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Abstract We classify elementary abelian 2-subgroups of compact simple Lie groups of
adjoint type. This finishes the classification of elementary abelian p-subgroups of compact
simple Lie groups (equivalently, complex linear algebraic simple groups) of adjoint type
started in Griess (Geom Dedicata 39(3):253–305, 1991).
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1 Introduction

For a positive integer m, let Cm = Z/mZ be the cyclic group of order m. For a prime p and
a positive integer n, an elementary abelian p-group of rank n is a finite group isomorphic to

(C p)
n =

n⊕

1

C p.

The goal of this paper is to study elementary abelian p-subgroups of compact simple Lie
groups of adjoint type. Precisely, we focus on the case of p = 2. Here, we say a compact Lie
group G is simple if its Lie algebra g0 = LieG is simple; and say it is of adjoint type if the
adjoint homomorphism π : G −→ Aut(g0) is an injective map. For a compact simple Lie
algebra u0 and any compact simple Lie group of adjoint type G with Lie algebra LieG ∼= u0,
the adjoint homomorphism

π : G −→ Aut(u0)
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Table 1 Torsion primes

An−1, n ≥ 2 Bn , n ≥ 2 Cn , n ≥ 3 Dn , n ≥ 5 D4 E6 E7 E8 F4 G2

p|2n 2 2 2 2, 3 2, 3 2, 3 2, 3, 5 2, 3 2

is injective, so it suffices to study elementary abelian 2-subgroups of the compact Lie group
G = Aut(u0).

The structure of elementary abelian p-subgroups of a compact group G is related to the
topology of G and its classifying space (cf. [2,4,10]). In the 1950s, Borel made an observation
that, for a compact connected Lie group G, the cohomology ring H∗(G, Z) has non-trivial
p-torsion if and only if G has a non-toral elementary abelian p-subgroup (cf. [4,10]). Recall
that, a subgroup of a compact Lie group G is called toral if it is contained in a maximal torus
of G, otherwise it is called non-toral (cf. [10]). We call a prime p a torsion prime of a compact
(not necessary connected) Lie group G if G has a non-toral elementary abelian p-subgroup.
This definition is a bit different with that in [10]. For G = Aut(u0) (the automorphism group
of u0) with u0 a compact simple Lie algebra, the torsion primes are as in Table 1. From Table
1 we see that: the prime 2 is a torsion prime of Aut(u0) for any compact simple Lie algebra
u0; when u0 is a compact simple exceptional Lie algebra, any prime p > 5 is not a torsion
prime and 5 is a torsion prime only when u0 is of type E8.

The study of elementary abelian p-subgroups began at 1950s (or even earlier) by the
famous mathematicians Borel, Serre, et al. In the 1990s, Griess [5] got a classification of
maximal elementary abelian p-subgroups of linear algebraic simple groups (of adjoint type)
defined over an algebraic closed field of characteristic 0. Since there exists a one-one corre-
spondence between conjugacy classes of compact subgroups of a complex semisimple Lie
algebraic group and such subgroups of (any of) its maximal compact subgroup (cf. Appen-
dix of [1]), so we also have a classification of maximal elementary abelian p-subgroups of
compact simple Lie groups of adjoint type. For odd primes p, non-toral elementary abelian
p-subgroups are more or less well understood from [5] and [2]. Precisely, when u0 is a com-
pact exceptional simple Lie algebra, non-toral elementary abelian p-subgroups of Aut(u0)

are classified up to conjugacy. When p > 5, such subgroups don’t exist; when p = 5, there is
a unique conjugacy class in Aut(e8) (cf. [5]); when p = 3, there are some conjugacy classes
when u0 is of type E6, E7, E8 or F4 (cf. [2,5]). But a complete classification is impossible
when u0 is a classical simple Lie algebra, since some complicated combinatorial problem
will arise.

In this paper, we will first study elementary abelian 2-subgroups of Aut(u0) for compact
classical simple Lie algebras u0 systematically. The method is to define and use linear alge-
braic structures on them (a bilinear form m or a bilinear form m together with a function μ, all
with values in F2 = Z/2Z). For any compact exceptional simple Lie algebra u0, we classify
elementary abelian 2-subgroups of Aut(u0) up to conjugation and calculate their automizer
groups (cf. Definition 3.4). A simple account of this classification is as follows. Theorem 1.1
follows by combining Corollaries 4.2, 5.3, 6.8, 7.24 and 8.13.

Theorem 1.1 For u0 = e6, e7, e8, f4, g2, there are 51, 78, 66, 12, 4 conjugacy classes of
elementary abelian 2-subgroups in Aut(u0) respectively.

This paper is organized as follows. In Sect. 2, we do the classification for classical sim-
ple Lie algebras, which amounts to classify elementary abelian 2-subgroups of the groups
PU(n) � 〈τ0〉, O(n)/〈−I 〉, Sp(n)/〈−I 〉. Here, PU(n) = U(n)/Zn (Zn = {λIn : |λ| = 1})
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is the projective unitary group and τ0 = complex conjugation. We have τ 2
0 = 1 and

τ0[A]τ−1
0 = [A], ∀A ∈ U(n).

In the first case, we will separate the discussion of subgroups contained in PU(n) and those
not contained in it.

For an elementary abelian 2-subgroup F of PU(n), define a map

m : F × F −→ {±1}
by m(x, y) = λ if x = [A], y = [B] and AB A−1 B−1 = λI . We show that m is a bilinear
form when F is viewed as a vector space over F2 = Z/2Z and {±1} is identified with F2.
We also prove that ker m is diagonalizable and the conjugacy class of F is determined by
the conjugacy class of ker m and the number rank(F/ ker m). This gives F a structure we
called symplectic vector space. For an elementary abelian 2-subgroup F of O(n)/〈−I 〉 or
Sp(n)/〈−I 〉, we define a bilinear map m : F × F −→ {±1} and a function

μ : F −→ {±1}.
The definition of m is similar as in the PU(n) case; μ(x) = λ if x = [A] and A2 =
λI . The bilinear map m and the function μ satisfy a compatibility relation (m(x, y) =
μ(x)μ(y)μ(xy)). The compatible pair (m, μ) gives F a structure we called symplectic met-
ric space and we get invariants r, s, ε, δ from the structure of a symplectic metric space.
We show that the conjugacy class of F is determined by the conjugacy class of the sub-
group AF = ker(μ|ker m) and the numbers s, ε, δ. The consideration of elementary abelian
2-subgroups of the group PU(n) � 〈τ0〉 is reduced to consideration of elementary abelian
2-subgroups of the above three groups.

In Sect. 2.4, we discuss a class of elementary abelian 2-subgroups of the groups O(n)/〈−I 〉
and Sp(n)/〈−I 〉 and introduce the notions of symplectic vector space and symplectic metric
space and study their automorphism groups (Definition 3.4). They will play an important
role in later sections.

In Sects. 4–8, we classify elementary abelian 2-subgroups of the automorphism group of
any compact exceptional simple Lie algebra. A detailed account of the method is presented in
Sect. 3. The study of some of these elementary abelian 2-subgroups is reduced to consideration
of the class of subgroups of Sp(n)/〈−I 〉 discussed in Sect. 2.4. Moreover, their automizer
groups are described in terms of the automorphism groups of symplectic vector spaces or
symplectic metric spaces.

Notation and conventions. Let Z(G) (z(g)) denote the center of a Lie group G (Lie
algebra g) and G0 denote the connected component of G containing identity element. For
Lie groups H ⊂ G (or Lie algebras h ⊂ g), let CG(H) (Cg(h)) denote the centralizer of
H in G (h in g) and let NG(H) (Cg(h)) denote the normalizer of H in G (h in g). For an
element x in G (or an automorphism of G), we also write Gx for the centralizer of x in G,
so Gx = CG(x) when x is an element of G.

For any two elements x, y ∈ G, the notation x ∼ y means x, y are conjugate in G, i.e.,
y = gxg−1 for some g ∈ G; and for a subgroup H ⊂ G, the notation x ∼H y means
y = gxg−1 for some g ∈ H . For two subsets X1, X2 ⊂ G, the notation X1 ∼ X2 means
X2 = gX1g−1 for some g ∈ G; and for a subgroup H ⊂ G, the notation X1 ∼H X2

means X2 = gX1g−1 for some g ∈ H .
For a quotient group G = H/N , let [x] = x N (x ∈ H ) denote a coset.
All adjoint homomorphisms in this paper are denoted as π . This causes no ambiguity, as

the reader can understand it is the adjoint homomorphism for which group everywhere π

appears in this paper.
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For a compact semisimple Lie algebra u0, let Aut(u0) be the group of automorphisms of
u0 and let Int(u0) = Aut(u0)0. The elements in Int(u0) are called inner automorphisms of
u0 and the elements in Aut(u0) − Int(u0) are called outer automorphisms of u0.

We denote by e6 the compact simple Lie algebra of type E6. Let E6 be the connected
and simply connected Lie group with Lie algebra e6. Let e6(C) and E6(C) denote their
complexifications. Similar notations will be used for other types. In the case of G = E6 or
E7, let c denote a non-trivial element in Z(G). In the case of u0 = e7, let

H ′
0 = H ′

2 + H ′
5 + H ′

7

2
∈ ie7 ⊂ e7(C)

(cf. Sect. 3.1).
Let V = R

n be an Euclidean linear space of dimension n with an orthogonal basis
{e1, e2, . . . , en} and Pin(n) (Spin(n)) be the Pin (Spin) group of degree n associated to V .
Write

c = e1e2 . . . en ∈ Pin(n).

Then c is in Spin(n) if and only if n is even, in this case c ∈ Z(Spin(n)). If n is odd, then

Spin(n) has a Spinor module M of dimension 2
n−1

2 . If n is even, then Spin(n) has two Spinor

modules M+, M− of dimension 2
n−2

2 . We distinguish M+ and M− by requiring that c acts
on M+ and M− by scalar 1 and −1 respectively when 4|n; and by −i and i respectively when
4|n − 2.

For a prime p, let Fp = Z/pZ be the finite field with p elements. In particualr, for
p = 2, F2 = Z/pZ is a field with 2 elements. We have an isomorphism F2 ∼= {±1} between
the additive group F2 and the multiplicative group {±1}.

Let In be the n × n identity matrix. We define the following matrices,

Ip,q =
(−Ip 0

0 Iq

)
, Jn =

(
0 In

−In 0

)
, J′

n =
(

0 In

In 0

)
,

I ′
p,q =

⎛

⎜⎜⎝

−Ip 0 0 0
0 Iq 0 0
0 0 −Ip 0
0 0 0 Iq

⎞

⎟⎟⎠ ,

Jp,q =

⎛

⎜⎜⎝

0 Ip 0 0
−Ip 0 0 0

0 0 0 Iq

0 0 −Iq 0

⎞

⎟⎟⎠ ,

K p =

⎛

⎜⎜⎝

0 0 0 Ip

0 0 −Ip 0
0 Ip 0 0

−Ip 0 0 0

⎞

⎟⎟⎠ .

And we define the following groups,

Zm = {λIm |λm = 1},
Z′ = {(ε1, ε2, ε3, ε4)|εi = ±1, ε1ε2ε3ε4 = 1},

�p,q,r,s =
〈
⎛

⎜⎜⎝

−Ip 0 0 0
0 −Iq 0 0
0 0 Ir 0
0 0 0 Is

⎞

⎟⎟⎠ ,

⎛

⎜⎜⎝

−Ip 0 0 0
0 Iq 0 0
0 0 −Ir 0
0 0 0 Is

⎞

⎟⎟⎠

〉
.

123



Geom Dedicata (2013) 167:245–293 249

2 Matrix groups

Let Mn(R), Mn(C), Mn(H) be the set of n × n matrices with entries in the field R, C, H

respectively. Let

O(n) = {X ∈ Mn(R)|X Xt = I}, SO(n) = {X ∈ O(n)| det X = 1},
U(n) = {X ∈ Mn(C)|X X∗ = I}, SU(n) = {X ∈ U(n)| det X = 1},
Sp(n) = {X ∈ Mn(H)|X X∗ = I}.

Defined as sets in this way, O(n), SO(n), U(n), SU(n), Sp(n) are actually Lie groups, i.e.,
groups with a smooth manifold structure. Moreover, they are compact Lie groups, i.e., the
underlying manifolds are compact. Also let

PO(n), PSO(n), PU(n), PSU(n)

be the quotients of the groups O(n), SO(n), U(n), SU(n) modulo their centers (so PU(n) ∼=
PSU(n), which is the projective unitary group). Let

so(n) = {X ∈ Mn(R)|X + Xt = 0},
su(n) = {X ∈ Mn(C)|X + X∗ = 0, trX = 0},
sp(n) = {X ∈ Mn(H)|X + X∗ = 0},

where Xt denotes the transposition of a matrix X and X∗ denotes the conjugate transposition
of X . Then so(n), su(n), sp(n) are Lie algebras of SO(n), SU(n), Sp(n) respectively. They
represent all isomorphism classes of compact classical simple Lie algebras.

2.1 Projective unitary groups

Let G = PU(n) = U(n)/Zn . Then

G ∼= Int(su(n)).

Any involution x ∈ G is of the form x = [A], A ∈ U(n) with A2 = I . Then

A ∼ Ip,n−p =
(−Ip 0

0 In−p

)

for some p, 1 ≤ p ≤ n − 1. One has

(U(n)/Zn)[Ip,n−p] = (U(p) × U(n − p))/Zn if p 
= n

2

and

(U(n)/Zn)
[I n

2 , n
2
] = ((U(n/2) × U(n/2))/Zn) � 〈[J ′

n]〉.
Let F ⊂ G be an elementary abelian 2-subgroup. For any x, y ∈ F , choose A, B ∈ U(n)

with A2 = B2 = I representing x, y (that is, x = [A] and y = [B]). Then

1 = xyx−1 y−1 = (AB A−1 B−1)Zn/Zn �⇒ [A, B] = λA,B I

for some λA,B ∈ C. It is clear that λA,B ∈ C doesn’t depend on the choice of A and B.
Moreover, since x2 = y2 = 1, we have λA,B = ±1.

For any x, y ∈ F , define

m(x, y) = m F (x, y) = λA,B .
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Lemma 2.1 For any x, y, z ∈ F, m(x, x) = m(x, y)m(y, x) = 1 and m(xy, z) =
m(x, z)m(y, z).

Proof m(x, x) = m(x, y)m(y, x) = 1 is clear. Choose A, B, C ∈ U(n) with A2 = B2 =
C2 = I representing x, y, z. Let [A, C] = λ1 I, [B, C] = λ2 I for some numbers λ1, λ2 =
±1. We have

[AB, C] = A[B, C]A−1[A, C] = A(λ2 I )A−1(λ1 I ) = (λ1λ2)I.

So m(xy, z) = m(x, z)m(y, z). ��
If we regard F as a vector space on F2 = Z/2Z and identify {±1} with F2 = Z/2Z,

Lemma 2.1 just said m is an anti-symmetric bilinear 2-form on F . Let

ker m = {x ∈ F |m(x, y) = 1,∀y ∈ F}.
Then it is a subgroup of F .

For an even n, let �0 = 〈[I n
2 , n

2
], [J ′

n
2
]〉, then any non-identity element of �0 is conjugate

to I n
2 , n

2
and

(U(n)/Zn)�0 ∼= (U(n/2)/Z n
2
) × �0.

Lemma 2.2 For a Klein four subgroup F ⊂ G, if m F is non-trivial, then F is conjugate to �0.

Proof Choose A, B ∈ U(n) with A2 = B2 = I and F = 〈[A], [B]〉. Since m F is non-trivial,
we have [A, B] = −I . Since A2 = I , we may assume that A = Ip,n−p for some 1 ≤ p ≤ n

2 .
From [A, B] = −I , we get AB A−1 = −B. Then B is of the form

B =
(

B1

Bt
2

)

for some B1, B2 ∈ Mp,n−p . Since B is invertible, we get p = n
2 . Since B2 = I , we have

B1 Bt
2 = I . Let S = diag{In/2, B1}. Then

(S AS−1, SBS−1) =
((−I n

2
0

0 I n
2

)
,

(
0 I n

2

I n
2

0

))
.

��
For any m, k ≥ 1 and A ∈ U(m), let

D(A) = diag{A, A, . . . , A}.
Then D : U(m) −→ U(km) is the diagonal homomorphism.

Lemma 2.3 For any two closed subgroups S1, S2 ⊂ U(m),

D(S1) ∼ D(S2) ⇔ S1 ∼ S2.

Proof Since S1, S2 are closed subgroups of U(m), so they are compact groups. Then by
character theory of representations of compact groups, both conditions in the lemma are
equivalent to the existence of an isomorphism φ : S1 → S2 such that tr(φ(x)) = tr(x), ∀x ∈
S1. Thus these two conditions are equivalent. ��
Proposition 2.4 Let F be an elementary abelian 2-subgroup of G,

(1) when ker m = 1, the conjugacy class of F is determined by rankF;
(2) in general, ker m is diagonalizable and the conjugacy class of F is determined by the

conjugacy class of ker m and the number rankF.
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Proof For (1), we prove by induction on n. Since ker m = 1, so rankF is even. When
rankF ≥ 2, choose any x1, x2 ∈ F with m(x1, x2) = −1. By Lemma 2.2, we have

〈x1, x2〉 ∼ �0.

We may and do assume that 〈x1, x2〉 = �0, then

F ⊂ (U(n)/Zn)�0 = 	(U(n/2)/Z n
2
) × �0.

And so F = 	(F ′) × �0 for some F ′ ⊂ U(n/2)/Z n
2
. We also have ker m F ′ = 1. By

induction, the conjugacy class of F ′ is determined by rankF ′, so the conjugcay class of F is
determined by rankF .

For (2), we have that π−1(ker m) is abelian by the definition of m and ker m, where π is
the natural projection from U(n) to U(n)/Zn . So π−1(ker m) is diagonalizable. Then ker m
is diagonalizable. We may write F as F = ker m × F ′ with m(ker m, F ′) = 1 and m|F ′
non-degenerate. By (1), the conjugcay class of F ′ is determined by

rankF ′ = rankF − rank(ker m).

Moreover, it is clear that

(U(n)/Zn)F ′ = 	(U(n′)/Zn′) × F ′,

where n′ = n/2
rankF ′

2 . So ker m = 	(F ′′) for some F ′′ ⊂ U(n′)/Zn′ . Fix F ′, by Lemma
2.3, the conjugacy class of ker m in U(n)/Zn and the conjugacy class of F ′′ in U(n′)/Zn′
determine each other. Since the conjugacy of F is determined by F ′ and the class of ker m
in (U(n)/Zn)F ′

, we get the last statement of (2). ��

2.2 Projective orthogonal and projective symplectic groups

Let G = PO(n) = O(n)/〈−I 〉, n ≥ 2. Let F be an elementary abelian 2-subgroup of G. For
any x ∈ F , choose A ∈ O(n) representing x , then A2 = λA I for some λA = ±1. For any
x, y ∈ F , choose A, B ∈ O(n) representing x, y, then [A, B] = λA,B I for some λA,B = ±1.
The values of λA, λA,B don’t depend on the choice of A and B. For any x, y ∈ F , define

μ(x) = μF (x) = λA

and

m(x, y) = m F (x, y) = λA,B .

Lemma 2.5 For any x, y, z ∈ F, m(x, x) = 1, m(xy, z) = m(x, z)m(y, z), μ(1) = 1 and
m(x, y) = μ(x)μ(y)μ(xy).

Proof The equalities m(x, x) = 1 and μ(1) = 1 are clear.
The proof for m(xy, z) = m(x, z)m(y, z) is similar as that for 2.1.
Choose A, B ∈ O(n) representing x, y. Then

[A, B] = AB A−1 B−1

= (AB)2(B2)−1 B(A2)−1 B−1

= (μ(xy)I )(μ(y)I )−1 B(μ(x)I )−1 B−2

= μ(x)μ(y)μ(xy I ).

