α1) and f −1(α2) to disjoint surfaces S1 and S2 properly embedded
in M . For each tetrahedron 	 of T, f −1(α1) and f −1(α2) intersect this tetrahedron in a
collection of simple closed curves in the boundary of 	. We attach a collection of disjoint
discs properly embedded in 	 to these curves.

Note that S1 ∪ S2 is non-separating. For consider two points in the complement of S1 ∪ S2.
We may find paths in M − (S1 ∪ S2) from these points to the 2-skeleton of T . Because
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f −1(α1 ∪ α2) is non-separating in T (2), we may find a path joining these two points in the
complement of S1 ∪ S2. ��
Remark 3.2 Note that we can gain control over the mod 2 homology classes of the surfaces
S1 and S2 in Theorem 3.1, in terms of the surjective homomorphism φ : π1(M) → Z2 ∗ Z2.
We see from the construction that the composition of φ with projection Z2 ∗ Z2 → Z2 onto
the i th factor is equal to the homomorphism π1(M) → Z2 that counts the mod 2 intersection
number with Si .

We can now prove one direction of Theorem 1.1. Suppose that M is a compact connected
orientable 3-manifold and that ∂M is non-empty and contains no two-spheres. Suppose also
that M is neither a Z2 homology solid torus nor a Z2 homology cobordism between two tori.
Then, we wish to show that M contains two disjoint properly embedded surfaces S1 and S2

in M such that M − (S1 ∪ S2) is connected. By Theorem 3.1, this is equivalent to π1(M)
admitting a surjective homomorphism onto Z2 ∗ Z2. By Corollary 2.2, this is equivalent to
the existence of an index 2 subgroup K of π1(M) such that b1(K ) > b1(M). To find such a
subgroup, we use the following lemma.

Lemma 3.3 Let M be a compact orientable 3-manifold, and let M̃ be a double cover of M
such that genus(∂ M̃) > genus(∂M). Then b1(M̃) > b1(M).

Proof Let p : M̃ → M be the covering map. It is argued in the proof of Theorem 2.1 that
p∗ : H1(M; R) → H1(M̃; R) is an injection. The same is true of (p|∂ M̃)∗ : H1(∂M; R) →
H1(∂ M̃; R). However, an alternative proof is required, because ∂M may be disconnected
and so an argument involving the fundamental group is not immediately appropriate. Instead,
we consider the transfer homomorphism t : H1(∂ M̃; R) → H1(∂M; R). Recall that this
is defined by sending a cocycle c ∈ C1(∂ M̃; R) to the cocycle tc ∈ C1(∂M; R), where
tc(e) = c(ẽ1)+c(ẽ2). Here e is an oriented edge in some cell structure on ∂M , and e1 and e2

are its inverse images in ∂ M̃ . It is well known that this gives a well-defined homomorphism
t : H1(∂ M̃; R) → H1(∂M; R). It is clear the composition t ◦ (p|∂ M̃)∗ : H1(∂M; R) →
H1(∂M; R) is the homomorphism that multiplies by 2. This is implies that (p|∂ M̃)∗ is an
injection, as required.

Now consider the commutative diagram

H1(M; R)
p∗

−→ H1(M̃; R)

↓ ↓
H1(∂M; R)

(p|∂ M̃)∗−→ H1(∂ M̃; R)

where the vertical arrows are the homomorphisms induced by inclusion. It is a well-known
consequence of Poincaré duality that, for the compact orientable 3-manifold M , the image of
H1(M; R) → H1(∂M; R) has dimension equal to exactly half the dimension of H1(∂M; R)

(see the proof of Lemma 3.5 in [2] for example). A similar statement is true for M̃ .
Suppose now that b1(M̃) ≤ b1(M). Then p∗ : H1(M; R) → H1(M̃; R) is therefore an

isomorphism. So,

Im(H1(M̃; R) → H1(∂ M̃; R))

= Im(H1(M; R) → H1(∂ M̃; R))

∼= Im(H1(M; R) → H1(∂M; R)).

Hence, b1(∂ M̃) = b1(∂M). But this is equivalent to the statement that ∂ M̃ and ∂M have the
same genus, which is contrary to hypothesis. ��
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We now return to the proof of one direction of Theorem 1.1.

Case 1 ∂M has a component which is not a torus.
Then,χ(∂M) < 0. Pick any double cover M̃ → M . Then,χ(∂ M̃) = 2χ(∂M) < χ(∂M).

Also, |∂ M̃ | ≥ |∂M |. This implies that

genus(∂ M̃) = −χ(∂ M̃)+ 2|∂ M̃ |
2

>
−χ(∂M)+ 2|∂M |

2
= genus(∂M),

as required.

Case 2 ∂M is at least three tori.
Then, H1(M; Z2) has rank at least three. Pick some torus T in ∂M . Then the homomor-

phism H1(M; Z2) → H1(T ; Z2) that is induced by inclusion has non-zero kernel. Pick some
non-zero element in this kernel, and let M̃ be the corresponding double cover of M . Then, the
inverse image of T in M̃ is two copies of T . So, genus(∂ M̃) = |∂ M̃| > |∂M | = genus(∂M),
as required.

