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Abstract We prove that each sub-Riemannian manifold can be embedded in some Euclid-
ean space preserving the length of all the curves in the manifold. The result is an extension
of Nash C1 Embedding Theorem. For more general metric spaces the same result is false,
e.g., for Finsler non-Riemannian manifolds. However, we also show that any metric space of
finite Hausdorff dimension can be embedded in some Euclidean space via a Lipschitz map.
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1 Overview

A map f : X → Y between two metric spaces X and Y is called a path isometry (probably
a better name is a length-preserving map) if, for all curves γ in X , one has

LY ( f ◦ γ ) = L X (γ ).

Here L X and LY denote the lengths of the parameterized curves with respect to the distances
of X and of Y , respectively. From the definition, a path isometry is not necessarily injective.

The first aim of the following paper is to show that any sub-Riemannian manifold can
be mapped into some Euclidean space via a path isometric embedding, i.e., a topological
embedding that is also a path isometry. Sub-Riemannian manifolds are metric spaces when
endowed with the Carnot-Carathéodory distance dCC associated to the fixed sub-bundle and
Riemannian structure. For an introduction to sub-Riemannian geometry [1–3,7,9,13].
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An equivalent statement of our first result is the following. Denote by E
k the k-dimen-

sional Euclidean space. Our result says that, for every sub-Riemannian manifold (M, dCC ),
there exists a path connected subset � ⊂ E

k , for some k ∈ N, such that, when � is endowed
with the path distance d� induced by the Euclidean length, then the metric space (�, d�) is
isometric to (M, dCC ).

After such a fact one should wonder which are the length metric spaces obtained as subsets
of E

k with induced length structure. We show that any distance on R
n that comes from a

norm but not from a scalar product cannot be obtained in such a way.
We conclude the paper by showing another positive result for general metric spaces: every

metric space of finite Hausdorff dimension has a Lipschitz embedding into some E
k .

2 Old and new results

In 1954 John Nash showed that any Riemannian manifold can be seen as a C1 submanifold of
some Euclidean space. Namely, for any n-dimensional Riemannian manifold (M, g), there
exists a C1 submanifold N of the (2n + 1)-dimensional Euclidean space E

2n+1 such that
N , endowed with the restriction of the Euclidean Riemannian tensor, is C1 equivalent to
(M, g). Two Riemannian manifolds (M1, g1) and (M2, g2) are considered C1 equivalent if
there exists a C1 diffeomorphism f : M1 → M2 such that the pull-back tensor f ∗g2 equals
g1. In Riemannian geometry, a C1 map f between two Riemannian manifolds (M1, g1) and
(M2, g2) with the property that

f : (M1, g1) → ( f (M1), g2|T ( f (M1)))

is a C1 equivalence is called an ‘isometric embedding’. However, in the present paper we
will avoid such a term for the reason that the notion of isometric embedding is different in
the setting of metric spaces. Indeed, let dg1 and dg2 be the distance functions on M1 and M2,
respectively, induced by g1 and g2, respectively. Then the fact that f : (M1, g1) → (M2, g2)

is a Riemannian ‘isometric embedding’ does not imply that f : (M1, dg1) → (M2, dg2) is
an isometric embedding of the metric space (M1, dg1) into the metric space (M2, dg2), i.e.,
it is not true in general that

dg2( f (p), f (q)) = dg1(p, q), ∀p, q ∈ M1.

However, an elementary but important consequence of having a Riemannian isometric embed-
ding is that the length of paths is preserved. In other words, Nash’s theorem can be restated
as saying that any Riemannian manifold can be path isometrically embedded into some
Euclidean space.

Definition 2.1 (Path isometric embedding) A map f : X → Y between two metric spaces
X and Y is called a path isometric embedding if it is a topological embedding, i.e., a homeo-
morphism onto its image, and, for all curves γ ⊂ X , one has

LY ( f ◦ γ ) = L X (γ ).

We want to clarify that the above condition is required also for curves of infinite length.
One of the versions of Nash Theorem can be stated as follows.

Theorem 2.2 (Nash) Let (M, g) be a C∞ Riemannian manifold of dimension n. Then there
exists a C1 path isometric embedding
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f : (M, dg) → E
k,

with k = 2n + 1.

The theorem originally appeared in [15], later it was generalized by Nicolaas Kuiper in
[8]. The Nash-Kuiper C1 Theorem can be stated in the following form.

Theorem 2.3 (Nash-Kuiper C1 Embedding Theorem) Let (M, g) be a C∞ Riemannian
manifold of dimension n. If there is a C∞1-Lipschitz embedding

f : (M, dg) → E
k

into an Euclidean space E
k with k ≥ n + 1, then, for all ε > 0, there exists a C1 path

isometric embedding

f̄ : (M, dg) → E
k,

that is ε-close to f , i.e., for any p ∈ M,

dE( f (p), f̄ (p)) ≤ ε.

In particular, as follows from a result of Nash which extends the Whitney Embedding
Theorem, any n-dimensional Riemannian manifold admits a path isometric C1 embedding
into an arbitrarily small neighborhood in (2n + 1)-dimensional Euclidean space.

The Nash-Kuiper Theorem has many counter-intuitive implications. For example, it fol-
lows that there exist C1 path isometric embeddings of the hyperbolic plane in E

3. Addition-
ally, any closed, oriented Riemannian surface can be C1 path isometrically embedded into an
arbitrarily small ball in E

3. Whereas, for curvature reasons, there is no such a C2-embedding.
In [6, 2.4.11] Gromov proved that any Riemannian manifold of dimension n admits a

path isometry into E
n (notice the same dimension). In a recent paper [17] Petrunin extended

Gromov’s result to sub-Riemannian manifolds for a more rigid class of maps: the intrinsic
isometries. The key fact used by Petrunin is that any sub-Riemannian distance is a monotone
limit of Riemannian distances. Such a fact is well known in nonholonomic geometry since
the last 25 years, and probably is due to V. Gershkovich. This observation will be essential
in considering limits of Nash’s embeddings as we will do in this paper.