So m(x, y) = μ(x)μ(y)μ(xy). ��
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Lemma 2.6 For an even n, su(n) has two conjugacy classes of outer involutive automor-
phisms with representatives τ0 = complex conjugation and τ ′

0 = τ0Ad(Jn/2).
For an odd n, su(n) has a unique conjugacy class of outer involutive automorphisms with

representative τ0 = complex conjugation.

Proof This follows from Cartan ’s classification of compact Riemannian symmetric pairs
(cf. [7, Pages 451–455]). ��
Lemma 2.7 Let F be an elementary abelian 2-subgroup of G.

For x ∈ F, μ(x) = −1 if and only if x ∼ [J n
2
].

For x, y ∈ F with m(x, y) = −1,

(1) when μ(x) = μ(y) = −1, we have (x, y) ∼ ([J n
2
], [K n

4
]);

(2) when μ(x) = μ(y) = 1, we have (x, y) ∼ ([I n
2 , n

2
], [J ′

n
2
]).

Proof If μ(x) = −1, then x = [A] for some A ∈ O(n) with A2 = −I . Then A ∼ J n
2
, so

x ∼ [J n
2
].

The proof of (2) is the same as that for Lemma 2.2.
For (1), first we may and do assume that x = [J n

2
] by the first statement proved above.

Then so(n)x = u(n/2). By Lemma 2.6, after replace y by some gyg−1 with g ∈ Gx , we
may assume that

(u(n/2))y = so(n/2) or sp(n/4).

Then a little more argument shows that y = [K n
4
]. ��

Definition 2.8 For an elementary abelian 2-groupsub F ⊂ G, define

AF = ker(μ|ker m)

and

defeF = |{x ∈ F : μ(x) = 1}| − |{x ∈ F : μ(x) = −1}|.
We call defeF the defect index of F .

Define (εF , δF ) as follows,

• when μ|ker m 
= 1, define (εF , δF ) = (1, 0);
• when μ|ker m = 1 and defeF < 0, define (εF , δF ) = (0, 1);
• when μ|ker m = 1 and defeF > 0, define (εF , δF ) = (0, 0).

Define rF = rank AF and sF = 1
2 rank(F/ ker m) − δF .

We will see in the proof of Proposition 2.12 that defeF = 0 if and only if μ|ker m 
= 1. It
is clear that εF , δF , rF , sF and the conjugcay class of AF are determined by the conjugacy
class of F .

Let �1 = 〈[I n
2 , n

2
], [J ′

n
2
]〉 and �2 = 〈[J n

2
], [K n

4
〉]. Then defe�1 = 2, defe�2 = −2,

(O(n)/〈−I 〉)�1 = 	(O(
n

2
)/〈−I 〉) × �1

and

(O(n)/〈−I 〉)�2 = 	(Sp(
n

4
)/〈−I 〉) × �2.

Lemma 2.9 Let F be a non-trivial elementary abelian 2-subgroup of O(n)/〈−I 〉, if
rank(F/ ker m) > 2, then there exists a Klein four subgroup F ′ ⊂ F such that F ′ ∼ �1.
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Proof Choose a subgroup F ′′ ⊂ F such that F = ker m × F ′′, then ker(m F ′′) = 1 and
rankF ′′ > 2. Replace F by F ′′, we may assume that ker m = 1 and rankF > 2.

We first show that, there exists 1 
= x ∈ F with μ(x) = 1. From rankF > 2, we get
rankF ≥ 4 since it is even (m F is non-degenerate). Suppose that any 1 
= x ∈ F has
μ(x) = −1. Then for any distinct non-trivial elements x, y ∈ F , we have

m(x, y) = μ(x)μ(y)μ(xy) = −1

by Lemma 2.5. This contradicts that m is bilinear on F .
Upon we get 1 
= x ∈ F with μ(x) = 1, choose any z ∈ F with m(x, z) = −1. Then

μ(xz)μ(z) = m(x, z)μ(x) = −1.

So exactly one of μ(z), μ(xz) is equal to −1. By Lemma 2.7, we have 〈x, z〉 ∼ �1. ��
Lemma 2.10 Let F be a non-trivial elementary abelian 2-subgroup of O(n)/〈−I 〉. If
rank(ker m/AF ) = 1 and rank(F/AF ) > 1, then there exists a Klein four subgroup F ′ ⊂ F
with F ′ ∼ �1.

Proof Choose a subgroup F ′′ ⊂ F such that F = AF × F ′′, then rank(ker(m F ′′)) = 1,

AF ′′ = 1 and rankF ′′ > 1. Replace F by F ′′, we may assume that AF = 1, rank(ker m) = 1
and rankF > 1.

The subgroup F is of the form F = ker m × F ′′ with m(ker m, F ′′) = 1, rankF ′′ ≥ 2,
and m F ′′ non-degenerate. When rankF ′′ > 2 or F ′′ ∼ �1, there exists F ′ ⊂ F ′ with F ′ ∼ �1

by Lemma 2.9. Otherwise F ′′ ∼ �2. Choose x, y ∈ F ′′ generating F ′′ and 1 
= z ∈ ker m,
then

F ′ = 〈xz, yz〉 ∼ �1

since (μ(xz), μ(yz), μ(xy)) = (1, 1,−1). ��
For any n ≥ 1, let T : O(n) ↪→ U(n), T ′ : Sp(n/2) ↪→ U(n)) be the natural inclusions.

Lemma 2.11 For any two closed subgroups S1, S2 ⊂ O(n) or S′
1, S′

2 ⊂ Sp(n/2)

T (S1) ∼ T (S2) ⇔ S1 ∼ S2

and

T ′(S′
1) ∼ T ′(S′

2) ⇔ S′
1 ∼ S′

2.

Proof These follow from [6] Theorem 2.3 and [1] Theorem 8.1. ��
Proposition 2.12 Let F be an elementary abelian 2-subgroup of O(n)/〈−I 〉,
(1) when ker m = 1, the conjugacy class of F is determined by δF and sF ;
(2) in general, ker m is diagonalizable and the conjugacy class of F is determined by the

conjugacy class of AF and the invariants (εF , δF , sF ).
(3) we have defe(F) = (1 − εF )(−1)δF 2rF +sF +δF .

Proof For (1), since ker m = 1, so rankF is even. When rankF = 2, F ∼ �1 or �2 by
Lemma 2.2. When rankF ≥ 2, there exists a Klein four subgroup F ′ ⊂ F with F ′ ∼ �1 by
Lemma 2.9. We may and do assume that �1 ⊂ F . Then

F ⊂ (O(n)/〈−I 〉)�1 = 	
(

O(
n

2
)/〈−I 〉

)
× �1.
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So F = 	(F ′)×�1 for some F ′ ⊂ O( n
2 )/〈−I 〉. By induction, we can show defeF 
= 0 and

the conjugacy class of F is determined by δF and sF .
For (2), ker m is diagonalizable since π−1(ker m) is abelian by the definition of m, where

π is the natural projection

π : O(n) −→ O(n)/〈−I 〉.
We break the proof into two parts according to the value of εF . When εF = 1, by Lemma

2.10, F is of the form F = ker m × F ′ with m F ′ non-degenerate and defeF ′ > 0. By (1),
the conjugacy class of F ′ is determined by sF = rankF ′

2 . We have

(O(n)/〈−I 〉)F ′ = 	(O(n′)/〈−I 〉) × F ′,

where n′ = n

2
rankF ′

2

. Fixing F ′, by Lemmas 2.3 and 2.11, the conjugacy class of ker m in

O(n)/〈−I 〉 determines the conjugacy class of it in (O(n)/〈−I 〉)F ′
. Moreover, as εF = 1 is

given, the conjugacy class of ker m is determined by the conjugacy class of AF = ker μ|ker m .
So the conjugacy class of F is determined by that of AF and the invariants (δF , sF ). When
εF = 0, it is similar as the above proof for εF = 1 case to show that the conjugacy class of
F is determined by the conjugacy class of AF and the invariants (δF , sF ).

(3) follows from Lemma 2.7 and (2). ��
The classification of elementary abelian 2-subgroup of Sp(n)/〈−I 〉 is similar as that of

O(n)/〈−I 〉. We give the definitions and results below but omit the proofs.
Let F be an elementary abelian 2 subgroup of Sp(n)/〈−I 〉, n ≥ 2. For any x ∈ F , choose

A ∈ Sp(n) representing x , then A2 = λA I for some λA = ±1. For any x, y ∈ F , choose
A, B ∈ Sp(n) representing x, y, then [A, B] = λA,B I for some λA,B = ±1. The values of
λA, λA,B don’t depend on the choice of A, B. For any x, y ∈ F , define

μ(x) = μF (x) = λA

and

m(x, y) = m F (x, y) = λA,B .

Lemma 2.13 Let F be an elementary abelian 2-subgroup of Sp(n)/〈−I 〉. For any x, y, z ∈
F, m(x, x) = 1, m(xy, z) = m(x, z)m(y, z), μ(1) = 1 and

m(x, y) = μ(x)μ(y)μ(xy).

Lemma 2.14 Let F be an elementary abelian 2-subgroup of Sp(n)/〈−I 〉.
For x ∈ F, μ(x) = −1 if and only if x ∼ [J n

2
].

For x, y ∈ F with m(x, y) = −1,

(1) when μ(x) = μ(y) = −1, we have (x, y) ∼ ([iI ], [jI ]);
(2) when μ(x) = μ(y) = 1, we have (x, y) ∼ ([I n

2 , n
2
], [J ′

n
2
]).

Definition 2.15 For an elementary abelian 2-subgroup F ⊂ Sp(n)/〈−I 〉, define

AF = ker(μ|ker m)

and the defect index

defeF = |{x ∈ F : μ(x) = 1}| − |{x ∈ F : μ(x) = −1}|.
Define (εF , δF ) as follows,
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• when μ|ker m 
= 1, define (εF , δF ) = (1, 0);
• when μ|ker m = 1 and defeF < 0, define (εF , δF ) = (0, 1);
• when μ|ker m = 1 and defeF > 0, define (εF , δF ) = (0, 0).

Define rF = rank AF and sF = 1
2 rank(F/ ker m) − δF .

Proposition 2.16 Let F be an elementary abelian 2-subgroup of Sp(n)/〈−I 〉,
(1) when ker m = 1, the conjugacy class of F is determined by δF and sF ;
(2) in general, ker m is diagonalizable and the conjugacy class of F is determined by the

conjugacy class of AF and the invariants (εF , δF , sF ).
(3) we have defe(F) = (1 − εF )(−1)δF 2rF +sF +δF .

2.3 Twisted projective unitary groups

For n ≥ 3, let G = Aut(su(n)), which has two connected components and G0 =
Int(su(n)) = PU(n) = U(n)/Zn . When n is even, G has two conjugacy classes of outer
involutions with representatives τ0 = complex conjugation and τ0Ad(Jn/2); when n is
odd, G has a unique conjugacy class of outer involutions with representative τ0. We have (cf.
[8, Table 2])

Int(su(n))τ0 = O(n)/〈−I 〉
and

Int(su(n))τ0Ad(Jn/2) = Sp(n/2)/〈−I 〉.
Let F be an elementary abelian 2-subgroup of G. For the subgroup F ∩ Int(su(n)) of

Int(su(n)) = PU(n), we have a bilinear form

m : F ∩ Int(su(n)) × F ∩ Int(su(n)) −→ {±1}.
Moreover, we define a function

μ : F − F ∩ Int(su(n)) −→ {±1}
by μ(z) = 1 if z ∼ τ0, and μ(z) = −1 if z ∼ τ0Ad(Jn/2). On the other hand, for any
z ∈ F − Int(su)(n), define μz : F ∩ Int(su(n)) −→ {±1} and

mz : (F ∩ Int(su(n))) × (F ∩ Int(su(n))) −→ {±1}
from the inclusion

F ∩ Int(su(n)) ⊂ Int(su(n))z ∼= O(n)/〈−I 〉 or Sp(n/2)/〈−I 〉.
Definition 2.17 For an elementary abelian 2-subgroup F ⊂ Aut(su(n)), define

AF = {x ∈ F ∩ Int(su(n))|z ∼ zx,∀z ∈ F − F ∩ Int(su(n))}
and the defect index

defeF = |{x ∈ F : x ∼ τ0}| − |{x ∈ F : x ∼ τ0Ad(Jn/2)}|.
Define (εF , δF ) as follows,

• when defeF = 0, define (εF , δF ) = (1, 0);
• when defeF > 0, define (εF , δF ) = (0, 0);
• when defeF < 0, define (εF , δF ) = (0, 1).

Define rF = rank AF and sF = 1
2 rank(F/ ker m) − δF .
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Lemma 2.18 Let F be an elementary abelian 2-subgroup of Aut(su(n)). Then for any z ∈
F − F ∩ Int(su(n)), we have mz = m on F ∩ Int(su(n)).

Proof For z ∈ F − Int(su(n)) and x, y ∈ F ∩ Int(su(n)), by Lemma 2.2, 2.7 and 2.14, we
have

m(x, y) = −1 ⇔ 〈x, y〉 ∼ 〈[I n
2 , n

2
], [J ′

n
2
]〉 ⇔ mz(x, y) = −1.

So mz(x, y) = m(x, y). ��
Lemma 2.19 For any z ∈ F − F ∩ Int(su(n)) and x ∈ F ∩ Int(su(n)), μz(x) = μ(z)μ(zx).

Proof We may and do assume that z = τ0 or τ0Ad(Jn/2).
In the case of z = τ0 and μz(x) = 1, we may assume that x = [Ip,n−p] ∈ O(n)/〈−I 〉 =

Int(su(n))z for some 0 ≤ p ≤ n. Let u = [diag{i Ip, In−p}], then

uzu−1 = z(z−1uz)u−1 = z(u)u−1

= z[diag{−i Ip, In−p}][diag{−i Ip, In−p}]
= z[Ip,n−p] = zx .

So zx ∼ z. And so 1 = μz(x) = μ(z)μ(zx).
In the case of z = τ0 and μz(x) = −1, we may assume that x = [Jn/2] ∈ O(n)/〈−I 〉 =

Int(su(n))z . Then zx = τ0Ad(Jn/2) = τ ′
0. So −1 = μz(x) = μ(z)μ(zx).

The proof in the case of z = τ ′
0 = τ0Ad(Jn/2) is similar. ��

Lemma 2.20 For any elementary abelian 2-subgroup F ⊂ Aut(su(n)), we have AF ⊂
ker m and AF = ker(μz |ker m) for any z ∈ F − F ∩ Int(su(n)).

Proof Choose any x ∈ AF and choose an element z ∈ F − F ∩ Int(su(n)). By the definition
of AF , for any y ∈ F ∩ Int(su(n)), we have μ(zy) = μ(zyx). In particular for y = 1, we
have μ(z) = μ(zx). Then

m(x, y) = mz(x, y) = μz(x)μz(y)μz(xy) = μ(z)μ(zx)μ(zy)μ(zxy) = 1.

So AF ⊂ ker m.
On the other hand, for any x ∈ ker m = ker mz, x ∈ AF if and only if ∀y ∈ F ∩

Int(su(n)), μ(zy) = μ(zyx). Since

μ(zy)μ(zyx) = μz(y)μz(xy) = mz(x, y)μz(x) = μz(x),

we get that AF = ker(μz |ker m). ��
Proposition 2.21 For an elementary abelian 2-subgroup F of Aut(su(n)) which is not con-
tained in Int(su(n)), ker m is diagonalizable and the conjugacy class of F is determined by
the conjugacy class of AF and the invariants (εF , δF , rankF).

Proof We break the proof into two cases.
When there exists z ∈ F with z ∼ τ0, we may and do assumen that z = τ0 ∈ F . Then

F ⊂ Aut(su(n))z = (O(n)/〈−I 〉) × 〈z〉.
By Lemma 2.18, we get that mz = m. Then (εF , δF ) coincides with (εF ′ , εF ′) when F ′ =
F ∩ Int(su(n)) is considered as a subgroup of O(n)/〈−I 〉. Then the conclusion follows from
Proposition 2.12 and Lemma 2.11.
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Otherwise, for any z ∈ F − F ∩ Int(su(n)), we have that z ∼ τ ′
0 = τ0Ad(Jn/2). We may

and do assumen that z = τ ′
0 ∈ F . Then

F ⊂ Aut(su(n))z = (Sp(n/2)/〈−I 〉) × 〈z〉.
And we have μz ≡ 1 since all elements in F − F ∩ Int(su(n)) are conjugate to τ ′

0. Then
the conjugacy class of F is determined by rankF by Proposition 2.16. Moreover, in this
case, we have (εF , δF ) = (0, 1) and rank AF = rankF − 1. Then the tuple of invariants
(εF , δF , rankF, rank AF ) is different from that for any subgroup considered in the first case.
The reason is: if a subgroup F in the first case satisfies rank AF = rankF − 1, then its
elements in F − F ∩ Int(su(n)) are all conjugate to τ0, by which we have (εF , δF ) = (0, 0).

��
2.4 A class of elementary abelian 2-subgroups and symplectic metric spaces

The elementary abelian 2-subgroups F of O(n)/〈−I 〉 (or Sp(n)/〈−I 〉) with non-identity
elements all conjugate to [I n

2 , n
2
], [J n

2
] (or [I n

2 , n
2
], [iI ]) have a particular nice shape.

Proposition 2.22 For an elementary abelian 2-subgroup F of O(n)/〈−I 〉 (or Sp(n)/〈−I 〉),
any non-identity element of F is conjugate to [I n

2 , n
2
], [J n

2
] (or [I n

2 , n
2
], [iI ]) if and only if any

non-identity element of AF is conjugate to [I n
2 , n

2
].

Proof Since elements in F − AF are all conjugate to [I n
2 , n

2
], [J n

2
] (or [I n

2 , n
2
], [iI ]) and any

element of AF is not conjugate to [J n
2
] (or [iI ]), the conclusion follows. ��

Regard AF as a subgroup of G ′ = O(n′)/〈−I 〉, U(n′)/〈−I 〉 or Sp(n′)/〈−I 〉, where
n′ = n

2s+k (k = 2, 1, 0). Then the condition of any non-identity element of AF is conjugate
to [I n

2 , n
2
] in G is equivalent to any non-identity element of AF is conjugate to [I n′

2 , n′
2
] in G ′.

Let F∗ = Hom(F, F2) be the dual group of an elementary abelian 2-group.
For n = 2ms with s odd, let

K = {±1}n/〈(−1, . . . ,−1)︸ ︷︷ ︸〉.

This is an elementary abelian 2-group of rank n − 1. We want to characterize subgroups F
of K such that any non-identity element x ∈ F is of the form x = [(x1, x2, . . . , xn)] with
xi = −1 for n

2 indices i and xi = 1 for the other n
2 indices i .

Lemma 2.23 For a subgroup F of K as above, let r be the rank of F as an elementary
abelian 2-group. Then we can divide J = {1, 2, . . . , n} into a disjoint union of 2r subsets

{Jα : α ∈ F∗}
with each Jα of cardinality n

2r = 2m−r s such that any element x ∈ F is of the form

x = [(t1, t2, . . . , tn)]︸ ︷︷ ︸, ti = α(x), ∀i ∈ Jα.