Case 3 ∂M consists of two tori.
So, H1(M; Z2) has rank at least two. Now it cannot be the case that, for each torus T

in ∂M, H1(M; Z2) → H1(T ; Z2) is an isomorphism. For this would imply that M is a Z2

homology cobordism between the two components of ∂M , and this is contrary to assumption.
So, for some component T of ∂M, H1(M; Z2) → H1(T ; Z2) is not an isomorphism, and is
therefore not injective. As in Case 2, we consider a double cover M̃ of M corresponding to
a non-zero element in the kernel. This has genus(∂ M̃) > genus(∂M), as required.

Case 4 ∂M is a single torus T .
Then, H1(M; Z2) has rank at least 1. In fact, it must have rank at least 2, since otherwise

M is a Z2 homology solid torus. But the image of H1(M; Z2) → H1(T ; Z2) has rank one,
and so again, there is a non-trivial element in its kernel. The argument then proceeds as in
Cases 2 and 3. ��

4 Making the construction explicit

In the previous section, we completed the proof of one direction of Theorem 1.1, thereby
establishing the existence of pairs of disjoint surfaces in many 3-manifolds whose union is
non-separating. However, the proof is rather algebraic, and so it is hard to see how the surfaces
arise explicitly. In this section, we will remedy this defect, by providing an alternative way
of constructing these surfaces that is considerably more geometric.

A key part of the construction was to find a double cover M̃ → M for which
b1(M̃) > b1(M). We saw in the proof of Theorem 2.1 that there is then a non-trivial primitive
element α of H1(M̃; Z) that is in the −1 eigenspace of the action of the non-trivial covering
transformation τ .

We will show that the surfaces S1 and S2 required by Theorem 1.1 may be constructed as
follows:

1. Find a compact, oriented, properly embedded, non-separating surface S in M̃ that is dual
to α and that is invariant under the covering transformation τ , but for which τ reverses the
orientation. We will prove below that such a surface S always exists. Since τ reverses the
orientation of S, its image in M is unoriented and typically non-orientable. This image
will be one of the surfaces, say S1.
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2. Cut M̃ along S to give a compact orientable 3-manifold M ′. The involution τ restricts
to M ′, and it swaps the two copies of S in ∂M ′ (called S− and S+, say). The next stage
is to find a properly embedded surface S′ in M ′ that is disjoint from S− ∪ S+ and that
is invariant under τ . It must separate M ′ into two components, one containing S−, the
other containing S+. Thus, τ swaps these two components. Again, the existence of such
a surface will be established below. In practice, it is not hard to find. The image of S′ in
M will be S2.

Note that if these surfaces S and S′ exist, as claimed above, then their images S1 and S2

in M have the required properties. Note that S and S′ are properly embedded and disjoint,
by construction, and are the inverse images of S1 and S2. Hence, S1 and S2 are also properly
embedded and disjoint. Also, M̃ − (S ∪ S′) has two components that are swapped by τ . So,
M − (S1 ∪ S2) is connected, as required.

We now show that the surfaces S and S′ always exist. We know from Theorem 1.1
that M contains properly embedded disjoint surfaces S1 and S2 such that M − (S1 ∪ S2)

is connected. Also, from the proof of Theorem 1.1, M̃ is the double cover of M cor-
responding to [S1] + [S2] ∈ H2(M, ∂M; Z2). This cover is constructed as follows.
Let S̃1 and S̃2 be cl(∂N (S1) − ∂M) and cl(∂N (S2) − ∂M). These are (possibly dis-
connected) double covers of S1 and S2, respectively. Then M̃ is constructed by glu-
ing together two copies of cl(M − N (S1 ∪ S2)), a copy of S̃1 × [−1, 1] and a copy
of S̃2 × [−1, 1], as follows. We attach S̃1 × {1} and S̃2 × {1} to one copy of cl(M −
N (S1 ∪ S2)), using the identity map. But we attach S̃1 × {−1} to the other copy of
cl(M − N (S1 ∪ S2)) via the covering involution on S̃1. We attach S̃2 × {−1} in a simi-
lar way.

We take S and S′ to be the inverse image in M̃ of S1 and S2. These have the required
properties. For example, S is S̃1 × {0} which is transversely oriented in the product bundle
S̃1 × [−1, 1]. Hence it is oriented. Also, the covering transformation on M̃ reverses this
transverse orientation, and hence reverses the orientation on S. Note that S is an oriented
surface, properly embedded and non-separating in M̃ . Hence, it represents a non-trivial
primitive element of H1(M̃; Z). Since τ preserves S but reverses its orientation, this class is
in the −1 eigenspace.

Thus, the existence of S and S′ is proved using the existence of S1 and S2. But in practice,
it is easiest to find S and S′ first, and from these, construct S1 and S2.