For topological reasons, both Gromov’s and Petrunin’s maps are in general not injective.
Our aim is to have path isometries that are also embeddings. Nonetheless, this paper has
been strongly influenced by the work of Petrunin. Some of the methods are just elaborations
and generalizations of Petrunin’s ideas. As an example of the fact that Petrunin’s notion of
intrinsic isometry is related with our work, we shall show that any path isometric embedding
is an intrinsic isometry, cf. Sect. 4.2.

As a first result, we provide a generalization of Nash Theorem to metric spaces obtained
as limit of an increasing sequence of Riemannian metrics on a fixed manifold, e.g., sub-
Riemannian manifolds.

Theorem 2.4 (Path Isometric Embedding) Let M be a C∞ manifold of dimension n. Let gm

be a sequence of Riemannian structures on M and let dgm be the distance function induced
by gm. Assume that, for all p and q ∈ M, for all m ∈ N,

dgm (p, q) ≤ dgm+1(p, q).

Assume also that, for all p and q ∈ M, the limit

d(p, q) := lim
m→∞ dgm (p, q)
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is finite and that the function d gives a distance that induces the manifold topology on M.
Then there exists a path isometric embedding

f : (M, d) → E
k,

with k = 2n + 1.

In Sect. 4.1 we will recall the general definition of a sub-Riemannian manifold and show
that the sub-Riemannian distance function is a point-wise limit of Riemannian distance func-
tions. Then the following fact will be an immediate consequence of the above theorem.

Corollary 2.5 Each sub-Riemannian manifold of topological dimension n can be path iso-
metrically embedded into E

2n+1.

Actually, the proof of Theorem 2.4 gives a more precise result for the dimension of the
target.

Corollary 2.6 As in Theorem 2.4, let (M, d) be a metric space obtained as a limit of an
increasing sequence of Riemannian metrics on a manifold of topological dimension n. Let
dRiem be some Riemannian distance such that

dRiem ≤ d.

If there exists a C∞1-Lipschitz embedding

f : (M, dRiem) → E
k

into an Euclidean space E
k with k ≥ n + 1, then there exists a path isometric embedding

f̄ : (M, d) → E
k .

Consequently, the Heisenberg group endowed with the usual Carnot-Carathéodory metric
is isometric to a subset of R

4 endowed with the path metric induced by the Euclidean dis-
tance, cf. Corollary 4.2. Similarly, the Grushin plane can be realized as a subset of R

3 with
the induced path distance.

Our result does not contradict the biLipschitz non-embeddability of Carnot-Carathéodory
spaces. Let us recall that it was observed by Semmes [18, Theorem 7.1] that Pansu’s version
of Rademacher’s Differentiation Theorem [11,16] implies that a Lipschitz embedding of a
manifold M endowed with a sub-Riemannian distance induced by a regular distribution into
an Euclidean space cannot be biLipschitz, unless M is in fact Riemannian. Indeed, in the
case of the Heisenberg group H, any Lipschitz map collapses in the direction of the center,
i.e.,

lim
g→e

‖ f (gx) − f (x)‖E

dCC (gx, x)
= 0 , g ∈ Center(H). (2.7)

From this fact we understand that any path isometric embedding f : H → E
k , which is

always a Lipschitz map, has the property that, for x ∈ H, as g goes to the identity element
inside Center(H), the point f (gx) converges to f (x) in E

k faster than gx converges to x in
H. This last fact does not contradict the existence of a curve γ inside f (H) from f (gx) to
f (x) of length exactly dCC (gx, x) and the fact that all the other curves inside f (H) from
f (gx) to f (x) are not shorter, as the path isometric embedding property would imply.

Also, Corollary 2.5 does not give any dimensional contradiction. Indeed, the path met-
ric d� on a subset � ⊂ E

k is larger than the restriction on � of the Euclidean distance.
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Thus the metric space (�, d�) can a priori have Hausdorff dimension strictly greater than
k = dimH (Ek). The embeddings of Corollary 2.5 give non-constructive examples of sets
� ⊂ R

k with the property that

dimH (�, d�) > k.

Notice that for such examples, the metric d� induces on � the subspace topology of R
k .

For the sake of completeness let us mention the following different generalization by
D’Ambra of Nash’s result to the case of contact manifolds. Namely, let (M1, ξ1, g1) and
(M2, ξ2, g2) be two contact manifolds with contact structures ξ1 and ξ2, respectively, and
Riemannian metrics g1 and g2, respectively. The main result in [4] claims that if dim(M2) ≥
2 dim(M1) + 3 and M1 is compact, then there exists a C1 embedding

f : M1 → M2,

preserving the contact structures and the Riemannian tensors on ξ1, i.e.,

f∗ξ1 ⊂ ξ2 and g1|ξ1 = f ∗(g2| f∗ξ1).

We consider now possible generalizations of Theorem 2.4. It is not true that any finite
dimensional metric space admits a path isometric embedding into some Euclidean space.
Indeed, there is no path isometry from (R2, ‖·‖∞) to any E

k . Here ‖·‖∞ is the supremum
norm on R

2, which does not come from a scalar product. Such a nonexistence has been
previously pointed out for non-Euclidean normed spaces in [17]. We provide the following
generalization.

Proposition 2.8 Let (M, ‖·‖) be a Finsler manifold. If there exists a path isometry

f : (M, ‖·‖) → E
k,

then the manifold is in fact Riemannian.

The proof of the above proposition is a consequence of Rademacher’s Theorem. A similar
argument is in [17, Proposition 1.7]. We shall give a more general proof in details.

An important topological theorem, due to K. Menger and G. Nòbeling, states that any com-
pact metrizable space of topological dimension m can be embedded in R

k for k = 2m+1. For
a reference, see [14]. We shall show the analogue for Lipschitz embeddings of metric spaces,
whose proof is an application of the Baire Category Theorem as well as the topological
version of the theorem.

Theorem 2.9 (Lipschitz Embedding) Any compact metric space of Hausdorff dimension k
can be embedded in E

N via a Lipschitz map, for N = 2k + 1.

Since compact sub-Finsler manifolds are biLipschitz equivalent to sub-Riemannian man-
ifolds, any sub-Finsler manifold is locally biLipschitz equivalent to a subset of some E

k with
the path distance. In other words, any sub-Finsler manifold can be embedded into E

k via a
map that distorts lengths by a controlled ratio. Namely, we already know that for sub-Finsler
manifolds the following conjecture holds. Before stating the conjecture, let us recall the
definition of bounded-length-distortion maps.

