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Abstract In a previous paper, we showed that for all convex bodies K of constant width in

R
n, 1 ≤ as∞(K ) ≤ n+√

2n(n+1)
n+2 , where as∞(·) denotes the Minkowski measure of asymme-

try, with the equality holding on the right-hand side if K is a completion of a regular simplex,
and asked whether or not the completions of regular simplices are the only bodies for the
equality. A positive answer is given in this short note.
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1 Introduction and preliminary

In paper [4], we proved the following theorem.

Theorem If K is a convex bodies of constant width in R
n, then 1 ≤ as∞(K ) ≤ n+√

2n(n+1)
n+2 ,

where as∞(·) denotes the Minkowski measure of asymmetry. Moreover, the equality holds
on the left-hand side precisely iff K is an Euclidean ball and the upper bounds are attained
when K are completions of a regular simplex.

Then, we asked whether or not the completions of regular simplices are the only bodies for
the equality.
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We give a positive answer to the above question in this short note. Concretely, we show
the following theorem.

Main Theorem For convex body K of constant width in R
n, if as∞(K ) = n+√

2n(n+1)
n+2 , then

K is a completion of an n-dimensional regular simplex.

In this paper, R
n denotes the usual n-dimensional Euclidean space with the canonical inner

product 〈·, ·〉. A compact convex set C ⊂ R
n is called a convex body if it has non-empty

interior (int for brivity). The family of all convex bodies in R
n is denoted by Kn . In general,

we refer the reader to [7] for standard notation.
Given a convex body C ∈ Kn and x ∈ int(C), for a hyperplane H through x and the pair

H1, H2 of support hyperplanes of C parallel to H , let r(H, x) be the ratio, not less than 1, in
which H divides the distance between H1 and H2. Denote

r(C, x) = max{r(H, x) : H 	 x}.
Then the Minkowski measure as∞(C) of asymmetry of C is defined as (see [2,3,5])

as∞(C) = min
x∈int(C)

r(C, x).

A point x ∈ int(C) satisfying r(C, x) = as∞(C) is called a critical point (of C). The set
of all critical points of C is denoted by C∗.

C ∈ Kn is said to be of constant width if its width function, i.e., the support function of
C + (−C), is a constant (see [1]). Equivalently, C is of constant width iff each boundary
point of C is incident with (at least) one diameter (= chord of maximal length) of C . The
family of all convex bodies of constant width in R

n is denoted by Wn .
C ∈ Kn is said to be complete if there is no C ′ ∈ Kn with C ⊂ C ′, C �= C ′ and

d(C) = d(C ′). It is known that a convex body is complete iff it is of constant width (Meiss-
ner Theorem [1]).

If K ∈ Kn then any complete set C with K ⊂ C and d(K ) = d(C) is called a completion
of K . It is also known that every convex bodies has at least one completion [1], e.g. the
(unique) completion of a regular triangle is the well-known Reuleaux triangle. The (unique)
completion of a regular polygon with odd sides is called a regular Reuleaux polygon, and
regular tetrahedrons have two completions both of which are called Meissner tetrahedron (or
Meissner body). In general, a convex body may have many completions.

2 Proof of main theorem

In principle, our proof is just an observation of some earlier work of other authors. In the
following, we denote by Sr (p) a sphere with center p and radius r , and r(K ), R(K ) denote
the radia of insphere and circumsphere of K respectively.

The following theorem is called Melzak’s theorem (see [6])

Theorem 1 Let K ∈ Wn with width ω. Then K has a unique circumsphere SR(K )(p), a
unique insphere Sr(K )(q) and

(1) (1 − √
n/2(n + 1))ω ≤ r(K ), R(K ) ≤ √

n/2(n + 1)ω;
(2) r(K ) + R(K ) = ω;
(3) p = q.

Moreover, both equalties in (1) hold at the same time, and the equality occurs iff K contains
a regular n-simplex with diameter ω.
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Corollary 1 Let K ∈ Wn with width ω. Then

R(K ) = √
n/2(n + 1)ω

iff K contains a regular n-simplex with diameter ω, i.e. K is a completion of a regular simplex
with diameter ω.

Theorem 2 [4] Let K ∈ Wn with width ω, then as∞(K ) = R(K )
r(K )

.

Proof of Main Theorem If as∞(K ) = n+√
2n(n+1)
n+2 , then R(K )

r(K )
= R(K )

ω−R(K )
= n+√

2n(n+1)
n+2 ,

so R(K ) = √
n/2(n + 1)ω. By Corollary 1, K is a completion of a regular simplex with

diameter ω. �
Therefore we get the following theorem.

Theorem 3 If K is a convex bodies of constant width in R
n, then 1 ≤ as∞(K ) ≤ n+√

2n(n+1)
n+2 .

The equality holds on the left-hand side iff K is an Euclidean ball and on the right-hand
precisely iff K is a completion of a regular simplex.
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