Proof Choose a subgroup F ′ of {±1}n such that its projection to K has image equal to F
and the projection map onto F is an isomorphism. Then any non-identity element x ∈ F ′ is
of the form x = (x1, x2, . . . , xn) with xi = −1 for n

2 indices i and xi = 1 for the other n
2

indices i . For any x ∈ F ′, let x = (tx,1, tx,2, . . . , tx,n), tx,i = ±1. For an index i , the map
x �→ tx,i is an homomorphism from F ′ to ±1, so there exists αi ∈ F ′∗ such that

tx,i = αi (x),∀x ∈ F ′.
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For any α ∈ F∗, define

Jα = {1 ≤ i ≤ n|αi = α}.
Then J = {1, 2, . . . , n} is a disjoint union of 2r subsets {Jα : α ∈ F∗} and any element
x ∈ F ′ is of the form x = (t1, t2, . . . , tn), ti = α(x), ∀i ∈ Jα . We show that the cardinarity
of each Jα is n

2r = 2m−r s.
Let α0 = 0 ∈ F ′∗ be the zero element. For any α 
= α0, count the number of pairs (x, i)

with α(x) = −1 and tx,i = −1. For a fixed x ∈ F , when x 
∈ ker α, there are n
2 such (x, i);

when x ∈ ker α, there are no such (x, i). For a fixed i, 1 ≤ i ≤ n, when x 
∈ Jα0 ∪ Jα , i.e.,
αi 
= α0 and αi 
= α, there are 2r−2 such (x, i); when i ∈ Jα , i.e., αi = α, there are 2r−1

such (x, i); when i ∈ Jα0 , i.e., αi = α0, there are no such (x, i). Count the number of pairs
(x, i) with α(x) = −1 and tx,i = −1 in two ways, we get an equality

2r−1 n

2
= (n − |Jα| − |Jα0 |)2r−2 + |Jα|2r−1.

This implies that |Jα| = |Jα0 |. Then the cardinarity of each Jα is n
2r = 2m−r s.

Since the projection map from F ′ to F is an isomorphism, we can identify F ′∗ and F∗.
Then we get the conclusion of the lemma. ��
Proposition 2.24 For an elementary abelian 2-subgroup F of O(n)/〈−I 〉 (or F ⊂
Sp(n)/〈−I 〉) with non-identity elements all conjugate to [I n

2 , n
2
], [J n

2
] (or [I n

2 , n
2
], [iI ]), the

conjugacy class of F is determined by the tuple (εF , δF , rF , sF ).

Proof This follows from Propositions 2.12, 2.16, 2.22 and Lemma 2.23. ��
Let Fr,s,ε,δ be an elementary abelian 2-subgroup of O(n)/〈−I 〉 (or Sp(n)/〈−I 〉) satisfying

the properties in Proposition 2.24 and with invariants (ε, δ, r, s), which is unique up to
conjugation.

Definition 2.25 A finite-dimensional vector space V over the field F2 = Z/2Z is called
a symplectic vector space if it is associated with a map m : V × V −→ F2 such that
m(x, x) = 0, m(x, y) = m(y, x) and m(x + y, z) = m(x, z)m(y, z) for any x, y, x ∈ F .

Moreover, it is called a symplectic metric space if there is another map μ : V −→ F2

such that μ(0) = 0 and m(x, y) = μ(x) + μ(y) + μ(x + y) for any x, y ∈ V .
Two symplectic vector spaces (V, m) and (V ′, m′) are called isomorphic if there exists a

linear space isomorphism f : V −→ V ′ transferring m to m′.
Two symplectic metric spaces (V, m, μ) and (V ′, m′, μ′) are called isomorphic if there

exists a linear space isomorphism f : V −→ V ′ transferring (m, μ) to (m′, μ′).

The following proposition is clear.

Proposition 2.26 The isomorphism class of a symplectic vector space (V, m) is determined
by the dimensions (dimF2 V, dimF2 ker m).

Definition 2.27 For a symplectic metric space V , define AV = ker μ|ker m and the defect
index defeV = |{x ∈ V : μ(x) = 1}| − |{x ∈ V : μ(x) = −1}|.

Define (εV , δV ) as follows,

• When μ|ker m 
= 1, define (εV , δV ) = (1, 0);
• when μ|ker m = 1 and defeV < 0, define (εV , δV ) = (0, 1);
• when μ|ker m = 1 and defeV > 0, define (εV , δV ) = (0, 0).

Define rV = dimF2 AV , sV = 1
2 dimF2(V/ ker m) − δV .
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Remark 2.28 When m is non-degenerate, μ is a non-degenerate quadratic form, in this case
δV is the Arf invariant of μ.

The following proposition is an analogue of Proposition 2.24. And it also can be proved
by the same method.

Proposition 2.29 The isomorphism class of a symplectic metric space is determined by the
invariants (rV , sV , εV , δV ).

We have defeV = (1 − ε)(−1)δ2r+s+δ .

Proposition 2.30 For a vector space V over F2 of rank 3 with a map μ : V −→ F2 satisfying
μ(0) = 0, let m(x, y) = μ(x) + μ(y) + μ(x + y). Then (V, m, μ) is a symplectic metric
space if and only if m is bilinear, if and only if there are even number of elements in V with
non-trivial values of the function μ.

Proof With the definiton of m and the property μ(0) = 0, we get the compatability relation
and the property m(x, x) = 0, then (V, m, μ) is a symplectic metric if and only of m is a
bilinear form. This is the first statement.

For any x, y, z ∈ V , when x, y, z are linearly dependent, the equality m(x + y, z) =
m(x, z) + m(y, z) follows from the definiton of m and the property μ(0) = 0. When x, y, z
are linearly independent, they consist in a basis of V . By the definition of m and the property
μ(0) = 0, we have that the equality m(x + y, z) = m(x, z) + m(y, z) holds if and only if
the sum of the values of μ over all elements of V is 0. That is also equivalent to there are
even elements in V with μ-value 1. So the second statement follows. ��

Let Vr,s;ε,δ be a symplectic metric space with the prescribed invariants, which is unique
up to isomorphism. Let Sp(r, s; ε, δ) be the group of automorphisms of Vr,s,ε,δ preserving m
and μ. Let Vs;ε,δ = V0,s;ε,δ and Sp(s; ε, δ) = Sp(0, s; ε, δ). It is clear that

Sp(r, s; ε, δ) = Hom(Vs;ε,δ, F
r
2) � (Sp(s; ε, δ) × GL(Fr

2)).

Let Sp(s) = Sp(s, F2) be the degree-s symplectic group over the field F2.

Proposition 2.31 We have the following formulas for the orders of Sp(s; ε, δ),

|Sp(s; 0, 0)| =
⎛

⎝
∏

1≤i≤s−1

(2i+1 − 1)(2i + 1)

⎞

⎠ · 2s2−s+1,

|Sp(s − 1; 0, 1)| = 3 ·
⎛

⎝
∏

1≤i≤s−1

(2i − 1)(2i+1 + 1)

⎞

⎠ · 2s2−s+1,

|Sp(s; 1, 0)| = |Sp(s)| =
⎛

⎝
∏

1≤i≤s

(2i − 1)(2i + 1)

⎞

⎠ 2s2
.

Proof When s = 1 or 0, these are clear. So we just need to calculate

|Sp(s; ε, δ)|/|Sp(s − 1; ε, δ)|.
We calculate it for the case ε = δ = 0, the other cases are similar.

Sp(s; 0, 0) permutes the non-identity elements x ∈ Vs;0,0 with μ(x) = 0, there are
22s+2s

2 − 1 = (2s − 1)(2s−1 + 1) such elements. Fix two distinct non-identity elements
x1, x2 ∈ Vs,0,0 with μ(x1) = μ(x2) = 0 and m(x1, x2) = 1. For any other x with μ(x) = 0
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and (x1, x) = 1, (x1, x) is transformed to (x1, x2) under some transformation in Sp(s; 0, 0).
Fixing x1, there are 22s−2 such elements x . Moreover, the subgroup of Sp(s; 0, 0) consisting of
elements fixing x1 and x2 is isomorphic to Sp(s−1; 0, 0). So So we have |Sp(s; ε, δ)|/|Sp(s−
1; ε, δ)| = (2s − 1)(2s−1 + 1)22s−2. ��

Since we have

Vs;0,0 ⊕ V0;1,0 ∼= Vs−1;0,1 ⊕ V0;1,0 ∼= Vs;1,0,

so we can regard Sp(s; 0, 0) and Sp(s − 1; 0, 1) as subgroups of Sp(s; 1, 0).

Proposition 2.32 Sp(s; 1, 0) ∼= Sp(s).

Proof Since Vs;1,0/ ker m = F
2s
2 is a symplectic vector space of dimension 2s, by restriction

we get a natural homomorphism p : Sp(s; 1, 0) −→ Sp(s).
Let z be the unique non-identity element in ker m. Suppose that p( f ) = 1 for some

f ∈ Sp(s; 1, 0), then for any x ∈ Vs;1,0, f (x) = x or f (x) = xz. Since μ(xz) = μ(x) +
μ(z) + m(x, z) = μ(x) + 1, so f (x) 
= xz. Then f (x) = x for any x ∈ Vs;1,0. Thus p is
injective.

Moreover, by Proposition 2.31 we have |Sp(s; 1, 0)| = |Sp(s)|. So p is an isomorphism.
��

Since an element in Sp(s; 0, 0) or Sp(s − 1; 0, 1) preserves the symplectic form m on
V = F

2s
2 , so we have inclusions Sp(s; 0, 0) ⊂ Sp(s) and Sp(s − 1; 0, 1) ⊂ Sp(s).

Proposition 2.33 We have

[Sp(s) : Sp(s; 0, 0)] = 2s−1(2s + 1)

and

[Sp(s) : Sp(s − 1; 0, 1)] = 2s−1(2s − 1).

Proof This follows from Proposition 2.31 directly. ��
Define the groups Sp(s; t) (s, t ≥ 0) as the automorphism group a symplecic vector space

(V, m) over F2 with rankV = 2s + t and rank ker m = t . It is clear that Sp(s; 0) = Sp(s)
and

Sp(s; t) = Hom(F2s
2 , F

t
2) � (GL(t, F2) × Sp(s)).

3 Exceptional compact simple Lie groups (algebras)

3.1 Complex semi-simple Lie algebra and a specific compact real form

Let g be a complex semisimple Lie algebra and h be a Cartan subalgebra of g. Then g has a
root-space decomposition

g = h ⊕
(

⊕

α∈	

gα

)
,

where 	 = 	(g, h) is the root system of g and gα is the root space of a root α ∈ 	. Let
B be the Killing form on g. It is a non-degenerate symmetric form. The restriction of B to
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h is also non-degenerate. Let h∗ be the dual complex vector space of h. For any λ ∈ h∗, let
Hλ ∈ h be the element in h determined uniquely by

B(Hλ, H) = λ(H), ∀H ∈ h.

For any λ,μ ∈ h∗, let 〈λ,μ〉 := B(Hλ, Hμ). Then 〈·, ·〉 is an inner product on h∗.
For any root α, we have

Hα ∈ h. (1)

Define

H ′
α = 2

α(Hα)
Hα, (2)

which is called a co-root; let

0 
= Xα ∈ gα (3)

be any non-zero vector (recall that dim gα = 1), which is called a root vector of the root α.
The notations Hα, H ′

α, Xα will be used frequently in this paper.
Note that, for any α, β ∈ 	,

〈α, β〉 = B(Hα, Hβ) = β(Hα) = α(Hβ) ∈ R,

〈α, α〉 = B(Hα, Hα) = α(Hα) 
= 0,

and 2〈α, β〉/〈β, β〉 ∈ Z. We also note that

span
R
{α|α ∈ 	} ⊂ h∗

is a real vector space of dimension equal to r = rankg = dimC h (cf. [9, Pages 140–162]).
We set

Aα,β = 2〈α, β〉/〈β, β〉 = α(H ′
β).

Then

[H ′
α, Xβ ] = β(H ′

α)Xβ = 2〈α, β〉
〈α, α〉 Xβ = Aβ,α Xβ .

Choose a lexicography order of span
R
{α|α ∈ 	} to get a positive system 	+ and a simple

system 
. Let


 = {α1, α2, . . . , αr }. (4)

For brevity, we write

Hi , H ′
i (5)

instead of Hαi , H ′
αi

for a simple root αi .
Draw Aα,β Aβ,α edges to connect any two distinct simple roots α and β, and draw an

arrow from α to β if 〈α, α〉 > 〈β, β〉, we get a graph. This graph is connected if and only if
g is a simple Lie algebra, in this case it is called the Dynkin diagram of g. We always follow
the Bourbaki numbering to order the simple roots (cf. [8, Page 3]).

Let Aut(g) be the group of all complex linear automorphisms of g and Int(g) be the
subgroup of inner automorphisms. We define

Out(g) := Aut(g)/Int(g).
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The exponential map exp : g −→ Aut(g) is given by

exp(X) = exp(ad(X)), ∀X ∈ g = Lie(Aut(g)),

where ad(X) ∈ gl(g) is defined by ad(X)(Y ) = [X, Y ], ∀Y ∈ g.
One can normalize the root vectors {Xα, X−α} so that B(Xα, X−α) = 2/α(Hα). Then

[Xα, X−α] = H ′
α . Moreover, one can normalize {Xα} appropriately, such that

u0 = span
R
{Xα − X−α, i(Xα + X−α), i Hα : α ∈ 	+} (6)

is a compact real form of g ([9, Pages 348–354]). Define

θ(X + iY ) := X − iY, ∀X, Y ∈ u0.

Then θ is a Cartan involution of g (as a real semisimple Lie algebra) and u0 = gθ is a maximal
compact subalgebra of g. Any other compact real form of g is conjugate to u0. In the below,
whenever we discuss a compact real form of g, we always use this compact real form u0 in
(6).

Let Aut(u0) be the group of automorphisms of u0 and Int(u0) = Aut(u0)0 be the sub-
group of inner automorphisms. Any automorphism of u0 extends uniquely to a holomorphic
automorphism of g, so Aut(u0) ⊂ Aut(g). Similarly we have Int(u0) ⊂ Int(g). Define

�( f ) := θ f θ−1, ∀ f ∈ Aut(g).

Then it is a Cartan involution of Aut(g) with differential θ . It follows that Aut(u0) = Aut(g)�

and Int(u0) = Int(g)� are maximal compact subgroups of Aut(g) and Int(g) respectively.
We also have

Out(u0) := Aut(u0)/Int(u0) ∼= Out(g) ∼= Aut(
),

where Aut(
) is the symmetry group of the graph 
 consisting of permutations of vertices
preserving the multiples of edges and directions of arrows.

3.2 Involutions

Let u0 be a compact simple Lie algebra and G = Aut(u0) be its automorphism group. The
conjugacy classes of involutions in G are in one-one correspondence with the isomorphism
classes of real forms of the complexified Lie algebra g = u0 ⊗R C, and also in one-one cor-
respondence with compact irreducible Riemannian symmetric pairs (u0, h0). These objects
were classified by Élie Cartan in 1920s. We give representatives of conjugacy classes of
involutions in the automorphism group G = Aut(u0) for each compact simple exceptional
Lie algebra u0. The following are from [8, Pages 5–6]. In particular, as explained in [8], the
notation e6,−2 denotes a real simple Lie algebra with a Cartan decomposition u0 = k0 + p0

such that g = u0 ⊗R C is a complex simple Lie algebra of type E6 and dim k0 −dim p0 = −2,
and similarly for the notations of other real simple Lie algebras.

(i) Type E6. For u0 = e6, let τ be a specific diagram involution defined by

τ(Hα1) = Hα6 , τ (Hα6) = Hα1 , τ (Hα3) = Hα5 , τ (Hα5) = Hα3 ,

τ (Hα2) = Hα2 , τ (Hα4) = Hα4 , τ (X±α1) = X±α6 , τ (X±α6) = X±α1 ,

τ (X±α3) = X±α5 , τ (X±α5) = X±α3 , τ (X±α2) = X±α2 , τ (X±α4) = X±α4 .

Let

σ1 = exp(π i H ′
2), σ2 = exp(π i(H ′

1 + H ′
6)), σ3 = τ, σ4 = τ exp(π i H ′

2).
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Then σ1, σ2, σ3, σ4 represent all conjugacy classes of involutions in Aut(u0), which
correspond to Riemannian symmetric spaces of type EII, EIII, EIV, EI and the corre-
sponding real forms are e6,−2, e6,14, e6,26, e6,−6. σ1, σ2 are inner automorphisms, σ3, σ4

are outer automorphisms.
(ii) Type E7. For u0 = e7, let

σ1 = exp
(
π i H ′

2

)
, σ2 = exp

(
π i

H ′
2 + H ′

5 + H ′
7

2

)
,

σ3 = exp

(
π i

H ′
2 + H ′

5 + H ′
7 + 2H ′

1

2

)
.

Then σ1, σ2, σ3 represent all conjugacy classes of involutions in Aut(u0), which corre-
spond to Riemannian symmetric spaces of type EVI, EVII, EV and the corresponding
real forms are e7,3, e7,25, e7,−7.

(iii) Type E8. For u0 = e8, let

σ1 = exp(π i H ′
2), σ2 = exp(π i(H ′

2 + H ′
1)).

Then σ1, σ2 represent all conjugacy classes of involutions in Aut(u0), which correspond
to Riemannian symmetric spaces of type EIX, EVIII and the corresponding real forms
are e8,24, e8,−8.

(iv) Type F4. For u0 = f4, let

σ1 = exp(π i H ′
1), σ2 = exp(π i H ′

4).

Then σ1, σ2 represent all conjugacy classes of involutions in Aut(u0), which correspond
to Riemannian symmetric spaces of type FI, FII and the corresponding real forms are
f4,−4, f4,20.

(v) Type G2. For u0 = g2, let σ = exp(π H ′
1), which represents the unique conjugacy class

of involutions in Aut(u0), corresponds to Riemannian symmetric space of type G and
the corresponding real form is g2,−2.

We remark that, in types E8, F4, G2, the automorphism groups of the simple Lie algebras,
Aut(e8), Aut(f4), Aut(g2), are connected and simply connected. In type E6, Aut(e6) is not
connected and Int(e6) is not simply connected, the image of the adjoint homomorphism
π : E6 −→ Aut(e6) is Int(e6) and the kernel of π (i.e., Z(E6)) is of order 3. Since Int(e6)

has two conjugacy classes of involutions, so E6 has two conjugacy classes of involutions.
Their representatives σ ′

1 = exp(π i H ′
2), σ ′

2 = exp(π i(H ′
1 + H ′

6)). Here exp : e6 −→ E6 is
the exponential map for the Lie group E6. In type E7, Aut(e7) is connected but not simply
connected, the adjoint homomorphism π : E7 −→ Aut(e7) is surjective and the kernel of π

(i.e., Z(E7)) is of order 2. The preimages of σ2, σ3 ∈ Aut(e7) in E7 are elements of order 4;
and the preimages of σ1 are two non-conjugate involutions. So E7 has two conjugacy classes
of involutions. Their representatives are σ ′

1 = exp(π i H ′
2) and σ ′

2 = exp(π i(H ′
1 + H ′

6)). Here
exp : e7 −→ E7 is the exponential map for the Lie group E7.

There is an ascending sequence

F4 ⊂ E6 ⊂ E7 ⊂ E8,

we observe that under these inclusions, the involutions σ2 in F4 (σ ′
2 in E6, or σ ′

2 in E7) is
mapped to conjugate element of the involution σ ′

2 in E6 (σ ′
2 in E7, or σ2 in E8). The conjugacy

class containing σ2 (or σ ′
2) in each type is particularly important to us as we will use them to

define the translation subgroup AF for an elementary abelian 2-subgroup F .
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The following Table 2 is from Tables 1 and 2 in [8], which describes the isomorphism
type of the symmetric subgroup Aut(u0)

θ and the isotropic module p = g−θ for each pair
(u0, θ) with u0 a compact exceptional simple Lie algebra and θ an involtution in Aut(u0).

Remark 3.1 We apologize that we use σi to represent the conjugacy classes of involutions in
the automorphism groups Aut(u0) in all types (as well as use σ ′

i to represent the conjugacy
classes of involutions in the connected and simply connected compact Lie groups E6 and
E7). But this causes no ambiguity as we always specify in which group we are talking about
conjugacy classes.

