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Abstract We derive Harnack estimates for heat and conjugate heat equations in abstract
geometric flows. The main results lead to new Harnack inequalities for a variety of geometric
flows. In particular, Harnack inequalities for the Ricci flow coupled with Harmonic map flow
are obtained.
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1 Introduction

Assume that M is an n-dimensional compact manifold endowed with a one-parameter family
of Riemannian metrics g(t) evolving along the general flow equation

∂g(t, x)

∂t
= −2α(t, x) (1.1)

which exists on [0, T ). Here α(t, x) is a one-parameter family of smooth symmetric two
tensors on M . In particular when α = Rc Eq. (1.1) is Hamilton’s Ricci flow. Let

A(t, x) � gi jαi j

be the trace of α with respect to the time-dependent metric g(t).
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In [9], Reto Müller studied reduced volume for the abstract flow (1.1). Müller defined an
interesting quantity for the tensor α by

Dα(V ) �
∂ A

∂t
− �A − 2|α|2 + 2 (Rc −α) (V, V ) + 〈4 Div(α) − 2∇ A, V 〉 (1.2)

where Div is the divergence operator defined by Div(α)k = gi j∇iα jk in local coordinates.
Under the assumption that Dα is nonnegative, Müller obtained monotonicity of the reduced

volumes. For any vector field V, Dα(V ) is nonnegative in the following flows: static manifold
with nonnegative Ricci curvature, Hamilton’s Ricci flow (in fact D = 0 in this case), List’s
extended Ricci flow [8], Müller’s Ricci flow coupled with Harmonic map flow [10] and
Lorenzian mean curvature flow when the ambient space has nonnegative sectional curvature.
See [9] for details.

In a recent preprint [5], the authors proved monotonicity of the entropy and lowest eigen-
value in abstract flow (1.1) when Dα ≥ 0.

The purpose of this note is to prove Harnack inequalities in the abstract setting with
Dα ≥ 0. In Sect. 2 we derive Harnack estimates for the conjugate heat equation, while in
Sect. 3 for the forward heat equation with potential.

As applications, we apply our abstract formulations to the Ricci flow coupled with har-
monic map flow and obtain Harnack estimates for this flow.

2 Harnack for the conjugate heat equation

Assume u is a positive solution to the conjugate heat equation

∂u

∂t
= −�u + Au (2.1)

where � is the time-dependent Laplace–Beltrami operator with respect to g(t). For the
derivative of � we have(

∂

∂t
�

)
f = 2〈α,∇∇ f 〉 + 〈2 Div(α) − ∇ A,∇ f 〉 (2.2)

where f is any smooth function on M . The formula can be found in standard textbooks, for
instance [3].

Let

P � 2� log u + |∇ log u|2 − A + 2n

τ
(2.3)

where τ � T − t .

Lemma 2.1 Along the flow (1.1), P satisfies

∂ P

∂τ
= �P + 2〈∇ P,∇ log u〉 − 2P

τ
+ 2

∣∣∣∣∇∇ log u − α + 1

τ
g

∣∣∣∣
2

(2.4)

+ 2

τ
|∇ log u|2 + 2A

τ
+ Dα(−∇ log u).

Proof For any positive solution u to the conjugate heat Eq. (2.1) one has

∂

∂t
log u = ∂t u

u
= −�u

u
+ A = −� log u − |∇ log u|2 + A.
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Notice that τ = T − t and we have

∂

∂τ
(� log u) = −∂�

∂t
log u − �

(
∂ log u

∂t

)

= −2〈α,∇∇ log u〉 − 〈2 Div α − ∇ A,∇ log u〉
+ �

(
� log u + |∇ log u|2 − A

)
and

∂

∂τ

(|∇ log u|2) = −2α(∇ log u,∇ log u)

+ 2〈∇ (
� log u + |∇ log u|2 − A

)
,∇ log u〉.

