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Abstract In this paper, we mainly study the mean curvature flow in Kähler surfaces with
positive holomorphic sectional curvatures. We prove that if the ratio of the maximum and the
minimum of the holomorphic sectional curvatures is less than 2, then there exists a positive
constant δ depending on the ratio such that cos α ≥ δ is preserved along the flow.
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1 Introduction

Mean curvature flows were studied by many authors, for example Huisken [14,15], Ecker
and Huisken [6], Huisken and Sinestrari [16], Carlo Ilmanen [17], Neves [18], Smoczyk [19],
Wang [21], White [22], etc.

In this paper we mainly concentrated on the symplectic mean curvature flows, which were
studied by Chen and Tian [4], Chen and Li [2], Chen et al. [3], Wang [21], Han and Li [8–10],
Han and Sun [13], and Han et al. [11,12]. The basic fact is that the symplectic property is
preserved by the mean curvature flow if the ambient space M is Kähler–Einstein, or if the
ambient Kähler surface evolves along the Kähler–Ricci flow [10].
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Let (M, J, ω, ḡ) be a Kähler surface. For a compact oriented real surface � which is
smoothly immersed in M , the Kähler angle [5] α of � in M was defined by

ω|� = cos αdμ�

where dμ� is the area element of � in the induced metric from g. We say that � is a
symplectic surface if cos α > 0; � is a holomorphic curve if cos α ≡ 1.

Given an immersed F0 : � → M , we consider a one-parameter family of smooth maps
Ft = F(·, t) : � → M with corresponding images �t = Ft (�) immersed in M and F
satisfies the mean curvature flow equation:{

∂
∂t F(x, t) = H(x, t)
F(x, 0) = F0(x),

(1.1)

where H(x, t) is the mean curvature vector of �t at F(x, t) in M .
Choose an orthonormal basis {e1, e2, e3, e4} on (M, ḡ) along �t such that {e1, e2} is the

basis of �t and the symplectic form ωt takes the form

ωt = cos αu1 ∧ u2 + cos αu3 ∧ u4 + sin αu1 ∧ u3 − sin αu2 ∧ u4, (1.2)

where {u1, u2, u3, u4} is the dual basis of {e1, e2, e3, e4}. Then along the surface �t the
complex structure on M takes the form ([2])

J =

⎛
⎜⎜⎝

0 cos α sin α 0
− cos α 0 0 − sin α

− sin α 0 0 cos α

0 sin α − cos α 0

⎞
⎟⎟⎠ . (1.3)

Recall the evolution equation of the Kähler angle along the mean curvature flow deduced
in [10],

Theorem 1.1 The evolution equation for cos α along �t is(
∂

∂t
− �

)
cos α = ∣∣∇ J�t

∣∣2
cos α + sin2 αRic(Je1, e2). (1.4)

Here
∣∣∇ J�t

∣∣2 = ∣∣h4
1k + h3

2k

∣∣2 + ∣∣h4
2k − h3

1k

∣∣2 ≥ 1

2
|H |2. (1.5)

We want to see whether the symplectic property is preserved along the mean curvature flow.
In the case that M is a Kähler–Einstein surface, we have Ric(Je1, e2) = ρ̄ cos α, where ρ̄

is the scalar curvature of M , so the symplectic property is preserved. If the ambient Kähler
surface evolves along the Kähler–Ricci flow, Han and Li [10] derived the evolution equation
for cos α and consequently they showed that the symplectic property is also preserved. In
this paper, we find another condition to assure that along the flow, at each time the surface is
symplectic. Note that we don’t require M to be Einstein. Denote the minimum and maximum
of holomorphic sectional curvatures of M by k1 and k2. We state our main theorem as follows:

Main Theorem Suppose M is a Kähler surface with positive holomorphic sectional
curvatures. Set λ = k2

k1
. If the flow satisfies either

I. 1 ≤ λ < 11
7 and cos α(·, 0) ≥ δ >

53(λ−1)√
(53λ−53)2+(48−24λ)2

,

or
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II. 11
7 ≤ λ < 2 and cos α(·, 0) ≥ δ > 8λ−5√

(8λ−5)2+(12−6λ)2
,

then along the flow
(

∂

∂t
− �

)
cos α ≥ ∣∣∇ J�t

∣∣2
cos α + C sin2 α, (1.6)

where C is a positive constant depending only on k1, k2 and δ. As a corollary, min�t cos α

is increasing with respect to t . In particular, at each time t, �t is symplectic. Therefore, we
call this flow the symplectic mean curvature flow.