We give a concrete example. Let M be the exterior of the Whitehead link L1 ∪ L2, shown
in the left in Fig. 1. Let M̃ be the double cover of M that corresponds to the kernel of the
homomorphism π1(M) → Z2 which counts linking number mod 2 with L2. Since L2 is
unknotted, M̃ is the exterior of link in S3 shown in the right of Fig. 1. The link has three
components, whereas the Whitehead link has two, and so b1(M̃) > b1(M). The surface
S shown in the right of Fig. 1 is non-separating, orientable and properly embedded in M̃ .
The covering involution τ of M̃ preserves S but reverses its orientation. Thus, Step 1 above
applies, and we may take S1 to be the image of S in M . This is shown in the left of Fig. 1.

The surface S′ is not quite so easy to see. Let D be the disc properly embedded in the
exterior of S1 shown in Fig. 2. Its inverse image in M̃ is two discs D̃ properly embedded in the
exterior of S. Now M ′ (the exterior of S) is a sutured manifold because when S is oriented,
the two copies of S in ∂M ′ naturally point into and out of M ′. Let γ ′ be its sutures. The discs
D̃ form product discs. We orient them in such a way that this orientation is reversed by the
covering involution. Let M ′

2 be obtained by decomposing M ′ along D̃. This is homeomorphic
to T 2 × [0, 1]. One component of its boundary, say T 2 × {0}, contains two sutures γ ′

2; the
other has none. The covering involution τ restricts to an involution of M ′

2, which preserves
the product structure on T 2 × [0, 1] and preserves the sutures. However, it swaps the inward
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Fig. 1 The surface S1 in the exterior of the Whitehead link
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Fig. 2 Discs in the exteriors of S1 and S

component of D x I

γ

γ

~

γ

γ

band is attached to this curve

Fig. 3 One of the bands that are attached to A′ to form S′

and outward-pointing parts of ∂M ′
2. Let A′ be the vertical annuli γ ′

2 × [0, 1] in T 2 × [0, 1].
Now, inside ∂M ′

2 lies two copies of D̃, which therefore forms four discs. The sutures γ ′
2 run

over each of these discs in a single arc.
When we reverse the sutured manifold decomposition, to form M ′ from M ′

2, we attach
D̃× I to M ′

2. Inside each component of D̃× I , we may insert a band of the form [0, 1]×[0, 1]
where [0, 1] × {0, 1} lies in γ ′

2 and {0, 1} × [0, 1] lies in γ ′ (see Fig. 3). Attaching these two
strips to A′ forms the required surface S′. It is properly embedded in M ′ and is disjoint from
S. It is invariant under the action of τ . Also, it separates M ′ into two components, which are
swapped by τ .
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L1

S2

L2

Fig. 4 The surface S2 in the exterior of the Whitehead link

Let S2 be the image of S′ in M . This can be seen as follows. The image of D̃ in the exterior
of S1 is the disc D. One cannot call it a product disc because the exterior of S1 is not a sutured
manifold. Nevertheless, one can cut the exterior of S1 along D to form a space M2 which is
also homeomorphic to T 2 × I . This is the quotient of M ′

2 under τ . The image of γ ′
2 is a single

curve in ∂M2. Let A be the vertical annulus over this in T 2 × I . This is properly embedded
in M2. Reconstruct the exterior of S1 from M2 by reattaching D × I . Inside D × I , we may
find a band. Attaching this band to A gives the surface S2. It is a twice-punctured projective
plane. It has two boundary components, one lying in L1 and one lying in L2. It is disjoint
from S1, and S1 ∪ S2 is non-separating.

The surface S1 is easy to see, but the difficulty in visualising S2 perhaps arises from the
fact that its boundary component on L2 has slope 2/1. Note that it is a spanning surface for
L1 ∪ L2. In fact, it is shown in Fig. 4, after an isotopy. This was constructed by retracting the
annulus A a little so that it lies in a small regular neighbourhood of L2, and then attaching
the band to form S2.

5 Profinite methods

We still need to prove one direction of Theorem 1.1. We will show that if M is a compact
orientable 3-manifold that is either a Z2 homology solid torus or a Z2 homology cobordism
between two tori, then it cannot support the surfaces S1 and S2 that are described in the
theorem. In the course of this proof, we will introduce some techniques from the theory of
pro-p groups. These will turn out to have other uses. In particular, we will be able to use them
to gain control of the Z2 homology classes of the surfaces S1 and S2 for certain 3-manifolds
M .

Let p be a prime. Recall that the pro-p completion ̂�(p) of a group � is the inverse limit
of all its finite quotients that are p-groups. More precisely, an element of ̂�(p) is a choice, for
each normal subgroup N of � with index a power of p, of an element gN of �/N , subject to
the following compatibility condition. Whenever N and N ′ are normal subgroups of � with
index that are powers of p, and satisfying N ≥ N ′, then we insist that gN ′ maps to gN under
the quotient map �/N ′ → �/N .
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The definition of ̂�(p) is phrased in terms of normal subgroups of � with index a power
of p. However, ̂�(p) contains information about a wider class of subgroups of � which are
defined as follows. We say that a subgroup N of � is co-p if there is a sequence of finite
index subgroups

� = N0 ≥ N1 ≥ · · · ≥ Nk = N

such that each Ni is normal in Ni−1 and has index a power of p. The terminology co-p is
not standard. The usual phrase is ‘subnormal with index a power of p’.