Definition 2.10 (BLD) A map f : X → Y between two metric spaces X and Y is said
of bounded-length-distortion (BLD for short), if there exists a constant C such that, for all
curves γ ⊂ X , one has

C−1L X (γ ) ≤ LY ( f ◦ γ ) ≤ C L X (γ ). (2.11)
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Conjecture 2.12 (BLD embeddings) Any compact length metric space of finite Hausdorff
dimension can be embedded in some Euclidean space via a bounded-length-distortion map.

We expect the above conjecture to hold, more because of lack of counterexamples than
for actual reasoning. The map given by Theorem 2.9 satisfies the upper bound of Eq. (2.11).
However, even if such a map is injective, it might not satisfy the lower bound of Eq. (2.11).

2.1 Organization of the paper

In Sect. 3, after some preliminary results, we give the proof of Theorem 2.4. Namely, we
show the existence of path isometric embeddings for metric spaces obtained as limit of an
increasing sequence of Riemannian metrics on a fixed manifold.

In Sect. 4, we present the proof of the corollaries of Theorem 2.4 and some other con-
sequences. Namely, we start by recalling the most general definition of sub-Riemannian
distances. Then we show that each such a distance can be obtained as limit of an increasing
sequence of Riemannian metrics, proving Corollary 2.5. Then we prove Corollary 2.6, the
more general version of Theorem 2.4. In Proposition 4.4, we show that a map is a path iso-
metric embeddings if and only if it is an isometry when one gives the image the path metric
induced by the ambient space. In connection with the work of Petrunin, in Proposition 4.5 we
show that a path isometric embedding between proper geodesic spaces is always an intrinsic
isometry. We conclude Sect. 4 by showing the proof of Proposition 2.8, i.e., a Finsler manifold
cannot be path isometrically embedded in any Euclidean space, unless it is Riemannian.

Section 5 is devoted to the proof of the Embedding Theorem 2.9. Namely, any metric
space with finite Hausdorff dimension can be Lipschitz embedded in some Euclidean space.

3 Existence of path isometric embeddings

3.1 Preliminaries

The following Theorem 3.1 might seem an easy corollary of Nash-Kuiper Theorem 2.3.
Indeed, by Nash-Kuiper, any smooth 1-Lipschitz embedding is arbitrarily close to a C1

length-preserving embedding. By smoothing one can show the following result: any smooth
1-Lipschitz embedding is arbitrarily close to a C∞ embedding that distorts lengths by a factor
that is arbitrarily close to 1. However, the claim of Theorem 3.1 is one of the strategic steps
of Nash-Kuiper’s proof, see [15, Equation 26, page 390] and [8].

Theorem 3.1 (Consequence of Nash’s proof) Let (M, g) be a C∞ Riemannian manifold of
dimension n. If there is a C∞1-Lipschitz embedding

f : (M, dg) → E
k

into an Euclidean space E
k with k ≥ n + 1, then, for any a > 0 and for any continuous

function b : M → R>0, there exists a C∞1-Lipschitz embedding

f̄ : (M, dg) → E
k,

such that, for any curve γ ⊂ M,

(1 − a)Lg(γ ) ≤ LE( f̄ ◦ γ ) ≤ Lg(γ )

and, for any p ∈ M,

dE( f (p), f̄ (p)) ≤ b(p).
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For compact manifolds the following result is an easy consequence of Whitney Embed-
ding Theorem, where in fact one can take k = 2n. For general manifolds a proof can be
found in [15, page 394].

Theorem 3.2 (Whitney-Nash) Let (M, g) be a C∞ Riemannian manifold of dimension n.
Then there exists a C∞1-Lipschitz embedding

f : (M, dg) → E
k,

with k = 2n + 1.

Given a set � ⊂ E
k , one can consider the path metric on � induced by LE, i.e., for

p, q ∈ �, define

d�(p, q) := inf {LE(γ ) | Im(γ ) ⊂ �, γ from p to q} .

Remark 3.3 The function d� is a distance whose induced topology, a priori, might be dif-
ferent from the topology of � as subset of E

k . However, the length structures LE and Ld�

coincide. Namely, if γ : I → (�, d�) is a curve then

LE(γ ) = Ld� (γ ).

Such an equality is easy to show. A detailed and more general proof can be found in [1,
Proposition 2.3.12].

The following fact is the key for preventing loss of length in the limit process while proving
Theorem 2.4. A similar argument was used in [17].

Definition 3.4 (Neighborhood I (δ)) Let f : M →R
k be a C∞ embedding. Let δ : M →R>0

be a continuous function. We consider the δ-neighborhood of f (M) as the set

I (δ) := Iδ( f (M)) := {x ∈ R
k : ‖x − f (p)‖E < δ(p), for some p}.

Lemma 3.5 (Control on tubular neighborhoods) Let M be a C∞ manifold. Let

f : M → R
k

be a C∞ embedding. Then, for any a > 0, there exists a positive continuous function
δ = δ f,a : M → (0, a) such that, for all x, y ∈ f (M),

(1 − a)d f (M)(x, y) ≤ dI (δ)(x, y) ≤ d f (M)(x, y),

where d f (M) and dI (δ) are the path metrics in f (M) and I (δ), respectively.

Lemma 3.5 is well-known. One can give an easy proof using the Neighborhood Theorem.
A reference for the proof is [5].

3.2 Proof of the existence of path isometric embeddings

This section is devoted to the proof of Theorem 2.4. We will first construct the map f , then
prove that it is a path isometry, and finally that it is an embedding.
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The construction of f

The map f shall be obtained as a limit of maps fm . The construction of the sequence fm is
by induction. Briefly speaking, we have that fm is an isometric embedding for the Riemann-
ian structure of gm obtained by fm−1, via Nash-Kuiper Embedding Theorem 2.3, inside a
suitably controlled neighborhood.

From Theorem 3.2, we can start with a C∞1-Lipschitz embedding

f1 : (M, g1) → E
k .

For m ∈ N, set

am := 1

m
.