3.3 Klein four subgroups

In [8, Section 4], we constructed some Klein four subgroups of Aut(u0) and described the
conjugacy classes of involutions in them, it is showed that they represent all conjugacy classes
of Klein four subgroups. These Klein fours subgroups, as well as their fixed point subalgebras
and their involutions types (cf. Definition 3.3) are listed in Table 3.

From Table 3, we see that, the groups Aut(e6), Aut(e7), Aut(e8), Aut(f4), Aut(g2) have
8, 8, 4, 3, 1 conjugacy classes of Klein four subgroups in them respectively. Most of these
conjugacy classes are distinguished by their involution types (Definition 3.3) except that the
Klein four subgroups �1, �2 of Aut(e7) have the same involution type [both are (σ1, σ1, σ1)].
The Klein four subgroups �1, �2 ⊂ Aut(e7) can be characterized in this way: a Klein four
subgroup F ⊂ E7 with π(F) = �1 [or π(F) = �2] have an odd number of elements (or
an even number of elements) conjugate to σ ′

2, where π : E7 −→ Aut(e7) is the adjoint
homomorphism, which is a double covering. That is equivalent to say, we can choose a Klein

Table 2 Symmetric subgroups and isotropic modules

u0 θ Aut(u0)θ p

EI e6 σ4 = τ exp(π i H ′
2) (Sp(4)/〈−1〉) × 〈θ〉 Vω4

EII e6 σ1 = exp(π i H ′
2) (SU(6)×Sp(1)/〈(e 2π i

3 I,1),(−I,−1)〉)�〈τ 〉 ∧3
C

6 ⊗ C
2

τ2 = 1, kτ0 = sp(3) ⊕ sp(1)

EIII e6 σ2 = exp(π i(H ′
1 + H ′

6)) (Spin(10)×U(1)/〈(c, i)〉) � 〈τ 〉 (M+ ⊗ 1) ⊕ (M− ⊗ 1)

τ2 = 1, kτ0 = so(9)

EIV e6 σ3 = τ F4 × 〈θ〉 Vω4

EV e7 σ3 = exp(π i(H ′
1 + H ′

0)) (SU(8)/〈i I 〉) � 〈ω〉 ∧4
C

8

ω2 = 1, kω0 = sp(4)

EVI e7 σ1 = exp(π i H ′
2) (Spin(12)×Sp(1))/〈(c, 1), (−1,−1)〉 M+ ⊗ C

2

EVII e7 σ2 = exp(π i H ′
0) ((E6×U(1))/〈(c, e

2π i
3 )〉) � 〈ω〉 (Vω1 ⊗ 1) ⊕ (Vω6 ⊗ 1)

ω2 = 1, kω0 = f4

EVIII e8 σ2 = exp(π i(H ′
1 + H ′

2)) Spin(16)/〈c〉 M+
EIX e8 σ1 = exp(π i H ′

1) E7×Sp(1)/〈(c, −1)〉 Vω7 ⊗ C
2

FI f4 σ1 = exp(π i H ′
1) (Sp(3)×Sp(1))/〈(−I, −1)〉 Vω3 ⊗ C

2

FII f4 σ2 = exp(π i H ′
4) Spin(9) M

G g2 σ = exp(π i H ′
1) (Sp(1)×Sp(1))/〈(−1, −1)〉 Sym3

C
2 ⊗ C

2
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Table 3 Klein four subgroups in Aut(u0) for exceptional case

u0 �i l0 = u
�i
0 Involution type

e6 �1 = 〈exp(π i H ′
2), exp(π i H ′

4)〉 (su(3))2 ⊕ (iR)2 (σ1, σ1, σ1)

e6 �2 = 〈exp(π i H ′
4), exp(π i(H ′

3 + H ′
4 + H ′

5))〉 su(4) ⊕ (sp(1))2 ⊕ iR (σ1, σ1, σ2)

e6 �3 = 〈exp(π i(H ′
2 + H ′

1)), exp(π i(H ′
4 + H ′

1))〉 su(5) ⊕ (iR)2 (σ1, σ2, σ2)

e6 �4 = 〈exp(π i(H ′
1 + H ′

6)), exp(π i(H ′
3 + H ′

5))〉 so(8) ⊕ (iR)2 (σ2, σ2, σ2)

e6 �5 = 〈exp(π i H ′
2), τ 〉 sp(3) ⊕ sp(1) (σ1, σ3, σ4)

e6 �6 = 〈exp(π i H ′
2), τ exp(π i H ′

4)〉 so(6) ⊕ iR (σ1, σ4, σ4)

e6 �7 = 〈exp(π i(H ′
1 + H ′

6))), τ 〉 so(9) (σ2, σ3, σ3)

e6 �8 = 〈exp(π i(H ′
1 + H ′

6)), τ exp(π i H ′
2)〉 so(5) ⊕ so(5) (σ2, σ4, σ4)

e7 �1 = 〈exp(π i H ′
2), exp(π i H ′

4)〉 su(6) ⊕ (iR)2 (σ1, σ1, σ1)

e7 �2 = 〈exp(π i H ′
2), exp(π i H ′

3)〉 so(8) ⊕ (sp(1))3 (σ1, σ1, σ1)

e7 �3 = 〈exp(π i H ′
2), τ 〉 so(10) ⊕ (iR)2 (σ1, σ2, σ2)

e7 �4 = 〈exp(π i H ′
1), τ 〉 su(6) ⊕ sp(1) ⊕ iR (σ1, σ2, σ3)

e7 �5 = 〈exp(π i H ′
2), τ exp(π i H ′

1)〉 su(4) ⊕ su(4) ⊕ iR (σ1, σ3, σ3)

e7 �6 = 〈τ, ωa〉 f4 (σ2, σ2, σ2)

e7 �7 = 〈τ, ω exp(π i H ′
1)〉 sp(4) (σ2, σ3, σ3)

e7 �8 = 〈τ exp(π i H ′
1), ω exp(π i H ′

3)〉 so(8) (σ3, σ3, σ3)

e8 �1 = 〈exp(π i H ′
2), exp(π i H ′

4)〉 e6 ⊕ (iR)2 (σ1, σ1, σ1)

e8 �2 = 〈exp(π i H ′
2), exp(π i H ′

1)〉 so(12) ⊕ (sp(1))2 (σ1, σ1, σ2)

e8 �3 = 〈exp(π i H ′
2), exp(π i(H ′

1 + H ′
4))〉 su(8) ⊕ iR (σ1, σ2, σ2)

e8 �4 = 〈exp(π i(H ′
2 + H ′

1)), exp(π i(H ′
5 + H ′

1))〉 so(8) ⊕ so(8) (σ2, σ2, σ2)

f4 �1 = 〈exp(π i H ′
2), exp(π i H ′

1)〉 su(3) ⊕ (iR)2 (σ1, σ1, σ1)

f4 �2 = 〈exp(π i H ′
3), exp(π i H ′

2)〉 so(5) ⊕ (sp(1))2 (σ1, σ1, σ2)

f4 �3 = 〈exp(π i H ′
4), exp(π i H ′

3)〉 so(8) (σ2, σ2, σ2)

g2 � = 〈exp(π i H ′
1), exp(π i H ′

2)〉 (iR)2 (σ, σ, σ )

a ω = exp

(
π(Xα2 −X−α2 )

2

)
exp

(
π(Xα5 −X−α5 )

2

)
exp

(
π(Xα7 −X−α7 )

2

)

four subgroup F ⊂ E7 with π(F) = �1 (or π(F) = �2) such that all of its involutions are
conjugate to σ ′

1 (or σ ′
2).

Given a Klein four subgroup F ⊂ G, we have six different pairs (θ, σ ) generating F , but
some of them may be conjugate.

Theorem 3.2 [8, Theorem 5.2] Let (θ, σ ), (θ ′, σ ′) be two pairs of commuting involutions
in Aut(u0) for u0 a compact exceptional simple Lie algebra, then they are conjugate if and
only if

θ ∼ θ ′, σ ∼ σ ′, θσ ∼ θ ′σ ′

and the Klein four subgroups 〈θ, σ 〉, 〈θ ′, σ ′〉 are conjugate.

We remark that, Aut(e7) has two non-conjugate Klein four subgroups with involutions all
conjugate to σ1, so the condition of “the Klein four subgroups 〈θ, σ 〉, 〈θ ′, σ ′〉 are conjugate”
is necessary. By Theorem 3.2, Table 3 also classifies conjugacy classes of ordered pairs
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of commuting involutions in Aut(u0). Which is another approach to Berger ’s classification
of semisimple symmetric pairs (cf. [3]).

3.4 An outline of the method of the classification

In type G2, it turns out the conjugacy class of an elementary abelian 2-subgroup of Aut(g2)

is determined by its rank and the rank is at most 3. So we have four conjugacy classes of
elementary abelian 2-subgroups in total.

In type F4, by Table 3, we see that Aut(f4) does not possess any Klein four subgroup with
involution type (σ1, σ2, σ2). That implies, the subset consisting of the identity element and all
elements conjugate to σ2in an elementary abelian 2-subgroup F of Aut(f4) is a subgroup of
F . Let AF be this subgroup. Then r = rank AF and s = rankF/AF are conjugate invariant.
We show that the conjugacy class of F is determined by the pair (r, s) and the range of the
pairs is {(r, s) : r ≤ 2, s ≤ 3}. So we have twelve conjugacy classes of elementary abelian
2-subgroups in total.

In type E6, we divide the elementary abelian 2-subgroups F of Aut(e6) into four disjoint
and exhausting classes:

Class 1, F contains an involution conjugate to σ3;
Class 2, F doesn’t contain any element conjugate to σ3, but contains one conjugate to σ4;
Class 3, F ⊂ Int(e6) and it contains no Klein four subgroups conjugate to �3;
Class 4, F ⊂ Int(e6) and it contains a Klein four subgroup conjugate to �3.

As Int(e6)
σ3 ∼= F4 and Int(e6)

σ4 ∼= Sp(4)/〈(−I,−1)〉, the classification for subgroups
in Class 1 reduces to the classification in F4 case; the classification for subgroups in Class
2 reduces to the classification of subgroups of Sp(4)/〈(−I,−1)〉, but only those subgroups
with any involution conjugate to iI or diag{−I2, I2} are concerned (cf. Sect. 6 for the reason).
Our representatives of conjugacy classes in Class 1 are denoted as {Fr,s : r ≤ 2, s ≤ 3} and
representatives of conjugacy classes in Class 1 are denoted as {Fε,δ;r,s : ε+δ ≤ 1, r +s ≤ 2}.
Two important observations are: any subgroup in Class 3 is of the form F ∩ Int(e6) for a
subgroup F in Class 1; and any subgroup in Class 4 is of the form F ∩ Int(e6) for a subgroup
F in Class 2 satisfying some additional condition. Our representatives of conjugacy classes
in Class 3 are denoted as {F ′

r,s : r ≤ 2, s ≤ 3} and representatives of conjugacy classes
in Class 1 are denoted as {F ′

ε,δ;r,s : ε + δ ≤ 1, r + s ≤ 2, s ≥ 1}. In total, we have
3 × 4 + 3 × 6 + 3 × 4 + 3 × 3 = 51 conjugacy classes of elementary abelian 2-subgroups.

In type E7, we divide the elementary abelian 2-subgroups F of Aut(e7) into three disjoint
and exhausting classes:

Class 1, F contains an involution conjugate to σ2;
Class 2, F doesn’t contain any element conjugate to σ2, but contains one conjugate to σ3;
Class 3, any involution in F is conjugate to σ1.

From Table 2, we have that

Aut(e7)
σ2 ∼= ((E6 × U(1))/〈(c, e

2π i
3 )〉 � 〈ω〉,

where 1 
= c ∈ ZE6 , ω2 = 1, (e6 ⊕ iR)ω = f4 ⊕ 0, σ2 = (1,−1). Modulo U(1), we
have a homomorphism π : Aut(e7)

σ2 −→ Aut(e6). It turns out there is a bijection between
conjugacy classes of elementary abelian 2-subgroups of Aut(e7) in Class 1 and elementary
abelian 2-subgroups of Aut(e6). So we have fifty-one conjugacy classes in Class 1.

From Table 2, we have that

Aut(e7)
σ3 ∼= (SU(8)/〈i I 〉) � 〈ω0〉,
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where ω2
0 = 1, ω0 Xω−1

0 = X for any X ∈ SU(8), σ3 = 1+i√
2

I . So we have a homomorphism

π : Aut(e7)
σ3 −→ Aut(su(8)) = (U(8)/Z8) � 〈ω0〉.

There is a bijection between conjugacy classes of elementary abelian 2-subgroups of
Aut(e7) in Class 2 and elementary abelian 2 subgroups of Aut(su(8)) whose inner involu-
tions are all conjugate to I4,4 = diag{I4,−I4} and outer involutions all conjugate to ω0.
These subgroups are classified by Propositions 2.4, 2.12 and Lemma 2.23. We get fourteen
conjugacy classes in Class 2.

For an elementary abelian 2-subgroup F of Aut(e7) in Class 3, we show either F is toral
or it contains a rank 3 subgroup whose Klein four subgroups are all conjugate to �1. In the
first case, we can find an involution θ ∈ Aut(e7)

F such that elements in θ F are all conjugate
to σ3. In the second case, we can find a Klein four subgroup F ′ ⊂ Aut(e7)

F conjugate to �6.
Then F is a canonical subgroup of some well-chosen subgroup in Class 2 or Class 1. We get
thirteen conjugacy classes in Class 3. In total, we have 51 + 14 + 13 = 78 conjugacy classes
of elementary abelian 2-subgroups.

In type E8, Aut(e8) = E8 has two conjugacy classes of involutions with representatives
σ1, σ2. A nice observation is: for an elementary abelian 2-subgroup F of Aut(e8) and any
element x of F conjugate to σ1, the subset

Hx = {y ∈ F |xy 
∼ y}

is a subgroup. We define HF as the subgroup generated by elements of F conjugate to σ1

and define

AF = {1} ∪ {x ∈ F |x ∼ σ2, and ∀y ∈ F − {1, x}, xy ∼ y}.

Then AF ⊂ HF if HF 
= 1.
By [8, Table 6], we have that

Aut(e8)
�1 ∼= ((E6 × U(1) × U(1))/〈(c, e

2π i
3 , 1)〉 � 〈ω〉,

where 1 
= c ∈ ZE6 , ω2 = 1, (e6 ⊕ iR ⊕ iR)ω = f4 ⊕ 0 ⊕ 0, �1 = 〈(1, 1,−1), (1,−1, 1)〉.
Modulo U(1) × U(1), we have a homomorphism π : Aut(e8)

σ2 −→ Aut(e6). It
turns out, π does not give a bijection between conjugacy classes of elementary abelian
2-subgroups of Aut(e8) containing a Klein four subgroup conjugate to �1 and elementary
abelian 2-subgroups of Aut(e6) and we find an explicit relation between these two kinds of
conjugacy class and so get a classification of elementary abelian 2-subgroups of Aut(e8) con-
taining a Klein four subgroup conjugate to �1. We have 48 conjugacy classes of elementary
abelian 2-subgroups of Aut(e8) containing a Klein four subgroup conjugate to �1

When F doesn’t contain any Klein four subgroup conjugate to �1 and HF 
= 1, we show
that rank(HF/AF ) = 1, rank AF ≤ 3 and rank(F/HF ) ≤ 2. Moreover, the conjugacy class
of F is determined by the numbers rank AF and rank(F/HF ). We have 12 conjugacy classes
of elementary abelian 2-subgroups of Aut(e8) of this type.

When HF = 1, we have rankF ≤ 5 and the conjugacy class of F is determined by rankF .
So we have 6 conjugacy classes of elementary abelian 2-subgroups of Aut(e8) of this type.
In total, we have 48 + 12 + 6 = 66 conjugacy classes of elementary abelian 2-subgroups.
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3.5 Some notions

Definition 3.3 (Involution type) For an elementary abelian 2 subgroup F of a compact Lie
group G, we call the distribution of conjugacy classes of involutions in F the involution type
of F .

Definition 3.4 (Automizer group) For an elementary abelian 2 subgroup F of a compact Lie
group G, we call W (F) = NG(F)/CG(F) the automizer group of F .

W (F) is also called Weyl group in Literature, e.g, [2]. The name of automizer is suggested
by Professor R. Griess. We determine the automizer group W (F) for each elementary abelian
2-subgroup F of Aut(u0) with u0 a compact exceptional simple Lie algebra. Conjugation
action gives us an inclusion

W (F) ⊂ Aut(F) = GL(rankF, F2).

Then we need to determine which automorphisms of F can be realized as Ad(g) for some
g ∈ G.

We also introduce other notions like translation subgroup, defect index, residual rank in
the following sections. As the definitions of these notions depend on the types of the Lie
algebras (or Lie groups), we give the precise definitions in each section below. These notions
help us to show the subgroups we constructed in different classes or in the same class but
with different parameters are non-conjugate to each other.

4 G2

For G = Aut(g2), by Table 2 we know G has a unique conjugacy class of involution and we
have Gσ ∼= Sp(1) × Sp(1)/〈(−1,−1)〉 for any involution σ ∈ G.

Proposition 4.1 The conjugacy class of an elementary abelian 2-subgroup F of G is deter-
mined by rankF and the possible values of rankF are {0, 1, 2, 3}.
Proof We first prove that, for any r ≤ 3, there exists a unique conjugacy class of ordered
tuples {x1, . . . , xr } such that they generate an elementary abelian 2-subgroup of G with rank
r . When r = 1, this follows from the classification of involutions in G, moreover we have

Gx1 ∼= Sp(1) × Sp(1)/〈(−1,−1)〉
for any involution x1 ∈ G. Let x2 ∈ Gx1 be an involution different from x1. Then x2 ∼Gx1

[(i, i)]. This proves the statement when r = 2. Moreover we have (when x2 = [(i, i)], we
can take t = [(j, j)] below)

Gx1,x2 ∼= ((U(1) × U(1))/〈(−1,−1)〉) � 〈t〉,
where t2 = 1 and t (z1, z2)t−1 = (z−1

1 , z−1
2 ), ∀z1, z2 ∈ U(1). Let x3 ∈ Gx1,x2 be an

involution not in 〈x1, x2〉. Then x3 ∼Gx1,x2 t . This proves the statement when r = 3.
Moreover, we have Gx1,x2,x3 = 〈x1, x2, x3〉, so 〈x1, x2, x3〉 is not properly contained in

any abelian subgroup of G. So an elementary abelian 2-subgroup F of G has rank at most 3.
Then the proposition is proved. ��
Corollary 4.2 G has 4 conjugacy classes of an elementary abelian 2-subgroup.

Proposition 4.3 For 0 ≤ r ≤ 3, for any elementary abelian 2-subgroup Fr of G = G2 with
rankFr = r , we have W (Fr ) ∼= GL(r, F2).
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Proof This follows from the following statement: for any r ≤ 3, there exists a unique
conjugacy class of ordered tuples {x1, . . . , xr } such that they generate an elementary abelian
2-subgroup of G with rank r . This is proved during the above proof for Proposition 4.1. ��

5 F4

Let G = Aut(f4). From Table 2, we see that G has two conjugacy classes of involutions with
representatives σ1, σ2 such that

Gσ1 ∼= Sp(3) × Sp(1)/〈(−I,−1)〉
and

Gσ2 ∼= Spin(9).

From [8, Page 18], we see that Gσ1 has three conjugacy classes of involutions except σ1 =

(−I, 1) = (I,−1) with representatives (iI, i),

⎛

⎝

⎛

⎝
−1

1
1

⎞

⎠ , 1

⎞

⎠ ,

⎛

⎝

⎛

⎝
−1

−1
1

⎞

⎠ , 1

⎞

⎠.