The following is a rapid consequence of the definition of ̂�(p).

Proposition 5.1 Let G and � be finitely generated discrete groups, and let p be a prime.
Suppose that there is a group isomorphismφ : ̂G(p) → ̂�(p) between their pro-p completions.
Then the following hold.

(i) There is an induced bijection (also denoted φ) between the set of co-p subgroups of G
and the set of co-p subgroups of �.

(ii) For a co-p subgroup N of G, [G : N ] = [� : φ(N )].
(iii) If N is any co-p subgroup of G, then N is normal in G if and only if φ(N ) is normal in

�. In this case, G/N is isomorphic to �/φ(N ).
(iv) If N and N ′ are co-p subgroups of G, then N ⊂ N ′ if and only if φ(N ) ⊂ φ(N ′).
(v) If N is a co-p subgroup of G, then N and φ(N ) have isomorphic pro-p completions.

Thus, an isomorphism between ̂G(p) and̂�(p) entails a strong correspondence between the
co-p subgroups of G and the co-p subgroups of �. Slightly surprisingly, ̂�(p) also controls
the first Betti number of �.

Proposition 5.2 Let G and� be finitely generated groups with isomorphic pro-p completions
for some prime p. Then b1(G) = b1(�).

Proof By (iii) of Proposition 5.1, there is a one-one correspondence between the quotients
of G that are abelian p-groups and the similar set of quotients of �. But G surjects onto
(Z/pk

Z)l for all k ∈ N if and only if l ≤ b1(G). So, b1(G) = b1(�). ��
These results imply that, for a finitely generated group �, the existence of a surjective

homomorphism from � onto the infinite dihedral group is determined by ̂�(2).

Theorem 5.3 Let G and � be finitely presented groups with isomorphic pro-2 completions.
Then G admits a surjective homomorphism onto Z2 ∗ Z2 if and only if � does.

Proof Suppose that G admits a surjective homomorphism onto Z2 ∗ Z2. Then, by Corol-
lary 2.2, G has an index two subgroup G ′ with b1(G ′) > b1(G). Index 2 subgroups are
normal and hence co-2. So, using Proposition 5.1, G ′ corresponds to a subgroup �′ of �
with index 2. Also by Proposition 5.1, G ′ and �′ have isomorphic pro-2 completions. So, by
Proposition 5.2, b1(G ′) = b1(�

′). Similarly, b1(G) = b1(�), and hence b1(�
′) > b1(�).

So, by Corollary 2.2, � admits a surjective homomorphism onto Z2 ∗ Z2. ��
The following result shows that the existence of an isomorphism between pro-p comple-

tions is surprisingly common.

Theorem 5.4 Suppose that there is a homomorphism φ : G → � between finitely pre-
sented groups that induces an isomorphism H1(G; Zp) → H1(�; Zp) and a surjection
H2(G; Zp) → H2(�; Zp). Then φ induces an isomorphism between the pro-p completions
of G and �.
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This is a fairly well known consequence of work of Stallings [6], and a proof can be found
in [5] (see Theorem 2.12 of [5]).

Note that for any finite cell complex M , there is a surjective homomorphism H2(M; Zp) →
H2(π1(M); Zp). This is because H2(π1(M); Zp) is the homology of an Eilenberg–Maclane
space K (π1(M); 1), which can be obtained from M by attaching cells in dimensions 3 and
higher.

We are now in a position to prove the remaining direction of Theorem 1.1. Let M be a
compact orientable 3-manifold with non-empty boundary that contains no two-spheres.

Suppose first that M is a Z2 homology solid torus. In other words, H1(M; Z2) = Z2

and H2(M; Z2) = 0. Let � be π1(M). Then H1(�; Z2) = Z2 and H2(�; Z2) = 0. Let
φ : Z → � be a homomorphism that sends a generator of Z to an element of � that is non-
trivial in H1(�; Z2). Then φ induces isomorphisms on first and second homology with Z2

coefficients. Therefore, by Theorem 5.4 the pro-2 completions of Z and � are isomorphic.
Since there is no surjective homomorphism from Z to Z2 ∗ Z2, the same is therefore true for
�, by Theorem 5.3.

Now suppose that M is a Z2 homology cobordism between two tori T1 and T2. Then,
by assumption, i∗ : H1(T1; Z2) → H1(M; Z2) is an isomorphism, where i : T1 → M is
inclusion. We will also show that i∗ : H2(T1; Z2) → H2(M; Z2) is a surjection. Now there
is an exact sequence

H2(T1; Z2)
i∗→ H2(M; Z2) → H2(M, T1; Z2)

and so it suffices to show that H2(M, T1; Z2) is trivial. But this is isomorphic to
H1(M, T2; Z2) by Poincaré duality. This fits into an exact sequence

H0(M; Z2)
∼=→ H0(T2; Z2) → H1(M, T2; Z2) → H1(M; Z2)

∼=→ H1(T2; Z2).

