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Abstract Let X be a compact Riemann surface. A quadratic pair on X consists of a holo-
morphic vector bundle with a quadratic form which takes values in a fixed line bundle. We
show that the moduli spaces of quadratic pairs of rank 2 are connected under some constraints
on their topological invariants. As an application of our results we determine the connected
components of the SO0(2, 3)-character variety of X .
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1 Introduction

Let X be a compact Riemann surface of genus g � 2. Many kinds of pairs (V, ϕ) on X ,
consisting of a holomorphic vector bundle V → X and a holomorphic section ϕ of an
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associated bundle, have been extensively studied. Important examples are Bradlow pairs [3],
where ϕ ∈ H0(X, E) lives in the fundamental representation and Higgs bundles [19], where
ϕ ∈ H0(X,End(E)⊗ K ) lives in the adjoint representation (twisted by the canonical bundle
K of X ). Many more examples can be found in the survey [4].

In this paper we focus on U-quadratic pairs (V, γ ), whereγ is a global section of S2V ∗⊗U
for a fixed line bundle U → X . These are of interest for at least two reasons. On the one
hand they can be viewed as giving rise to bundles of quadrics and hence form a very natural
generalization of the linear objects of vector bundles. On the other hand they arise naturally in
the study of another kind of linear pairs, namely G-Higgs bundles: these are the appropriate
objects for studying character varieties for the fundamental group of X in a real Lie group
G through the non-abelian Hodge theory correspondence (see for example [7] for a survey
on this topic).

Moduli spaces of quadratic pairs were constructed via GIT and studied by Gómez and Sols
in [15] and also by Schmitt in [26]. Moreover, Mundet in the appendix to [15], showed that
the stability condition used for constructing moduli is the same one which allows to prove
a Hitchin–Kobayashi correspondence for quadratic pairs, relating stability of the quadratic
pair to the existence of solutions to certain gauge theoretic equations. This stability condition
depends on a real parameter α hence, for each value of this parameter, there is a moduli space
which we denote by Nα(n, d).

In the first part of this paper, we study the number of connected components of the moduli
spaces of U -quadratic pairs on X . Our strategy is the one pioneered by Thaddeus [30] and
subsequently used in many other cases, e.g., [6]. It consists in studying the variation of the
moduli space Nα(n, d) with the parameter α. As usually happens, when we run over α, the
moduli spaces Nα(n, d) are isomorphic for parameter values in intervals and only change
at a discrete set of critical values. In these cases, the difference between the moduli spaces
are confined to subvarieties, which are called the flip loci. For n = 2, we describe explicitly
these subvarieties and show that they have positive codimension in Nα(2, d). A necessary
condition for the non-emptiness of Nα(2, d) is α � d/2. Moreover, if d > dU = deg(U ),
then Nα(2, d) is empty unless α = d/2 and Nd/2(2, d) is the moduli space of semistable
rank 2 and degree d vector bundles. So we consider only d < dU (the d = dU case is special
and not considered here). We show that there is an αm such that the Nα(2, d)’s for α < αm

are all isomorphic. Then, using the theory of the Hitchin system, and in particular the results
obtained in [17], we show that Nα−

m
(2, d) is connected, where α−

m is any value less than αm .
This, together with study of the flip loci, provides a similar conclusion for the connectedness
of the other spaces Nα(2, d), whenever dU − d > g − 1 holds. Our result (Theorem 5.3)
states then the following:

Theorem Let d and dU be such that dU − d > g − 1. Then, for every α � d/2, the moduli
space Nα(2, d) is connected.

In the last part of the paper we apply our results to counting the connected components
of the character variety

R(π1 X,SO0(2, 3)) = Homred(π1 X,SO0(2, 3))/SO0(2, 3),

i.e., the space of reductive representations ρ : π1 X → SO0(2, 3) modulo the action by
simultaneous conjugation. Such a representation ρ has a topological invariant c(ρ) =
(τ (ρ),w2(ρ)) ∈ π1SO0(2, 3) ∼= Z×Z/2 given by the topological class of the associated flat
bundle. Now, for representations of π1 X into any isometry group of a hermitian symmetric
space of non-compact type there is an integer invariant, known as the Toledo invariant, and
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in the present case this invariant is just the first coordinate τ(ρ) of the topological class.
Moreover, the Toledo invariant is bounded by the Milnor–Wood type inequality

|τ(ρ)| � 2g − 2.

For (a, w) ∈ Z×Z/2, denote by Ra,w(π1 X,SO0(2, 3)) ⊆ R(π1 X,SO0(2, 3)) the subspace
of representations ρ such that c(ρ) = (a, w).

Our results on quadratic pairs then lead to the following (Theorem 6.26).

Theorem For each (a, w) ∈ Z × Z/2 such that 0 < |a| < 2g − 2, the space
Ra,w(π1 X,SO0(2, 3)) is connected.

To put this result into perspective, recall that SO0(2, 3) is isomorphic to the adjoint
form PSp(4,R) of the real symplectic group Sp(4,R). It can be seen that a representation
ρ : π1 X → SO0(2, 3) lifts to Sp(4,R) if and only if τ(ρ) = w2(ρ) mod 2. Moreover, if this
is the case, τ(ρ) coincides with the Toledo invariant of the lifted representation and this in
turn coincides with the topological invariant in π1Sp(4,R) ∼= Z of the lifted representation.
The connected components of the character variety Ra(π1 X,Sp(4,R)) of representations
in Sp(4,R) with topological invariant a ∈ Z have been determined in [16] for |a| = 0 and
|a| = 2g − 2, and for the remaining values of |a| by García–Prada and Mundet in [14]. In
the case of representations which lift to Sp(4,R) these results easily lead to the count of con-
nected components for representations in SO0(2, 3) (cf. [7]). Thus our Theorem completes
the count of the connected components for representations in SO0(2, 3) and the novelty lies
in the cases a �= w mod 2.

This paper is organized as follows. In Sect. 2 we recall some basic facts about quadratic
pairs. In Sect. 3 we carry out the analysis of the variation of the moduli spaces Nα(2, d)with
the parameter, leaving however the proof of connectedness of Nα−

m
(2, d) for Sect. 4. Then, in

Sect. 5, we put our results together to obtain the main connectedness theorem for the moduli
of quadratic pairs. Finally, in Sect. 6, we give the application of our results to Higgs bundles
and representations of surface groups in the group SO0(2, 3).

2 Quadratic pairs

2.1 Quadratic pairs and their moduli spaces

Let X be smooth projective curve over C of genus g � 2, and let U be a fixed holomorphic
line bundle over X . Write

dU = deg(U )

for the degree of U .

Definition 2.1 A U-quadratic pair on X is a pair (V, γ ), where V is a holomorphic vec-
tor bundle over X and γ is a global holomorphic non-zero section of S2V ∗ ⊗ U , i.e., γ ∈
H0(X, S2V ∗ ⊗ U ). The rank and degree of a quadratic pair are the rank and degree of the
underlying vector bundle V , respectively. We say that (V, γ ) is of type (n, d) if rk(V ) = n
and deg(V ) = d .

We shall often refer to a U -quadratic pair simply as a quadratic pair. Quadratic pairs are
sometimes called conic bundles in the literature.
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Definition 2.2 Two U -quadratic pairs (V, γ ) and (V ′, γ ′) are isomorphic if there is an iso-
morphism f : V → V ′ such that γ ′ f = (( f t )−1 ⊗ 1U )γ , i.e., such that the following
diagram commutes:

V
f ��

γ

��

V ′

γ ′
��

V ∗ ⊗ U
( f t )−1⊗1U

�� V ′∗ ⊗ U.

Quadratic pairs of rank n � 3 were studied in [15] by Gómez and Sols. They introduced
an appropriate α-semistability condition, depending on a real parameter α, 1 and constructed
moduli spaces of S-equivalence classes of α-semistable quadratic pairs using GIT. The con-
struction of the moduli spaces for general rank is due to Schmitt [26,28]. We denote the
moduli space of S-equivalence classes of α-semistable U -quadratic pairs on X of rank n and
degree d by

NX,α(n, d) = Nα(n, d).

There is a Hitchin–Kobayashi correspondence for quadratic pairs. This follows from the
general results of [8,22] and [11]; the Appendix to [15] treats the application to the case
of quadratic pairs. It says the a quadratic pair supports a solution to a certain natural gauge
theoretic equation if and only if it is α-polystable (see below for the definition of this con-
cept). Moreover, each S-equivalence class has a unique α-polystable representative and thus
S-equivalence of α-polystable pairs reduces to isomorphism. We can therefore also consider
Nα(n, d) as the moduli space of isomorphism classes of α-polystable quadratic pairs.

2.2 U -quadratic pairs of rank 1

Although we will be mainly interested in quadratic pairs of type (2, d), we shall also need
the description of the moduli spaces of quadratic pairs on X of rank 1.

The τ -stability condition of [15] is empty for rank 1 pairs, though it is required that τ > 0.
We shall take this inequality as our definition of τ -stability of rank 1 pairs, since it allows
for a convenient formulation of certain results in Sect. 3 below. In analogy with the rank 2
case below, we prefer to state the definition in terms of the parameter α = (d − 2τ)/n (this
is the parameter c of the appendix to [15]).

Definition 2.3 Fix a real parameter α. A U -quadratic pair (L , δ) of type (1, d) is α-stable
if α � d .

Remark 2.4 There are no strictly α-semistable quadratic pairs of rank 1.

For quadratic pairs of type (1, d ′), all the moduli spaces Nα(1, d ′) with α � d ′ are iso-
morphic and there is only one so-called critical value of α, for which the stability condition
changes, namely α = d ′.

Lemma 2.5 Let Nα(1, d ′) be the moduli space of α-stable quadratic pairs of type (1, d ′).
Then,

1 In fact a different parameter τ is used in [15]. In the cases of interest to us, the precise definition of
α-semistability is given below, as well as the relation between the parameters τ and α.
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(1) for all α > d ′, Nα(1, d ′) = ∅;
(2) for all d ′ > dU/2, Nα(1, d ′) = ∅.

Proof The first item follows from the stability condition. For the second part, we have that, if
(M, δ) ∈ Nα(1, d ′), then δ : M → M−1U is non-zero and holomorphic, so −2d ′ +dU � 0.

��
Proposition 2.6 Suppose that dU is even. If α � dU/2, then the moduli space Nα(1, dU/2)
is isomorphic to

S = {F ∈ PicdU /2(X) | F2 ∼= U },
the set of the 22g square roots of U.

Proof Let α � dU/2. If (M, δ) ∈ Nα(1, dU/2), then δ : M → M−1U must be non-
zero, hence an isomorphism. Moreover, it is defined up to a non-zero scalar so the map
Nα(1, dU/2) → S, (M, δ) → M is an isomorphism. ��

It remains to describe Nα(1, d ′) for α � d ′ and d ′ < dU/2. Denote by Symn(X) the
nth symmetric product of X , the smooth variety which parametrizes the degree n effective
divisors on X .

Proposition 2.7 If d ′ < dU/2 and α � d ′, then Nα(1, d ′) is the 22g-fold cover of the sym-
metric product SymdU −2d ′

(X) obtained by pulling back, via the Abel-Jacobi map, the cover
Pic(X) → Pic(X) given by squaring of line bundles.

Proof Consider the map π : Nα(1, d ′) → SymdU −2d ′
(X), (M, δ) → div(δ). Given D ∈

SymdU −2d ′
(X), π−1(D) is isomorphic to the set of square roots of U (−D). The result fol-

lows. ��
Corollary 2.8 Let d ′ < dU/2 and α � d ′. Then dim Nα(1, d ′) = dU − 2d ′.

2.3 Stability of quadratic pairs of rank 2

Our main objects of interest are type (2, d) quadratic pairs (V, γ ), where V is a holomorphic
vector bundle of rank 2 and degree d , and γ ∈ H0(X, S2V ∗ ⊗ U ). Most of the time we will
think of γ as a holomorphic map γ : V −→ V ∗ ⊗U which is symmetric, i.e., γ t ⊗ 1U = γ .

Given a rank 2 vector bundle V and a line subbundle L ⊂ V , we denote by L⊥ the kernel
of the projection V ∗ → L−1. It is a line subbundle of V ∗ and V/L is isomorphic to (L⊥)−1.