Moreover in G, we have the conjugacy relations

(iI, i
) ∼ σ1,⎛

⎝

⎛

⎝
−1

1
1

⎞

⎠ , 1

⎞

⎠ ∼ σ1,

⎛

⎝

⎛

⎝
−1

−1
1

⎞

⎠ , 1

⎞

⎠ ∼ σ2.

And Gσ2 has two conjugacy classes of involutions except σ2 = −1 with representatives
e1e2e3e4, e1e2e3e4e5e6e7e8. And in G, we have the conjugacy relations

e1e2e3e4 ∼ σ1

and

e1e2 . . . e8 ∼ σ2.

In Gσ1 = Sp(3) × Sp(1)/〈(−I,−1)〉, let x1 = (I,−1), x2 = (iI, i), x3 = (jI, j),

x4 =
⎛

⎝
−1

−1
1

⎞

⎠ , x5 =
⎛

⎝
−1

1
−1

⎞

⎠ .

For 0 ≤ r ≤ 2 and 0 ≤ s ≤ 3, define

Fr,s = 〈x1, . . . , xs, x4, . . . , x3+r 〉
and Ar = 〈x4, . . . , x3+r 〉.
Definition 5.1 For an elementary abelian 2-subgroup F ⊂ G, define

AF = {x ∈ F : x ∼ σ2} ∪ {1}.
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Proposition 5.2 For an elementary abelian 2-subgroup F of G, AF is a subgroup of F and
we have rank AF ≤ 2 and rank(F/AF ) ≤ 3.

For each (r, s) with 0 ≤ r ≤ 2 and 0 ≤ s ≤ 3, there exists a unique conjugacy class of
elementary abelian 2-subgroups F of G such that rank AF = r and rank(F/AF ) = s.

Proof Let F ⊂ G be an elementary abelian 2-subgroup. By Table Table 3, we see that there
are no Klein four subgroups of G with involutions type (σ1, σ2, σ2). Then for any distinct
non-identity elements x, y ∈ F with x ∼ y ∼ σ2, we have xy ∼ σ2. So AF is a subgroup.

In Gσ2 = Spin(9), besides σ2 = −1, the elements conjugate to σ2 in G are all conjugate
to e1e2 . . . e8 in Gσ2 . There does not exist x, y ∈ Spin(9) with x, y, xy all conjugate to
e1e2 . . . e8, so rank AF ≤ 2.

In Gσ1 = Sp(3) × Sp(1)/〈(−I,−1)〉, the elements x with x, σ1x = (−I, 1)x both
conjugate to σ1 in G are all conjugate to [(iI, i)] in Gσ1 . By this, it is clear that any elementary
abelian 2-subgroup of G whose non-identity elements all conjugate to σ1 has rank at most 3
(〈σ1, [(iI, i)], [(jI, j)]〉 is an example of rank 3). Since non-identity elements of a complement
of AF in F are all conjugate to σ1, so rankF/AF ≤ 3.

In F = Fr,s , we have AF = Ar is of rank r and F/AF = Fr,s/Ar is of rank s, so F = Fr,s

satisfies rank AF = r and rankF/AF = s.
When s = 0, the uniqueness of the conjugacy class is showed in the proof for r ≤ 2

above. When s = 1, we may and do assume that σ1 ∈ F , then

F ⊂ Gσ1 = Sp(3) × Sp(1)/〈(−I,−1)〉.
The elements in Gσ1 which are conjugate to σ2 in G are conjugate to [(I2,1, 1)] in Gσ1 .
Moreover, any pair (x1, x2) with x1, x2 ∈ Gσ1 are distinct and both conjugate to σ2 in G
is conjugate to ([(I2,1, 1)], [(I1,2, 1)]) in Gσ1 . This proves the uniqueness of the conjugacy
classes when s = 1. When s = 2, we may and do assume that σ1 ∈ F and [(iI, i)] ∈ F ∩Gσ1 .
Then

F ⊂ (Gσ1)[(iI,i)] = (U(3) × U(1)/〈(−I,−1)〉) � 〈t〉,
where t = (jI, j). Similarly as s = 1 case, we get the uniqueness of the conjugacy classes
when s = 2. When s = 3, we may and do assume thatσ1 ∈ F and [(iI, i)], [(jI, j)] ∈ F∩Gσ1 .
Then

F ⊂ (Gσ1)[(iI,i)],[(jI,j)] = (SO(3) × SO(1) × 〈σ1, [(iI, i)], [(jI, j)]〉.
We have SO(1) = 1 and the elements in SO(3) which are conjugate to σ2 in G are conjugate
to I2,1 in SO(3). Moreover any pair (x1, x2) with x1, x2 ∈ SO(3) are distinct and both
conjugate to I2,1 in SO(3) is conjugate to (I2,1, I1,2) in SO(3), so we get the uniqueness of
the conjugacy classes when s = 3. ��
Corollary 5.3 We have 12 conjugacy classes of elementary abelian 2-subgroups in G.

Proof Since 3 × 4 = 12, by Proposition 5.2, we get that there are 12 conjugacy classes of
elementary abelian 2-subgroups in G. ��
Proposition 5.4 For two elementary abelian 2-subgroups F, F ′ ⊂ G, if f : F −→ F ′ is
an isomorphism such that f (x) ∼ x, ∀x ∈ F, then there exists g ∈ G such that f = Ad(g).

Proof This is proved in the proof of Proposition 5.2 ��
Proposition 5.5 For any r ≤ 2, s ≤ 3, W (Fr,s) ∼= P(r, s, F2), where P(r, s, F2) is the
group of (r, s) block wise upper triangular matrices in GL(r + s, F2).

Proof For F = Fr,s , we have AF = Ar and any g ∈ NG(F) satisfies g Ar g−1 = Ar . By
Proposition 5.4, we get W (F) = NG(F)/CG(F) ∼= P(r, s, F2). ��
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6 E6

Let G = Aut(e6). By Table 2, G has four conjugacy classes of involutions, two of them
consist of inner automorphisms with representatives σ1, σ2 and the other two consist of outer
automorphisms with representatives σ3, σ4. We have

(G0)
σ1 ∼= SU(6) × Sp(1)/〈(e 2π i

3 I, 1), (−I,−1)〉,
(G0)

σ2 ∼= Spin(10) × U(1)/〈(c, i)〉, c = e1e2 . . . e10,

(G0)
σ3 ∼= F4

and

(G0)
σ4 ∼= Sp(4)/〈−I 〉.

From [8, Page 15], we see that (G0)
σ1 has four conjugacy classes of involutions except

σ1. Their representatives and their conjugacy classes in G are as follows,
((−I4

I2

)
, 1

)
∼ σ2,

((−I2

I4

)
, 1

)
∼ σ1,

((
i I5

−i

)
, i

)
∼ σ2,

((
i I3

−i I3

)
, i

)
∼ σ1.

And (G0)
σ2 has four conjugacy classes of involutions except σ2. Their representatives and

their conjugacy classes in G are as follows,
(
e1e2e3e4, 1

) ∼ σ1,
(
e1e2 . . . e8, 1

) ∼ σ2,

(

,

1 + i√
2

) ∼ σ2,
( − 
,

1 + i√
2

) ∼ σ1,

where


 = 1 + e1e2√
2

1 + e3e4√
2

. . .
1 + e9e10√

2
.

Definition 6.1 For an elementary abelian 2-subgroup F ⊂ G, define

μ : F ∩ G0 −→ {±1}
by μ(y) = −1 if y ∼ σ1; and μ(y) = 1 if y ∼ σ2.

And define

m : (F ∩ G0) × (F ∩ G0) −→ {±1}
by m(y1, y2) = μ(y1 y2)μ(y1)μ(y2).

Here m is not always a bilinear form.

Definition 6.2 For an elementary abelian 2-subgroup F ⊂ G, define the translation subgroup

AF = {x ∈ H ∩ G0 : μ(x) = 1 and m(x, y) = 1,∀y ∈ F ∩ G0}
and define the defect index

defe(F) = |{y ∈ F ∩ G0 : μ(y) = 1}| − |{y ∈ F ∩ G0 : μ(y) = −1}|.
The subgroup AF the has an equivalent definition as

AF = {1} ∪ {x ∈ F |x ∼ σ2, and y ∼ xy for any y ∈ F − 〈x〉, },
this is why the name of “translation subgroup” arises.
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6.1 Subgroups from F4

In (G0)
σ3 ∼= F4, let τ1, τ2 be involutions such that

f
τ1
4

∼= sp(3) ⊕ sp(1), f
τ2
4

∼= so(9).

From [8, Page 15], we see that τ1, τ2, σ3τ1, σ3τ2 represent all conjugacy classes of involutions
in Gσ3 except σ3 and in we have the conjugacy relations in G,

τ1 ∼ σ1, τ2 ∼ σ2,

σ3τ1 ∼ σ4, σ3τ2 ∼ σ3.

We have ((G0)
σ3)τ1 ∼= Sp(3) × Sp(1)/〈(−I,−1)〉. Let

x0 = σ3, x1 = τ1 = [(I,−1)],
x2 = [(iI, i)], x3 = [(jI, j)],

x4 =
⎡

⎣

⎛

⎝

⎛

⎝
−1

−1
1

⎞

⎠ , 1

⎞

⎠

⎤

⎦ , x5 =
⎡

⎣

⎛

⎝

⎛

⎝
−1

1
−1

⎞

⎠ , 1

⎞

⎠

⎤

⎦ .

For a pair (r, s) with r ≤ 2 and s ≤ 3, define

Fr,s = 〈x0, x1, . . . , xs, x4, . . . , x3+r 〉
and

F ′
r,s = 〈x1, . . . , xs, x4, . . . , x3+r 〉.

Proposition 6.3 For an elementary abelian 2-subgroup F ⊂ G, if F contains an element
conjugate to σ3, then F ∼ Fr,s for some (r, s) with r ≤ 2, s ≤ 3; if F ⊂ G0 and it contains
no Klein four subgroups conjugate to �3, then F ∼ F ′

r,s for some pair (r, s) with r ≤ 2 and
s ≤ 3.

Proof For the first statement, we may and do assume that σ3 ∈ F , then F ⊂ Gσ3 = F4×〈σ3〉.
Then F ∼ Fr,s (r ≤ 2, s ≤ 3) by Proposition 5.2.

For the latter statement, since we assume that F does not contain any Klein four sub-
group conjugate to �3, so F does not contain any Klein four subgroup of involutions type
(σ1, σ2, σ2). Then we have AF = {1} ∪ {x ∈ F |x ∼ σ2}. Prove in the same line as the proof
for Proposition 5.2, we can show that rank AF ≤ 2, rank(F/AF ) ≤ 3 and the conjugacy
class of F is uniquely determined by rank AF and rank(F/AF ). Then we have F ∼ F ′

r,s
(r ≤ 2, s ≤ 3) since rank AF ′

r,s
= r and rank(F/AF ′

r,s
) = s. ��

Lemma 6.4 For an elementary abelian 2-subgroup F in Proposition 6.3,

m(x, y) = −1 ⇔ x, y ∈ (F ∩ G0) − AF , ∀x, y ∈ F ∩ G0.

Proof This follows from the equality AF = {1} ∪ {x ∈ F |x ∼ σ2}. ��
6.2 Subgroups from Sp(4)/〈−I 〉

In (G0)
σ4 ∼= Sp(4)/〈−I 〉, let τ1 = iI, τ2 =

(−I2

I2

)
, τ3 =

(−1
I3

)
. From [8, Pages

15–16], we see that τ1, τ2, τ3, σ4τ1, σ4τ2, σ4τ3 represent all conjugacy classes of involutions
in Gσ4 except σ4 and we have the following conjugacy relations in G,

τ1 ∼ σ1, τ2 ∼ σ2, τ3 ∼ σ1
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and

σ4τ1 ∼ σ4, σ4τ2 ∼ σ4, σ4τ3 ∼ σ3.

Let x0 = σ4, x1 = iI, x2 = jI ,

x3 =
(−I2

I2

)
, x4 =

(
0 I2

I2 0

)
,

x5 =

⎛

⎜⎜⎝

1 0
0 −1

1 0
0 −1

⎞

⎟⎟⎠ , x6 =

⎛

⎜⎜⎝

0 1
1 0

0 1
1 0

⎞

⎟⎟⎠ .

For any (ε, δ, r, s) with ε + δ ≤ 1, r + s ≤ 2, define

Fε,δ,r,s = 〈x0, x1, . . . , xε+2δ, x3, . . . , xr+2s〉
and

F ′
ε,δ,r,s = 〈x1, . . . , xε+2δ, x3, . . . , xr+2s〉.

Proposition 6.5 For an elementary abelian 2-subgroup F ⊂ G, if F 
⊂ G0 and it contains no
elements conjugate to σ3, then F ∼ Fε,δ,r,s for some (ε, δ, r, s) with ε+δ ≤ 1 and r +s ≤ 2;
if F ⊂ G0 and it contains a Klein four subgroup conjugate to �3, then F ∼ F ′

ε,δ,r,s for some
(ε, δ, r, s) with ε + δ ≤ 1, r + s ≤ 2 and s ≥ 1.

Proof For the first statement, we may assume that σ4 ∈ F , then

F ∩ G0 ⊂ Gσ4
0

∼= Sp(4)/〈−I 〉.
Any involution in Sp(4)/〈−I 〉 is conjugate to one of

τ1 = [iI ], τ2 = [diag{I2,−I2}], τ3 = [diag{1,−I3}].
Since σ4τ3 ∼ σ3 in G and we assume that F contains no elements conjugate to σ3, so any non-
identity element of F∩G0 is conjugate to τ1 or τ2 in Sp(4)/〈−I 〉. Then F∩G0 ⊂ Sp(4)/〈−I 〉
is in the subclass discussed in Sect. 2.4. Then F ∼ Fε,δ,r,s for some (ε, δ, r, s) with ε+δ ≤ 1
and r + s ≤ 2 by Proposition 2.24.

For the second statement, we may and do assume that �3 ⊂ F , then

F ⊂ (G0)
�3 ∼= (U(5) × U(1))/〈(−I,−1), (e

2π i
3 , 1)〉 ∼= (U(5)/〈e 2π i

3 〉) × U(1).

Here we use that the map (A, λ) �−→ (λA, λ2) gives an isomorphism

(U(5) × U(1))/〈(−I,−1)〉 ∼= U(5) × U(1).

Since any abelian subgroup of U(5)×U(1) is total, so F ⊂ G0 is total. We may and do assume
that F ⊂ exp(h0) for a Cartan subalgebra h0 of u0 = e6. Choose a Chevelley involution θ

of u0 with respect to h0. Then θ commutes with all elements x ∈ exp(h0) satisfying x2 = 1.
Moreover, we have θ ∼ σ4 (since dim uθ

0 = 63) and θx ∼ θ for any x ∈ exp(h0). Then
〈F, θ〉 is an elementary abelian 2-subgroup without elements conjugate to σ3. By the first
statement, we get that 〈F, θ〉 ∼ Fε,δ,r,s for some (ε, δ, r, s) with ε + δ ≤ 1 and r + s ≤ 2.
Then F ∼ F ′

ε,δ,r,s . Since we assume that F contains a Klein four subgroup conjugate to �3,
so we have s ≥ 1. ��
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Let F be an elementary abelian 2-subgroup of G without elements conjugate to σ3 and
containing an element conjugate to σ4. For any x ∈ F with x ∼ σ4, we have F ∩ G0 ⊂
(G0)

σ4 ∼= Sp(4)/〈−I 〉. With this inclusion we have a function μx : F ∩ G0 −→ {±1} and
a map mx : (F ∩ G0) × (F ∩ G0) −→ {±1} (cf. Sect. 2.2).

Lemma 6.6 We have μx = μ and mx = m.

Proof We may assume that x = σ4, then F ∩ G0 ⊂ (G0)
σ4 ∼= Sp(4)/〈−I 〉. Since F does

not have any element conjugate to σ3, from the proof for Proposition 6.5 we see that any

element of F ∩ G0 is conjugate to τ1 = iI or τ2 =
(−I2

I2

)
in (G0)

σ4 ∼= Sp(4)/〈−I 〉.
Since τ1 ∼G σ1 and τ2 ∼G σ2, so we have μx = μ. Then we have mx = m as well. ��
6.3 Automizer groups

Proposition 6.7 We have the following formulas for rank AF and defeF,

(1) for F = Fr,s, r ≤ 2, s ≤ 3, rank AF = r, defeF = 2r (2 − 2s);
(2) for F = F ′

r,s, r ≤ 2, s ≤ 3, rank AF = r, defeF = 2r (2 − 2s);
(3) for F = Fε,δ,r,s, ε + δ ≤ 1, r + s ≤ 2, rank AF = r, defeF = (1 − ε)(−1)δ2r+s+δ;
(4) for F = F ′

ε,δ,r,s, ε + δ ≤ 1, r + s ≤ 2, s ≥ 1, rank AF = r, defeF = (1 −
ε)(−1)δ2r+s+δ .

Proof They follow from Lemmas 6.4 and 6.6. ��
Corollary 6.8 We have 51 conjugacy classes of elementary abelian 2-subgroups of Aut(e6).

Proof By the formulas of rank AF and defeF in Proposition 6.7, we see that the subgroups
in each family with different parameters are non-conjugate. And the subgroups in different
families are clearly non-conjugate, so these subgroups are non-conjugate to each other. In
total, we have 3 × 4 + 3 × 4 + 3 × 6 + 3 × 3 = 51 conjugacy classes. ��
Proposition 6.9 For two elementary abelian 2-subgroups F, F ′ ⊂ G, if an isomorphism
f : F −→ F ′ has the property that f (x) ∼ x for any x ∈ F, then f = Ad(g) for some
g ∈ G.

Proof We may and do assume that F = F ′ and they are equal to one of

Fr,s, F ′
r,s, Fε,δ,r,s, F ′

ε,δ,r,s .

When F = F ′ = Fr,s , we may and do assume that f (σ3) = σ3, then F ∩G0 = F ′ ∩G0 ⊂
(G0)

σ3 = F4. By the proof of Proposition 5.2, we get some g ∈ (G0)
σ3 such that f = Ad(g).

When F = F ′ = Fr,s , similar as the proof for Proposition 5.2, we find some g ∈ G0 such
that f = Ad(g).

When F = F ′ = Fε,δ,r,s , we may and do assume that f (σ4) = σ4, then F ∩ G0 =
F ′ ∩ G0 ⊂ (G0)

σ4 = Sp(4)/〈−I 〉 and non-identity elements of F ∩ G0 = F ′ ∩ G0 are all
conjugate to iI or [I2,2] in Sp(4)/〈−I 〉. Then f = Ad(g) for some g ∈ Gσ4

0 by Proposition
2.24.

When F = F ′ = F ′
ε,δ,r,s , since F ′

ε,δ,r,s ⊂ (G0)
σ4 = Sp(4)/〈−I 〉 and non-identity

elements of F = F ′ are all conjugate to iI or [I2,2] in Sp(4)/〈−I 〉. Then f = Ad(g) for
some g ∈ Gσ4

0 by Proposition 2.24. ��
Proposition 6.10 We have the following description for the automizer groups,

(1) r ≤ 2, s ≤ 3, W (Fr,s) ∼= (F2)
r

� P(r, s, F2);
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(2) r ≤ 2, s ≤ 3, W (F ′
r,s)

∼= P(r, s, F2);
(3) ε + δ ≤ 1, r + s ≤ 2,

W (Fε,δ,r,s) ∼= F
r+2s+ε+2δ
2 �

(
Hom(Fε+2δ+2s

2 , F
r
2) � (GL(r, F2) × Sp(s; ε, δ))

);
(4) ε + δ ≤ 1, r + s ≤ 2, s ≥ 1,

W (F ′
ε,δ,r,s)

∼= Hom(Fε+2δ+2s
2 , F

r
2) � (GL(r, F2) × Sp(s; ε, δ)).