So, H1(M, T2; Z2) is trivial, and hence we have shown that i∗ : H2(T1; Z2) → H2(M; Z2)

is a surjection. Now the torus is an Eilenberg–Maclane space and so H2(T1; Z2) =
H2(π1(T1); Z2). Therefore, i∗ : H2(π1(T1); Z2) → H2(π1(M); Z2) is also a surjection.

Hence, using Theorem 5.4, π1(T1) and π1(M) have isomorphic pro-2 completions. Now,
π1(T1) = Z × Z clearly does not admit a surjective homomorphism onto Z2 ∗ Z2. Hence, by
Theorem 5.3, nor does π1(M).

This completes the proof of Theorem 1.1. ��

6 Controlling the homology classes of the surfaces

Given how common it is for a compact orientable 3-manifold M to contain disjoint properly
embedded surfaces S1 and S2 such that M − (S1 ∪ S2) is connected, it is natural to ask which
pairs of classes in H2(M, ∂M; Z2) may be represented by such surfaces. In this section, we
will address this question.

We start by observing that [S1] and [S2] must be non-trivial and distinct. This is because,
when these surfaces exist, there is an associated surjective homomorphism π1(M) → Z2 ∗
Z2. Composing this with the surjection onto the first and second factors, we obtain two
homomorphisms φ1 and φ2 : π1(M) → Z2. These correspond to two classes [φ1] and [φ2]
in H1(M; Z2) and the Poincaré duals of these classes are [S1] and [S2] in H2(M, ∂M; Z2).
Hence, because φ1 and φ2 are distinct non-trivial homomorphisms to Z2, we deduce that [S1]
and [S2] are distinct and non-trivial.
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How much control do we have over [S1] and [S2], given the above restriction? Equiv-
alently, how much control do we have over φ1 and φ2? By Theorem 2.1, the kernel of
(φ1 + φ2) : π1(M) → Z2 is an index two subgroup K of π1(M) such that b1(K ) > b1(M).
Thus, we deduce the following from Theorems 2.1, 3.1 and Remark 3.2.

Proposition 6.1 Let M be a compact connected orientable 3-manifold, and let α be a non-
trivial class in H1(M; Z2). Then, the following are equivalent:

(i) There are disjoint properly embedded surfaces S1 and S2 such that M − (S1 ∪ S2) is
connected, and such that S1 ∪ S2 is dual to α.

(ii) The degree two cover M̃ of M that corresponds to ker(α : π1(M) → Z2) satisfies
b1(M̃) > b1(M).

This controls only the class [S1] + [S2] in H2(M, ∂M; Z2). But nevertheless, it does
constrain which classes can arise, as in the following theorem. The version of this for links
of two-components was proved by Hillman (see Theorem 7.7 in [3]).

Theorem 6.2 Let M be the exterior of a link L in the three-sphere, and let α ∈ H1(M; Z2)

count the linking number mod 2 with L. Then, the following are equivalent:

(i) There are disjoint properly embedded surfaces S1 and S2 such that M − (S1 ∪ S2) is
connected, and such that S1 ∪ S2 is dual to α.

(ii) 	L(−1,−1, . . . ,−1) = 0, where	L(t1, t2, . . . , tn) is the Alexander polynomial of L.
(iii) L has a disconnected compact spanning surface, no component of which is closed.

Proof (i) ⇔ (ii): It is well known that the Alexander polynomial of a link L encodes
information about the homology of the finite abelian covers of its exterior. In particular,
	L(−1, . . . ,−1) equals the determinant of a square presentation matrix for H1(̂M), where
̂M is the double cover of S3 branched over L (see p. 121 of [3] for example). Hence,
b1(̂M) > 0 if and only if 	L (−1, . . . ,−1) = 0. An elementary calculation gives that
b1(̂M) = b1(M̃) − b1(M), where M̃ is the double cover of M dual to α. Thus, applying
Proposition 6.1 completes the proof.

(iii) ⇒ (i): If S is a compact spanning surface for L , then its restriction to M is a properly
embedded surface dual to α. If S is disconnected, then so too is the surface in M . If S is a
spanning surface with no closed components, the surface in M is non-separating.

(i) ⇒ (iii): Let S1 and S2 be disjoint, properly embedded surfaces in M such that S1 ∪ S2

is dual to α, and such that M − (S1 ∪ S2) is connected. We will show how to modify S1

and S2, so that the number of components of M − (S1 ∪ S2) does not increase, and so that
afterwards, S1 ∪ S2 intersects each component of ∂M in a single simple closed curve. These
modifications will not change the homology classes of S1 and S2 and so each meridian of L
will still have non-empty intersection with S1 ∪ S2. Also, S1 and S2 will remain non-empty,
and each component of S1 ∪ S2 will have non-empty boundary. Thus, we will be able to
extend S1 ∪ S2 into N (L) to form a disconnected compact spanning surface for L with no
closed components.