The general definition of stability from [8,11,22] specializes as follows in the case of
quadratic pairs. It is equivalent to the definition of τ -semistability of Gómez and Sols [15]
by taking τ = d/2 − α. To state the definition we shall use the following notation. Let V1

and V2 be subbundles of a vector bundle V . Then we denote by V1 ⊗S V2 their symmetrized
tensor product. By this we mean the symmetric part of V1 ⊗ V2 inside the symmetric product
S2V —these bundles can, for example, be constructed from the corresponding representations
via principal bundles.

Definition 2.9 Fix α ∈ R. A U -quadratic pair (V, γ ) of type (2, d) is:

• α-semistable if α � d/2 and, for every line subbundle L ⊂ V ,

(1) deg(L) � α if γ ∈ H0(X, (L⊥)2U );
(2) deg(L) � d/2 if γ ∈ H0(X, L⊥ ⊗S V ∗ ⊗ U );
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(3) deg(L) � d − α if γ /∈ H0(X, L⊥ ⊗S V ∗ ⊗ U ).

• α-stable if it is α-semistable and strict inequalities hold in (1), (2) and (3) above.
• α-polystable if α � d/2 and, for every line subbundle L ⊂ V ,

(1) deg(L) � α if γ ∈ H0(X, (L⊥)2U ). Moreover, if deg(L) = α, there is L ′ ⊂ V
such that V = L ⊕ L ′;

(2) deg(L) � d/2 if γ ∈ H0(X, L⊥ ⊗S V ∗ ⊗ U ). Moreover, if deg(L) = d/2, there is
L ′ ⊂ V such that V = L ⊕ L ′ and γ ′ ∈ H0(X, L−1L ′−1U ) such that γ = γ ′ ⊕ γ ′;

(3) deg(L) � d − α if γ /∈ H0(X, L⊥ ⊗S V ∗ ⊗ U ). Moreover, if deg(L) = d − α,
there is L ′ ⊂ V such that V = L ⊕ L ′.

Remark 2.10 The d/2-(semi)stability condition for (V, γ ) is equivalent to the usual
(semi)stability condition for the vector bundle V .

An α-semistable quadratic pair (V, γ ) is strictly α-semistable if it is not α-stable. From
the previous definition, we can separate strictly α-semistable quadratic pairs into three types.

Definition 2.11 A rank 2 α-semistable quadratic pair (V, γ ) is strictly α-semistable of type:

(A) if there is a holomorphic line bundle L ⊂ V such that γ ∈ H0(X, (L⊥)2U ) and
deg(L) = α;

(B) if there is a holomorphic line bundle L ⊂ V such that γ ∈ H0(X, L⊥ ⊗S V ∗ ⊗ U )
and deg(L) = d/2;

(C) if there a holomorphic line bundle L ⊂ V such that deg(L) = d − α.

Definition 2.12 For a given type (2, d), the values of α for which strictly α-semistable qua-
dratic pairs of type (A) or (C) exist are called critical values, and the other values of α are
called generic values.

Remark 2.13 For genericα and for a pair (V, γ ), if there is no L ⊂ V such that γ (L) ⊂ L⊥U
and deg(L) = d/2, then (V, γ ) is α-semistable if and only if it is α-stable. In particular, if
d is odd there are no strictly α-semistable pairs of type (B).

Lemma 2.14 Let (V, γ ) be a U-quadratic pair of rank 2 and let L be a line subbundle of
V . Then,

(1) γ ∈ H0(X, (L⊥)2U ) ⇐⇒ γ (L) = 0 ⇐⇒ γ (V ) ⊂ L⊥U;
(2) γ ∈ H0(X, L⊥ ⊗S V ∗ ⊗ U ) ⇐⇒ γ (L) ⊂ L⊥U.

Proof This is an exercise in fibrewise linear algebra; see [23] for details. ��
Using this lemma, we can rewrite the α-(poly,semi)stability condition in the following

way.

Proposition 2.15 Let (V, γ ) be a rank 2 quadratic pair.

• The pair (V, γ ) is α-semistable if and only if α � d/2 and, for any line bundle L ⊂ V ,
the following conditions hold:

(1) deg(L) � α, if γ (L) = 0;
(2) deg(L) � d/2, if γ (L) ⊂ L⊥U;
(3) deg(L) � d − α, if γ (L) �⊂ L⊥U.
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• The pair (V, γ ) is α-stable if and only if it is α-semistable for any line bundle L ⊂ V ,
the conditions (1), (2) and (3) above hold with strict inequalities.

• The pair (V, γ ) is α-polystable if and only if α � d/2 and, for any line bundle L ⊂ V ,
the following conditions hold:

(1) deg(L) � α, if γ (L) = 0. Moreover, if deg(L) = α, there is an L ′ ⊂ V such that
V = L ⊕ L ′ and with respect to this decomposition,

γ =
(

0 0
0 γ ′

)

with γ ′ ∈ H0(X, L ′−2U )non-zero;
(2) deg(L) � d/2, if γ (L) ⊂ L⊥U. Moreover, if deg(L) = d/2, there is L ′ ⊂ V such

that V = L ⊕ L ′ and with respect to this decomposition,

γ =
(

0 γ ′
γ ′ 0

)

with γ ′ ∈ H0(X, L−1L ′−1U )non-zero;
(3) deg(L) � d − α, if γ (L) �⊂ L⊥U. Moreover, if deg(L) = d − α, there is L ′ ⊂ V

such that V = L ⊕ L ′ and with respect to this decomposition,

γ =
(
γ ′ 0
0 0

)

with γ ′ ∈ H0(X, L−2U ) non-zero.

Definition 2.16 Let (V, γ ) be a quadratic pair. A subbundle L ⊂ V is α-destabilizing of
type:

(A) if deg(L) � α and γ (L) = 0;
(B) if deg(L) � d/2 and γ (L) ⊂ L⊥U ;
(C) if deg(L) � d − α and γ (L) �⊂ L⊥U .

Proposition 2.17 Let (V, γ ) be a quadratic pair and let α < d/2.

(1) There is at most one α-destabilizing subbundle L ⊂ V of type (A) and at most one
α-destabilizing subbundle M ⊂ V of type (C). Moreover, if such L and M both exist,
then V ∼= L ⊕ M.

(2) There are at most two distinctα-destabilizing subbundles L1, L2 ⊂ V of type (B). More-
over, if there exist such distinct L1 and L2, then V ∼= L1 ⊕ L2 and γ (L1) ⊂ L−1

2 U.
(3) There cannot exist simultaneously α-destabilizing subbundles of type (A) and (B).
(4) There cannot exist simultaneously α-destabilizing subbundles of type (C) and (B).

Proof Since rk(V ) = 2 and γ is holomorphic and non-zero, there is at most one subbundle
L ⊂ V with γ (L) = 0. This proves the first statement in (1). For the second statement in
(1), note that deg(M) � d − α > d/2 = μ(V ). Thus the claim about the destabilizing
bundle M follows from the uniqueness of destabilizing subbundles of ordinary rank 2 vector
bundles (cf. Proposition 10.38 of [21]). If such L and M both exist, then clearly L � M so
the composite M → V → 	2V L−1 is non-zero, and − deg(M) + d − deg(L) � 0. But
deg(M) � d − α and deg(L) � α, therefore 	2V L−1 ∼= M and V ∼= L ⊕ M .

The proof of (2) is similar. Let L1, L2 ⊂ V be two different destabilizing subbundles of
(V, γ ) of type (B). Then L2 ∼= 	2V L−1

1 as before, and V = L1⊕L2. In this case, L−1
2

∼= L⊥
1
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and γ (L1) ⊂ L−1
2 U . It is clear that there cannot exist a third subbundle satisfying the same

conditions.
The proof of (3) is similar to the proof of the first statement of (1) because γ (L) = 0 is

equivalent to γ (V ) ⊂ L⊥U . The proof of (4) is analogous to the proof of the second state-
ment in (1), observing that there cannot exist simultaneously a destabilizing subbundle of V
and another subbundle with degree d/2. Indeed, if there is an M ⊂ V with deg(M) > d/2
and if F ⊂ V is different from M then there is a non-zero homomorphism F → 	2V M−1,
so deg(F) � d − deg(M) < d/2. ��

Recall that dU = deg(U ) and that Nα(2, d) denotes the moduli space of α-polystable
U -quadratic pairs of rank 2 and degree d .

Proposition 2.18

(1) If d > dU , then Nα(2, d) = ∅ for all α.
(2) If d � dU , then Nα(2, d) = ∅ for all α > d/2.

Proof Let (V, γ ) be a quadratic pair of rank 2 and degree d > dU . If rk(γ ) = 2 (generically),
then det(γ ) is a non-zero section of 	2V −2U 2 so d � dU . Hence, since γ �= 0, we must
have rk(γ ) = 1. Take any α and suppose moreover that the pair (V, γ ) is α-semistable. Since
V is locally free, the sheaf N = ker(γ ) ⊂ V is torsion free. For the same reason, the quotient
V/N ∼= im(γ ) ⊂ V ∗ ⊗ U is torsion free. Thus N is a line subbundle of V . Let I ⊂ V ∗ be
such that IU is the saturation of the image sheaf im(γ ). From the α-semistability condition,

deg(N ) � α (2.1)

and, since γ (I ⊥) = 0,

deg(I ) � α − d. (2.2)

On the other hand, γ induces a non-zero map of line bundles V/N → IU , so

− d + deg(N )+ deg(I )+ dU � 0. (2.3)

But, from (2.1) and (2.2), we have

− d + deg(N )+ deg(I )+ dU < 0 (2.4)

because d > dU and α � d/2. From (2.3) and (2.4) we conclude that there is no such (V, γ )
and this finishes the proof of the first part.

The second part is immediate, since α � d/2 is part of the definition of α-semistability.
��

This result deals with the cases d > dU and any α, and d � dU and α > d/2. From now
on we will restrict ourselves to the study of U -quadratic pairs of type (2, d) with d < dU .
When d = dU , the map γ becomes an isomorphism, making this a special case in what con-
cerns the connected components of the moduli space. In the next remark we give a very brief
explanation of this phenomenon, which can be seen as somewhat similar to the difference
between the situations in Propositions 2.6 and 2.7.

Remark 2.19 If dU is odd and d = dU , then it will follow from Proposition 3.3 below (see
also Fig. 1 in Sect. 3.1) that Nα(2, dU ) = ∅. So let us assume that dU is even and that d = dU .
In this case γ : V → V ∗ ⊗ U is an isomorphism. If we choose a square root U ′ of U , then
γ gives rise to a symmetric isomorphism q : V ⊗ U ′∗ ∼= V ∗ ⊗ U ′, i.e., to a non-degenerate
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quadratic form on the vector bundle V ⊗U ′∗. Such a pair, consisting of a vector bundle with a
non-degenerate quadratic form, is called an orthogonal bundle. There is a stability condition
for orthogonal bundles, due to Ramanathan [25], and it can be seen that (V ⊗ U ′∗, q) is
semistable (i.e., the degree of any isotropic subbundle of V ⊗ U ′∗ is less or equal than 0) if
and only if (V, γ ) is α-semistable for any α � d/2. Hence Nα(2, dU ) is isomorphic to the
moduli space MO(2,C) of polystable orthogonal bundles and this gives rise to the existence
of extra connected components (cf. [7,12,16]).

2.4 Deformation theory of quadratic pairs

The deformation theory of a quadratic pair (V, γ ) is governed by the following complex of
sheaves on X (see, e.g., Biswas–Ramanan [2]):

C•(V, γ ) : End(V )
ρ(γ )−−→ S2V ∗ ⊗ U,

where

ρ(γ )(ψ) = −(ψ t ⊗ 1U )γ − γψ.

In particular, the infinitesimal deformation space of a quadratic pair (V, γ ) is isomorphic to
H

1(X,C•(V, γ )). Moreover, one has a long exact sequence

0 −→ H
0(X,C•(V, γ )) −→ H0(X,End(V )) −→ H0(X, S2V ∗ ⊗ U ) −→

−→ H
1(X,C•(V, γ )) −→ H1(X,End(V )) −→ H1(X, S2V ∗ ⊗ U ) −→ (2.5)

−→ H
2(X,C•(V, γ )) −→ 0

where the maps Hi (X,End(V )) → Hi (X, S2V ∗ ⊗U ) are induced by ρ(γ ). It is immediate
from this long exact sequence that the infinitesimal automorphism space (defined for general
pairs in [11]) of a quadratic pair (V, γ ) can be canonically identified with H

0(X,C•(V, γ )).

