ORIGINAL PAPER

A note on the extremal bodies of constant width for the Minkowski measure

Hailin Jin · Qi Guo

Received: 23 July 2012 / Accepted: 4 August 2012 / Published online: 14 August 2012 © Springer Science+Business Media B.V. 2012

Abstract In a previous paper, we showed that for all convex bodies *K* of constant width in \mathbb{R}^n , $1 \leq \text{as}_{\infty}(K) \leq \frac{n+\sqrt{2n(n+1)}}{n+2}$, where as_∞(·) denotes the Minkowski measure of asymmetry, with the equality holding on the right-hand side if K is a completion of a regular simplex, and asked whether or not the completions of regular simplices are the only bodies for the equality. A positive answer is given in this short note.

Keywords Asymmetry measures · Constant width · Completion · Meissner's body

Mathematics Subject Classification (1991) 52A38

1 Introduction and preliminary

In paper [\[4\]](#page-2-0), we proved the following theorem.

Theorem *If K is a convex bodies of constant width in* \mathbb{R}^n , then $1 \leq \text{as}_{\infty}(K) \leq \frac{n + \sqrt{2n(n+1)}}{n+2}$, *where* $as_{\infty}(\cdot)$ *denotes the Minkowski measure of asymmetry. Moreover, the equality holds on the left-hand side precisely iff K is an Euclidean ball and the upper bounds are attained when K are completions of a regular simplex.*

Then, we asked whether or not the completions of regular simplices are the only bodies for the equality.

H. Jin (\boxtimes)

Q. Guo

Project supported by The NSF of Jiangsu Higher Education (08KJD110016).

Department of Mathematics, Shanghai University, Shanghai, China e-mail: ahjhl@sohu.com

Department of Mathematics, Suzhou University of Science and Technology, Suzhou, China e-mail: guoqi@mail.usts.edu.cn

We give a positive answer to the above question in this short note. Concretely, we show the following theorem.

Main Theorem *For convex body K of constant width in* \mathbb{R}^n , *if* as_∞(*K*) = $\frac{n+\sqrt{2n(n+1)}}{n+2}$, then *K is a completion of an n-dimensional regular simplex.*

In this paper, \mathbb{R}^n denotes the usual *n*-dimensional Euclidean space with the canonical inner product $\langle \cdot, \cdot \rangle$. A compact convex set $C \subset \mathbb{R}^n$ is called a *convex body* if it has non-empty interior (int for brivity). The family of all convex bodies in \mathbb{R}^n is denoted by \mathcal{K}^n . In general, we refer the reader to [\[7](#page-2-1)] for standard notation.

Given a convex body $C \in \mathcal{K}^n$ and $x \in \text{int}(C)$, for a hyperplane *H* through *x* and the pair H_1 , H_2 of support hyperplanes of *C* parallel to *H*, let $r(H, x)$ be the ratio, not less than 1, in which *H* divides the distance between H_1 and H_2 . Denote

$$
r(C, x) = \max\{r(H, x) : H \ni x\}.
$$

Then the *Minkowski measure* as_∞(*C*) *of asymmetry* of *C* is defined as (see [\[2](#page-2-2)[,3](#page-2-3)[,5\]](#page-2-4))

$$
as_{\infty}(C) = \min_{x \in \text{int}(C)} r(C, x).
$$

A point *x* ∈ int(*C*) satisfying *r*(*C*, *x*) = as_∞(*C*) is called a *critical point* (of *C*). The set of all critical points of *C* is denoted by *C*∗.

 $C \in \mathcal{K}^n$ is said to be of *constant width* if its width function, i.e., the support function of $C + (-C)$, is a constant (see [\[1](#page-2-5)]). Equivalently, *C* is of constant width iff each boundary point of *C* is incident with (at least) one diameter (= chord of maximal length) of *C*. The family of all convex bodies of constant width in \mathbb{R}^n is denoted by \mathcal{W}^n .

 $C \in \mathcal{K}^n$ is said to be complete if there is no $C' \in \mathcal{K}^n$ with $C \subset C', C \neq C'$ and $d(C) = d(C')$. It is known that a convex body is complete iff it is of constant width (Meissner Theorem [\[1](#page-2-5)]).