We may first assume that ∂S1 ∪ ∂S2 is a collection of essential simple closed curves on
∂M . For if some component of ∂S1 ∪ ∂S2 is inessential, we may find one that bounds a disc
with interior disjoint from S1 ∪ S2. Attach this disc to S1 ∪ S2 and push it a little into the
interior of M to make the surfaces properly embedded. This does not change the number of
components of M − (S1 ∪ S2). It preserves the properties of these surfaces, but reduces the
number of boundary components.
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Thus, ∂S1 ∪ ∂S2 divides each component of ∂M into annuli. Consider a meridian μ for
some component of L . This is a simple closed curve on a total component T of ∂M . Arrange
for μ to intersect ∂S1 ∪ ∂S2 as few times as possible. The evaluation of μ under α is 1, and
hence it intersects ∂S1 ∪∂S2 an odd number of times. It cannot therefore meet ∂S1, then ∂S2,
then ∂S1, and so on in an alternating fashion. Thus, there are two successive intersections
which both lie in ∂S1, say. If these lie in distinct components of ∂S1, then these two curves
cobound an annulus in T . We attach this annulus to S1 ∪ S2. This preserves the properties of
S1 ∪ S2 given in (i), but again reduces its number of boundary components. The only other
possibility is that ∂S1 ∪ ∂S2 intersects T in a single simple closed curve. Modifying this
curve by a mod 2 homology, we may assume that it intersects μ just once. Since this applies
on every component of ∂M , we may extend S1 ∪ S2 to the required spanning surface for L .

��
In the case of the Whitehead link L ,	L (t1, t2) = (t1 − 1)(t2 − 1), and hence

	L(−1,−1) �= 0. Therefore, although there exist two disjoint properly embedded surfaces
S1 and S2 such that M − (S1 ∪ S2) is connected, there do not exist two such surfaces that
together form a spanning surface for L .

We have already seen that the existence of a surjective homomorphism from a finitely
generated group G to Z2 ∗ Z2 is controlled by the pro-2 completion of G. We may refine this
further, as follows.

Let G and � be finitely generated groups. Suppose that their pro-2 completions are
isomorphic. By Proposition 5.1, this sets up an isomorphism between G/([G,G]G2) and
�/([�,�]�2). This is because G/([G,G]G2)may be characterised as the quotient of G that
is an elementary abelian 2-group of maximal rank, and there is a similar characterisation of
�/([�,�]�2). This therefore gives a 1–1 correspondence between homomorphisms G → Z2

and homomorphisms � → Z2.

Proposition 6.3 Let G and � be finitely generated groups. Suppose that their pro-2 com-
pletions are isomorphic. Let φ1 and φ2 be non-trivial homomorphisms G → Z2 and let φ′

1
and φ′

2 be the corresponding homomorphisms � → Z2. Suppose that there is a surjective
homomorphism φ : G → Z2 ∗ Z2 such that the composition with projection onto the i th
factor is φi , for i = 1 and 2. Then there is a surjective homomorphism � → Z2 ∗ Z2 such
that the composition with projection onto the i th factor is φ′

i , for i = 1 and 2.

Proof We define two subgroups of G. Let G2 be the kernel of G
φ→Z2 ∗ Z2

π→Z2, where
π sends the non-trivial element of each factor onto the non-trivial element of Z2. This is
an index two normal subgroup of G. Let G4 be the kernel of G → Z2 ∗ Z2 → Z2 × Z2,
where again the first map is φ, and the second map is abelianisation. This is an index four
normal subgroup of G. It is equal to the elements of G that have trivial images under both φ1

and φ2.
By Proposition 5.1, G2 (respectively, G4) corresponds to an index 2 (respectively, 4)

normal subgroup �2 (respectively, �4) of �. By Propositions 5.1 and 5.2, b1(G2) = b1(�2),
and therefore H1(G2; Z) and H1(�2; Z) are isomorphic. However, we wish to set up a
slightly more precise correspondence between these two cohomology groups.

The group G/G2 acts on H1(G2; R) by conjugation. The non-trivial element of G/G2

specifies an involution of H1(G2; R), and hence H1(G2; R) decomposes into a direct sum
of +1 and −1 eigenspaces H1(G2; R)+ and H1(G2; R)−. Let H1(G2; Z)− be the inter-
section between H1(G2; R)− and the lattice H1(G2; Z). Define H1(�2; Z)− similarly. Our
goal is to find an isomorphism H1(G2; Z)− → H1(�2; Z)− such the following diagram
commutes:
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H1(G2; Z)− → H1(�2; Z)−
↓ ↓

H1(G2; Z2) → H1(�2; Z2)

Here, the top horizontal arrow is the required isomorphism. The vertical arrows are the
composition of inclusion into the full integral cohomology group, followed by reduction
mod 2. The bottom horizontal arrow is the isomorphism that arises from the fact that the
pro-2 completions of G2 and �2 are isomorphic. The point is that φ|G2 gives a primitive
element of H1(G2; Z)−, which we want to correspond to a primitive element of H1(�2; Z)−.
This then determines a surjective homomorphism φ′ : � → Z2 ∗ Z2. It is the commutativity
of the above diagram that will ensure that the composition onto the first and second factors
will be φ′

1 and φ′
2.