Since we obtain (1.6), many theorems in “symplectic mean curvature flows in Kähler–
Einstein surfaces” still hold in our case. For example,

Arguing as in [5] by strong maximum principle, we have

Corollary 1.2 I. Suppose M is a Kähler surface with positive holomorphic sectional curva-
tures and 1 ≤ λ < 11

7 , then every symplectic minimal surface satisfying

cos α >
53(λ − 1)√

(53λ − 53)2 + (48 − 24λ)2

in M is a holomorphic curve.
II. Suppose M is a Kähler surface with positive holomorphic sectional curvatures and

11
7 ≤ λ < 2, then every symplectic minimal surface satisfying

cos α >
8λ − 5√

(8λ − 5)2 + (12 − 6λ)2

in M is a holomorphic curve.

Arguing exactly in the same way as in [2] or [21], we have

Theorem 1.3 Under the same condition of the Main Theorem, the symplectic mean curvature
flow has no type I singularity at any T > 0.

2 Curvature tensor, sectional curvature and holomorphic sectional curvature

Denote the curvature tensor of M by K . Set K (X) = K (X, J X, X, J X) and K (X, Y ) =
K (X, Y, X, Y ), where X, Y are arbitrary vector fields on M . It is known that (c.f. [1,20]) we
can express the sectional curvatures by holomorphic sectional curvatures.

Theorem 2.1 The sectional curvatures of M can be determined by the holomorphic sectional
curvatures by

K (X, Y ) = 1

32
[3K (X + JY ) + 3K (X − JY ) − K (X + Y ) − K (X − Y )

− 4K (X) − 4K (Y )]. (2.1)

Using (2.1), it is easy to check that,
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Theorem 2.2 For any vector fields X, Y and Z on M,

K (X, Y, X, Z) = 1

2
[K (Y + Z , X) − K (X, Y ) − K (X, Z)]

= 1

64
[3K (Y + Z + J X) + 3K (Y + Z − J X) − K (Y + Z + X)

− K (Y + Z − X) − 3K (Y + J X) − 3K (Y − J X) − 3K (Z + J X)

− 3K (Z − J X) − 4K (Y + Z) + K (Y + X) + K (Y − X)

+ K (Z + X) + K (Z − X) + 4K (X) + 4K (Y ) + 4K (Z)]. (2.2)

Denote the minimum and the maximum of sectional curvatures by Kmin and Kmax , respec-
tively, we have the following estimates.

Theorem 2.3 Kmin and Kmax satisfy

Kmax ≤ 3

2
k2 − 1

2
k1 (2.3)

and

Kmin ≥ 3

4
k1 − 1

2
k2 (2.4)

Proof Given any point p ∈ M and any two unit orthogonal vectors X and Y at p, we can find
two vectors Z and W such that {X, Y, Z , W } form an orthonormal basis of Tp M . Suppose
J X = yY + zZ + wW , then

〈X + JY, X + JY 〉 = 2 − 2y, (2.5)

and

〈X − JY, X − JY 〉 = 2 + 2y. (2.6)

Assume the Kähler form is anti-self-dual, it was shown in [12] that, y2 + z2 + w2 = 1
and J has the form

J =

⎛
⎜⎜⎝

0 y z w

−y 0 w −z
−z −w 0 y
−w z −y 0

⎞
⎟⎟⎠ . (2.7)

Combining (2.1) with (2.6) and (2.6), we get

K (X, Y ) ≤ 1

32

[
3(2 − 2y)2k2 + 3(2 + 2y)2k2 − 22k1 − 22k1 − 4k1 − 4k1

]

= 1

4

[
(3 + 3y2)k2 − 2k1

]

≤ 1

4
(6k2 − 2k1)

= 3

2
k2 − 1

2
k1,
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and similarly

K (X, Y ) ≥ 1

4
[(3 + 3y2)k1 − 2k2]

≥ 1

4
(3k1 − 2k2)

= 3

4
k1 − 1

2
k2.