Definition 2.20 A quadratic pair (V, γ ) is infinitesimally simple if the vanishing H
0(X,C•

(V, γ )) = 0 holds. A quadratic pair (V, γ ) is simple if the group Aut(V, γ ) of automorphisms
of (V, γ ) is equal to {±1V }.

We have the following useful facts.

Proposition 2.21 (1) An α-stable quadratic pair is infinitesimally simple.
(2) An α-stable quadratic pair (V, γ ) represents a smooth point in the moduli space if it is

simple and H
2(X,C•(V, γ )) = 0.

Proof (1) This can be proved in a manner analogous to the corresponding result for G-Hi-
ggs bundles (see [11, § 3]).

(2) This follows from the existence of a fine moduli space for α-stable quadratic pairs (see
Gómez and Sols [15, Theorem I]) and Theorem 3.1 of Biswas and Ramanan [2]. ��

This motivates the following definition.

Definition 2.22 The expected dimension of Nα(2, d) is dim H
1(X,C•(V, γ )).

Using (2.5), the expected dimension can be calculated as follows:

dim H
1(X,C•(V, γ )) = χ(S2V ∗ ⊗ U )− χ(End(V )) = 3(dU − d)+ g − 1. (2.6)
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Remark 2.23 If a (local) universal family exists over a component of the moduli space, then
this component has the expected dimension. However, for values of α such that no α-stable
quadratic pairs exist, the actual dimension of the moduli space can be strictly smaller than
the expected dimension (see [5] for an example of this phenomenon, in the Higgs bundle
context).

3 Variation of the moduli with the parameter

The purpose of this section is to study the variation of the moduli spaces Nα(2, d) with the
stability parameter α. As in the case of holomorphic triples [6,30] we have critical values
αk—for which the moduli spaces Nα(2, d) change—and corresponding flip loci Sα±

k
(2, d) ⊂

Nα±(2, d), where the change takes place. We shall see that, in contrast with the case of ho-
lomorphic triples, there is no symmetry between Sα+

k
(2, d) and Sα−

k
(2, d). This is due to the

non-linear nature of quadratic pairs.

3.1 Critical values

We begin by determining precisely the critical values of the parameter α.

Proposition 3.1 If (V, γ ) is an α-semistable pair with α < d − dU/2, then generically
rk(γ ) = 2.

Proof Recall that we always have γ �= 0. If rk(γ ) = 1, considering again the line bundles
N = ker(γ ) ⊂ V and I ⊂ V ∗ such that IU is the saturation of the image sheaf im(γ ), we
have, as in the proof of Proposition 2.18, that

0 � −d + deg(N )+ deg(I )+ dU � 2α − 2d + dU ,

i.e., α � d − dU/2. ��
The next result shows that the injectivity parameter d − dU/2 of Proposition 3.1 is also

a stabilization parameter, in the sense that after it the moduli spaces Nα(2, d), for different
values of α, are all isomorphic.

Proposition 3.2 If α2 � α1 < d − dU/2, then a quadratic pair (V, α) is α1-semistable if
and only if it is α2-semistable, and hence Nα1(2, d) � Nα2(2, d).

Proof Let (V, γ ) ∈ Nα1(2, d). Sinceα2 � α1, the existence of anα2-destabilizing subbundle
implies that it must be of type (A), which in turn implies that rk(γ ) = 1 generically. But this
is impossible due to Proposition 3.1, since α1 < d − dU/2. Hence Nα1(2, d) ⊆ Nα2(2, d).

Conversely, if (V, γ ) ∈ Nα2(2, d), then (V, γ ) ∈ Nα1(2, d) unless there is an α1-desta-
bilizing subbundle of (V, γ ). Hence L is such that d − α1 < deg(L) � d − α2, and

γ (L) �⊂ L⊥U , therefore the composite L → V
γ−→ V ∗ ⊗ U → L−1U is non-zero. Thus

−2 deg(L)+ dU � 0.

On the other hand, d − α1 < deg(L) together with α1 < d − dU/2, gives

−2 deg(L)+ dU < 0.

It follows that no such line subbundle L can exist. ��
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From the definition of α-semistability and from the previous proposition, the following
is immediate.

Proposition 3.3 The critical values of U-quadratic pairs of type (2, d) are the elements of
the following set:

{d/2} ∪ {[d/2] + k | k ∈ {d − [d/2] − [dU/2], . . . , 0}} .
Moreover, on each open interval between consecutive critical values,

( [d/2] + k,min {d/2, [d/2] + k + 1} )
the α-semistability condition is the same; hence the corresponding moduli spaces are iso-
morphic.

Notation 3.4 For each integer d − [d/2] − [dU/2] � k � 0, we define

αk = [d/2] + k.

Also, let

αM = d/2 and αm = αd−[d/2]−[dU /2] = d − [dU/2],
and let α+

k denote the value of any parameter between the critical values αk and αk+1, and
let α−

k denote the value of any parameter between the critical values αk−1 and αk .

Proposition 3.3 means that we can write without ambiguity

Nα+
k
(2, d)

for the moduli space of α+
k -semistable U -quadratic pairs of rank 2 and degree d , for any

α between the critical values [d/2] + k and min {d/2, [d/2] + k + 1}. Note that, with this
notation, we always have Nα+

k
(2, d) = Nα−

k+1
(2, d).

The information obtained so far on the variation of Nα(2, d) with α and d is summarized
in Fig. 1.

3.2 Flip loci

We shall now study what are the differences between moduli spaces of U -quadratic pairs of
type (2, d), which are separated by a critical value of the parameter α.

Definition 3.5 For each k ∈ {d − [d/2] − [dU/2], . . . , 0}, let Sα+
k
(2, d) be the set of pairs

of degree d which are α+
k -semistable but α−

k -unstable, i.e.,

Sα+
k
(2, d) =

{
(V, γ ) ∈ Nα+

k
(2, d) | (V, γ ) /∈ Nα−

k
(2, d)

}
.

Similarly, define Sα−
k
(2, d) to be the set of pairs of degree d which are α−

k -semistable but

α+
k -unstable,

Sα−
k
(2, d) =

{
(V, γ ) ∈ Nα−

k
(2, d) | (V, γ ) /∈ Nα+

k
(2, d)

}
.

The spaces Sα±
k
(2, d) are called the flip loci for the critical value αk .

123



346 Geom Dedicata (2012) 161:335–375

Fig. 1 Variation regions of Nα(2, d). Above the line d = dU , Nα(2, d) = ∅ as well as on the right of the line
α = d/2. Also, Nα(2, dU ) = ∅ whenever dU is odd. The dotted region, on the left of the line α = d −[dU /2],
is the region where there are no critical values, hence there is no change of the moduli spaces and, also, γ is
non-degenerate. The critical values lie in the region between the lines α = d − [dU /2] and α = d/2

As a direct consequence of this definition, we have

Nα+
k
(2, d) � Sα+

k
(2, d) = Nα−

k
(2, d) � Sα−

k
(2, d). (3.1)

Proposition 3.6 Any quadratic pair (V, γ ) in Sα±
k
(2, d) is α±

k -stable. Hence, for αk �= αM ,

Sα+
k
(2, d) =

{
(V, γ ) ∈ N s

α+
k
(2, d) | (V, γ ) /∈ Nα−

k
(2, d)

}
(3.2)

and

Sα−
k
(2, d) =

{
(V, γ ) ∈ N s

α−
k
(2, d) | (V, γ ) /∈ Nα+

k
(2, d)

}
(3.3)

where N s
α±

k
(2, d) stands for the stable locus of Nα±

k
(2, d).

Proof If (V, γ ) is strictly α±
k -semistable then, since α±

k is a generic value, the destabilizing
subbundle must be of type (B). Since such a subbundle is destabilizing for all values of α,
(3) and (4) of Proposition 2.17 imply that there are no destabilizing subbundles of type (A)
or (C). The conclusion is now immediate from the definition of Sα±

k
(2, d). ��

Proposition 3.7 Let αk �= αM . Then:
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(1) Sα+
k
(2, d) is a subvariety of N s

α+
k
(2, d).

(2) Sα−
k
(2, d) is a subvariety of N s

α−
k
(2, d).

Proof From (3.2), Sα+
k
(2, d) ⊂ N s

α+
k
(2, d). From [15] we know that there is a (universal)

family of quadratic pairs parametrized by N s
α+

k
(2, d). By definition, the restriction of this

family to Sα+
k
(2, d) parametrizes the pairs which are not α−

k -semistable. Since α−
k -semista-

bility is an open condition (cf. Proposition 3.1 of [15]), it follows that Sα+
k
(2, d) is Zariski

closed in N s
α+

k
(2, d). This proves (1). The proof of (2) is the same, but now using (3.3). ��

Remark 3.8 In the next two sections we shall see that the flip loci Sα±
k
(2, d) are compact and

therefore also closed in Nα±
k
(2, d). Hence the Sα±

k
(2, d) are in fact subvarieties of Nα±

k
(2, d).

3.3 The flip locus Sα+
k
(2, d)

From (2) of Proposition 2.18, Sα+
M
(2, d) = ∅, so we shall study the flip loci Sα+

k
(2, d) for

the other critical values.

Proposition 3.9 Let (V, γ ) ∈ Nα+
k
(2, d) with αk < d/2. If (V, γ ) ∈ Sα+

k
(2, d), then V is a

non-trivial extension

0 −→ L −→ V −→ M −→ 0

where L ⊂ V is a line bundle such that deg(L) = αk and γ (L) = 0. Moreover, γ induces
γ ′ ∈ H0(X,M−2U ) such that the quadratic pair (M, γ ′) of type (1, d − αk) is (d − α+

k )-
stable.

Proof Let (V, γ ) ∈ Sα+
k
(2, d). Then it must be strictly αk-semistable and, from the defini-

tion of Sα+
k
(2, d) and Proposition 2.15, the destabilizing subbundle must be an L ⊂ V such

that γ (L) = 0 and deg(L) = αk .
Write

0 −→ L −→ V −→ 	2V L−1 −→ 0 (3.4)

and define M = 	2V L−1. If we had V = L ⊕ M , then M would be an α+
k -destabiliz-

ing subbundle of (V, γ ) (of type (C)), which is not possible. The extension (3.4) is thus
non-trivial.

Using the symmetry of γ and the fact that γ (L) = 0, we see that γ induces a map
γ ′ : M → M−1U and hence we obtain the pair (M, γ ′) of type (1, d − αk). From Defini-
tion 2.3, it is clearly (d − α+

k )-stable. ��
Proposition 3.10 Let αk < d/2. There is a morphism

Sα+
k
(2, d) −→ Nd−α+

k
(1, d − αk)× Jacαk (X)

with fibre isomorphic to P
d−2αk+g−2.

Proof From Proposition 3.9, we see that there is a map

p : Sα+
k
(2, d) −→ Nd−α+

k
(1, d − αk)× Jacαk (X)
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defined by

p(V, γ ) = ((M, γ ′), L).

where L is the destabilizing subbundle and M is the quotient bundle, M ∼= 	2V L−1.
Let

((M, γ ′), L) ∈ Nd−α+
k
(1, d − αk)× Jacαk (X).

The fibre of p over ((M, γ ′), L) is given by the isomorphism classes of non-trivial extensions
of M by L . Indeed, if V is such an extension then, defining

γ = (π t ⊗ 1U )γ
′π

where π : V → M is the projection, we obtain a quadratic pair (V, γ ). This pair is strictly
αk-semistable and α−

k -unstable (with L being the destabilizing subbundle) and as we go
from Nα−

k
(2, d) to Nα+

k
(2, d), then (V, γ ) gets α+

k -stable unless V has also a destabilizing

subbundle M ′ such that deg(M ′) = d − αk . But then M ′ ∼= M and V = L ⊕ M , which
contradicts the non-triviality of the extension V .

The fibre of p over ((M, γ ′), L) is then the space P Ext1(M, L) ∼= PH1(X,M−1L). Since
αk < d/2, deg(M−1L) = 2αk − d < 0, so H0(X,M−1L) = 0 and

dim H1(X,M−1L) = d − 2αk + g − 1 > 0.