Let k > 1 be a large enough integer so that G2 does not surject onto (Z/2k
Z)b1(G2)+1,

and similarly for �2. Let G̃2 be the subgroup of G2 generated by elements of G2 that have
finite order in G2/[G2,G2], together with 2k th powers in G2. This is a normal subgroup of
G2, such that G2/G̃2 is isomorphic to (Z/2k

Z)b1(G2). Then, using the isomorphism between
pro-2 completions, G̃2 corresponds to �̃2, which is a normal subgroup of �2 such that �2/�̃2

is isomorphic to (Z/2k
Z)b1(�2). Let (G2/G̃2)

∗ be the set of homomorphisms from G2 to
Z/2k

Z. This is also isomorphic to (Z/2k
Z)b1(G2). Define (�2/�̃2)

∗ similarly.
Consider the groups G/G̃2 and �/�̃2. These are isomorphic. So, the conjugation action

of G/G2 on (G2/G̃2)
∗ is equivalent to the conjugation action of �/�2 on (�2/�̃2)

∗. Let
(G2/G̃2)

∗− be those elements of (G2/G̃2)
∗ that are sent to their inverses by this action. This is

a subgroup of (G2/G̃2)
∗. Define (�2/�̃2)

∗− similarly. Then we have an isomorphism between
(G2/G̃2)

∗− and (�2/�̃2)
∗−. Now, (G2/G̃2)

∗ can be identified with the reduction mod 2k of
H1(G2; Z). However, (G2/G̃2)

∗− is not necessarily the same as the reduction mod 2k of
H1(G2; Z)−. This is because every element of (G2/G̃2)

∗ with order 2 is sent to its inverse
under the conjugation action. Therefore, let (G2/G̃2)

∗
0 be the set of elements in (G2/G̃2)

∗−
that are a multiple of an element of (G2/G̃2)

∗− which does not have order 2. This is the
image of H1(G2; Z)− under the mod 2k reduction map. Define (�2/�̃2)

∗
0 similarly. Then

(G2/G̃2)
∗
0 and (�2/�̃2)

∗
0 are isomorphic. Pick a basis for H1(G2; Z)− that maps to a minimal

generating set for (G2/G̃2)
∗
0. This is sent to a minimal generating set for (�2/�̃2)

∗
0. We may

pick elements in H1(�2; Z)− in their inverse image which form a basis for H1(�2; Z)−.
Mapping the basis elements of H1(G2; Z)− to these basis elements of H1(�2; Z)− gives the
required isomorphism between H1(G2; Z)− and H1(�2; Z)−.

Using this isomorphism, φ|G2 : G2 → Z corresponds to a primitive element of
H1(�2; Z)− and hence, as in the proof of Theorem 1.1, we obtain a surjective homomorphism
φ′ : � → Z2 ∗ Z2.

We now show that the compositions of φ′ with projections onto the first and second factors
are φ′

1 and φ′
2.

Note that G4 is the kernel of G2 → Z → Z2. Here, the first homomorphism is the
restriction of φ to G2 and the second is reduction mod 2. Consider �2 → Z → Z2, where
the first homomorphism is the restriction of φ′ to �2 and the second is reduction mod 2. Due
to the commutativity of the above diagram, the kernel of this is precisely �4. Now, φ1 and
φ2 can be characterised as the only non-trivial homomorphisms G → Z2 that are non-trivial
on G2 but trivial on G4. A similar statement holds for φ′

1 and φ′
2. So, φ1 and φ2 do indeed

correspond to φ′
1 and φ′

2.
There is a minor complication. It may be the case that if we compose φ′ : G → Z2 ∗ Z2

with projection onto the first (respectively, second) factor then we get φ′
2 (respectively, φ′

1). If
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this is the case, then redefine φ′ by composing with the automorphism of Z2 ∗ Z2 that swaps
the factors. ��

We will now show that, in an important special case, there is a great deal of flexibility
over the classes [S1] and [S2].
Theorem 6.4 Let M be a compact orientable 3-manifold with the same Z2 homology as
a handlebody. Then, given any two distinct non-zero classes z1 and z2 in H2(M, ∂M; Z2),
there are disjoint properly embedded surfaces S1 and S2 in M, such that M − (S1 ∪ S2) is
connected, and such that zi = [Si ].
Proof Pick a basepoint for M , and pick based loops �1, . . . , �n such that [�1], . . . , [�n] form
a basis for H1(M; Z2). We may choose these loops so that the mod 2 intersection numbers
satisfy [�1] · zi = δ1i , [�2] · zi = δ2i and [� j ] · zi = 0 for j ≥ 3. Let φ′

1 and φ′
2 : π1(M) → Z2

be the mod 2 intersection numbers with z1 and z2 respectively.
Let F be the free group on n generators. Let ψ : F → π1(M) be the homomorphism

that sends the i th free generator to �i . Then, ψ induces an isomorphism H1(F; Z2) →
H1(π1(M); Z2) and, because H2(F; Z2) and H2(M; Z2) are trivial, ψ induces an isomor-
phism H2(F; Z2) → H2(π1(M); Z2). Thus, by Theorem 5.4, ψ induces an isomorphism
between the pro-2 completions of F and π1(M).