∂ P

∂τ
= 2

∂

∂τ
� log u + ∂

∂τ
|∇ log u|2 − ∂ A

∂τ
− 2n

τ 2

= −4〈α,∇∇ log u〉 − 〈4 Div α − 2∇ A,∇ log u〉
+ �

(
2� log u + 2|∇ log u|2 − 2A

) − 2α(∇ log u,∇ log u)

+ 2〈∇ (
� log u + |∇ log u|2 − A

)
,∇ log u〉 − ∂ A

∂τ
− 2n

τ 2

= −4〈α,∇∇ log u〉 − 〈4 Div α − 2∇ A,∇ log u〉
+ �

(
P + |∇ log u|2 − A

) − 2α(∇ log u,∇ log u)

+ 2〈∇ (
� log u + |∇ log u|2 − A

)
,∇ log u〉 − ∂ A

∂τ
− 2n

τ 2

and then by the Bochner formula

�|∇ log u|2 = 2|∇∇ log u|2 + 2 Rc (∇ log u,∇ log u) + 2〈∇(� log u),∇ log u〉
we have

∂ P

∂τ
= 2|∇∇ log u|2 − 4〈α,∇∇ log u〉 − 〈4 Div α − 2∇ A,∇ log u〉 + �P

+ 2 (Rc −α) (∇ log u,∇ log u) + 2〈∇ P,∇ log u〉 − ∂ A

∂τ
− 2n

τ 2 − �A

= 2

∣∣∣∣∇∇ log u − α + 1

τ
g

∣∣∣∣
2

− 2|α|2 − 2n

τ 2 + 4

τ
A − 4

τ
� log u

− 〈4 Div α − 2∇ A,∇ log u〉 + �P

+ 2 (Rc −α) (∇ log u,∇ log u) + 2〈∇ P,∇ log u〉 − ∂ A

∂τ
− 2n

τ 2 − �A

= �P + 2〈∇ P,∇ log u〉 + 2

∣∣∣∣∇∇ log u − α + 1

τ
g

∣∣∣∣
2

− 2

τ
P + 2

τ
A + 2

τ
|∇ log u|2 − ∂ A

∂τ
− 2|α|2 − �A

+ 2 (Rc −α) (∇ log u,∇ log u) − 〈4 Div α − 2∇ A,∇ log u〉
Notice that ∂ A

∂τ
= − ∂ A

∂t and by the definition of D we see the last five terms of the above is
nothing but Dα(−∇ log u). ��
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Theorem 2.2 Under the same assumptions as in Lemma 2.1, if for t ∈ [0, T ), 2
τ
|V |2 + 2

τ
A+

Dα(V ) ≥ 0, in particular if

Dα(V ) ≥ 0, and A ≥ 0

then

2� log u + |∇ log u|2 − A + 2n

τ
≥ 0. (2.5)

Moreover, for any two points (x1, t1), (x2, t2) ∈ M × (0, T ) with t1 < t2 one has

u(x2, t2) ≤ u(x1, t1)

(
T − t1
T − t2

)n

exp

⎛
⎝1

2

t2∫
t1

(|γ ′(t)|2 + A
)

dt

⎞
⎠ (2.6)

where γ (s) : [t1, t2] → M is a smooth curve connecting x1 and x2 with γ (ti ) = xi , i = 1, 2.

Proof Under the assumption that 2
τ
|V |2 + 2

τ
A +Dα(V ) ≥ 0 we can conclude from Eq. (2.4)

that

∂ P

∂τ
≥ �P + 2〈∇ P,∇ log u〉 − 2P

τ

Notice that for τ sufficiently small we have P > 0 and by the maximum principle we know
that P ≥ 0 for all τ ∈ (0, T ). This proves (2.5).

As standard, integrating (2.5) we have (2.6). Indeed, along a smooth curve γ we have

d

dt
log u (γ (t), t) = 〈∇ log u, γ ′〉 + ∂ log u

∂t
= 〈∇ log u, γ ′〉 − � log u − |∇ log u|2 + A

≤ 〈∇ log u, γ ′〉 − 1

2
|∇ log u|2 + A

2
+ n

T − t

≤ 1

2

(|γ ′|2 + A
) + n

T − t

and moreover

log
u(x2, t2)

u(x1, t1)
≤

t2∫
t1

(
1

2

(|γ ′|2 + A
) + n

T − t

)
dt

= n log
T − t1
T − t2

+ 1

2

t2∫
t1

(|γ ′|2 + A
)

dt

and this proves the classical Harnack inequality (2.6). ��
When the metric is static, i.e. α = 0 we know that D is nonnegative when (M, g) has

nonnegative Ricci curvature. Thus for positive solutions to the heat equation one has (2.5)
and (2.6) which are however weaker than the Li-Yau Harnack.