Hence p is surjective, with fibre isomorphic to P
d−2αk+g−2.

It remains to check that p is a morphism. For that we proceed as follows.
Let pX : Nd−α+

k
(1, d − αk)× X → X be the projection. From Remark 2.4 and Theorem

I of [15], there is a universal p∗
X U -quadratic pair (L1,γγγ

′) over Nd−α+
k
(1, d − αk)× X . On

the other hand, we have the Poincaré line bundle L2 over Jacαk (X)× X . Let

pr13 : Nd−α+
k
(1, d − αk)× Jacαk (X)× X −→ Nd−α+

k
(1, d − αk)× X

pr23 : Nd−α+
k
(1, d − αk)× Jacαk (X)× X −→ Jacαk (X)× X

and

pr12 : Nd−α+
k
(1, d − αk)× Jacαk (X)× X −→ Nd−α+

k
(1, d − αk)× Jacαk (X)

be the projections. Consider the first direct image sheaf R1pr12∗(pr∗13L−1
1 ⊗ pr∗23L2). This

sheaf is locally free since its fibres have constant dimension (because αk < d/2).
If

S̃((L1,γγγ
′),L2) = PR1pr12∗(pr∗13L−1

1 ⊗ pr∗23L2)

there is then a morphism S̃((L1,γγγ
′),L2) → Nd−α+

k
(1, d − αk)× Jacαk (X). Moreover, in a

similar manner to [20] (see also Proposition 3.2 of [30] and Proposition 5.10 of [13]), one
sees that S̃((L1,γγγ

′),L2) is base of a family parametrizing all α+
k -semistable U -quadratic

pairs over X which are α+
k -stable but α−

k -unstable. Hence, from the universal property of the
coarse moduli space Nα+

k
(2, d), there is a morphism S̃((L1,γγγ

′),L2) → Nα+
k
(2, d) which

factors through Sα+
k
(2, d) and yields an isomorphism S̃((L1,γγγ

′),L2) ∼= Sα+
k
(2, d) such that
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the following diagram commutes:

S̃((L1,γγγ
′),L2)

∼= ��

������������������
Sα+

k
(2, d)

p

��
Nd−α+

k
(1, d − αk)× Jacαk (X).

So p is a morphism and the result follows. ��

Since Nd−α+
k
(1, d −αk) is compact, one concludes from this proposition that Sα+

k
(2, d) is

compact as well. It follows from Proposition 3.7 (see also Remark 3.8) that it is a subvariety
of Nα+

k
(2, d).

From the previous proposition and from Proposition 2.7 (in the case of Sα+
m
(2, d) use

instead Proposition 2.6), we have:

Corollary 3.11 For every αk < d/2, dim Sα+
k
(2, d) = dU − d + 2g − 2.

3.4 The flip locus Sα−
k
(2, d)

Now we turn our attention to the other flip loci, Sα−
k
(2, d). As in the case of Sα+

k
(2, d), the

behaviour of Sα−
k
(2, d) depends on whether αk = αM = d/2 or not. On the other hand, for

αk < d/2, the description of Sα−
k
(2, d) is more involved than that of Sα+

k
(2, d), with several

difficulties appearing due to the fact that the αk-destabilizing subbundle is of type (C).
Let us begin by studying Sα−

M
(2, d) and see why it is a separate case. Indeed,

Sα−
M
(2, d) = Nα−

M
(2, d)

and one cannot compare this flip locus with the others because in this extreme case the cause
of the destabilization after d/2 is not related with subbundles of V .

We have thatα−
M is any value in the open interval ([d/2], d/2) if d is odd, or (d/2−1, d/2)

if d is even. So we can write α−
M = d/2 − ε for sufficiently small ε > 0.

Lemma 3.12 If a U-quadratic pair (V, γ ) of type (2, d) is α−
M -semistable then V is semi-

stable.

Proof Suppose (V, γ ) is α−
M -semistable and let L ⊂ V be a line subbundle. Then:

• deg(L) < α−
M � d/2 if γ (L) = 0 (note that α−

M is not a critical value, so we could not
have deg(L) = α−

M );
• deg(L) � d/2 if γ (L) ⊂ L⊥U ;
• deg(L) < d−α−

M = d/2+ε ifγ (L) �⊂ L⊥U (again we could not have deg(L) = d−α−
M ).

Since we can take ε > 0 as small as wanted, it follows that deg(L) � d/2.

In any case, deg(L) � d/2, and thus V is semistable. ��

Proposition 3.13 Let M(2, d) be the moduli space of rank 2 semistable vector bundles over
X. There is a map π : Nα−

M
(2, d) → M(2, d) which, if dU − d > g − 1, is surjective and

the fibre over a stable vector bundle V is PH0(X, S2V ∗ ⊗ U ).
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Proof Using the previous lemma, define π : Nα−
M
(2, d) → M(2, d) as π(V, γ ) = V .

For the map to be surjective, given any semistable vector bundle V in M(2, d), there must
exist a non-zero holomorphic section γ of S2V ∗ ⊗ U such that (V, γ ) is α−

M -semistable.
Suppose that V is stable. Since dU − d > g − 1, we have χ(S2V ∗ ⊗ U ) > 0, where χ is
the Euler characteristic, hence H0(X, S2V ∗ ⊗ U ) �= 0 and this yields a pair (V, γ ). For any
L ⊂ V , deg(L) < d/2. Hence deg(L) � d/2 − 1 if d is even or deg(L) � [d/2]. In any
case, deg(L) � α−

M , hence (V, γ ) is α−
M -stable. The image of π contains therefore the open

dense subspace of stable vector bundles. Since Nα−
M
(2, d) is compact (cf. Theorem I of [15])

it follows that π is surjective.
To compute the fibre over a stable vector bundle, we only have to note that (V, γ ) ∼= (V, γ ′)

if and only if γ = θγ ′ for some θ ∈ C
∗. If (V, γ ) ∼= (V, γ ′), then there is an automorphism

λ : V → V such that γ ′λ = ((λt )−1 ⊗ 1U )γ . But, as V is stable, λ is a non-zero scalar so
γ = λ2γ ′. On the other hand, if γ = θγ ′ for some θ ∈ C

∗ then the scalar automorphism of
V given by

√
θ ∈ C

∗ is an isomorphism between (V, γ ) and (V, γ ′). ��
We now move on to the description of the flip loci Sα−

k
(2, d) with αk < d/2.

If (V, γ ) ∈ Sα−
k
(2, d), then it is α−

k -stable and α+
k -unstable hence strictly αk-semistable.

The destabilizing subbundle must be a line subbundle M ⊂ V such that

deg(M) = d − αk

and

γ (M) �⊂ M⊥U.

Therefore γ induces a non-zero holomorphic map

γ ′ : M −→ V
γ−→ V ∗ ⊗ U −→ M−1U (3.5)

i.e.,

γ ′ ∈ H0(X,M−2U ).

The description of the flip loci Sα−
k
(2, d), with αk < d/2, will be done by carrying out a

detailed analysis of this information.
Write V as an extension

0 −→ M −→ V −→ L −→ 0 (3.6)

where L = 	2V M−1.
What we have is already enough to describe Sα−

m
(2, d) for U -quadratic pairs such that dU

is even.

Proposition 3.14 Suppose that dU is even. If (V, γ ) ∈ Sα−
m
(2, d) then the extension (3.6) is

trivial,

V = M ⊕ L ,

and with respect to this decomposition,

γ =
(
γ ′ 0
0 γ ′′

)

where γ ′ is defined in (3.5) and γ ′′ ∈ H0(X, L−2U ) � {0}.
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Proof If (V, γ ) ∈ Sα−
m
(2, d), then deg(M) = d − αm = dU/2, thus deg(M−1U ) = dU/2.

Consider the map

ϕ : V −→ M−1U

defined by

ϕ = (i t ⊗ 1U )γ,

where i : M ↪→ V is the inclusion. Since γ (V ) �⊂ M⊥U , then rk(ϕ) = 1 generically.
Consider the line subbundle N = ker(ϕ) of V . We have the induced non-zero map

ϕ̃ : V/N −→ M−1U

i.e., ϕ̃ ∈ H0(X, (V/N )−1 M−1U ), hence

deg(N ) � d − deg(M−1U ) = d − dU/2 = deg(L).

On the other hand, since N � M , we have a non-zero map N → L , so

deg(N ) � deg(L).

We conclude that deg(N ) = deg(L) and that the map N → L is an isomorphism, L ∼= N ,
from which follows that extension (3.6) is trivial:

V = M ⊕ L .

Since L ∼= N = ker(ϕ), we have that γ (L) ⊂ M⊥U ∼= L−1U , thus the form of γ with
respect to the decomposition V = M ⊕ L is

γ =
(
γ ′ 0
0 γ ′′

)
.

γ ′′ �= 0 otherwise L would be an α−
m -destabilizing subbundle of (V, γ ) of type (A), con-

tradicting the assumption (V, γ ) ∈ Sα−
m
(2, d) (or, alternatively, because of Proposition 3.1).

��
Corollary 3.15 If U has even degree dU , Sα−

m
(2, d) is isomorphic to

NdU /2−(1, dU/2)× N(d−dU /2)−(1, d − dU/2).

Proof Given (V, γ ) ∈ Sα−
m
(2, d), the pair (V, γ ) determines and is determined by the pairs

(M, γ ′) and (L , γ ′′) obtained in the previous proposition. These are (d − α+
m )-stable and

α−
m -stable, respectively, therefore the map (V, γ ) → ((M, γ ′), (L , γ ′′)) is an isomorphism

between Sα−
m
(2, d) and Nd−α+

m
(1, d − αm)× Nα−

m
(1, αm). ��

So, from Proposition 2.6, in this case Sα−
m
(2, d) is isomorphic to

S × N(d−dU /2)−(1, d − dU/2)

where S is the set of square roots of U .
Now we pass to the analysis of Sα−

k
(2, d), withαk �= αm, αM if dU is even or justαk �= αM

if dU is odd. We start by noticing some constrains of its elements.
In the cases we are now considering, the map γ ′ : M → M−1U as defined in (3.5) is not

an isomorphism. Let D be its divisor

D = div(γ ′) (3.7)

and consider the structure sheaf OD of X restricted to D (or structure sheaf of the scheme
D).
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Remark 3.16 If D = ∑m
i=1 ni pi , then, choosing a local coordinate zi centred at pi , a global

section of OD can be written as
∑m

i=1 fi (z)where fi (z) = ∑ni −1
k=0 ak zk

i . One has then a short
exact sequence of sheaves

0 −→ O(−D) −→ O r(D)−→ OD −→ 0 (3.8)

where, for each open U such that there is only one point p ∈ Supp(D) in U ,

r(D)(U )(s) = r(D)(U )

( ∞∑
k=0

ak zk

)
=

D(p)−1∑
k=0

ak zk, (3.9)

for s ∈ O(U ) such that, in a local coordinate z centred at p, s(z) = ∑∞
k=0 ak zk .

Proposition 3.17 There is a well defined section

θγ ∈ H0(D,M−1 L−1U ). (3.10)

given by restriction of γ |M to D.

Proof For any sheaf F , write F |D for F⊗OD . From (3.8), we obtain the short exact sequence
of sheaves

0 −→ V ∗ ⊗ M−1U (−D) −→ V ∗ ⊗ M−1U
r(D)−→ V ∗ ⊗ M−1U |D −→ 0 (3.11)

and we have a map, which we still denote by r(D),

r(D) : H0(X, V ∗ ⊗ M−1U ) −→ H0(D, V ∗ ⊗ M−1U ).

Now, γ |M ∈ H0(X, V ∗ ⊗ M−1U ) so consider r(D)(γ |M ) ∈ H0(D, V ∗ ⊗ M−1U ). But,
since D = div(γ ′), we have in fact that r(D)(γ |M ) ∈ H0(D,M−1L−1U ), so we define

θγ = r(D)(γ |M ) ∈ H0(D,M−1L−1U ),

as claimed. ��
If we also denote by r(D) the map in H0 of the restriction 	2V −2U 2 → 	2V −2U 2|D ,

we see that

r(D)(det(γ )) = −θ2
γ ∈ H0(D,M−2 L−2U 2). (3.12)

This section θγ ∈ H0(D,M−1L−1U ), obtained in the previous proposition, will be very
important in the description of Sα−

k
(2, d) and the next result is a first instance of this.