Now F admits a surjective homomorphismφ : F → Z2∗Z2 sending the first free generator
to the non-trivial element in the first factor, the second free generator to the non-trivial element
in the second factor, and the remaining free generators to the identity. Composing φ with
projections onto the first and second factors gives homomorphisms φ1, φ2 : F → Z2. These
correspond to the homomorphisms φ′

1 and φ′
2. Using Proposition 6.3, there is a surjective

homomorphism π1(M) → Z2 ∗ Z2 such that its composition with projection onto the i th
factor is φ′

i . Theorem 3.1 gives the required surfaces S1 and S2, and by Remark 3.2, [S1] = z1

and [S2] = z2. ��
A particularly interesting case is when M is the exterior of a connected finite graph X

embedded in S3. Then, as long as b1(X) > 1,M has the same Z2 homology as a handlebody
other than a solid torus. We view it as quite striking that the conclusion of Theorem 6.4
applies in this level of generality.

7 Further questions and remarks

7.1 Making the surfaces essential

In 3-manifold theory, it is the surfaces that are essential that play a particularly important
role. By definition, an orientable surface properly embedded in an orientable 3-manifold M
is essential if it is incompressible, boundary-incompressible and no component is boundary
parallel. A non-orientable surface S properly embedded in M is essential if cl(∂N (S)−∂M)
is essential. It is well known that this has an equivalent reformulation in terms of the way
that π1(S) maps into π1(M). In particular, an essential surface is π1-injective.

Question 7.1 Can one arrange for the surfaces S1 and S2 provided by Theorem 1.1 to be
essential?

We do not have a definite answer. However, the following result establishes that one can
ensure that the surfaces are incompressible. Recall that a (possibly non-orientable) surface

123



Geom Dedicata (2014) 170:385–401 401

S properly embedded in M is incompressible if, for any embedded disc D in M such that
D ∩ S = ∂D, the curve ∂D bounds a disc in S.

Proposition 7.2 If a compact 3-manifold M contains two disjoint, properly embedded sur-
faces S1 and S2 such that M − (S1 ∪ S2) is connected, then it contains two such surfaces that
are, in addition, incompressible.

Proof We may assume that S1 and S2 are both connected. Suppose that at least one is
compressible. Then, their union is compressible, by a standard innermost curve argument.
Let D be a compression disc for S1∪S2. Suppose that its boundary lies in S1, say. Compress S1

along D, giving a surface S1. Suppose that M−(S1∪S2) is not connected. Now, M−(S1∪S2)

is obtained from M − (S1 ∪ S2) by cutting along D and then attaching a 2-handle. The
latter operation does not change the number of components. So, we deduce that D divides
M − (S1 ∪ S2) into two components, X and Y , say. One of these components, X say, lies
on the other side of S1, near ∂D. Now, S1 must have two components. This is because, near
D, one of the parts of S1 has X on both sides, whereas the other has X on one side and Y
on the other. Discard the latter component of S1, and let S′

1 be the resulting surface. Then
M − (S′

1 ∪ S2) is connected. Hence, continuing in this fashion, we end up with two properly
embedded, disjoint, incompressible surfaces S′′

1 and S′′
2 such that M −(S′′

1 ∪ S′′
2 ) is connected.

��
The difficulty in answering Question 7.1 in the affirmative is that if a non-orientable

properly embedded surface fails to be essential, then there is no obvious modification that
one can make to it which, in a suitable sense, simplifies it.

7.2 More than two surfaces

This paper has been devoted to the study of two disjoint surfaces properly embedded in a
3-manifold. It is natural to ask the following:

Question 7.3 Under what circumstances does a compact orientable 3-manifold M contain
disjoint properly embedded surfaces S1, . . . , Sn such that M − (S1 ∪ · · · ∪ Sn) is connected,
for n ≥ 3?

The methods in this paper do not obviously apply when n ≥ 3. When n = 2, the group
Z2 ∗ Z2 plays the central role. This group is virtually abelian, and it is essentially for this
reason that the existence of a surjection from a finitely generated group G to Z2 ∗ Z2 can
be detected by the pro-2 completion Ĝ(2). However, for n ≥ 3, ∗n

Z2 is virtually free non-
abelian, and so it seems unlikely that one can detect whether a group G surjects onto ∗n

Z2

purely by examining Ĝ(2). This probably implies that Question 7.3 has no straightforward
answer.
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