Considering the function δ f,a of Lemma 3.5, set δ1 := δ f1,a1 . Choose any C0 function b1

with 0 < b1(p) < δ1(p), for all p ∈ M .
By recurrence, for each m ∈ N, perform the following construction of C∞1-Lipschitz

embeddings

fm : (M, gm) → E
k

and positive continuous function bm and δm both smaller than 1/m, such that the following
four properties hold:

δm = δ fm ,am , ∀m > 1, (3.6)

∞∑

i=m

bi (p) ≤ δm(p), ∀m > 1,∀p ∈ M (3.7)

(1 − am−1)Lgm (γ ) ≤ LE( fm ◦ γ ) ≤ Lgm (γ ), ∀ curve γ ⊂ M,∀m > 1, and

(3.8)

dE( fm−1(p), fm(p)) ≤ bm−1(p), ∀p ∈ M,∀m > 1. (3.9)

Indeed, we already constructed f1, b1, and δ1. Assume that, for fixed m, fm, bm , and δm have
been constructed. Let us construct fm+1, bm+1, and δm+1. Note that, since dgm ≤ dgm+1 and
fm : (M, gm) → E

k is 1-Lipschitz, we have that fm : (M, gm+1) → E
k is 1-Lipschitz

as well. Applying Theorem 3.1 for fm, am , and bm , we get a C∞1-Lipschitz embedding
fm+1 : (M, gm+1) → E

k such that

(1 − am)Lgm+1(γ ) ≤ LE( fm+1 ◦ γ ) ≤ Lgm+1(γ ), ∀ curve γ ⊂ M,

and

dE( fm(p), fm+1(p)) ≤ bm(p), ∀p ∈ M.

Define δm+1 = δ fm+1,am+1 . By induction, we have that

m∑

i=l

bi < δl , ∀l such that 1 ≤ l ≤ m.
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Notice that the above inequalities are strict. Therefore we can choose a continuous function
bm+1 : M → R with 0 < bm+1 < δm+1 and such that

m+1∑

i=l

bi < δl , ∀l such that 1 ≤ l ≤ m + 1.

The construction of { fm}, {bm}, and {δm} is concluded.
We should notice that from (3.9) and (3.7) we have that, if m < j ,

dE( fm(p), f j+1(p)) ≤
j∑

i=m

bi (p) ≤ δm(p) ≤ am = 1

m
. (3.10)

In other words, for j big enough,

f j (M) ⊂ Iδm ( fm(M)) ⊂ E
k . (3.11)

After having constructed the sequence of approximating maps fm , let us consider their
limit. Notice that, since dgm ≤ d , then the maps

fm : (M, d) → E
k

are 1-Lipschitz. By (3.10), the maps fm converge uniformly to a map

f : (M, d) → E
k,

which is obviously 1-Lipschitz as well. Moreover, we have

dE( fm(p), f (p)) ≤ δm(p) ≤ am . (3.12)

The map f is a path isometry

We will prove that

Ld(γ ) ≥ LE( f ◦ γ ), ∀ curve γ ⊂ M, (3.13)

and that

Ld(γ ) ≤ LE( f ◦ γ ), ∀ curve γ ⊂ M. (3.14)

The fact that (3.13) holds is obvious since f is 1-Lipschitz with respect to d . For the proof
of (3.14) we have to make use of the fact that δm have been constructed via the function δ of
Lemma 3.5. Observe that, taking limit in (3.11), as j → ∞, we have that, for all m ∈ N,

f (M) ⊂ Iδm ( fm(M)) ⊂ E
k . (3.15)

Let Im := Iδm ( fm(M)), and let dIm be the path metric on it.
In order to prove (3.14), take any curve γ ⊂ M and take p0, p1, . . . , pN ∈ γ consecutive

points on the curve. Fix one of the indices l ∈ {1, . . . , N }. Consider the curve

σl := [ fm(pl−1), f (pl−1)] ∪ f (γ |[pl−1,pl ]) ∪ [ f (pl), fm(pl)],
where [A, B], with A, B ∈ E

k , is the Euclidean segment connecting A and B. By the (3.12),
we have the containment

σl ⊂ Im, ∀m ∈ N.
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In other words, the curve σl connects the two points fm(pl−1) and fm(pl) inside the neigh-
borhood Im , so its length is greater than the path distance inside Im of such two points,
i.e.,

dIm ( fm(pl−1), fm(pl)) ≤ LE(σl).

Now, on the one hand, by the definition of σl we have that

LE(σl) ≤ δm(pl−1) + LE( f ◦ γ |[pl−1,pl ]) + δm(pl) ≤ 2am + LE( f ◦ γ |[pl−1,pl ]).

On the other hand, Lemma 3.5 says that, since δm equals δ fm ,am , we have that

(1 − am)d fm (M)( fm(pl−1), fm(pl)) ≤ dIm ( fm(pl−1), fm(pl)).

Therefore

(1 − am)d fm (M)( fm(pl−1), fm(pl)) ≤ 2am + LE( f ◦ γ |[pl−1,pl ]).

Since fm are (1 − am−1)-almost isometries (in the sense of (3.8)), we get

(1 − am)(1 − am−1)dgm (pl−1, pl) ≤ 2am + LE( f ◦ γ |[pl−1,pl ]).

Summing over l, we have that

(1 − am)(1 − am−1)

N∑

l=1

dgm (pl−1, pl) ≤ 2am N + LE( f ◦ γ ).

Now take the limit for m → ∞. Since am → 0, (and note that N is fixed), we get

N∑

l=1

d(pl−1, pl) ≤ LE( f ◦ γ ).

Finally, taking the supremum over all partitions of points {pl}, we have that

Ld(γ ) ≤ LE( f ◦ γ ).

The map f is an embedding

Assume by contradiction that there exists a point q0 ∈ M and a sequence of points qk ∈ M
with

f (qk) → f (q0), but d(q0, qk) > α, ∀k ∈ N,

for some positive value α. Since d and dg1 give the same topology, there exists a β > 0 such
that

Bdg1
(q0, β) ⊂ Bd(q0, α).

Therefore, since the distances dgm are increasing, we can take m large enough such that the
following four inequalities hold:

dgm (q0, qk) ≥ dg1(q0, qk) > β, ∀k ∈ N (3.16)

1 − am >
1

2
, (3.17)

δm <
β

16
, and (3.18)

1 − am−1 >
1

2
. (3.19)
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Then, on the one hand,

dIm ( fm(qk), fm(q0)) ≤ dIm ( f (qk), f (q0)) + δm(qk) + δm(q0)

≤ dIm ( f (qk), f (q0)) + β

8
.