Proposition 3.18 Let (V, γ ) ∈ Sα−
k
(2, d). Then θγ = 0 if and only if extension (3.6) is

trivial,

V = M ⊕ L ,

and with respect to this decomposition,

γ =
(
γ ′ 0
0 γ ′′

)
,

where γ ′ is defined in (3.5) and γ ′′ ∈ H0(X, L−2U ) � {0}.
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Proof As in the proof of Proposition 3.14, consider the map ϕ : V → M−1U given by
ϕ = (i t ⊗ 1U )γ , and its kernel N .

We have the induced non-zero map

ϕ̃ : V/N −→ M−1U

i.e., ϕ̃ ∈ H0(X, (V/N )−1 M−1U ) and let

D̃ = div(ϕ̃)

so that

deg(D̃) = deg(N )− 2d + αk + dU . (3.13)

Let p be any point in Supp(D) and choose a local coordinate z of X centred at p. Locally,
we can write V = M ⊕ L and, with respect to this decomposition,

γ (z) =
(

f1(z) f2(z)
f2(z) f3(z)

)

hence

ϕ(z) =
(

f1(z) f2(z)
)

so

D̃(p) � min{ord0 f1(z), ord0 f2(z)} = min{D(p), ord0 f2(z)}. (3.14)

Since θγ = 0, then

θγ (p) = 0 (3.15)

but, by the definition of θγ in (3.10),

θγ (p) = r(D)(U )( f2(z))

and from this, (3.9) and (3.15), we see that ord0 f2(z) � D(p). It follows from (3.14) that

D̃ � D (3.16)

so

deg(D̃) � deg(D) = −2 deg(M)+ dU = −2d + 2αk + dU .

From this and (3.13), we see that

deg(N ) � αk = deg(L). (3.17)

On the other hand, since N � M , we have a non-zero map N → L so (3.17) implies L ∼= N .
Extension (3.6) is hence trivial:

V = M ⊕ L .

From L ∼= N = ker(ϕ), it follows that γ (L) ⊂ M⊥U ∼= L−1U , thus the form of γ with
respect to the decomposition V = M ⊕ L is

γ =
(
γ ′ 0
0 γ ′′

)
.

γ ′′ �= 0 otherwise L would be an α−
k -destabilizing subbundle of (V, γ ) of type (A), con-

tradicting the assumption (V, γ ) ∈ Sα−
k
(2, d). ��
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We shall write Sα−
k
(2, d) as a disjoint union

Sα−
k
(2, d) = S0

α−
k
(2, d) � S1

α−
k
(2, d) (3.18)

where

• S0
α−

k
(2, d) is the space of pairs in Sα−

k
(2, d) with θγ = 0;

• S1
α−

k
(2, d) is the space of pairs in Sα−

k
(2, d) with θγ �= 0.

Let us now study each of the spaces S0
α−

k
(2, d) and S1

α−
k
(2, d).

3.4.1

From Proposition 3.18, S0
α−

k
(2, d) is precisely the space of pairs in Sα−

k
(2, d) such that exten-

sion (3.6) is trivial and γ has the given form. So we have the following corollary.

Corollary 3.19 Let αk �= αM . Then S0
α−

k
(2, d) is isomorphic to

Nd−α+
k
(1, d − αk)× Nα−

k
(1, αk).

Proof Given (V, γ ) ∈ S0
α−

k
(2, d), the pair (V, γ ) determines and is determined by the pairs

(M, γ ′) and (L , γ ′′) obtained in the previous proposition. These are (d − α+
k )-stable and

α−
k -stable, respectively, therefore the map (V, γ ) → ((M, γ ′), (L , γ ′′)) is an isomorphism

between S0
α−

k
(2, d) and Nd−α+

k
(1, d − αk)× Nα−

k
(1, αk). ��

Remark 3.20 We have seen that in the case of Sα−
m
(2, d), the section θγ is always zero. Hence

Sα−
m
(2, d) = S0

α−
m
(2, d) and therefore the similarity of Corollaries 3.15 and 3.19.

3.4.2 S1
α−

k
(2, d)

We move on to the description of S1
α−

k
(2, d). From Proposition 3.18, S1

α−
k
(2, d) is the space

of pairs in Sα−
k
(2, d) such that extension (3.6) is non-trivial.

Before going to the analysis of S1
α−

k
(2, d) we first need the following proposition.

Proposition 3.21 Let αk < d/2. If (V, γ ) ∈ Sα−
k
(2, d), then generically rk(γ ) = 2.

Proof As always, γ �= 0. Suppose that rk(γ ) = 1. Then, det(γ ) = 0, hence, from (3.12),
θγ = 0. From Proposition 3.18, V = M ⊕ L and

γ =
(
γ ′ 0
0 γ ′′

)

with γ ′′ �= 0. Since also γ ′ �= 0, it follows that det(γ ) �= 0 and this is a contradiction with
rk(γ ) = 1. ��

Given ((M, γ ′), L) ∈ Nd−α+
k
(1, d − αk) × Jacαk (X) and recalling that D = div(γ ′),

consider the subvariety

C((M, γ ′), L)
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of

H0(D,M−1L−1U ) � {0} × H0(X,M−2 L−2U 2) � {0}
whose elements (q, η) satisfy the equation

q2 + η|D = 0.

C
∗ acts freely on C((M, γ ′), L) as

λ · (q, η) = (λq, λ2η)

and we denote the quotient by

Q((M, γ ′), L) = C((M, γ ′), L)/C∗. (3.19)

Proposition 3.22 Let dU even and αk �= αm, αM or dU odd and αk �= αM . Suppose that
dU − d > g − 1. Then there is a morphism

S1
α−

k
(2, d) −→ Nd−α+

k
(1, d − αk)× Jacαk (X)

whose fibre over ((M, γ ′), L) is isomorphic to Q((M, γ ′), L) as defined in (3.19).

Proof If (V, γ ) ∈ S1
α−

k
(2, d), we already know that we can write V as the extension (3.6),

and that the pair (M, γ ′) is (d − α+
k )-stable. So we have the map

p : S1
α−

k
(2, d) −→ Nd−α+

k
(1, d − αk)× Jacαk (X)

given by

p(V, γ ) = ((M, γ ′), L).

Let (V, γ ) ∈ p−1((M, γ ′), L) and D = div(γ ′). Then

θγ ∈ H0(D,M−1L−1U ) � {0}
because (V, γ ) ∈ S1

α−
k
(2, d) and, by the previous proposition,

det(γ ) ∈ H0(X,M−2 L−2U 2) � {0}.
Moreover,

θ2
γ + det(γ )|D = 0

so we have the map

p−1((M, γ ′), L) −→ Q((M, γ ′), L) (3.20)

given by

(V, γ ) → [(θγ , det(γ ))]. (3.21)

Let us now see that we also have a map the other way around and which is inverse of
the above one. As we are assuming dU − d > g − 1, we have χ(M−2 L−2U 2) > 0, hence
H0(X,M−2 L−2U 2) �= 0 and then

Q((M, γ ′), L) �= ∅.
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Take [(q, η)] ∈ Q((M, γ ′), L) and choose a representative (q, η). We construct a pair (V, γ )
as follows.

Consider the following complexes

C•
1 : L−1 M

∼=−→ L−1 M−1U (−D)

C•
2 : L−1 M

c−→ L−1 M−1U

and

C•
3 : 0 −→ L−1 M−1U |D

where

c(ψ) = γ ′ψ. (3.22)

We have the short exact sequence

0 −→ C•
1 −→ C•

2
r(D)−→ C•

3 −→ 0

given by the commutative diagram of sheaves of holomorphic sections

0

��

0

��
L−1 M

∼= ��

=
��

L−1 M−1U (−D)

c

��
L−1 M

c ��

��

L−1 M−1U

r(D)
��

0
0 ��

��

L−1 M−1U |D

��
0 0.

From this we obtain a long exact sequence in hypercohomology of the complexes

0 −→ H
0(X,C•

1 ) −→ H
0(X,C•

2 )
r(D)−→ H

0(X,C•
3 ) −→ H

1(X,C•
1 ) −→ H

1(X,C•
2 )

r(D)−→ H
1(X,C•

3 ) −→ H
2(X,C•

1 ) −→ H
2(X,C•

2 )
r(D)−→ H

2(X,C•
3 ) −→ 0 (3.23)

from which it follows that r(D) yields a natural isomorphism

H
1(X,C•

2 )
r(D)∼= H

1(X,C•
3 )

∼= H0(D, L−1 M−1U ). (3.24)

Consider the element (0, q) ∈ H
1(X,C•

3 ) and the corresponding class r(D)−1(0, q) ∈
H

1(X,C•
2 ). With respect to some open covering (Ua)a of X , choose a representative

(λab, γ
′′
a )

of the class r(D)−1(0, q) ∈ H
1(X,C•

2 ). Recall then that γ ′λab = γ ′′
b − γ ′′

a .
Let V be the vector bundle defined by taking on each open Ua the direct sum

M |Ua ⊕ L|Ua (3.25)
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and gluing over Uab through the map

fab =
(

1M λab

0 1L

)
. (3.26)

Also over each open Ua , consider the section of H0(Ua, S2(M ⊕ L)∗ ⊗ U ) given, with
respect to the decomposition (3.25), by

γa =
(
γ ′ γ ′′

a
γ ′′t

a ⊗ 1U (γ ′′t
a ⊗ 1U )γ

′−1γ ′′
a + ηγ ′−1

)
. (3.27)

Observe that, since r(D)(Ua)(γ
′′
a ) = q|D∩Ua and q2 + η|D = 0, then

(γ ′′t
a ⊗ 1U )γ

′−1γ ′′
a + ηγ ′−1

is defined over D. One has γb = f t
abγa fab, so the collection of symmetric maps (γa)a yields

a global symmetric map γ : V → V ∗ ⊗ U .
So, from ((M, γ ′), L) ∈ Nd−α+

k
(1, d −αk)×Jacαk (X) and (q, η) both non-zero and such

that q2 + η|D = 0, we have built a U -quadratic pair (V, γ ) over X such that det(γ ) = η,
θγ = q , which lies in S1

α−
k
(2, d) and which is mapped onto ((M, γ ′), L) by the map p.

Suppose now that we had a different choice of the representative of the class [(q, η)] ∈
Q((M, γ ′), L), say (βq, β2η) with β ∈ C

∗. From (3.24), this pair defines a new class in
H

1(X,C•
2 ) whose representative is (βλab, βγ

′′
ab). The vector bundle Ṽ constructed again

from (3.25) and gluing by
(

1M βλab

0 1L

)
= f̃ab

is isomorphic to V through the isomorphism g : Ṽ → V defined locally by

ga =
(

1M 0
0 β

)

because fabga = gb f̃ab. Moreover, we consider the section of H0(Ua, S2(M ⊕ L)∗ ⊗ U )
given by

(
γ ′ βγ ′′

a
βγ ′′t

a ⊗ 1U β2((γ ′′t
a ⊗ 1U )γ

′−1γ ′′
a + ηγ ′−1)

)
= γ̃a

and we have again γ̃b = f̃ t
abγ̃a f̃ab, so we have the pair (Ṽ , γ̃ ) ∈ p−1((M, γ ′), L). Since

gt
aγa ga = γ̃a the isomorphism g is indeed an isomorphism between (Ṽ , γ̃ ) and (V, γ ).

In other words, we have a map

Q((M, γ ′), L) −→ p−1((M, γ ′), L)

defined by

[(q, η)] → isomorphism class of (V, γ ) defined by (3.25), (3.26) and (3.27).

Clearly, this map is inverse of that defined in (3.20) and (3.21) and this gives an isomor-
phism Q((M, γ ′), L) ∼= p−1((M, γ ′), L). We have then seen that p is surjective with fibre
isomorphic to Q((M, γ ′), L). It remains to check that p is a morphism.
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Let pX : Nd−α+
k
(1, d − αk)× X → X be the projection. From Remark 2.4 and Theorem

I of [15], there is a universal p∗
X U -quadratic pair (L1,γγγ

′) over Nd−α+
k
(1, d − αk) × X .