In the case of Ricci flow where α = Rc and Dα(V ) = 0, (2.5) and (2.6) have been
independently proved by Cao [1] and Kuang-Zhang [7] for nonnegative scalar curvature.

In the following we show new Harnack inequalities in the Ricci flow coupled with har-
monic map flow. Suppose that (N , γ ) is a compact static Riemannian manifold, a(t) a non-
negative and non-increasing function depending only on time, and ϕ(t) : M → N a family
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of 1-parameter smooth maps. Then (g(t), ϕ(t)) is called a solution to Müller’s Ricci flow
coupled with harmonic map flow with coupling function a(t), if it satisfies

∂g

∂t
= −2 Rc +2a(t)∇ϕ ⊗ ∇ϕ

∂ϕ

∂t
= τgϕ (2.7)

where τg denotes the tension field of the map ϕ with respect to the evolving metric g(t).

Corollary 2.3 Assume that (M, g(t) is a solution to (2.7) with

R(0) − a(0)|∇ϕ|2t=0 ≥ 0

then for any positive solution to

∂u

∂t
= −�u + (

R − a(t)|∇ϕ|2) u

we have

2� log u + |∇ log u|2 − (
R − a(t)|∇ϕ|2) + 2n

τ
≥ 0. (2.8)

Moreover, for any two points (x1, t1), (x2, t2) ∈ M × (0, T ) with t1 < t2 one has

u(x2, t2) ≤ u(x1, t1)

(
T − t1
T − t2

)n

exp

⎛
⎝1

2

t2∫
t1

(|γ ′(t)|2 + R − a(t)|∇ϕ|2) dt

⎞
⎠ (2.9)

where γ (s) : [t1, t2] → M is a smooth curve connecting x1 and x2 with γ (ti ) = xi , i = 1, 2.

Proof D is nonnegative in the Ricci flow coupled with harmonic map flow, and nonnegativity
of R − a(t)|∇ϕ|2 is preserved by the flow (see [10] for details). Thus the assumption in
Theorem 2.2 is satisfied and the conclusions follow. ��
Remark 2.4 As pointed out to us by the referee, (2.8) was independently proved by Zhu in
[11] by a direct computation. While we here conclude (2.8) from the much more general
result in Theorem 2.2.

3 Harnack for the heat equation with potential

In this section we consider the forward heat equation. Assume u is a positive solution to

∂u

∂t
= �u + Au (3.1)

In this section, we shall use another notation also introduced by Müller in [9]. To under-
stand more about the quantity D, Müller introduced

Hα(V ) �
∂ A

∂t
+ A

t
− 2〈∇ A, V 〉 + 2α (V, V ) (3.2)

If the flow is Hamilton’s Ricci flow, then

H(V ) = ∂ R

∂t
+ R

t
− 2〈∇ R, V 〉 + 2 Rc (V, V )
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which is nonnegative if g(0) has nonnegative curvature operator by Hamilton’s trace Harnack
inequality for the Ricci flow [6].

Following Cao-Hamilton’s work in the Ricci flow [2], we define

H � 2� log u + |∇ log u|2 + 3A + 2n

t
(3.3)

and prove that

Lemma 3.1 Along the flow (1.1), for any positive solution to (3.1) H satisfies

∂ H

∂t
= �H + 2〈∇ H,∇ log u〉 − 2H

t
+ 2

∣∣∣∣∇∇ log u + α + 1

t
g

∣∣∣∣
2

+2

t
|∇ log u|2 + 2Hα(∇ log u) + Dα(∇ log u). (3.4)

Proof For any positive solution u to Eq. (3.1) one has

∂

∂t
log u = ∂t u

u
= �u

u
+ A = � log u + |∇ log u|2 + A.

Notice that

∂

∂t
(� log u) =∂�

∂t
log u + �

(
∂

∂t
log u

)

=2〈α,∇∇ log u〉 + 〈2 Div(α) − ∇ A,∇ log u〉
+ �

(
� log u + |∇ log u|2 + A

)
and

∂

∂t
|∇ log u|2 = 2α(∇ log u,∇ log u) + 2〈∇ (

� log u + |∇ log u|2 + A
)
,∇ log u〉

We have

∂ H

∂t
= 2

∂

∂t
� log u + ∂

∂t
|∇ log u|2 + 3

∂ A

∂t
− 2n

t2

= 4〈α,∇∇ log u〉 + 〈4 Div(α) − 2∇ A,∇ log u〉 + �
(
H + |∇ log u|2 − A

)
+ 2α(∇ log u,∇ log u) + 2〈∇ (

� log u + |∇ log u|2 + A
)
,∇ log u〉

+ 3
∂ A

∂t
− 2n

t2

=�H + 2|∇∇ log u|2 + 4〈α,∇∇ log u〉 + 2 Rc(∇ log u,∇ log u)