On the other hand,

dIm ( fm(qk), fm(q0)) ≥ (1 − am)d fm (M)( fm(qk), fm(q0))

≥ (1 − am)(1 − am−1)dgm (qk, q0) ≥ β/4.

So we get

dIm ( f (qk), f (q0)) ≥ β

4
− β

8
= β

8
> 0,

which contradicts the fact that f (qk) → f (q0), as k → ∞. �

4 More on path isometric embeddings

4.1 Sub-Riemannian geometries and the proof of Corollaries 2.5 and 2.6

Definition 4.1 (The general definition of sub-Riemannian manifold ) A (smooth) sub-
Riemannian structure on a manifold M is a function ρ : T M → [0,∞] obtained by the
following construction: Let E be a vector bundle over M endowed with a scalar product 〈·, ·〉
and let

σ : E → T M

be a morphism of vector bundles. For each p ∈ M and v, v′ ∈ Tp M , set

ρp(v, v′) := inf{〈u, u′〉 : u, u′ ∈ E p, σ (u) = v, σ (u′) = v′}.
Define ρp(v) := ρp(v, v) and, given an absolutely continuous path γ : [0, 1] → M ,

define

Lρ(γ ) :=
1∫

0

√
ργ (t)(γ̇ (t))dt.

The sub-Riemannian distance associated to ρ is defined as, for any p and q in M ,

dCC (p, q) = inf
{

Lρ(γ )

∣∣∣ γ absolutely continuous path γ (0) = p, γ (1) = q
}

.

The only extra assumption on ρ is that the distance dCC is finite and induces the manifold
topology.

Proof of Corollary 2.5 We show now that each sub-Riemannian distance can be obtained as a
limit of increasing Riemannian distances. The proof is easy and well-known in the case when
E is in fact a sub-bundle of the tangent bundle. Here we give the proof in the general case.

Let ρ : T M → [0,∞] be the function defining the sub-Riemannian structure. Notice that
ρ(v) = 0 only if v = 0. So one can take some Riemannian tensor g1 with the property that
g1 ≤ ρ.
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Then, by recurrence, for each m ∈ N, we consider gm to be a (smooth) Riemannian tensor
with the property that, at any point p ∈ M ,

max{(gm−1)p(v,w), min{(1 − 2−m)ρp(v,w), m(g1)p(v,w)}} ≤ (gm)p(v,w) ≤ ρp(v,w).

Obviously we have that

g1 ≤ gm ≤ gm+1 ≤ ρ.

Then, for any absolutely continuous path γ , we have that

Lgm (γ ) ≤ Lρ(γ ).

Thus, for any p and q in M ,

dgm (p, q) ≤ dCC (p, q),

and therefore

lim
m→∞ dgm (p, q) ≤ dCC (p, q).

Assume, by contradiction, that, for some p and q in M , we have that

lim
m→∞ dgm (p, q) < dCC (p, q).

Then there are curves γm from p to q such that

lim
m→∞ Lgm (γm) < dCC (p, q).

Since

Lg1(γm) ≤ Lgm (γm),

we get a bound on the lengths Lg1(γm). Therefore, by an Ascoli-Arzelà argument, γm con-
verges to a curve γ from p to q . We may assume that γ is parameterized by arc length with
respect to the distance of g1. Now, either Lρ(γ ) is infinite or it is finite. Namely, either there
is a positive-measure set A ⊂ [0, Lg1(γ )] such that

ργ (t)(γ̇ (t)) = ∞, ∀t ∈ A,

or, for almost every t ∈ [0, Lg1(γ )], the value ργ (t)(γ̇ (t)) is finite.
In the first case, for all t ∈ A,

(gm)γ (t)(γ̇ (t)) ≥ m · (g1)γ (t)(γ̇ (t)).

From this we have that

Lgm (γ ) ≥ mLg1(γ |A) → ∞, as m → ∞.

We get a contradiction since by assumption dCC (p, q) < ∞.
In the second case, for almost all t , for m big enough,

(1 − 2−m)ργ (t)(γ̇ (t)) ≤ (gm)γ (t)(γ̇ (t)) ≤ ργ (t)(γ̇ (t)).

From this we have that

Lgm (γ ) → Lρ(γ ), as m → ∞.

We get a contradiction since we have that dCC (p, q) ≤ Lρ(γ ). �
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Proof of Corollary 2.6 Corollary 2.6 is not a direct consequence of the claim of Theorem
2.4. However, the proof is the same. Indeed, in the proof of the theorem we started with the
embedding

f1 : (M, g1) → E
k

with k = 2n + 1, which was given by Theorem 3.2. If instead, as assumed in Corollary 2.6,
we already have an embedding

f : (M, dRiem) → E
k

with k ≥ n +1, then we can consider a sequence of increasing Riemannian distances starting
with dg1 = dRiem and converging point-wise to d . At each stage, each 1-Lipschitz embedding
can be stretched as in Theorem 2.4, since in Theorem 3.1 we only need the codimension to
be greater than 1, i.e., k ≥ n + 1. �
Corollary 4.2 Let (H, dCC ) be the Heisenberg group endowed with the sub-Riemannian
distance with the first layer as horizontal distribution. Then we have that there exists a subset
� of R

4, such that, if d� is the path metric induced by the Euclidean length of R
4, then

(H, dCC ) is isometric to (�, d�).

Proof The statement is a direct consequence of Corollary 2.6 and Proposition 4.4. We make
use of the fact that the inverse of the stereographic projection, which maps R

3 to S
3 ⊂ R

4,
gives a globally Lipschitz embedding of the Riemannian left-invariant Heisenberg group into
the Euclidean space E

4. �
Remark 4.3 A similar reasoning can be applied to the Grushin plane. The reader can be
referred to [12] for an introduction to the geometry of the Grushin plane. Thus, another con-
sequence of Corollary 2.6 and Proposition 4.4 is the following fact. The Grushin plane P can
be realized as a subset of R

3 with the induced path distance. The reason is again that the
inverse of the stereographic projection gives a Lipschitz embedding of P into

4.2 Isometries, intrinsic isometries, and path isometries

This section is devoted to the equivalence of the various notions of path isometric embeddings
and of intrinsic isometric embeddings.