Consider also the Poincaré line bundle L2, of degree αk , over Jacαk (X)× X . Let

pr13 : Nd−α+
k
(1, d − αk)× Jacαk (X)× X −→ Nd−α+

k
(1, d − αk)× X

pr23 : Nd−α+
k
(1, d − αk)× Jacαk (X)× X −→ Jacαk (X)× X

and

pr12 : Nd−α+
k
(1, d − αk)× Jacαk (X)× X −→ Nd−α+

k
(1, d − αk)× Jacαk (X)

be the projections. Consider the following sheaves over Nd−α+
k
(1, d − αk)× Jacαk (X):

R0pr12∗(pr∗13L−1
1 pr∗23L−1

2 p∗
X U |�)

where � ⊂ SymdU −2d+2αk (X)× X is the universal divisor, and

R0pr12∗(pr∗13L−2
1 pr∗23L−2

2 p∗
X U 2).

Since we are assuming dU − d > g − 1, these spaces have constant dimension, hence are
locally free. We consider the subsheaf C̃((L1,γγγ

′),L2) (of sets) of

R0pr12∗(pr∗13L−1
1 pr∗23L−1

2 p∗
X U |�) � {0} × R0pr12∗(pr∗13L−2

1 pr∗23L−2
2 p∗

X U 2) � {0}
consisting of pairs of non-zero sections (q,ηηη) satisfying the equation

q2 + ηηη|� = 0.

If Q̃((L1,γγγ
′),L2) denotes the sheaf obtained from C̃((L1,γγγ

′),L2) by identifying sections
of the form (q,ηηη) and (λq, λ2ηηη) for some λ ∈ C

∗, then this is a locally trivial fibration
over Nd−α+

k
(1, d −αk)× Jacαk (X) such that its fibre over ((M, γ ′), L) is Q((M, γ ′), L), as

defined in (3.19). As in the proof of Proposition 3.10 (see also Proposition 3.4 of [30]), we
have the following commutative diagram:

Q̃((L1,γγγ
′),L2)

∼= ��

������������������
Sα−

k
(2, d)

p

��
Nd−α+

k
(1, d − αk)× Jacαk (X).

So p is a morphism and the result follows. ��
One consequence of Corollary 3.19 and of the previous proposition is that Sα−

k
(2, d) =

S0
α−

k
(2, d) � S1

α−
k
(2, d) is compact. It follows from Proposition 3.7 (see also Remark 3.8) is

a disconnected subvariety of Nα−
k
(2, d). Hence we can compute its dimension.

From Corollaries 2.8 and 3.19, we have

dim S0
α−

k
(2, d) = 2dU − 2d. (3.28)

On the other hand, for S1
α−

k
(2, d), we have:

Corollary 3.23 If dU − d > g − 1, then dim S1
α−

k
(2, d) = 3dU − 4d + 2αk .
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Proof Since dU − d > g − 1, Proposition 3.22 holds. From Corollary 2.8 we have

dim(Nd−α+
k
(1, d − αk)× Jacαk (X)) = 2αk − 2d + dU + g. (3.29)

Given ((M, γ ′), L) ∈ Nd−α+
k
(1, d − αk)× Jacαk (X), we now compute

dim Q((M, γ ′), L) = dim C((M, γ ′), L)− 1.

If F : H0(D,M−1L−1U ) � {0} × H0(X,M−2 L−2U 2) � {0} → H0(D,M−2 L−2U 2) is
given by

F(q, η) = q2 + η|D

then C((M, γ ′), L) = F−1(0). Linearising the map F at a point (q, η), we are lead to
F(q,η)∗ : H0(D,M−1L−1U )× H0(X,M−2 L−2U 2) → H0(D,M−2 L−2U 2) with

F(q,η)∗(q̇, η̇) = 2qq̇ + η̇|D .

Choose (q, η) such that F∗ is surjective (for instance, (1, η), where q = 1 means that
q(p) = 1 for each p ∈ Supp(D)). Then dim C((M, γ ′), L) is

dim ker(F(1,η)∗) = dim H0(X,M−2 L−2U 2) = 2(dU − d)+ 1 − g

because dU − d > g − 1 implies dim H1(X,M−2 L−2U 2) = 0. Hence

dim Q((M, γ ′), L) = 2(dU − d)− g. (3.30)

The result now follows from (3.29) and (3.30). ��

From this, from (3.28) and from αk � αm = d − [dU/2] follows that

dim S1
α−

k
(2, d) � dim S0

α−
k
(2, d)

with equality if and only if αk = αm and dU even. Hence from (3.18) and the previous
corollary, we conclude the following.

Corollary 3.24 Let α �= αM and d such that dU − d > g − 1. Then each connected com-
ponent of Sα−

k
(2, d) has dimension less or equal than 3dU − 4d + 2αk .

4 The space Nα−
m
(2, d)

Having examined the differences which occur on the moduli spaces when we cross a critical
value of α, we now address the problem of studying the number of connected components of
one of them. This will be done in this section and the moduli space which will be analysed
is Nα−

m
(2, d), the one for which the parameter α is less than the minimum critical value

αm = d − [dU/2]. In Sect. 5 we join the results of this and the previous sections to achieve
the goal of computing the number of connected components of Nα(2, d), for any α � d/2.

The method we shall employ to give the desired description of Nα−
m
(2, d) is the theory of

spectral curves together with an analogue of the Hitchin map which is slightly outlined in
the next sections.
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4.1 The spectral curve

We shall give a rough description of the spectral curve of X corresponding to a line bundle
L and a section of L2. Then we shall see how to associate a spectral curve to a quadratic pair
(V, γ ), with γ generically non-degenerate. The classical references for this theory, particu-
larly its relations with Higgs bundles, are [1,18].

Let then L be a holomorphic line bundle over X with deg(L) > 0. We begin by reviewing
the construction of the spectral curve Xs,L associated to a section s ∈ H0(X, L2). Consider
the complex surface T given by the total space of the line bundle L , and let π : T → X be
the projection. The pullback π∗L of L to its total space has a tautological section

λ ∈ H0(T, π∗L)

defined by λ(x) = x .

Definition 4.1 Let s ∈ H0(X, L2). The spectral curve Xs,L associated to s is the zero
scheme in the surface T of the section

λ2 + π∗s ∈ H0(T, π∗L2).

Remark 4.2 In the present case, the spectral curve Xs,L is always reduced, but it may be
singular and reducible. In fact, it is smooth if and only if s only has simple zeros and it is
irreducible if and only if s is not the square of a section of L .

Remark 4.3 The above definition of spectral curve is a very particular case of a general
definition. In fact, one can define a spectral curve associated to an element of the sum⊕n

k=1 H0(X, Lk). See [1,18].

4.2 An analogue of the Hitchin map and its generic fibre

Consider a U -quadratic pair (V, γ ) ∈ Nα−
m
(2, d). By Proposition 3.1, det(γ ) is a non-

zero holomorphic section of 	2V −2U 2 and one can consider its divisor div(det(γ )) ∈
Sym2dU −2d(X). Let PX be the 22g-cover of Sym2dU −2d(X) which fits in the commutative
diagram

PX ��

��

JacdU −d(X)

L →L2

��
Sym2dU −2d(X)

D →O(D)
�� Jac2dU −2d(X).

(4.1)

In other words,

PX = Sym2dU −2d(X)×Jac2dU −2d (X) JacdU −d(X)

i.e., it is the fibred product of Sym2dU −2d(X) and JacdU −d(X) over Jac2dU −2d(X), and its
elements are pairs (D, L) ∈ Sym2dU −2d(X)× JacdU −d(X) such that

O(D) ∼= L2.

In order to describe Nα−
m
(2, d), we shall use the following map, which is analogue to the

so-called Hitchin map defined for the first time by Hitchin in [18]. Consider then the map

h : Nα−
m
(2, d) −→ PX

(V, γ ) −→ (div(det(γ )),	2V −1U ).
(4.2)
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Definition 4.4 An L-twisted Higgs pair of type (n, d) over X is a pair (V, ϕ), where V is
a holomorphic vector bundle over X , with rk(V ) = n and deg(V ) = d , and ϕ is a global
holomorphic section of End(V )⊗ L , called the Higgs field.

Two L-twisted Higgs pairs (V, ϕ) and (V ′, ϕ′) are isomorphic if there is a holomorphic
isomorphism f : V → V ′ such that ϕ′ f = ( f ⊗ 1L)ϕ.

Definition 4.5 Let (V, γ ) be a U -quadratic pair of type (2, d) over X and let ξ = 	2V −1U .
The ξ -twisted Higgs pair (V, ϕ) associated to (V, γ ) is the one induced from (V, γ ) and
from the isomorphism

g : V ⊗ ξ
∼=−→ V ∗ ⊗ U (4.3)

given by

g(v ⊗ φ ⊗ u) = φ(v ∧ −)⊗ u,

where v ⊗ φ ⊗ u ∈ V ⊗ ξ = V ⊗	2V −1U . In other words, ϕ = g−1γ .

Lemma 4.6 Suppose that V and V ′ are rank 2 holomorphic vector bundles with the same
determinant. Let ξ = 	2V −1U. Let (V, γ ) and (V ′, γ ′) be two U-quadratic pairs, and
(V, ϕ) and (V ′, ϕ′) be, respectively, the associated ξ -twisted Higgs, as in Definition 4.5.

(1) If (V, ϕ) is isomorphic to (V ′, ϕ′) as ξ -twisted Higgs pairs, then (V, γ ) is isomorphic
to (V ′, γ ′) as U-quadratic pairs.

(2) If (V, γ ) is isomorphic to (V ′, γ ′) as U-quadratic pairs, then there is some λ ∈ C
∗

such that (V, ϕ) is isomorphic to (V ′, λϕ′) as ξ -twisted Higgs pairs.

Proof Let f : V → V ′ be an isomorphism between (V, ϕ) and (V ′, ϕ′), that is,

ϕ′ f = ( f ⊗ 1ξ )ϕ. (4.4)

Since 	2V = 	2V ′, then det( f ) = λ ∈ C
∗.

Let g : V ⊗ ξ → V ∗ ⊗ U be the isomorphism (4.3), and define g′ : V ′ ⊗ ξ → V ′∗ ⊗ U
similarly. Now, we have that

( f t ⊗ 1U )g
′( f ⊗ 1ξ )(v ⊗ φ ⊗ u) = ( f t ⊗ 1U )g

′( f (v)⊗ φ ⊗ u)

= ( f t ⊗ 1U )(φ( f (v) ∧ −)⊗ u)

= φ( f (v) ∧ f (−))⊗ u

= (φ det( f ))(v ∧ −)⊗ u

= λφ(v ∧ −)⊗ u

so we conclude, from the definition of g in (4.3), that

( f t ⊗ 1U )g
′( f ⊗ 1ξ ) = λg.

From this, from (4.4) and noticing that gϕ = γ and g′ϕ′ = γ ′, we conclude that

( f t ⊗ 1U )γ
′ f = λγ.

Thus
√
λ−1 f is an isomorphism between (V, γ ) and (V ′, γ ′) and this settles the first item.

For the second item, if f : V → V ′ is an isomorphism between (V, γ ) and (V ′, γ ′) then
( f t ⊗1U )γ

′ f = γ . It follows, as above, that ϕ′ f = λ−1( f ⊗1ξ )ϕ where C
∗ � λ = det( f ).

So

(λϕ′) f = ( f ⊗ 1ξ )ϕ

and f is an isomorphism between (V, ϕ) and (V ′, λϕ′). ��
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Definition 4.7 A ξ -twisted Higgs pair (V, ϕ) of type (2, d) is semistable if deg(L) � d/2
for any line subbundle L ⊂ V such that ϕ(L) ⊂ Lξ .

Proposition 4.8 Let (V, γ ) be a U-quadratic pair of type (2, d) and ξ = 	2V −1U. Let
(V, ϕ) be the corresponding ξ -twisted Higgs pair, in the sense of Definition 4.5. Then (V, γ )
is α−

m -semistable if and only if (V, ϕ) is semistable.