Proof The action of any w ∈ W (F) preserves μ and m on F ∩ G0 and the conjugacy classes
of elements in F − (F ∩ G0). By Proposition 6.9, an automorphism of F preserves these
data is actually the action of some w ∈ W (F) on F . Then by Lemmas 6.4 and 6.6, we get
these automizer groups. ��

7 E7

Let G = Aut(e7). By Table 2 we see that there are three conjugacy classes of involutions in
G with representatives σ1, σ2, σ3 and we have

Gσ1 ∼= (Spin(12) × Sp(1))/〈(c, 1), (−c,−1)〉,
Gσ2 ∼= ((E6 × U(1))/〈(c′, e

2π i
3 )) � 〈ω〉,

Gσ3 ∼= (SU(8)/〈i I 〉) � 〈ω〉,
where c = e1e2 . . . e12, 1 
= c′ ∈ Z E6 , ω2 = 1, and

(e6 ⊕ iR)ω = f4 ⊕ 0, su(8)ω ∼= sp(4).

Definition 7.1 For an elementary abelian 2-subgroup F of G, define

HF = {1} ∪ {x ∈ F |x ∼ σ1};
define

m : HF × HF −→ {±1}
by m(x, y) = −1 if 〈x, y〉 ∼ �1, and m(x, y) = 1 otherwise.

Definition 7.2 Define the translation subgroup

AF := {x ∈ HF : ∀y ∈ F − HF , y ∼ xy; and ∀y ∈ HF , m(x, y) = 1}
and the defect index

defe(F) = |{x ∈ F : x ∼ σ2}| − |{x ∈ F : x ∼ σ3}|.
For any x ∈ F with x ∼ σ2, let

Hx = {y ∈ HF |xy ∼ σ2},
which is not always a subgroup.

Lemma 7.3 HF is a subgroup of F and we have rank(F/HF ) ≤ 2.
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Proof Since the product of any two distinct elements in F conjugate to σ1 is also conjugate
to σ1, so HF is a subgroup.

Suppose that rank(F/HF ) ≥ 3, then there exists a rank 3 subgroup F ′ ⊂ F with HF ′ = 1.
For any 1 
= x ∈ F ′, Gx ∼ Gσ2 or Gσ3 has only two connected components, so rank(F ′ ∩
(Gx )0) ≥ 2. Choose y ∈ F ′ ∩ (Gx )0 − 〈x〉, then 〈x, y〉 is a toral Klein four subgroup of G.
By Table 3, at least one of x, y, xy is conjugate to σ1, which contradicts that HF ′ = 1. ��
7.1 Subgroups from E6

By Table 2, we have that

Gσ2 ∼= (
(E6 × U(1))/〈(c, e

2π i
3 )

)
� 〈ω〉,

where ω2 = 1 and (e6 ⊕ iR)ω = f4 ⊕ 0. Let τ1, τ2 ∈ E6 be involutions with

e
τ1
6

∼= su(6) ⊕ sp(1), e
τ2
6

∼= so(10) ⊕ iR.

Let η1, η2 ∈ Eω
6

∼= F4 be involutions with

f
η1
4

∼= sp(3) ⊕ sp(1), f
η2
4

∼= so(9).

Let τ3 = ω, τ4 = η1ω. From [8, Page 16], we see that τ1, τ2, σ2τ1, σ2τ2, τ3, τ4 represent
all conjugacy classes of involutions in Gσ2 except σ2 and we have the following conjugacy
relations in G,

τ1 ∼ τ2 ∼ σ1,

σ2τ1 ∼ σ3, σ2τ2 ∼ σ2,

τ3 ∼ σ2τ3 ∼ σ2,

τ4 ∼ σ2τ4 ∼ σ3.

Lemma 7.4 In Gσ2 , we have the conjugacy relations

η1 ∼E6 τ1, η2 ∼E6 τ2, η2ω ∼E6 ω.

Proof This follows from [8, Page 15] (for Aut(e6)
σ3 ), the elements τ1, τ2, ω, η1ω, η1, η2

correspond to the elements σ1, σ2, σ3, σ4, τ1, τ2 there. ��
Let L1, L2, L3, L4 be Klein four subgroups of E6 of involution types (τ1, τ1, τ1),

(τ1, τ1, τ2), (τ1, τ2, τ2), (τ2, τ2, τ2) respectively. By Table 3, we have that

(e
σ2
7 )L1 ∼= su(3)2 ⊕ (iR)3,

(e
σ2
7 )L2 ∼= su(4) ⊕ su(2)2 ⊕ (iR)2,

(e
σ2
7 )L3 ∼= su(5) ⊕ (iR)3,

(e
σ2
7 )L4 ∼= so(8) ⊕ (iR)3.

Lemma 7.5 In G, we have L1 ∼ L3 ∼ �1 and L2 ∼ L4 ∼ �2.

Proof First since τ1 ∼ τ2 ∼ σ1 in G, so each of L1, L2, L3, L4 is conjugate to �1 or �2. Since
su(3)2 ⊕ (iR)3, su(5) ⊕ (iR)3 are not symmetric subalgebras of e

�2
7

∼= so(8) ⊕ su(2)3 and

su(4)⊕su(2)2 ⊕(iR)2, so(8)⊕(iR)3 are not symmetric subalgebras of e
�1
7

∼= su(6)⊕(iR)2,
so L1, L3 are conjugate to �1 and L2, L4 are conjugate to �2. ��
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Let F ⊂ G be an elementary abelian 2-subgroup containing an element conjugate to σ2,
we may an do assume that σ2 ∈ F , then

F ⊂ Gσ2 ∼= ((E6 × U(1))/〈(c, e
2π i

3 )) � 〈ω〉,
where c is a non-trivial central element of E6, c3 = 1, ω2 = 1 and (e6 ⊕ iR)ω = f4 ⊕ 0. Let
Gσ2 = (E6 × 1) � 〈ω〉 be the subgroup generated by E6 (= E6 × 1) and ω. This definition of
Gσ2 is not quite canonical, another choice is to define it as (E6 × 1) � 〈σ2ω〉, but these are
conjugate since

(1, i)ω(1, i)−1 = ω(ω−1(1, i)ω)(1, i)−1

= ω(1,−i)(1,−i) = ω(1,−1)

= ωσ2.

And so they are equivalent,

Lemma 7.6 For an elementary abelian 2-subgroup F ⊂ G containing σ2, in the inclusion

F ⊂ Gσ2 ∼= ((E6 × U(1))/〈(c, e
2π i

3 )) � 〈ω〉, we have HF = F ∩ E6.
Moreover, the map m : HF × HF −→ {±1} is equal to the the similar map when HF is

viewed as a subgroup of E6 (or E6/〈c〉 = Int(e6)).

Proof HF = F ∩ E6 follows from the comparison of conjugacy classes of involutions in
Gσ2 and in G. The two maps m are equal follows from Lemma 7.5. ��

Let π : Gσ2 −→ Aut(e6) be the adjoint homomorphism and p : Gσ2 −→ Gσ2 be the
inclusion map. For any elementary abelian 2-subgroup K of Aut(e6), p(π−1 K ) × 〈σ2〉 is
the direct product of its unique Sylow 2-subgroup F and 〈(c, 1)〉. Let

{Fr,s : r ≤ 2, s ≤ 3},
{F ′

r,s : r ≤ 2, s ≤ 3},
{Fε,δ,r,s : ε + δ ≤ 1, r + s ≤ 2},
{F ′

ε,δ,r,s : ε + δ ≤ 1, r + s ≤ 2, s ≥ 1}
be elementary abelian 2-subgroups of Gσ2 ⊂ G obtained from elementary abelian 2-
subgroups of Aut(e6) with the corresponding notation in this way.

Proposition 7.7 Any elementary abelian 2-subgroup of G with an element conjugate to σ2

is conjugate to one of Fr,s, F ′
r,s, Fε,δ,r,s, F ′

ε,δ,r,s .

Proof We may and do assume that σ2 ∈ F , then

F ⊂ Gσ2 ∼= ((E6 × U (1))/〈(c, e
2π i

3 )) � 〈ω〉.
By Lemma 7.3, we have rank(F/HF ) ≤ 2. When rank(F/HF ) = 1, we have F ⊂ E6 ×〈σ2〉.
When rank(F/HF ) = 2, we may an do assume that ω ∈ F or τ4 = η1ω ∈ F , then
F ⊂ (E6 � 〈ω〉) × 〈σ2〉. Then the conclusion follows from Propositions 6.3 and 6.5. ��
Proposition 7.8 The four families have the following characterization, so subgroups in dif-
ferent families are not conjugate to each other.

(1) F is conjugate to some Fr,s if and only if F contains a subgroup conjugate to �6;
(2) F is conjugate to some F ′

r,s if and only if rank(F/HF ) = 1, F contains an element x
conjugate to σ2 and Hx is a subgroup;
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(3) F is conjugate to some Fε,δ,r,s if and only if rank(F/HF ) = 2, F contains an element
conjugate to σ2 but contains no subgroups conjugate to �6;

(4) F is conjugate to some F ′
ε,δ,r,s if and only if rank(F/HF ) = 1, F contains an element

conjugate to σ2 and Hx is not a subgroup.

Proof (1) and (3) are clear. (2) and (4) follow from the comparison of conjugacy classes
of involutions in Gσ2 and in G and the classification of elementary abelian 2-subgroups of
Int(e6) (by Propositions 6.3 and 6.5). ��

We make a remark that, for a subgroup F in case (2) or (4), if Hx for some x ∈ F with
x ∼ σ2 is an subgroup, then the Hx ′ for any other x ′ ∈ F with x ′ ∼ σ2 is a subgroup;
conversely, if Hx for x ∈ F with x ∼ σ2 is not a subgroup, then the Hx ′ for any other x ′ ∈ F
with x ′ ∼ σ2 is not a subgroup.

Proposition 7.9 We have the following formulas for rank AF and defeF.

(1) For F = Fr,s, r ≤ 2, s ≤ 3, rank AF = r, defeF = 3 · 2r (2 − 2s);
(2) For F = F ′

r,s, r ≤ 2, s ≤ 3, rank AF = r, defeF = 2r (2 − 2s);
(3) For F = Fε,δ,r,s, ε + δ ≤ 1, r + s ≤ 2, rank AF = r, defeF = (1 − ε)(−1)δ2r+s+δ −

21+r+ε+2s+2δ;
(4) For F = F ′

ε,δ,r,s, ε + δ ≤ 1, r + s ≤ 2, s ≥ 1, rank AF = r, defeF = (1 − ε)

(−1)δ2r+s+δ .

Proof These follows from Lemma 7.6 and Proposition 6.7. ��

Proposition 7.10 Any two of the subgroups {Fr,s}, {F ′
r,s}, {Fε,δ,r,s}, {F ′

ε,δ,r,s} are non-
conjugate.

Proof This follows from Propositions 7.7 and 7.9. ��
7.2 Subgroups from SU(8) or SO(8)

By Table 2, we have that

Gσ3 ∼= (SU(8)/〈i I 〉) � 〈ω〉,

where ω2 = 1, (u
σ3
0 )ω = sp(4) and p ∼= ∧4(C8). Let τ1 = [I2,6] and τ2 = [I4,4].

Let ω0 = ω

(
0 I4

−I4 0

)
. Then ω2

0 = 1 and (SU(8)/〈i I 〉)ω0 = (SO(8)/〈−I 〉) × 〈σ3〉. In

((SU(8)/〈i I 〉)ω0)0 = SO(8)/〈−I 〉, let

η1 =
(

0 I4

−I4 0

)
, η2 =

(−I4

I4

)
,

η3 =
(−I2

I6

)
, η4 =

(
0 I1,3

−I1,3 0

)
,

where I1,3 = diag{−1, 1, 1, 1}. Let τ3 = ω0, τ4 = η1ω0. From [8, Pages 16–17], we see
that τ1, τ2, σ3τ1, σ3τ2, τ3, τ4, σ3τ4 represent all conjugacy classes of involutions in Gσ3

except σ3 = 1+i√
2

I and we have the following conjugacy relations in G,
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τ1 ∼ τ2 ∼ σ1,

σ3τ1 ∼ σ2, σ3τ2 ∼ σ3,

τ3 ∼ σ3, τ4 ∼ σ2,

τ4σ3 ∼ σ3.

Lemma 7.11 In Gσ3 , we have the conjugacy classes

η3 ∼Gσ3 τ1,

η1 ∼Gσ3 η2 ∼Gσ3 η4 ∼Gσ3 τ2,

η2ω0 ∼Gσ3 η3ω0 ∼Gσ3 ω0 = τ3,

η4ω0 ∼Gσ3 η1ω0σ3 = τ4σ2.

Proof These conjugacy relations can be prove by matrix calculation in the group
(SU(8)/〈i I 〉) � 〈ω0〉. We show the relation η4ω0 ∼Gσ3 η1ω0σ3 here, which is the most
complicated one among them.

Let y = e
π i
8 diag{I7,−1} ∈ SU(8)/〈i I 〉, then

y(η4ω0)y−1 = (yη4 y−1)ω0(ω
−1
0 yω0)y−1

= η1ω0 y−1 y−1 = η1ω0e
−π i

4

= η1ω0σ2,

in the last equality we use e
−π i

4 I = (e
π i
4 I )(i I )−1 = e

π i
4 I = σ3 in SU(8)/〈i I 〉. ��

Let

M1 =
〈(−I4

I4

)
,

(
04 I4

I4 04

)〉
,

M2 = 〈diag{−I4, I4}, diag{−I2, I2,−I2, I2}〉,
then (e

σ3
7 )M1 ∼= su(4) and (e

σ3
7 )M2 ∼= (sp(1))4 ⊕ (iR)3.

Lemma 7.12 In G, we have M1 ∼ �1 and M2 ∼ �2.

Proof First since M1, M2 are pure σ1 subgroups, so each of them is conjugate to �1 or �2.
Since su(4) is not a symmetric subalgebra of e

�2
7

∼= so(8) ⊕ (sp(1))3 and (sp(1))4 ⊕ (iR)3

is not a symmetric subalgebra of e
�1
7

∼= su(6) ⊕ (iR)2, so we have M1 ∼ �1 and M2 ∼ �2.
��

Let F be an elementary abelian 2-subgroup of G with σ3 ∈ F . Then

F ⊂ Gσ3 ∼= (SU(8)/〈i I 〉) � 〈ω0〉,
where ω2

0 = 1 and su(8)ω0 = so(8). If F has no elements conjugate to σ2, from the description
of conjugacy classes of involutions in Gσ3 as above, we get that x ∼ τ2 = diag{−I4, I4} for
any 1 
= x ∈ HF .

Lemma 7.13 For an elementary abelian 2-subgroup F of G containing σ3 and without
elements conjugate to σ2, in the inclusion F ⊂ Gσ3 ∼= (SU(8)/〈i I 〉) � 〈ω0〉, we have
HF ⊂ SU(8)/〈i I 〉 and the homomorphism

HF −→ SU(8)/ 〈i I, σ3〉 = SU(8)

/〈
1 + i√

2
I

〉
= PSU(8)
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is injective. Moreover, the map

m : HF × HF −→ {±1}
is equal to the similar map when HF is regarded as a subgroup of PSU(8).

Proof We have HF ⊂ SU(8)/〈i I 〉 since any involution in ω0SU(8)/〈i I 〉 is conjugate to σ2

or σ3. The map HF −→ PSU(8) is injective since σ3 
∈ HF . The two maps m are equal
follows from Lemma 7.12. ��

In (Gσ3)0 ∼= SU(8)/〈i I 〉, let y1 = diag{−I4, I4},
y2 = diag{−I2, I2,−I2, I2},
y3 = diag{−1, 1,−1, 1,−1, 1,−1, 1},
y4 =

(
04 I4

I4 04

)
,

y5 =

⎛

⎜⎜⎝

02 I2

I2 02

02 I2

I2 02

⎞

⎟⎟⎠ ,

y6 =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1
1 0

0 1
1 0

0 1
1 0

0 1
1 0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

For each (r, s) with r + s ≤ 3, let F ′′
r,s = 〈σ3, y1, y2, . . . , yr+s, y4, . . . , y3+s〉.

In (Gσ3)ω0 = (SO(8)/〈−I 〉) × 〈σ3, ω0〉, let x1 = diag{−I4, I4},
x2 = diag{−I2, I2,−I2, I2},
x3 = diag{−1, 1,−1, 1,−1, 1,−1, 1}.

For each r ≤ 3, let F ′
r = 〈σ2, ω0, x1, . . . , xr 〉.

Proposition 7.14 For an elementary abelian 2-group F ⊂ G, if F contains an element
conjugate to σ3 but contains no elements conjugate to σ2, then F is conjugate to one of
{F ′′

r,s : r + s ≤ 3}, {F ′
r : r ≤ 3}.

Proof We may and do assume that σ3 ∈ F , then

F ⊂ Gσ3 ∼= (SU(8)/〈i I 〉) � 〈ω0〉.
By Lemma 7.3, we have rank(F/HF ) ≤ 2.

When rank(F/HF ) = 1, F ⊂ (Gσ3)0 ∼= SU(8)/〈i I 〉. As F has no elements conjugate

to σ2, so any element of F is conjugate to τ2 or σ3τ2 in SU(8)/〈i I 〉, where τ2 =
(−I4

I4

)
.

Then F ∼ F ′′
r,s for some r, s ≥ 0 with r + s ≤ 3 by Proposition 2.24.

When rank(F/HF ) = 2, we may and do assume that ω0 ∈ F as well, then

F ⊂ (Gσ3)ω0 = (SO(8)/〈−I 〉) × 〈σ3, ω0〉.
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We have HF = F ∩ SO(8)/〈−I 〉. Since F contains no elements conjugate to σ2, so any
involution in HF is conjugate to η2 = diag{−I4, I4} in SO(8)/〈−I 〉. Then F ∼ F ′

r for some
r ≤ 3 by Proposition 2.24. ��
Proposition 7.15 We have rank AF ′′

r,s
= rank AF ′

r
= r and any two groups in {F ′′

r,s : r + s ≤
3}, {F ′

r : r ≤ 3} are non-conjugate.

Proof By Lemma 7.13, we get rank AF ′′
r,s

= rank AF ′
r

= r . Then the conjugacy class of any
group F in {F ′′

r,s}, {F ′
r } is determined by the numbers

(rank(F/HF ), rank AF , rankF).

��
7.3 Pure σ1 subgroups

A subgroup F of G is called a pure σ1 subgroup if any of its non-identity element is conjugate
to σ1.

By Table 2, we have Gσ1 ∼= (Spin(12) × Sp(1))/〈(c, 1), (−c,−1)〉, where c =
e1e2 . . . e12. From [8, Page 16], we see that (e1e2e3e4, 1), (e1e2, i), (e1e2e3e4e5e6, i),
(
, 1), (
,−1) represent the conjugacy classes of involutions in Gσ1 except σ1 = (1,−1)

and we have the following conjugacy classes in G,

(e1e2e3e4, 1) ∼ σ1,

(e1
e1, i) ∼ σ1, (e1e2, i) ∼ σ2,

(e1e2e3e4e5e6, i) ∼ σ3,

(
, 1) ∼ σ2, (
,−1) ∼ σ3.

Here


 = 1 + e1e2√
2

1 + e3e4√
2

1 + e5e6√
2

1 + e7e8√
2

1 + e9e10√
2

1 + e11e12√
2

∈ Spin(12).

Let

K1 = 〈(e1
e−1
1 , i), (e1


′e−1
1 , j)〉,

K2 = 〈(e1e2e3e4, 1), (e5e6e7e8, 1)〉,
K3 = 〈(e1
e−1

1 , i), (−e1e2e3e4, 1)〉,
K4 = 〈(e1
e−1

1 , i), (e1e2e3e4, 1)〉,
K5 = 〈(e1e2e3e4, 1), (e1e2e5e6, 1)〉,

where


′ = 1 + e1e3√
2

1 + e4e2√
2

1 + e5e7√
2

1 + e8e6√
2

1 + e9e11√
2

1 + e12e10√
2

.