Proposition 4.4 Let f : (X, dX ) → (Y, dY ) be a map between proper geodesic metric
spaces. Then f is a path isometric embedding if and only if the space f (X) endowed with
the path distance d f (X) induced by dY is isometric to (X, dX ) via f and the topology induced
by d f (X) coincides with the topology of f (X) as a topological subspace of Y .

Proof Let us denote by τX and τY the topology of (X, dX ) and (Y, dY ), respectively. Let
τd f (X)

be the topology on f (X) induced by the path distance d f (X). We shall write A � B to
say that A is homeomorphic to B.

⇐] If f : (X, dX ) → ( f (X), d f (X)) is an isometry, then it preserves the length of paths.
Since the length structures on f (X) and Y coincide, then f : (X, dX ) → (Y, dY ) is a path
isometry, cf. [1, Proposition 2.3.12]. Moreover, since f : (X, dX ) → ( f (X), d f (X)) is an
isometry, then (X, τX ) � ( f (X), τd f (X)

). If, by assumption ( f (X), τY ) � ( f (X), τd f (X)
),

we have that ( f (X), τY ) � (X, τX ), i.e., f is an embedding.
⇒] If f is an embedding, we have, by definition, that ( f (X), τY ) � (X, τX ). Moreover,

since f has a continuous inverse on f (X), there is a one-to-one correspondence between
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curves in X and curves in f (X). If f is a path isometry, then such a correspondence preserves
length. Since both dX and dY are length spaces, we have that

dX (x, y) = d f (X)( f (x), f (y)), x, y ∈ X,

i.e., f : (X, dX ) → ( f (X), d f (X)) is an isometry.
We also have as a consequence that (X, τX ) � ( f (X), τd f (X)

). We conclude that
( f (X), τY ) � ( f (X), τd f (X)

). �
We recall now the definition of intrinsic isometry. The aim is to relate our work with the

one of Petrunin [17]. Let f : X → Y be a map between length spaces. Given two points
p, q ∈ X , a sequence of points p = x0, x1, . . . , xN = q in X is called an ε-chain from p to
q if d(xi−1, xi ) ≤ ε for all i = 1, . . . , N . Set

pull f,ε(p, q) = inf

{
N∑

i=1

d( f (xi−1), f (xi ))

}
,

where the infimum is taken along all ε-chains {xi }N
i=0 from p to q . The limit

pull f (p, q) := lim
ε→0

pull f,ε(p, q)

defines a (possibly infinite) pre-metric.
A map f : X → Y is called an intrinsic isometry if

dX (p, q) = pull f (p, q)

for any p, q ∈ X .

Proposition 4.5 A path isometric embedding f : X → Y between proper geodesic spaces
is an intrinsic isometry.

Proof Take p and q ∈ X . Let γ be a geodesic from p to q . Fix ε > 0. Let t0 < t1 < · · · < tN

be such that

γ (t0) = p, γ (tN ) = q,

and

{γ (t j )}N
j=0 is an ε-chain.

Then, using that f is a path isometry, we have that

pull f,ε(p, q) ≤
N∑

i=1

d( f (γ (ti−1)), f (γ (ti )))

≤
N∑

i=1

LY ( f ◦ γ |[ti−1,ti ])

=
N∑

i=1

L X (γ |[ti−1,ti ]) = L X (γ ) = d(p, q).

To prove the other inequality, assume by contradiction that there is some α > 0 and there is
some ε0 > 0 such that, for all ε ∈ (0, ε0), we have that

pull f,ε(p, q) ≤ d(p, q) − α.

123



Geom Dedicata (2013) 166:47–66 61

Thus, for each such an ε there exists an ε-chain {x (ε)
i }N

i=0 from p to q with the property that

N∑

i=1

d( f (x (ε)
i−1), f (x (ε)

i )) ≤ d(p, q) − α/2.

Consider a curve σε in Y passing through the points f (x (ε)
0 ), f (x (ε)

1 ), . . . , f (x (ε)
N ) and form-

ing a geodesic between f (x (ε)
i−1) and f (x (ε)

i ). Therefore we have that

LY (σε) ≤ d(p, q) − α/2.

From such a bound on the length, from the fact that σε starts at the fixed point f (p), and
from the fact that Y is locally compact, we have that there exists a limit curve σ , as ε → 0,
with the property that

LY (σ ) ≤ d(p, q) − α/2.

Since { f (x (ε)
i )}N

i=0 are finer and finer on σε , as ε → 0, we have σ ⊂ f (X). Since f is a
homeomorphism between X and f (X), we have the existence of a curve γ from p to q with
the property that

f ◦ γ = σ.

We arrive at a contradiction since

d(p, q) ≤ L X (γ ) = LY (σ ) ≤ d(p, q) − α/2.

�
4.3 Metric spaces that are not path isometrically embeddable

Proof of Proposition 2.8. We prove that the norm ‖·‖ at a point comes from a scalar product
by showing that it is the pull back norm of an Euclidean norm via a linear map. Roughly
speaking, we would like to claim the following. Assume that f is differentiable at p. Since f
is a path isometry, it sends infinitesimal metric balls at p in (M, ‖·‖) to infinitesimal metric
balls at f (p) in ( f (M), dE). However, infinitesimal balls at f (p) are spheres and, d f p being
linear, infinitesimal balls at p would be ellipsoids.