Proof Assume that (V, ϕ) is semistable and let L ⊂ V . As (V, γ ) is α−
m -semistable, then

Proposition 3.1 says that γ (L) �= 0. Suppose that γ (L) ⊂ L⊥U . It is easy to see that

γ (L) ⊂ L⊥U ⇐⇒ ϕ(L) ⊂ Lξ, (4.5)

and since (V, ϕ) is semistable, it follows that deg(L) � d/2.
Finally, suppose that γ (L) �⊂ L⊥U , and deg(L) > d − α−

m . Then L is a destabilizing
subbundle for α−

m . So by Proposition 3.2, (V, γ ) is α-unstable for every α < α−
m and, from

above, the destabilizing subbundle must also be of type (C). We see that for any α < αm ,
there is L ′ ⊂ V such that deg(L ′) > d − α. Letting α → −∞ this contradicts the fact that
the degrees of subbundles of V are bounded above (see Corollary 10.9 of [21]). We conclude
that (V, γ ) is α−

m -semistable.
The proof of the other direction is straightforward, using (4.5). ��
If ξ = 	2V −1U and (V, ϕ) is a ξ -twisted Higgs pair, consider the sections defined by

the coefficients of the characteristic polynomial of ϕ:

(− tr(ϕ), det(ϕ)) ∈ H0(X, ξ)⊕ H0(X, ξ2).

We have det(ϕ) = det(γ ) and, as γ is symmetric, ϕ has trace zero. Hence one can view
h(V, γ ) = (div(det(γ )),	2V −1U ) in (4.2) as given by ξ and by the divisor of the section
given by the characteristic polynomial of ϕ. The spectral curve Xs,ξ associated to ξ and to
the section s = det(γ ) ∈ H0(X, ξ2) is the curve inside the total space T of ξ defined by the
equation

λ2 + π∗ det(γ ) = 0.

Now, let (D, ξ) be any pair in PX , defined in (4.1). We want to describe the fibre of h over
(D, ξ), i.e., the space of isomorphism classes of α−

m -semistable U -quadratic pairs (V, γ )
with div(det(γ )) = D and 	2V isomorphic to Uξ−1.

From (D, ξ)we have a section s ∈ H0(X,O(D)) = H0(X, ξ2), defined up to a non-zero
scalar, and one can construct the spectral curve associated to this section s. We denote this
spectral curve by

X D,ξ

(in Remark 4.10 below we give an explanation of this notation).
Given line bundles L and 	, let

M	
L

denote the moduli space of L-twisted Higgs pairs of rank two, with fixed determinant	 and
with traceless Higgs field. In [17], we carry out a study of the singular fibre of the Hitchin
map H defined in M	

L for any L with positive degree and any 	:

H : M	
L −→ H0(X, L2)

(V, ϕ) −→ det(ϕ).
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Moreover we have the following proposition, which is immediate from Lemma 4.6 and
Proposition 4.8:

Proposition 4.9 Let (D, ξ) ∈ PX . Then h−1(D, ξ) ∈ Nα−
m
(2, d) is isomorphic to H−1(s) ∈

MUξ−1

ξ , where s ∈ H0(X, ξ2) is such that div(s) = D.

Remark 4.10 Recall that we made a choice of a section s associated to the divisor D and
this choice induces a choice of the corresponding spectral curve, as explained in Sect. 4.1.
However, the fibre of h does not depend of this choice, due to Lemma 4.6. In fact, if we had
a different choice λs, for some λ ∈ C

∗, then we would be working on the spectral curve
Xλs,ξ : x2 + π∗λs = 0 and we would be working with ξ -Higgs pairs of the form (V,

√
λϕ),

where (V, ϕ) is a ξ -Higgs pair coming from Xs,ξ . But, although these two ξ -Higgs pairs are
not isomorphic, the corresponding U -quadratic pairs (V, γ ) and (V,

√
λγ ) are isomorphic.

This yields an isomorphism between the fibres of h using Xs,ξ and Xλs,ξ . This is the reason
why we denote “the” spectral curve associated to (D, ξ) by X D,ξ .

The study of H−1(s) in [17] is done by considering the cases where Xs,ξ is smooth, sin-
gular and irreducible, and singular and reducible. The smooth case is the generic one, and it
is well known that the fibre H−1(s) in that case is a torsor for the Prym variety of the spectral
curve (cf. [1,18]). The case of singular and irreducible spectral curve is carried out by a
careful study of the compactification of the Jacobian of the singular spectral curve associated
to s, using the relation between this Jacobian with that of its desingularization. Finally, the
study of H−1(s) when Xs,ξ is reducible is done by a direct analysis of the eigenbundles of
ϕ.

Theorem 8.1 in [17] and Proposition 4.9 imply the following:

Theorem 4.11 Let (D, ξ) ∈ PX . Then the fibre of h : Nα−
m
(2, d) → PX over (D, ξ) is

connected and has dimension dU − d + g − 1.

5 Components of Nα(2, d)

From Theorem 4.11 and from the fact that PX is connected and dim PX = 2dU − 2d , one
concludes the following:

Theorem 5.1 For every d < dU , the space Nα−
m
(2, d) is connected and has dimension

3(dU − d)+ g − 1.

Hence the dimension of Nα−
m
(2, d) is the expected dimension given in (2.6).

Before stating our main result, we need one final lemma. In the following all spaces are
assumed to be second countable and Hausdorff (and thus metrizable). Thus compactness is
equivalent to sequential compactness.

Lemma 5.2 Let N± be compact spaces and let S± ⊂ N± be proper closed subspaces.
Assume that (N± � S±) = N± and that there is a homeomorphism N+

� S+ ∼= N−
� S−.

If N− and S+ are connected, then so is N+.

Proof Let U± = N±
� S±. Then U± are non-compact.

Suppose now that N+ is not connected. Then, since the closure of a connected set is
connected, U+ is not connected. Let N+ = N+

1 ∪ N+
2 be a decomposition into disjoint
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non-empty closed subsets. Then U+
1 = U+ ∩ N+

1 and U+
2 = U+ ∩ N+

2 are disjoint non-

empty open subsets of U+ ∼= U−. By the connectedness of N−, the intersections U+
i ∩ S−

are non-empty, where we are considering closures in N−. As above, this implies that U+
i

is non-compact for i = 1, 2. Considering now the closures in N+, we have U+
i = N+

i and
it follows that N+

i ∩ S+ is non-empty for i = 1, 2. This shows that S+ is disconnected, a
contradiction. ��

Now we reach our main result about the moduli of quadratic pairs.

Theorem 5.3 Let d be such that dU − d > g − 1. For every α � d/2, the moduli space
Nα(2, d) is connected.

Proof By Theorem 5.1, Nα(2, d) is connected, for every α < αm . We will see the flip loci
described in Sect. 3.2 have sufficient high codimension so that they do not affect the number
of components of adjacent moduli spaces.

Again by Theorem 5.1, Nα−
m
(2, d) has dimension 3(dU − d)+ g − 1.

From Corollary 3.11 we have

dim Sα+
m
(2, d) = dU − d + 2g − 2

hence, as dU − d > g − 1, we have

dim Sα+
m
(2, d) < dim Nα−

m
(2, d). (5.1)

On the other hand, from Corollary 3.24 every point in Sα−
m
(2, d) is contained in a component

whose dimension is less or equal than

3dU − 4d + 2αm = 3dU − 2[dU/2] − 2d

hence,

dim Sα−
m
(2, d) < dim Nα−

m
(2, d). (5.2)

Using (3.1), we conclude that dim Nα+
m
(2, d) = dim Nα−

m
(2, d) = 3(dU − d)+ g − 1.

Now, observe that (5.1) and (5.2) are valid for all critical value αk < αM and not just αm .
Hence we conclude that, for all α < αM ,

dim Nα(2, d) = 3(dU − d)+ g − 1. (5.3)

So, for all αk < αM = d/2,

codim Sα+
k
(2, d) = 2(dU − d)− g + 1 > g − 1 � 1 (5.4)

and, from Corollary 3.24, every point in Sα−
k
(2, d) is contained in a component whose codi-

mension is greater or equal than

d + g − 1 − 2αk > g − 1 � 1. (5.5)

Recall that the flip loci measure the difference between two moduli spaces whose param-
eter lie on opposite sides of a critical value. From Theorem 5.1, (5.4) and (5.5), we see that
the spaces Nα±

k
(2, d) and Sα±

k
satisfy the conditions of Lemma 5.2. From this it follows that

Nα(2, d) is connected for every generic α.
If αk �= αM is a critical value, we have two obvious continuous maps

π± : Nα±
k
(2, d) −→ Nαk (2, d).
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From the definition of the flip loci

Nαk (2, d) = π−(Nα−
k
(2, d)) ∪ π+(Nα+

k
(2, d)).

From above, π−(Nα−
k
(2, d)) ∩ π+(Nα+

k
(2, d)) is non-empty and the images of π± are con-

nected. The conclusion is that Nαk (2, d) is also connected. ��

6 An application to surface group representations

6.1 Higgs bundles

Let H ⊂ G be a maximal compact subgroup, and let HC be the complexification of H .
The Cartan decomposition, g = h ⊕ m, of g, yields a decomposition gC = hC ⊕ mC of the
corresponding complexified Lie algebra. Then mC is a representation of HC via the isotropy
representation

ι : HC −→ Aut(mC) (6.1)

obtained by restricting the adjoint representation of GC on gC. If EHC is a principal HC-
bundle over X , we denote by EHC(mC) = E ×HC mC the vector bundle, with fibre mC,
associated to the isotropy representation. Let K = T ∗ X1,0 be the canonical line bundle of
X .

Definition 6.1 A G-Higgs bundle over a compact Riemann surface X is a pair (EHC , ϕ)

where EHC is a principal holomorphic HC-bundle over X and ϕ is a global holomorphic
section of EHC(mC)⊗ K , called the Higgs field.

A G-Higgs bundle (EHC , ϕ) is topologically classified by the topological invariant of
the corresponding HC-bundle EHC and, as the maximal compact subgroup of HC is H , the
topological classification of G-Higgs bundles is the same as the one of H -principal bundles.
Thus, whenever G is connected, the topological class of a G-Higgs bundle is given by an
element in H2(X, π1 H) ∼= π1 H .

In [11], a general notion of (semi,poly)stability of G-Higgs bundles was developed, allow-
ing for proving a Hitchin–Kobayashi correspondence between polystable G-Higgs bundles
and solutions to certain gauge theoretic equations known as Hitchin’s equations. On the
other hand, Schmitt [26–28] introduced stability conditions for decorated bundles and used
these in his general Geometric Invariant Theory construction of moduli spaces. In particular,
Schmitt’s constructions give moduli of G-Higgs bundles for the groups considered in this
paper, and his stability conditions coincide with the ones relevant for the Hitchin–Kobay-
ashi correspondence. It should be noted that the stability conditions depend on a parameter
α ∈ √−1h ∩ z, where z is the centre of hC. We denote by

Md(X,G)

the moduli space of semistable (for the parameter value α = 0) G-Higgs bundles with topo-
logical invariant d ∈ π1 H . As usual, the moduli space Md(X,G) can also be viewed as
parametrizing isomorphism classes of polystable G-Higgs bundles.

6.2 Higgs bundles for the adjoint form of the symplectic group

Let Sp(2n,R) be the real symplectic group of linear automorphisms of R
2n which pre-

serve the standard symplectic form. The centre of Sp(2n,R) is Z/2 and we denote by
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PSp(2n,R) = Sp(2n,R)/(Z/2) the projectivization of Sp(2n,R). A maximal compact
subgroup of PSp(2n,R) is isomorphic to U(n)/(Z/2), so the Cartan decomposition for
psp(2n,C) = sp(2n,C) is given by sp(2n,C) = gl(n,C)⊕ mC where

mC =
{(

0 B
C 0

)
| B,C ∈ gl(n,C), BT = B, CT = C

}
∼= S2

C
n ⊕ S2(Cn)∗. (6.2)

Hence a PSp(2n,R)-Higgs bundle over a compact Riemann surface X is a pair (E, ϕ),
where E is a holomorphic principal GL(n,C)/(Z/2)-principal bundle and ϕ is a holomorphic
global section of the vector bundle E ×GL(n,C)/(Z/2) (S2

C
n ⊕ S2(Cn)∗)⊗ K .

We want to work with holomorphic vector bundles, so we shall use a very similar pro-
cedure to the one taken in [24] for G = PGL(n,R). Consider the group Sp(2n,R)× U(1),
the normal subgroup {(In, 1), (−In,−1)} ∼= Z/2 � GL(n,R)×U(1) and the corresponding
quotient group

Sp(2n,R)×Z/2 U(1) = (Sp(2n,R)× U(1))/(Z/2).