Lemma 7.16 We have 
2 = 
′2 = [
,
′] = c.

Proof 
2 = 
′2 = c is clear. Calculation shows that



′ = 1 + e1e4√
2

1 + e2e3√
2

1 + e5e8√
2

1 + e6e7√
2

1 + e9e12√
2

1 + e10e11√
2

,
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so (

′)2 = c. Then

[
,
′] = 

′
−1
′−1 = 

′(c
)(c
′) = (

′)2 = c.

��
Lemma 7.17 In G, we have K1 ∼ K3 ∼ K5 ∼ �1 and K2 ∼ K4 ∼ �2.

Proof Since (u
σ1
0 )K1 ∼= sp(3) is not a symmetric subgroup of u

�2
0

∼= so(8) ⊕ (sp(1))2 and

(e
σ1
7 )K2 ∼= (sp(1))7 is not a symmetric subgroup of u

�1
0

∼= su(6)⊕(iR)2, we get that K1 ∼ �1

and K2 ∼ �2.
Choose a Cartan subalgebra h0 of e7, we may assume that σ1 = exp(π i H ′

2). Then gσ1 has
a simple root system

{α2, α4, α5, α6, β, α7}(Type D6)
⊔

{α1},
where β = α1 + 2α3 + 2α4 + α2 + α5. By identifying conjugacy (classes of) elements in
exp(h0) and in Spin(12) × Sp(1)/〈(c, 1), (−c,−1)〉, we get the conjugacy relations

(exp(π i H ′
1), exp(π i H ′

3), exp(π i H ′
2)) ∼

(
σ1, (e1
e−1

1 , i), e1e2e3e4

)

and

(exp(π i H ′
1), exp(π i H ′

2), exp(π i H ′
4)) ∼ (σ1, e1e2e3e4, e1e2e5e6).

Then we have K3 ∼ K5 ∼ �1 and K4 ∼ �2. ��
Let π : Spin(12) −→ SO(12) be the natural projection.

Lemma 7.18 In Spin(12), we have 
 ∼ 
−1, 
 
∼ −
 and 
 
∼ ±e1
e−1
1 .

Proof We have (e1e3e5e7e9e11)
(e1e3e5e7e9e11)
−1 = 
−1, so 
 ∼ 
−1. Since

SO(12)π(
) = {g ∈ Spin(12)|g
g−1 = ±
}/〈−1〉,
−1 ∈ {g ∈ Spin(12)|g
g−1 = 
} and SO(12)π(
) = U(6) is connected, so we must
have 
 
∼ −
. We have π(
) = J6 ∈ SO(12) and π(±e1
e−1

1 ) = I1,11 J6 I −1
1,11. Since

J6 
∼SO(12) I1,11 J6 I −1
1,11, so 
 
∼Spin(12) ±e1
e−1

1 . ��
Lemma 7.19 We have Aut(e7)

�1 = (Aut(e7)
�1)0 � 〈(e1


′e1, j)〉 and

(Aut(e7)
�1)0 ∼= (SU(6) × U(1) × U(1))/〈(ωI, ω−1, 1), (−I, 1, 1)〉.

Proof First we calculate Spin(12)
. We have

SO(12)π(
) ∼= U(6) = (SU(6) × U(1))/〈ηI, η−1〉,
where η = e

2π i
6 . Then Spin(12)
 = (SU(6) × A)/Z , where

A = {
∏

1≤ jleq6

(cos θ + sin θe2 j−1e2 j ) : θ ∈ R} ∼= U(1)

and Z ⊂ Z(SU(6)) × A. The isomorphism U(1) ∼= A maps −1 ∈ U(1) to c ∈ A, and
π(c) = −I ∈ SO(12), so

π : Spin(12)
 −→ SO(12)π(
)

is an isomorphism when it is restricted to SU(12) or A.
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We show that −c ∈ SU(6) ⊂ Spin(12)
. For this, we first look at the case of n = 4. For


0 = 1 + e1e2√
2

1 + e3e4√
2

∈ Spin(4),

we have 
2
0 = c0 = e1e2e3e4. We have an isomorphism

Spin(4) ∼= Sp(1) × Sp(1),

which maps −1 ∈ Spin(4) to (−1,−1) ∈ Sp(1)×Sp(1) and maps c0 ∈ Spin(4) to (−1, 1) ∈
Sp(1) × Sp(1). Then 
 ∈ Spin(4) is mapped to (i, 1) or (i,−1) in Sp(1) × Sp(1). Since

(Sp(1) × Sp(1))(i,±1) = U(1) × Sp(1),

so (1,−1) is in the semisimple part Sp(1) of it. Then −c0 ∈ Spin(4) is in the SU(2) part of
Spin(4)
.

As 
 is in block form, so −c ∈ SU(6) ⊂ Spin(12)
 as well. Since (−c)c = −1 
= 1 ∈
Spin(12), π(−1) = 1, and π is a 2-fold covering, so

Spin(12)
 = (SU(6) × U(1))/〈(ωI, ω−1)〉
(here we identify A and U(1)). By Lemma 7.18 and Steinberg ’s theorem, we get that

Aut(e7)
�1 = (Aut(e7)

�1)0 � 〈(e1

′e1, j)〉.

The description of (Aut(e7)
�1)0 follows from the description of Spin(12)
 as above. ��

In Gσ1 ∼= Spin(12) × Sp(1)/〈(c, 1), (−c,−1)〉, let

H1 =
〈
σ1,

(
e1
e−1

1 , i
)

,
(

e1

′e−1

1 , j
)〉

,

H2 = 〈σ1, (e1e2e3e4, 1), (e5e6e7e8, 1)〉
and H3 = 〈σ1, (e1
e−1

1 , i), (e1e2e3e4, 1)〉. Then any Klein four subgroup of H1 is conjugate
to �1; any Klein four subgroup of H2 is conjugate to �2; a Klein four subgroup of H3 is
conjugate to �2 if and only if it contains (e1e2e3e4, 1), otherwise it is conjugate to �1.

Lemma 7.20 We have G H1 = (Sp(3)/〈−I 〉)×H1 and the involutions I1,2, iI of Sp(3)/〈−I 〉
are conjugate to σ1, σ2 in Aut(e7) respectively.

Proof G H1 = (Sp(3)/〈−I 〉) × H1 follows from Lemma 7.19 and the fact

su(6)e1

′e−1

1 = sp(3).

A little more calculation by following the chain Sp(3) ⊂ SU(6) ⊂ SO(12) shows that
I1,2, iI ∈ Sp(3) are conjugate to e1e2e3e4, 
 in Spin(12) respectively. Then they are con-
jugate to σ1, σ2 in Aut(e7) respectively. ��
Lemma 7.21 Any rank 3 elementary abelian 2- pure σ1 subgroup F of G is conjugate to
one of H1, H2, H3.

Proof For a rank 3 pure σ1 elementary abelian 2-subgroup F of G, we may and do assume
that σ1 ∈ F . Then

F ⊂ Gσ1 ∼= Spin(12) × Sp(1)/〈(c, 1), (−c,−1)〉
and any element of F − {1, σ1} is conjugate to (e1
e−1

1 , i) or (e1e2e3e4, 1) in Gσ1 .
When any Klein four subgroup of F is conjugate to �1, we have F ∼ H1 by Lemma

7.17; when any Klein four subgroup of F is conjugate to �2, similarly we have F ∼ H2 by
Lemma 7.17. For the remaining cases, it is clear that F ∼ H3. ��
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We have defined the subgroups {Fr,s : r ≤ 2, s ≤ 3} and {F ′′
r,s : r + s ≤ 3} in the last two

subsections. The subgroup Fr,s contains a Klein four subgroup conjugate to F6; F ′′
r,s does

not contain any element conjugate to σ2 and we have rank(F ′′
r,s/HF ′′

r,s
) = 1. For any (r, s)

with r + s ≤ 3, let

F ′′′
r,s = HF ′′

r,s
= {1} ∪ {x ∈ F ′′

r,s |x ∼ σ1};
for any r ≤ 2, let

F ′′
r = HFr,3 = {1} ∪ {x ∈ Fr,3|x ∼ σ1}.

Proposition 7.22 Any pure σ1 elementary abelian 2-group F ⊂ G is conjugate to F ′′
r+3 for

some r ≤ 2 or F ′′′
r,s for some (r, s) with r + s ≤ 3.

Proof When F contains a subgroup conjugate to H1, we may and do assume that H1 ⊂ F ,
then

F ⊂ G H1 = (Gσ1)(e1
e1,i),(e1

′e1,j) ∼= (Sp(3)/〈−I 〉) × 〈σ1, (e1
e1, i), (e1


′e1, j)〉.
Since F is pure σ1, by Lemma 7.20 we have any non-identity element of F ∩ (Sp(3)/〈−I 〉)
is conjugate to I1,2 in Sp(3)/〈−I 〉. Then F ∩ (Sp(3)/〈−I 〉) is conjugate to a subgroup of
〈I2,1, I1,2〉, which is a subgroup of 〈iI, jI, I2,1, I1,2〉. We may and do assume that iI, jI ∈
CG(F). Since Non-identity elements of 〈iI, jI 〉 are all conjugate to σ2 in G, so 〈F, iI, jI 〉 is
conjugate to some Fr,s (cf. Proposition 7.7). Then F is conjugate to some HFr,s = {1}∪ {x ∈
Fr,s |x ∼ σ1}. Since we assume that H1 ⊂ F , so we have s = 3. Then F is conjugate to F ′′

r .
If F does not contain any subgroup conjugate to H1 but contains a subgroup conjugate to

�1, we may an do assume that σ1, (e1
e−1
1 , i) ∈ F . Since F does not contain any subgroup

conjugate to H1, so

F ⊂
(
(Gσ1)(e1
e−1

1 ,i)
)

0
∼= (SU(6) × U(1) × U(1))/

〈(
e

2π i
3 , e

2π i
3 , 1

)
, (−I, 1, 1)

〉
.

Since F is pure σ1, we have

F = (F ∩ (SU(6)/〈−I 〉)) ×
〈
σ1,

(
e1
e−1

1 , i
)〉

and any element in F ∩ (SU(6)/〈−I 〉) is conjugate to I2,4. Then F is toral (cf. Proposition
2.4).

If F does not contain any subgroup conjugate to �1, then any Klein four subgroup of F
is conjugate to �2. When rank(F) ≥ 3, we may an do assume that H2 ⊂ F . Since there are
no elements x ∈ (Gσ1)H2 − H2 such that any Klein four subgroup of 〈x, H2〉 is conjugate to
�2, so rank(F) ≤ 3. Then F is conjugate to one of 1, 〈σ1〉, �2, H2, so F is toral.

For a toral and pure σ1 elementary abelian 2-subgroup F of G, there exists a Cartan
subalgebra h0 such that F ⊂ exp(h0). Choose a Chevelley involution θ of e7 with respect to
h0. Then F ′ = 〈F, θ〉 satisfies Res(F ′/HF ′) = 1 and any involution in F ′ − HF ′ is conjugate
to σ3. Then F ′ is conjugate to F ′′

r,s for some (r, s) with r + s ≤ 3. Then F is conjugate to
F ′′′

r,s . ��
Proposition 7.23 For any r + s ≤ 3, we have rank AF ′′′

r,s
= r; for any r ≤ 2, we have

rank AF ′′
r

= r .
Any two subgroups in {F ′′′

r,s : r + s ≤ 3}, {F ′′
r : r ≤ 2} are non-conjugate.

Proof By Propositions 7.9 and 7.14, we get rank AF ′′′
r,s

= r and rank AF ′′
r

= r . Then any two
groups in {F ′′′

r,s : r + s ≤ 3}, {F ′′
r : r ≤ 2} are non-conjugate. ��
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7.4 Automizer groups and inclusion relations

Corollary 7.24 G has 78 conjugacy classes of elementary abelian 2-subgroups.

Proof By Propositions 7.7, 7.10, 7.14, 7.15, 7.22 and7.23,we get that G has

3 × 4 + 3 × 4 + 3 × 6 + 3 × 3 + 10 + 4 + 10 + 3 = 78

conjugacy classes of elementary abelian 2-subgroups. ��
Proposition 7.25 For an isomorphism f : F −→ F ′ between two elementary abelian 2-
subgroups of G, if f (x) ∼ x for any x ∈ F and m F ′( f (x), f (y)) = m F (x, y) for any
x, y ∈ HF , then f = Ad(g) for some g ∈ G.

Proof When F contains an element conjugate to σ2, we may and do assume that σ2 ∈ F ∩ F ′
and f (σ2) = σ2, then

F, F ′ ⊂ Gσ2 ∼= 〈ω〉 � ((E6 × U(1))/〈(c, e
2π i

3 )).

From the description of conjugacy classes of elements in Gσ2 , we get that f (x) ∼Gσ2 x for
any x ∈ F by the assumption in the proposition. Then f = Ad(g) for some g ∈ Gσ2 by
Proposition 6.9.

When rank(F/HF ) = 1 and F contains no elements conjugate to σ2, we may and do
assume that σ3 ∈ F ∩ F ′ and f (σ3) = σ3, then

F, F ′ ⊂ Gσ3 ∼= 〈ω0〉 � (SU(8)/〈i I 〉)
and any element in (HF ∪ HF ′) − {1} is conjugate to I4,4 in SU(8)/〈i I 〉. Since the functions
m F on HF × HF and m F ′ on HF ′ × HF ′ are identical to the anti-symmetric bilinear form
when HF , HF ′ are regarded as subgroups of PU(8) (cf. Lemma 7.13). Then f = Ad(g) f or
some g ∈ Gσ3 by Proposition 2.24.

When rank(F/HF ) = 2 and F contains no elements conjugate to σ2, we may and do
assume that σ3, ω0 ∈ F , then

F, F ′ ⊂ (Gσ3)ω0 ∼= SO(8)/〈−I 〉
and any element in (HF ∪ HF ′) − {1} is conjugate to I4,4 in SO(8)/〈−I 〉. Then f = Ad(g)

for some g ∈ (Gσ3)ω0 by Proposition 2.24.
When F is pure σ1, we get the conclusion by the considering the preserving of m F , m F ′

under f . ��
Proposition 7.26 We have the following description for the automizer groups,

(1) for r ≤ 2, s ≤ 3, W (Fr,s) ∼= Hom(F2
2, F

r
2) � (GL(2, F2) × P(r, s, F2));

(2) for r ≤ 2, s ≤ 3, W (F ′
r,s)

∼= F
r
2 � P(r, s, F2);

(3) for ε + δ ≤ 1, r + s ≤ 2,

W (Fε,δ,r,s) = (Fr+2s+ε+2δ+1
2 � Hom(Fε+2δ+2s+1

2 , F
r
2)) � (GL(r, F2) × Sp(δ + s; ε)).

(4) for ε + δ ≤ 1, r + s ≤ 2,

W (F ′
ε,δ,r,s) = Hom(Fε+2δ+2s+1

2 , F
r
2) � (GL(r, F2) × Sp(δ + s; ε)).

(5) for r + s ≤ 3, W (F ′′
r,s)

∼= (Fr+2s
2 � Hom(F2s

2 , F
r
2)) � (GL(r, F2) × Sp(s));

(6) for r ≤ 3, W (F ′
r )

∼= Hom(F2
2, F

r
2) � (GL(r, F2) × GL(2, F2));

(7) for r + s ≤ 3, W (F ′′′
r,s)

∼= Hom(F2s
2 , F

r
2) � (GL(r, F2) × Sp(s));

(8) for r ≤ 2, W (F ′′
r ) ∼= P(r, 3, F2).
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Proof By Proposition 7.25, we need to find all automorphisms of F preserving the conjugacy
classes of involutions and the form m on HF .

We prove (4). Let F = F ′
ε,δ,r,s . Then F has a decomposition F = AF × F ′ with AF = F

r
2

be the translation subgroup and F ′ ∼ F ′
ε,δ,0,s . By Proposition 7.25, we have

W (F) ∼= Hom(F ′, AF ) � (GL(r, F2) × W (F ′)).

So we only need to prove in the case of r = 0. Assume that r = 0 from now on.
Any element in W (F) preserves the symplectic form m on HF . Since rank(ker m) = ε,

so we have a homomorphism

p : W (F) −→ Sp(δ + s; ε).

We show that this homomorphism is an isomorphism, which finishes the proof.
For any f : F −→ F with f |HF = 1, since F = HF � 〈z〉 with z ∼ σ2, let f (z) = zx0

for some x0 ∈ HF . The for any x ∈ HF , f (zx) = zxx0, so zx ∼ zxx0. This just said
x0 ∈ AF . Since we assume that r = 0 (equivalent to AF = 1), so x0 = 1. And so f = id.
Then p is injective.

By Proposition 7.25, W (F) permutes transitively elements of F conjugate to σ2. There
are

22δ+2s+ε + (1 − ε)(−1)δ2ε+δ+s

2
= 2s+δ−1(2s+δ+ε + (1 − ε)(−1)δ2ε)

such elements. It is clear that the stabilizer of W (F) at z is Sp(s; ε, δ). So

|W (F)| = |Sp(s; ε, δ)|2s+δ−1(2s+δ+ε + (1 − ε)(−1)δ2ε).

By Propositions 2.32 and 2.33, this is also equal to |Sp(s + δ; ε)|. Then p is surjective.
(3) follows from (4) immediately.
The proof for the other cases easier, we use the facts that rank AF = r and the form m on

HF/AF is non-degenerate. ��
Remark 7.27 We have the following containment relations,

F ′′′
ε+r,δ+s ⊂ F ′

ε,δ,r,s, F ′′′
ε+r,δ+s ⊂ F ′′

ε+r,δ+s, F ′′
ε+r,δ+s ⊂ Fε,δ,r,s,

F ′
r+s+δ ⊂ Fε,δ,r,s, F ′′

r+3 ⊂ F ′
r,3,

together with those obvious relations, they consist in all containment relations (in the sense
of conjugacy) between these subgroups

8 E8

Let G = Aut(e8). By Table 2, G has two conjugacy classes of involutions with representatives
σ1, σ2 and we have

Gσ1 ∼= (E7 × Sp(1))/〈(c,−1)〉,
Gσ2 ∼= Spin(16)/〈c′〉,

where c is the unique non-trivial central element of E7 and c′ = e1e2 . . . e16 ∈ Spin(16).
In Gσ1 ∼= (E7 × Sp(1))/〈(c,−1)〉, let η1, η2 ∈ E7 be involutions such that there exists

Klein four groups F, F ′ ⊂ E7 with non-identity elements all conjugate toη1 orη2 respectively
and

eF
7

∼= su(6) ⊕ (iR)2, eF ′
7

∼= so(8) ⊕ (sp(1))3.
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Then cη1 ∼E7 η2, cη2 ∼E7 η1. Let τ1 = (η1, 1), τ2 = (η2, 1) ∈ Gσ1 . Let η3, η4 ∈ E7 be
involutions with η2

3 = η2
4 = c and

e
η3
7

∼= e6 ⊕ iR, e
η4
7

∼= su(8).

Then cη3 ∼E7 η3, cη4 ∼E7 η4. Let τ3 = (η3, i), τ4 = (η4, i). By [8, Page 17], we see
that τ1, τ2, τ3, τ4 represent all conjugacy classes of involutions in Gσ1 except σ1 and we have
the following conjugacy classes in G,

τ1 ∼ σ1, τ2 ∼ σ2,

τ3 ∼ σ1, τ4 ∼ σ2

In Gσ2 ∼= Spin(16)/〈c〉, let

τ1 = e1e2e3e4, τ2 = e1e2e3 . . . e8,

τ3 = 
, τ4 = −
,

where


 = 1 + e1e2√
2

1 + e3e4√
2

. . .
1 + e15e16√

2
.