Consider an open set U ⊂ R
n and a smooth coordinate chart φ : U → M . Notice that

f : (U, dE) → (M, ‖·‖) is locally Lipschitz.
If f : (M, ‖·‖) → E

k, is a path isometry, then it is a 1-Lipschitz map. Hence F := f ◦φ is
locally a Lipschitz map between Euclidean open sets. According to Rademacher’s Theorem,
for almost all q ∈ U , the differential d Fq exists and the map v �→ d Fqv is linear. We fix a
dense and countable set of directions D ⊂ R

n . Hence, considering Lebesgue points of the
measurable functions q → d Fqv, we obtain that, for almost all q ∈ U and all directions
v ∈ D, the differential d Fq exists and is linear and

lim
ε→0

LE(F(q + tv)|t∈[0,ε])
‖F(q + εv) − F(q)‖E

= lim
ε→0

∫ ε

0

∥∥∥∥
d

dt
F(q + tv)

∥∥∥∥
E

dt
∥∥∥∥
∫ ε

0

d

dt
F(q + tv) dt

∥∥∥∥
E

= 1. (4.6)

Since ‖·‖ is smooth and the curve t �→ φ(q + tv) is smooth, we have

∥∥dφqv
∥∥ = lim

ε→0

1

ε
L‖·‖(φ(q + tv)|t∈[0,ε]).
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Since f is a path isometry, the latter equals

lim
ε→0

1

ε
LE(( f ◦ φ)(q + tv)|t∈[0,ε]).

If q is one of the above points where F = f ◦φ is differentiable and (4.6) holds with v ∈ D,
then

lim
ε→0

1

ε
LE(F(q + tv)|t∈[0,ε]) = lim

ε→0

1

ε
‖F(q + εv) − F(q)‖E

= ∥∥(d Fq)(v)
∥∥

E
.

Since the set of directions D is dense, we get
∥∥dφqv

∥∥ = ∥∥(d Fq)(v)
∥∥

E
, ∀v ∈ TqR

n .

In other words, ‖·‖ at q is the pull back norm via d Fq of the Euclidean norm ‖·‖E. Since d Fq

is linear, the norm ‖·‖ at q comes from a scalar product. Since we can consider a sequence
of points φ(q) tending to p, we also have the same result for the generic p, by continuity of
the Finsler structure. �

5 Lipschitz embeddings for finite dimensional metric spaces

5.1 Preliminaries

This section is a preparation to the proof of the Embedding Theorem 2.9. To fix some nota-
tion, we recall the notion of general position. A set {x0, . . . , xk} of points of R

N is said to be
geometrically independent, or affinely independent, if the equations

k∑

j=1

a j x j = 0 and
k∑

j=1

a j = 0

hold only if each a j = 0. In the language of ordinary linear algebra, this is just the definition
of linear independence for the set of vectors x1 − x0, . . . , xk − x0 of the vector space R

N .
So R

N contains no more than N + 1 geometrically independent points.
A set A of points of R

N is said to be in general position in R
N if every subset of A

containing N + 1 or fewer points is geometrically independent. Observe that, given a finite
set {x1, . . . , xn} of points of R

N and given δ > 0, there exists a set {y1, . . . , yn} of points of
R

N in general position in R
N , such that |x j − y j | < δ for all j .

Proposition 5.1 Suppose K is a compact subset of R
n of Hausdorff dimension k. If

n > 2k + 1, then there is a full measure subset A of the unit sphere S
n−1 such that if v

is an element of A, and

πv : R
n −→ R

n−1

is the orthogonal projection along v, then the restriction of πv to K is a (Lipschitz) homeo-
morphism.

Proof The proof is based on the fact that every pair of distinct points in K determines
a line in R

n , and hence an element of projective space RPn−1 = S
n−1/{±1}. The map

K × K \ Diag(K × K ) −→ RPn−1 is locally Lipschitz. Thus its image has Hausdorff
dimension ≤ 2k. The complement in RPn−1 gives the set A. �
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Remark 5.2 We can iterate the proposition to conclude that, if K is a compact k-dimensional
subset of R

n , we can find a (full-measure) set of orthogonal projections π̃ : R
n −→ R

m , as
soon as n > m = 2k + 1, that are homeomorphisms when restricted to K .

Remark 5.3 Since A has full measure, it is dense. Thus, given any projection, it is possible
to find a ‘good’ projection as close as we want.

The core of the proof in the theorem of Menger and Nòbeling is the construction of em-
beddings that are close to being injective. One uses the analytic geometry of R

N discussed
earlier. We present now the relative version for the Lipschitz case.

Lemma 5.4 If (X, d) is a compact metric space of topological dimension m, then, for all
N ≥ 2m + 1, there exists a Lipschitz map arbitrarily close to being injective with range into
the Euclidean space of dimension N, i.e., for any fixed ε > 0 there exists g ∈ Lip(X; R

N )

such that

g(x1) = g(x2) �⇒ d(x1, x2) < ε.

Proof By the definition of topological dimension, we have that we can cover X by finitely
many open sets {U1, . . . , Un} such that

(1) diam U j < ε in X ,
(2) {U1, . . . , Un} has order ≤ m + 1.

The second requirement means that no point of X lies in more than m + 1 elements of the
cover.

Let φ j be a Lipschitz partition of unity dominated by {U j }, cf. [10]. For each j , choose
a point z j ∈ R

N such that the set {z1, . . . , zn} is in general position in R
N . Finally, define

g : X −→ R
N by the equation

g(x) =
n∑

j=1

φ j (x)z j .

We assert that g is the desired function.
At every point x , locally g(x) is a sum of finitely many Lipschitz maps, thus is Lipschitz.
We shall prove that if x1, x2 ∈ X and g(x1) = g(x2), then x1 and x2 belong to one of the

open sets U j , so that necessarily d(x1, x2) < ε (since diam U j < ε).
So suppose g(x1) = g(x2). Then

n∑

j=1

[
φ j (x1) − φ j (x2)

]
z j = 0.

Because the covering {U j }n
j=1 has order at most m + 1, at most m + 1 of the numbers

{φ j (x1)}n
j=1 are nonzero, and at most m + 1 of the numbers {φ j (x2)}n

j=1 are nonzero. Thus,
the sum

n∑

j=1

[
φ j (x1) − φ j (x2)

]
z j = 0

has at most 2m+2 nonzero summands. Note that the sum of the coefficients vanishes because
n∑

j=1

[
φ j (x1) − φ j (x2)

] = 1 − 1 = 0.
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The points z j , are in general position in R
N , so that any subset of them having N +1 or fewer

elements is geometrically independent. And by hypothesis N + 1 = 2m + 2. Therefore, we
conclude that

φ j (x1) − φ j (x2) = 0

for all j . Now φ j (x1) > 0 for some j , so that x1 ∈ U j . Since φ j (x1) − φ j (x2) = 0, we have
that x2 ∈ U j as well, as asserted. �
5.2 The proof of the Embedding Theorem 2.9

Let X be a compact metric space of finite Hausdorff dimension. Let k be the Hausdorff
dimension of X . Let m be the topological dimension of X . Hence, m ≤ k. Set N := 2k + 1.