+ 2α(∇ log u,∇ log u) + 2〈∇ (
2� log u + |∇ log u|2 + A

)
,∇ log u〉

+ 3
∂ A

∂t
− 2n

t2 + 〈4 Div(α) − 2∇ A,∇ log u〉 − �A

=�H + 2

∣∣∣∣∇∇ log u + α + 1

t
g

∣∣∣∣
2

− 2|α|2 − 2n

t2 − 4� log u

t
− 4A

t

+ 2 Rc(∇ log u,∇ log u) + 2α(∇ log u,∇ log u) + 2〈∇ (H − 2A) ,∇ log u〉
+ 3

∂ A

∂t
− 2n

t2 + 〈4 Div(α) − 2∇ A,∇ log u〉 − �A
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=�H + 2

∣∣∣∣∇∇ log u + α + 1

t
g

∣∣∣∣
2

− 2|α|2 − 2H

t
+ 2

t
|∇ log u|2 + 2A

t

+ 2 Rc(∇ log u,∇ log u) + 2α(∇ log u,∇ log u) + 2〈∇ H,∇ log u〉
− 4〈∇ A,∇ log u〉 + 3

∂ A

∂t
+ 〈4 Div(α) − 2∇ A,∇ log u〉 − �A

=�H + 2〈∇ H,∇ log u〉 − 2H

t
+ 2

∣∣∣∣∇∇ log u + α + 1

t
g

∣∣∣∣
2

+ 2

t
|∇ log u|2

+ 2
∂ A

∂t
+ 2A

t
− 4〈∇ A,∇ log u〉 + 4α(∇ log u,∇ log u)

+ ∂ A

∂t
− �A − 2|α|2 + 2 (Rc −α) (∇ log u,∇ log u)

+ 〈4 Div(α) − 2∇ A,∇ log u〉

=�H + 2〈∇ H,∇ log u〉 − 2H

t
+ 2

∣∣∣∣∇∇ log u + α + 1

t
g

∣∣∣∣
2

+ 2

t
|∇ log u|2

+ 2Hα(∇ log u) + Dα(∇ log u)

��
Theorem 3.2 Under the same assumptions as in Lemma 3.1, if 2Hα(V )+Dα(V )+ 2

t |V |2 ≥
0, in particular if Hα(V ) ≥ 0 and Dα(V ) ≥ 0 then

2� log u + |∇ log u|2 + 3A + 2n

t
≥ 0 (3.5)

and for any two points (x1, t1), (x2, t2) ∈ M × (0, T ) with t1 < t2 we have

u(x1, t1) ≤ u(x2, t2)

(
t2
t1

)n

exp

⎛
⎝1

2

t2∫
t1

(|γ ′(t)|2 + A
)

dt

⎞
⎠ (3.6)

where γ (s) : [t1, t2] → M is a smooth curve connecting x1 and x2 with γ (ti ) = xi , i = 1, 2.

Proof The proof is analogous to the proof of Theorem 2.2. We omit details. ��
Remark 3.3 1. In the static case, where A = 0 Eqs. (2.5) and (3.5) give the same estimate.
2. In the Ricci flow, Hamilton has already proved nonnegativity of H under nonnegative cur-

vature operator assumption [6]. Thus assuming that (M, g(0)) has nonnegative curvature
operator, one has Eqs. (3.5) and (3.6). This has been proved in [2].

3. For the Ricci flow coupled with Harmonic map flow (2.7), under assumption that Hα(V )

is nonnegative, Harnack estimates (3.5) and (3.6) hold. We note that Fang [4] has proved
Eq. (3.5) under the assumption that Hα(V ) ≥ 0 in List’s extended Ricci flow, which
is a special case of the Ricci flow coupled with harmonic map flow (2.7). It would be
interesting to see whether one can prove nonnegativity of H under reasonable assumptions
by generalizing Hamilton’s arguments of the trace Harnack for the Ricci flow [6].
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