This proves the theorem. �

3 Proof of the Main Theorem

In this section, we will prove the Main Theorem of this paper.

Proof of the Main Theorem In order to prove this theorem, we need to estimate Ric(Je1, e2).
Using two different methods, we get two available estimates. We now deduce the first one.

Ric(Je1, e2) = K (Je1, e1, e2, e1) + K (Je1, e3, e2, e3) + K (Je1, e4, e2, e4)

= K (cos αe2 + sin αe3, e1, e2, e1) + K (cos αe2 + sin αe3, e3, e2, e3)

+K (cos αe2 + sin αe3, e4, e2, e4)

= cosαR22 + sin α(K3121 + K3424), (3.1)

where

R22 = K2121 + K2323 + K2424. (3.2)

By (2.1), we have

K2121 = 1

32
[3K (e1 + Je2) + 3K (e1 − Je2) − K (e1 + e2) − K (e1 − e2)

−4K (e1) − 4K (e2)].
By our choice of the complex structure (1.3), we get

〈e1 + Je2, e1 + Je2〉 = 2 − 2 cos α,

and

〈e1 − Je2, e1 − Je2〉 = 2 + 2 cos α.

Hence K2121 can be estimated by k1 and k2,

K2121 ≥ 1

32
[3(2 − 2 cos α)2k1 + 3(2 + 2 cos α)2k1 − 22k2 − 22k2 − 4k2 − 4k2]

= 1

4
[(3 + 3 cos2 α)k1 − 2k2]. (3.3)

Similarly, we get

K2323 ≥ 1

4
(3k1 − 2k2), (3.4)

and

K2424 ≥ 1

4
[(3 + 3 sin2 α)k1 − 2k2]. (3.5)
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Putting (3.3), (3.4) and (3.5) into (3.2), we obtain that

R22 ≥ 3k1 − 3

2
k2. (3.6)

Using (2.2) and (1.3), we can also estimate K3121 and K3424. We have

K3121 ≥ 1

32
[(53 + 48 sin α cos α)k1 − 53k2], (3.7)

and

K3424 ≥ 1

32
[(53 − 48 sin α cos α)k1 − 53k2]. (3.8)

Adding (3.7) and (3.8) yields

K3121 + K3424 ≥ −53

16
(k2 − k1). (3.9)

By a similar computation in the opposite direction, we get

|K3121 + K3424| ≤ 53

16
(k2 − k1). (3.10)

Therefore by (3.1), (3.6), (3.10) and short time existence of the mean curvature flow, we have

Ric(Je1, e2) ≥ cos α(3k1 − 3

2
k2) −

√
1 − cos2 α

53

16
(k2 − k1)

=
(

3 cos α+ 53

16

√
1 − cos2 α

)
k1−

(
3

2
cos α + 53

16

√
1 − cos2 α

)
k2. (3.11)

If 1 ≤ λ < 2 and cos α >
53(λ−1)√

(53λ−53)2+(48−24λ)2
, then the RHS of (3.11) is positive.

Another estimate follows directly from Theorem 2.3 and Berger inequality (c.f. [7]) that

|K3121 + K3424| ≤ |K3121| + |K3424| ≤ Kmax − Kmin ≤ 2k2 − 5

4
k1. (3.12)

Putting the above estimate into (3.1) yields

Ric(Je1, e2) ≥ cos α

(
3k1 − 3

2
k2

)
−

√
1 − cos2 α

(
2k2 − 5

4
k1

)

=
(

3 cos α + 5

4

√
1 − cos2 α

)
k1 −

(
3

2
cos α + 5

4

√
1 − cos2 α

)
k2. (3.13)

It follows that if 1 ≤ λ < 2 and cos α > 8λ−5√
(8λ−5)2+(12−6λ)2

, then the RHS of (3.11) is

positive. Note that

53(λ − 1)√
(53λ − 53)2 + (48 − 24λ)2

≤ 8λ − 5√
(8λ − 5)2 + (12 − 6λ)2

for 1 ≤ λ < 11
7 , and

53(λ − 1)√
(53λ − 53)2 + (48 − 24λ)2

≥ 8λ − 5√
(8λ − 5)2 + (12 − 6λ)2

for 11
7 ≤ λ < 2, we get the conclusion. �
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