If $K \in \mathcal{K}^n$ then any complete set *C* with $K \subset C$ and $d(K) = d(C)$ is called a completion of *K*. It is also known that every convex bodies has at least one completion [\[1\]](#page-2-5), e.g. the (unique) completion of a regular triangle is the well-known Reuleaux triangle. The (unique) completion of a regular polygon with odd sides is called a regular Reuleaux polygon, and regular tetrahedrons have two completions both of which are called Meissner tetrahedron (or Meissner body). In general, a convex body may have many completions.

2 Proof of main theorem

In principle, our proof is just an observation of some earlier work of other authors. In the following, we denote by $S_r(p)$ a sphere with center p and radius r, and $r(K)$, $R(K)$ denote the radia of insphere and circumsphere of *K* respectively.

The following theorem is called Melzak's theorem (see [\[6\]](#page-2-6))

Theorem 1 *Let* $K \in \mathcal{W}^n$ *with width* ω *. Then* K *has a unique circumsphere* $S_{R(K)}(p)$ *, a unique insphere* $S_{r(K)}(q)$ *and*

- (1) $(1 \sqrt{n/2(n+1)})\omega \le r(K), R(K) \le \sqrt{n/2(n+1)}\omega;$
- $r(K) + R(K) = \omega;$
- (3) $p = q$.

Moreover, both equalties in (1) *hold at the same time, and the equality occurs iff K contains a regular n-simplex with diameter* ω*.*

Corollary 1 *Let* $K \in \mathcal{W}^n$ *with width* ω *. Then*

$$
R(K) = \sqrt{n/2(n+1)}\omega
$$

iff K contains a regular n-simplex with diameter ω*, i.e. K is a completion of a regular simplex with diameter* ω*.*

Theorem 2 [\[4\]](#page-2-0) *Let* $K \in \mathcal{W}^n$ *with width* ω *, then* $\text{as}_{\infty}(K) = \frac{R(K)}{r(K)}$ *.*

Proof of Main Theorem If $as_{\infty}(K) = \frac{n + \sqrt{2n(n+1)}}{n+2}$, then $\frac{R(K)}{r(K)} = \frac{R(K)}{\omega - R(K)} = \frac{n + \sqrt{2n(n+1)}}{n+2}$, so $R(K) = \sqrt{n/2(n+1)}\omega$. By Corollary [1,](#page-2-7) *K* is a completion of a regular simplex with diameter ω .

Therefore we get the following theorem.

Theorem 3 *If K is a convex bodies of constant width in* \mathbb{R}^n , then $1 \leq \text{as}_{\infty}(K) \leq \frac{n + \sqrt{2n(n+1)}}{n+2}$. *The equality holds on the left-hand side iff K is an Euclidean ball and on the right-hand precisely iff K is a completion of a regular simplex.*

References

- 1. Charkerian G.D., Groemer, H.: Convex bodies of constant width. In: Convexity and Its Applications, pp. 49–96. Birkhäuser Verlag, Basel (1983)
- 2. Guo, Q.: Stability of Minkowski measure of asymmetry of convex bodies. Discret. Comput. Geom. **34**, 351–362 (2005)
- 3. Grünbaum, B.: Measures of symmetry for convex sets. In: Convexity. Proc. sympos. Pure Math., vol. 7. Am. Math. Soc. Providence, pp. 233–270 (1963)
- 4. Jin, H.L., Guo, Q.: Asymmetry measure for convex bodies of constant width. Discret. Comput. Geom. **47**, 415–423 (2012)
- 5. Klee, V.L. Jr.: The critical set of a convex set. Am. J. Math. **75**, 178–188 (1953)
- 6. Melzak, Z.A.: A note on sets of constant width. Proc. Am. Math. Soc. **11**, 493–497, MR 23, A2124 (1960)
- 7. Schneider, R.: Convex Bodies: The Brunn–Minkowski Theory. Cambridge University Press, Cambridge (1993)