Consider the space Lip(X; R
N ), i.e., the space of all the Lipschitz maps from X to R

N . It
is non-empty, since the constant functions are there. It is complete in the following metric:

‖ f ‖Lip := ‖ f ‖∞ + sup

{ | f (x) − f (y)|
d(x, y)

: x, y ∈ X, x �= y

}
.

Let d be the metric of the space X ; because X is compact, d is bounded. Given a map
f : X −→ R

N , let us define

�( f ) := sup{diam f −1(z) : z ∈ R
N },

i.e., the fibers of f have diameter smaller than �( f ). So the number �( f ) measures how far
f is far from being injective; if �( f ) = 0, then in fact f is injective.

Now, given ε > 0, define Uε to be the set of all those Lipschitz maps f : X −→ R
N for

which �( f ) < ε. In Lemma 5.5 and in Lemma 5.6 we shall show that Uε is both open and
dense in Lip(X; R

N ), respectively. So it follows from the Baire Category Theorem that the
intersection

⋂

n∈N

U 1
n

is dense in Lip(X; R
N ) and is in particular non-empty. If f is an element of this intersection,

then �( f ) < 1/n for every n. Therefore, �( f ) = 0 and f is injective. Because X is compact,
f is an embedding. Thus, modulo Lemma 5.5 and Lemma 5.6, the theorem is proved.

�
Lemma 5.5 Uε is open in Lip(X; R

N ).

Proof Given an element f ∈ Uε , we wish to find a ball at f of some radius δ that is contained
in Uε . First choose a number b such that �( f ) < b < ε. Let A be the following subset

A = {(x, y) ∈ X × X : d(x, y) ≥ b} .

Now A is closed in X × X and therefore compact.
Note that if f (x) = f (y), then d(x, y) must be less than b. It follows that the function

| f (x) − f (y)| is positive on A. Since A is compact, the function has a positive minimum on
A. Let

δ := 1

2
min {| f (x) − f (y)| : x, y ∈ A} .

We assert that this value of δ will suffice.
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Suppose that g is a map such that ‖ f − g‖Lip < δ, so in particular ‖ f − g‖∞ < δ.
If (x, y) ∈ A, then | f (x) − f (y)| > 2δ by definition of δ. Since g(x) and g(y) are within
δ of f (x) and f (y), respectively, we must have that |g(x) − g(y)| > 0. Hence the function
|g(x) − g(y)| is positive on A. As a result, if x and y are two points such that g(x) = g(y),
then necessarily d(x, y) < b. We conclude that �(g) ≤ b < ε, as desired. �
Lemma 5.6 Uε is dense in Lip(X; R

N ).

Proof This is the more substantial part of the proof. We shall use the preliminaries presented
in the previous subsection. Let f ∈ Lip(X; R

N ). Given δ > 0 , we wish to find a function
F ∈ Lip(X; R

N ) such that F ∈ Uε and ‖ f − F‖Lip < δ.
Since the topological dimension m of X is at most k, we can apply Lemma 5.4. Take

g ∈ Lip(X; R
N ) such that if g(x1) = g(x2) then d(x1, x2) < ε/2.

Consider � := ( f, g) : X −→ R
2N . Clearly, � is Lipschitz. Thus, �(X) has Hausdorff

dimension no more than k.
Since 2N > N = 2k + 1, we can use Proposition 5.1 (and the remarks afterwards)

to project the compact set K = �(X) from R
2N to R

N . Namely, there are orthogonal
projections that are injective on K and are arbitrarily close to the projection in the first
N -dimensional component. Explicitly, for any β > 0, there exists an orthogonal projection
π̃ : R

2N −→ R
N such that the restriction of π̃ to K is a (Lipschitz) homeomorphism and, if

π : R
2N = R

N × R
N −→ R

N is given by π(x, y) = x, then

‖π̃ − π‖ < β.

We are using here the operator norm. We will say later how small β has to be in terms of the
data ( f, g, δ).

Set F := π̃ ◦ �. We shall prove first that F ∈ Uε and then ‖ f − F‖Lip < δ.
Suppose x1, x2 are in the same fiber of F , i.e., F(x1) = F(x2). So from the definition of

F, (π̃ ◦ �)(x1) = (π̃ ◦ �)(x2). Since π̃ is a homeomorphism on K = �(X), we have that
�(x1) = �(x2). From the definition of �, we have that

( f (x1), g(x1)) = ( f (x2), g(x2)) .

In particular, g(x1) = g(x2). So, by the property of g, we have that d(x1, x2) < ε/2. There-
fore, F ∈ Uε .

Let us prove now that F is δ-close to f . Let us write explicitly the difference

F(x) − f (x) = (π̃ ◦ �)(x) − f (x)

= π̃ ( f (x), g(x)) − π ( f (x), g(x)) = (π̃ − π) ( f (x), g(x)) .

Bound the sup norm by

|F(x) − f (x)| ≤ ‖π̃ − π‖ | ( f (x), g(x)) |
≤ ‖π̃ − π‖

√
‖ f ‖2∞ + ‖g‖2∞ ≤ β

√
‖ f ‖2

Lip + ‖g‖2
Lip.

For the Lipschitz part of the norm, remember that the projections are linear. Therefore

|F(x) − f (x) − (F(y) − f (y))|
|d(x, y)| ≤ |(π̃ − π) ( f (x), g(x)) − (π̃ − π) ( f (y), g(y)) |

d(x, y)

≤ |(π̃ − π) ( f (x) − f (y), g(x) − g(y)) |
d(x, y)
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≤ ‖π̃ − π‖ | ( f (x) − f (y), g(x) − g(y)) |
d(x, y)

≤ ‖π̃ − π‖
√

‖ f ‖2
Lip + ‖g‖2

Lip

≤ β

√
‖ f ‖2

Lip + ‖g‖2
Lip.

So choose β such that β

√
‖ f ‖2

Lip + ‖g‖2
Lip < δ/2. �
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