By [8, Page 17], we see that τ1, τ2, τ3, τ4 represent all conjugacy classes of involutions in
Gσ2 except σ2 and we have the following conjugacy classes in G,

τ1 ∼ τ3 ∼ σ1,

τ2 ∼ τ4 ∼ σ2.

Moreover in Gσ2 , we have

σ2τ1 ∼Gσ2 τ1, σ2τ2 ∼Gσ2 τ2,

σ2τ3 ∼Gσ2 τ4, σ2τ4 ∼Gσ2 τ3.

These are obtained from calcualtions in Spin(16)/〈c〉.
Definition 8.1 Let F be an elementary abelian 2-subgroup of G. For any x ∈ F with x ∼ σ1,
let

Hx = {y ∈ F |xy 
∼ y}.
Let

HF := 〈{Hx : x ∈ F, x ∼ σ1}〉 = 〈{x : x ∈ F, x ∼ σ1}〉.
Lemma 8.2 Let F be an elementary abelian 2-subgroup of G. For any x with x ∼ σ1, Hx

is a subgroup and rank(F/Hx ) ≤ 2.

Proof We may and do assume that x = σ1, then

F ⊂ Gσ1 ∼= E7 × Sp(1)/〈(c,−1)〉.
For an element y ∈ F ⊂ Gσ1 with y2 = 1, σ1 y 
∼ y if and only if y is conjugate to

1, σ1, τ1, τ2 in Gσ1 . Then it is also equivalent to y ∈ E7 ⊂ Gσ1 . So Hx = F ∩ E7. And so it
is a subgroup. Then F/Hx ⊂ Gσ1/E7 ∼= Sp(1)/〈−1〉, so rank(F/Hx ) ≤ 2. ��
Definition 8.3 Let F an elementary abelian 2-subgroup of G, For any x ∈ F , define μ(x) =
1 if x ∼ σ2 or x = 1; and μ(x) = −1 if x ∼ σ1.

For any x, y ∈ F , define m(x, y) = μ(x)μ(y)μ(xy).
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In general m is not a bilinear form.

Definition 8.4 For an elementary abelian 2-subgroup F of G, define the translation subgroup

AF = {x ∈ F |μ(x) = 1 and m(x, y) = 1 f orany y ∈ F}
and the defect index

defe(F) = |{x ∈ F : μ(x) = 1}| − |{x ∈ F : μ(x) = −1}|.
Definition 8.5 For an elementary abelian 2-subgroup F of G, we call Res(F) :=
rank(F/HF ) the residual rank of F , and

Res′(F) = max{rank(F/Hx )|x ∈ F, x ∼ σ1}
the second residual rank of F .

Let X = X F = {x ∈ F |x ∼ σ1}, define a graph with vertices set X by drawing an edge
connecting x, y ∈ X if and only if xy ∼ σ2. It is clear that this graph X is invariant under
multiplication by elements in AF . Let

Graph(F) = X F/AF

be the quotient graph of the graph X F modulo the action of AF .

8.1 Subgroups from E6

For an elementary abelian 2-subgroup F of G, if F contains a Klein four subgroup conjugate
to �1, we may and do assume that �1 = 〈σ1, τ3〉 ⊂ F . Then

F ⊂ G�1 = ((E6 × U(1) × U(1))/〈(c, e
2π i

3 , 1)〉) � 〈ω〉,
where ω2 = 1, (e6 ⊕ iR ⊕ iR)ω = f4 ⊕ 0 ⊕ 0 and �1 = 〈(1,−1, 1), (1, 1,−1)〉.

Let G�1 = E6 � 〈ω〉 ⊂ G�1 . Let π : G�1 −→ Aut(e6) be the adjoint homomor-
phism and p : G�1 −→ G�1 be the inclusion. For an elementary abelian 2-subgroup K
of Aut(e6), p(π−1(K )) × �1 is the direct product of its (unique) Sylow 2-subgroup F and
〈(c, 1, 1)〉. Let {Fr,s : r ≤ 2, s ≤ 3}, {F ′

r,s : r ≤ 2, s ≤ 3}, {Fε,δ,r,s : ε + δ ≤ 1, r + s ≤
2}, {F ′

ε,δ,r,s : ε+δ ≤ 1, r +s ≤ 2, s ≥ 1} be elementary abelian 2-subgroups of E8 obtained
from elementary abelian 2-subgroups of Aut(e6) with the corresponding notation in this way.

Let θ1, θ2 ∈ E6 be involutions with

e
θ1
6

∼= su(6) ⊕ sp(1), e
θ2
6

∼= so(10) ⊕ iR.

Let θ3 = ω, θ4 ∈ ωE6 be involutions with

e
θ3
6

∼= f4 ⊕ 0 ⊕ 0, e
θ4
6

∼= sp(4) ⊕ 0 ⊕ 0.

From [8, Pages 16–18] (for Types E6, E7, E8), we have

θ1 ∼ θ3 ∼ σ1

and

θ2 ∼ θ4 ∼ σ2.

More over we have

θ1σ ∼ θ4σ ∼ σ2
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and

θ2σ ∼ θ3σ ∼ σ1,

for any σ ∈ �1 − {1}.
Proposition 8.6 For an elementary abelian 2-subgroup F of G, if F contains a Klein four
subgroup conjugate to �1, then F is conjugate to one of {Fr,s : r ≤ 2, s ≤ 3}, {F ′

r,s : r ≤
2, s ≤ 2}, {Fε,δ,r,s : ε + δ ≤ 1, r + s ≤ 2}, {F ′

ε,δ,r,s : ε + δ ≤ 1, r + s ≤ 2, s ≥ 1}.
Proof The proof is similar as that for Proposition 7.10. ��
Remark 8.7 Note that F ′

r,3 contains a rank 3 pure σ1 subgroup. By Proposition 8.6, one can
show that it is conjugate to Fr,2.

Proposition 8.8 We have the following formulas for ResF, Res′F, rank AF and defeF,

(1) for F = Fr,s, r ≤ 2, s ≤ 3, (ResF, Res′F) = (0, 2), rank AF = r, defeF = 3 ·
2r+1(2s − 2);

(2) for F = F ′
r,s, r ≤ 2, s ≤ 2, (ResF, Res′F) = (0, 1), rank AF = r, defeF =

2r+1(2s − 2);
(3) for F = Fε,δ,r,s, ε+δ ≤ 1, r +s ≤ 2, (ResF, Res′F) = (1, 2), rank AF = r, defeF =

(1 − ε)(−1)δ+12r+s+δ+1 + 2ε+r+2δ+2s ;
(4) for F = F ′

ε,δ,r,s, ε + δ ≤ 1, r + s ≤ 2, s ≥ 1, (ResF, Res′F) = (0, 1), rank AF =
r, defeF = (1 − ε)(−1)δ+12r+s+δ+1.

Proof These formulas follow from the construction of these subgroups and the comparison
of the conjugacy classes of involutions in G�1 and in G. ��
Proposition 8.9 The subgroups {Fr,s : r ≤ 2, s ≤ 3}, {F ′

r,s : r ≤ 2, s ≤ 2}, {Fε,δ,r,s :
ε + δ ≤ 1, r + s ≤ 2}, {F ′

ε,δ,r,s : ε + δ ≤ 1, r + s ≤ 2, s ≥ 1} are not conjugate to each
other.

Proof The numbers (ResF, Res′F, rank AF , rankF, defeF) clearly distinguish most of these
c onjugacy classes except for some possible pairs (F ′

r ′,s′ , F ′
ε,δ,r,s). Suppose that some (F ′

r ′,s′
is conjugate to some F ′

ε,δ,r,s). By the formulas in Proposition 8.8, we have r ′ = r (by AF ),

s′ − 1 = (1 − ε)(−1)δ (by the sign of defeF) and s′ = 2s + 2δ + ε (by rankF/AF ). Since
s′ ≤ 2 and s ≥ 1, the last equality implies that ε = δ = 0, s = 1 and s′ = 2. Then the
second equality implies that s′ = 1. So we get a contradiction. ��
8.2 Other subgroups

In Gσ1 ∼= (E7 × Sp(1))/〈(c,−1)〉, choose x1, x2 ∈ E7 with x1 ∼ x2 ∼ x1x2 ∼ τ4, then

(Gσ1)x1,x2 = SO(8)/〈−I 〉 × 〈σ1, x1, x2〉.
Let z1 = diag{−I4, I4},

z2 = diag{−I2, I2,−I2, I2},
z3 = diag{−1, 1,−1, 1,−1, 1,−1, 1}.

Define

F ′′
r,s = 〈z1, . . . , zr , σ1, x1, . . . , xs〉
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for any r ≤ 3, s ≤ 2,
In Gσ2 ∼= Spin(16)/〈c〉, c = e1e2 . . . e16, let y1 = σ1 = −1,

y2 = e1e2e3e4e5e6e7e8,

y3 = e1e2e3e4e9e10e11e12,

y4 = e1e2e5e6e9e10e13e14,

y5 = e1e3e5e7e9e11e13e15.

Define F ′
r = 〈y1, . . . , yr 〉 for any r ≤ 5.

Lemma 8.10 For an elementary abelian 2-subgroup F of G, if F contains no Klein four
subgroup conjugate to �1, but contains an element conjugate to σ1, then

rankHF/AF = 1.

Proof Recall that, HF is a subgroup of F generated by elemnts conjugate to σ1. Let

YF = {x ∈ HF : x ∼ σ2} ∪ {1}.
We show that AF = YF under the assumption of the lemma.

Choose any x0 ∈ F with x0 ∼ σ1. For any other x ∈ F with x ∼ σ1, since F contains
no Klein four subgroup conjugate to �1, so xx0 ∼ σ2. Then x ∈ Hx0 . By this, we get
that HF ⊂ Hx0 . So Hx0 = HF as the containment relation in the converse direction is
obvious. Similarly we have Hx = HF for any x ∈ F with x ∼ σ1. Then for any two distinct
y1, y2 ∈ YF with y1 ∼ y2 ∼ σ2, we have y1 y2 ∼ σ2. So YF is a subgroup of HF .

Then it is clear that YF = AF . So rankHF/AF = rankHF/YF = 1. ��
Proposition 8.11 For an elementary abelian 2-subgroup F of G, if F contains no Klein four
subgroup conjugate to �1, then F is conjugate to one of {F ′′

r,s : r ≤ 3, s ≤ 2}, {F ′
r : r ≤ 5}.

Proof When F contains no Klein four subgroup conjugate to �1, but contains an element
conjugate to σ1, we may and do assume that σ1 ∈ F . Then

F ⊂ Gσ1 ∼= (E7 × Sp(1))/〈(c,−1)〉.
Modulo Sp(1), we get a homomorphism

π : F −→ E7/〈c〉 ∼= Aut(e7).

Since we assume that F contains no Klein four subgroup conjugate to �1, so any element in
F −〈σ1〉 is conjugate to τ1 = (η1, 1), τ2 = (η2, 1) or τ4 = (η4, i) in (E7 ×Sp(1))/〈(c,−1)〉;
and any Klein four subgroup of F ∩ E7 has at least one element conjugate to η2. Then
F ′ = π(F) ⊂ Aut(e7) contains no elements conjugate to η3, and no Klein four subgroups
whose fixed point subalgebra is isomorphic to su(6) ⊕ (iR)2. In the case of E7 (Sect. 7), it
corresponds to the elementary abelian 2-subgroup F ′ with no elements conjugate to σ2 and
the map m on HF ′ is trivial. By Propositions 7.14 and 7.22, we get that F ∼ F ′′

r,s for some
(r, s) with r ≤ 3, s ≤ 2.

When F is pure σ2, we may and do assume that σ2 ∈ F . Then

F ⊂ Gσ2 ∼= Spin(16)/〈c〉
and any element in F −〈σ2〉 is conjugate to e1e2e3e4e5e6e7e8 in Spin(16)/〈c〉. Then F ∼ F ′

r
for some r ≤ 5. ��
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Proposition 8.12 For any (r, s) with r ≤ 3 and s ≤ 2, we have rank AF ′′
r,s

= r; for any
r ≤ 5, we have rank AF ′

r
= r .

Any two subgroups in {F ′′
r,s : r ≤ 3, s ≤ 2}, {F ′

r : r ≤ 5} are non-conjugate.

Proof The equalities rank AF ′′′
r,s

= r and rank AF ′′
r

= r are clear. By them, we get that any
two subgroups in {F ′′′

r,s : r + s ≤ 3}, {F ′′
r : r ≤ 2} are non-conjugate. ��

8.3 Involution types and Automizer groups

Corollary 8.13 G has 66 conjugacy classes of elementary abelian 2-subgroups.

Proof By Propositions 8.6, 8.9, 8.11, 8.12, we get that G has

3 × 4 + 3 × 3 + 3 × 6 + 3 × 3 + 4 × 3 + 6 = 66

conjugacy classes of elementary abelian 2-subgroups. ��
Proposition 8.14 For an isomorphism f : F −→ F ′ between two elementary abelian
2-subgroups of G, if f (x) ∼ x for any x ∈ F, then f = Ad(g) for some g ∈ G.

Proof When F contains a Klein four subgroup conjugate to �1, this reduces to the similar
statement in Aut(e6) case.

When F does not contain any Klein four subgroup conjugate to �1, this is already showed
in the proof of Proposition 8.11. ��
Definition 8.15 For an elementary abelian 2-subgroup F of G, we say that F is the
orthogonal direct product of other subgroups K1, . . . , Kt if there exists an isomorphism
f : K1 × · · · × Kt −→ F with

μ( f (x1, . . . , xt )) = μ(x1) . . . μ(xt )

for any (x1, . . . , xt ) ∈ K1 × · · · × Kt .

Let A = 〈σ2〉. Let Bs(s ≤ 3) be a rank s pure σ1 subgroup. Let B = B1, C = F3 and D
be a rank 3 subgroup with only one element conjugate to σ1. Then the involution types of
some elementary abelian 2-subgroups of E8 have the following description

Fr,s = Ar × Bs × B3; F ′
r,s = Ar × Bs × B2;

F ′
ε,δ,r,s = Ar × Cs × Bε × B1+δ

2 ;
F ′′

r,1 = Ar × B, F ′′
r,2 = Ar × C,

F ′′
r,3 = Ar × D; F ′

r = Ar

Fε,δ,r,s (s ≥ 1) does not have a similar decomposition since elements in Fε,δ,r,s − F ′
ε,δ,r,s are

all conjugate to σ2.
With the involution types available, we can describe the graphs Graph(F). The graphs of

Fr,s is a complete bipartite graph with s, 3 vertices in two parts; that of F ′
r,s is a complete

bipartite graph with s, 2 in two parts; that of F ′′
r,s (s ≥ 1) is a single vertex graph; that of F ′

r
is an empty graph. The graphs of Fε,δ,r,s, F ′

ε,δ,r,s are not of bipartite form and a little more
complicated.

In summary, we have the following statement
“the conjugacy class of an elementary abelian 2-subgroup F ⊂ G is determined by the

datum (rankF, rank AF , Graph(F))”.
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Proposition 8.16 For an elementary abelian 2-subgroup F ⊂ E8, m is a bilinear form on
F if and only if F is not conjugate to any of {Fr,s : r ≤ 2, s ≤ 3} ∪ {Fε,δ,r,s : ε + δ ≤
1, r + s ≤ 2} ∪ {F ′′

r,3 : r ≤ 2}.
Proof When F is conjugate to one of {Fr,s : r ≤ 2, s ≤ 3}∪{Fε,δ,r,s : ε +δ ≤ 1, r +s ≤ 2},
it contains a subgroup conjugate to B3, F0,0,0,0 or D. The subgroups B3, F0,0,0,0, D contains
7, 3, 1 elements with μ-value -1 respectively, so m is not bilinear on them by Proposition
2.30.

When F is conjugate to a subgroup in the other four families, m is bilinear on F follows
from the orthogonal decomposition of it. ��

We can write the decomposition of involution types for some subgroups in a simpler way,

F ′
r,0 = Ar × B2,

F ′
r,1 = Ar × B × B2 = Ar × B × C,

F ′
r,2 = Ar × B2 × B2 = Ar × C × C,

F ′
1,0,r,s = Ar × Cs × B × B1

2 = Ar × B × Cs+1,

F ′
0,δ,r,s = Ar × Cs × B1+δ

2 = Ar × B1−δ
2 × Cs+2δ.

Proposition 8.17 (1) r ≤ 2, s ≤ 2, W (Fr,s) ∼= Hom(F3+s
2 , F

r
2) �

(
GL(r, F2) ×

(GL(s, F2) × GL(3, F2))
)
;

(2) r ≤ 2, W (Fr,3) ∼= Hom(F6
2, F

r
2) �

(
GL(r, F2) × ((GL(3, F2) × GL(3, F2)) � S2)

)
;

(3) r ≤ 2, s ≤ 2, W (F ′
r,s)

∼= Sp(r, s; 2s − s2,
(s−1)(s−2)

2 );

(4) ε+δ ≤ 1, r +s ≤ 2, W (Fε,δ,r,s) = F
r+2s+ε+2δ+2
2 �Sp(r, s +ε+2δ; ε, (1−ε)(1−δ));

(5) ε + δ ≤ 1, r + s ≤ 2, W (F ′
ε,δ,r,s) = Sp(r, s + ε + 2δ; ε, (1 − ε)(1 − δ)).

(6) r ≤ 3, s ≤ 2, W (F ′′
r,s)

∼= Hom(Fs
2, F

r+1
2 ) �

(
(Fr

2 � GL(r, F2)) × GL(s))
)
;

(7) r ≤ 5, W (F ′
r )

∼= GL(r, F2).

Proof By Proposition 8.14, we need to calculate automorphisms of F preserving the function
μ on F .

W (Fr,s) = Hom(F3+s
2 , F

r
2) � W (F0,s) and W (F0,s) stabilizes Bs ∪ B3 ⊂ F0,s . By this

we get (1) and (2).
When m is bilinear, (F, m, μ) is a symplectic metric space, then we can identify W (F)

with the automorphism group of (F, m, μ). By this we get (3) and (5).
(4) follows from (5) immediately.
For (6), we have AF ⊂ HF ⊂ F and AF , HF are preserved by W (F). By Lemma 8.10,

we have rank AF = r, rankHF/AF = 1, rankF/HF = 1, then we get the conclusion.
(7) is clear. ��
We have an inclusion p : E7 ⊂ E8 since Eσ1

8
∼= (E7 × Sp(1))/〈(c,−1)〉. Let π : E7 −→

Aut(e7) be the adjoint homomorphism, which is a 2-fold covering. For a pure σ1 (that for
E7 case) elementary abelian 2-subgroup F of Aut(e7), p(π−1 F) is an elementary abelian
2-subgroup of E8.

Proposition 8.18 An elementary abelin 2-subgroup F of E8 is conjugate to the subgroup
p(π−1(K )) for some pure σ1 subgroup K of Aut(e7) if and only if F contains an elementary
x such that x ∼ σ1 and Hx = F.

Proof It follows from the description of the conjugacy classes of involutions in Eσ1
8

∼=
(E7 × Sp(1))/〈(c,−1)〉. ��
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Remark 8.19 Any subgroup of E8 satisfying the condition in Proposition 8.18 is conjugate
to one of

{Fr,1 : r ≤ 2}, {F ′
r,1 : r ≤ 2}, {F ′

1,0,r,s : r + s ≤ 2, s ≥ 1}, {F ′′
r,1 : r ≤ 3}.

There are 13 such conjugacy classes in total. On the other hand, there are 13 classes of pure
σ1 subgroups of Aut(e7), so for any two elementary abelian 2-subgroups K1, K2 of Aut(e7),
we have

p(π−1 K1) ∼E8 p(π−1 K2) ⇔ K1 ∼Aut(e7) K2.
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