Notation 6.2 We shall write

ESp(2n,R) = Sp(2n,R)×Z/2 U(1),

EU(n) = U(n)×Z/2 U(1),

EGL(n,C) = GL(n,C)×Z/2 C
∗.

The “E” stands for enhanced or extended.

The complexification of the maximal compact subgroup H = EU(n) ⊂ ESp(2n,R) is

H
C = EGL(n,C). Also, gC = h

C ⊕ mC where gC = sp(2n,C) ⊕ C, h
C = gl(n,C) ⊕ C

and mC = mC ⊕ {0} ∼= mC, where mC is given by (6.2), so

mC ∼=
{(

0 B
C 0

)
| B,C ∈ gl(n,C), BT = B, CT = C

}
. (6.3)

Definition 6.3 An ESp(2n,R)-Higgs bundle over X is a pair (E, ϕ), where E is a holomor-
phic principal EGL(n,C)-bundle and ϕ ∈ H0(X, E ×EGL(n,C) m

C ⊗ K ), where mC is given
by (6.3).

Consider the actions of EGL(n,C) on C
n and on C induced, respectively, by the group

homomorphisms

EGL(n,C) −→ GL(n,C), [(w, λ)] → λw (6.4)

and

EGL(n,C) −→ C
∗, [(w, λ)] → λ2. (6.5)

Note that together these two actions define an isomorphism

EGL(n,C)
∼=−→ GL(n,C)× C

∗

[(w, λ)] → (λw, λ2). (6.6)

We have the following description of an ESp(2n,R)-Higgs bundle in terms of vector
bundles:
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Proposition 6.4 Let (E, ϕ) be an ESp(2n,R)-Higgs bundle on X. Through the actions
(6.4) and (6.5) of EGL(n,C) on C

n and on C, associated to (E, ϕ) there is a quadruple
(V, L , β, γ ), where V is a rank n holomorphic vector bundle, L is a holomorphic line bun-
dle and (β, γ ) ∈ H0(X, (S2V ⊗ L−1 ⊕ S2V ∗ ⊗ L)⊗ K ).

Moreover, two ESp(2n,R)-Higgs bundles (Eν, ϕν), ν = 1, 2, are isomorphic if and only
if and only if the corresponding quadruples (Vν, Lν, βν, γν) are isomorphic, i.e., there are
isomorphisms V1 ∼= V2 and L1 ∼= L2 intertwining (β1, γ1) and (β2, γ2).

Proof From the actions (6.4) and (6.5) we define, respectively, the vector bundle V =
E ×EGL(n,C) C

n and the line bundle L = E ×EGL(n,C) C.
Consider the representations σ : EGL(n,C) → GL(S2

C
n) and σ ∗ : EGL(n,C) →

GL(S2(Cn)∗) given by

σ([w, λ])(B) = wBwT

and

σ ∗([w, λ])(C) = (wT )−1Cw−1.

If ι : EGL(n,C) → GL(mC) is the isotropy representation of EGL(n,C) on mC, then
it is clear that ι([(w, λ)])(A) = ι([w])(A), where ι is the isotropy representation of
GL(n,C)/(Z/2) in mC. It is easy to see that

ι = σ ⊕ σ ∗

hence, taking into account the actions (6.4) and (6.5), from σ we obtain the vector bundle
S2V ⊗ L−1 and from σ ∗ the vector bundle S2V ∗ ⊗ L . The Higgs field ϕ ∈ H0(X, E ×

H
C

mC ⊗ K ) is therefore given, in terms of V and L by two sections:

β ∈ H0(X, S2V ⊗ L−1 K ) and γ ∈ H0(X, S2V ∗ ⊗ L K ).

The final statement about isomorphism of quadruples follows from the isomorphism (6.6). ��
We shall slightly abuse notation and also call a quadruple (V, L , β, γ ) as introduced in

the preceding proposition an ESp(2n,R)-Higgs bundles.

Remark 6.5 An ESp(2n,R)-Higgs bundle (V, L , β, γ ) with L = O is the same thing as an
Sp(2n,R)-Higgs bundle (V, β, γ )(cf. [11]).

Projection on the first factor gives a homomorphism

ESp(2n,R) −→ PSp(2n,R)

and so, to any ESp(2n,R)-Higgs bundle, we can naturally associate a PSp(2n,R)-Higgs
bundle. Note that this association is given by extension of structure group in the principal

bundles via the map EGL(n,C)
p−→ GL(n,C)/(Z/2), where p([(w, λ)]) = [w] and that the

Higgs fields β and γ are unchanged since the map p intertwines the identity map between
the respective isotropy representations (6.3) and (6.2).

The following result is very similar to Proposition 5.4 of [24], so we omit the proof.

Proposition 6.6 Every PSp(2n,R)-Higgs bundle (E, ϕ) on X lifts to an ESp(2n,R)-Higgs
bundle (E, ϕ).
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Proposition 6.7 Two ESp(2n,R)-Higgs bundle (Vν, Lν, βν, γν), ν = 1, 2 give rise to iso-
morphic PSp(2n,R)-Higgs bundles if and only if there is a line bundle M on X such that the
ESp(2n,R)-Higgs bundles (V1, L1, β1, γ1) and (V2 ⊗ M, L2 ⊗ M2, β2, γ2) are isomorphic.

Proof The correspondence with isomorphism of the underlying bundles is immediate from
their definition. The complete statement including the Higgs fields follows because the Higgs
fields are unchanged under the correspondence between ESp(2n,R) and PSp(2n,R)-Higgs
bundles. ��

In view of Propositions 6.6 and 6.7 we can now work interchangeably with either isomor-
phism classes of PSp(2n,R)-Higgs bundles or with equivalence classes of ESp(2n,R)-Higgs
bundles under the equivalence relation introduced in the latter Proposition. Thus we have
the following immediate corollaries (analogous, respectively, to Proposition 5.3 and Corol-
lary 5.1 of [24]).

Corollary 6.8 Given a PSp(2n,R)-Higgs bundle (E, ϕ), it is possible to choose a lift of
(E, ϕ) to an ESp(2n,R)-Higgs bundle (V, L , β, γ ) such that L is trivial or deg(L) = 1.

Corollary 6.9 Let (E, ϕ) be a PSp(2n,R)-Higgs bundle and (V, L , β, γ ) be an ESp(2n,R)-
Higgs bundle which is a lift of (E, ϕ). Then (E, ϕ) lifts to an Sp(2n,R)-Higgs bundle if and
only if deg(L) is even.

Next we give the topological classification of PSp(2n,R) and ESp(2n,R)bundles. Restric-
tion of the isomorphism (6.6) gives an isomorphism

ε : EU(n)
∼=−→ U(n)× U(1)

[(w, λ)] → (λw, λ2). (6.7)

Hence (using the standard identification π1U(n) ∼= Z)

π1EU(n) ∼= Z × Z. (6.8)

This means that ESp(2n,R)-Higgs bundles are classified by a pair of integers and, thinking
of an ESp(2n,R)-Higgs bundle as a quadruple (V, L , β, γ ), we see from Proposition 6.4
that this pair can be identified with

(deg(V ), deg(L)) ∈ Z × Z.

Using the identification (6.7), the natural projection EU(n,R) → U(n)/(Z/2) takes the form

U(n)× U(1)
ε−→ EU(n) → U(n)/(Z/2),

(g, μ) →
[

g√
μ

]
.

Thus we have a short exact sequence

1 → U(1) → U(n)× U(1) → U(n)/(Z/2) → 1.

Again using the standard identification π1U(n) ∼= Z, the associated homotopy sequence
gives

1 → Z
(n·,2·)−−−→ Z × Z → π1

(
U(n)/(Z/2)

) → 1.
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It follows that,

π1
(
U(n)/(Z/2)

) ∼=
{

Z × Z/2 for n even,

Z for n odd.
(6.9)

In particular, the composition U(n) ↪→ EU(n)
ε−→ U(n)× U(1) → U(n)/(Z/2) induces an

isomorphism of π1U(n) onto the Z-factor in π1
(
U(n)/(Z/2)

)
. For n even and (V, L) with

(deg(V ), deg(L)) = (d1, d2), the projection π1EU(n) → π1(U(n)/(Z/2)) can then easily
be calculated to be

(d1, d2) → (d1 − nd2/2, d2 mod 2), (6.10)

in terms of the identifications (6.8) and (6.9). Thus, from the point of view of PSp(2n,R)-
Higgs bundles it is more natural to work with the following invariants when n is even:

(a, b)(V, L , β, γ ) = (deg(V )− n deg(L)/2, deg(L)). (6.11)

In terms of these

deg(V ) = a + nb/2 and deg(L) = b.

Notice that for a line bundle F we have

(a, b)(V, L , β, γ ) = (a, b)(V ⊗ F, L F2, β, γ )

which is consistent with Proposition 6.7.

Remark 6.10 From either point of view, we see that the obstruction to lifting a PSp(2n,R)-
Higgs bundle to an Sp(2n,R)-Higgs bundle is given by the invariant d2 = b (cf. Remark 6.5
and Corollary 6.9).

Remark 6.11 We remark that PSp(4,R) is isomorphic to the group SO0(2, 3) (i.e., the con-
nected component of the identity of SO(2, 3)). As explained in [7], an SO0(2, 3)-Higgs
bundle is given by the the data (W, QW , F, β, γ ) where F is a line bundle, (W, QW ) is a
rank 3 vector bundle equipped with a non-degenerate F2-valued quadratic form, β is a sec-
tion of Hom(W, F)⊗ K and γ a section of Hom(W, F−1)⊗ K . The objects are classified
by two invariants, namely the degree of F (which is actually the Toledo invariant: see (6.12)
below) and the second Stiefel-Whitney class w2(W, QW ) ∈ Z/2.

Generalizing the construction of an SO0(2, 3)-Higgs bundle from an Sp(4,R)-Higgs bun-
dle given in [7, Section 3.3], we can obtain an SO0(2, 3)-Higgs bundle from an ESp(4,R)-
Higgs bundle, as follows: if (V, L , β, γ ) is an ESp(4,R)-Higgs bundle, define

W = S2V ⊗	2V −1

and

F = 	2V ⊗ L−1.

If Q(x ⊗ y, x ′ ⊗ y′) = (x ∧ x ′) ⊗ (y ∧ y′), then Q is an F2 L2-valued quadratic form on
S2V , hence W has the induced non-degenerate quadratic form QW . Moreover, γ is a section
of Hom(W, F−1)⊗ K and, since W ∼= W ∗, we can view β as a section of Hom(W, F)⊗ K .
Hence we have obtained the SO0(2, 3)-Higgs bundle (W, QW , F, β, γ ). It is easily checked
that the invariants (a, b) of the ESp(4,R)-Higgs bundle (V, L , β, γ ) are given by

a = deg(L),

b = deg(L)+ w2(W, QW ) mod 2. (6.12)
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6.3 Stability, moduli spaces and the non-abelian Hodge theorem

In [11], a general notion of (semi,poly)stability for G-Higgs bundles was introduced and a
Hitchin–Kobayashi correspondence was established showing that polystability of a G-Higgs
bundles is equivalent to the existence of a solution to certain gauge theoretic equations, known
as the Hitchin equations. The general definition of stability is fairly involved but in many
examples it can be significantly simplified. In the case of G = ESp(2n,R) a simplification
can be carried out in a manner entirely analogous to the case of G = Sp(2n,R) studied in
[11, Section 4] and the stability condition then takes the following form.

Proposition 6.12 An ESp(2n,R)-Higgs bundle (V, L , β, γ ) is

• semistable if and only if for any filtration of holomorphic subbundles 0 ⊂ V1 ⊂ V2 ⊂ V
such that

(β, γ ) ∈ H0(X, (S2V2 + V1 ⊗S V )⊗ L−1 K ⊕ (S2V ⊥
1 + V ⊥

2 ⊗S V ∗)⊗ L K ),

we have

deg(V1)+ deg(V2) � deg(V ).

• stable if and only if for any filtration of holomorphic subbundles 0 ⊂ V1 ⊂ V2 ⊂ V such
that

(β, γ ) ∈ H0(X, (S2V2 + V1 ⊗S V )⊗ L−1 K ⊕ (S2V ⊥
1 + V ⊥

2 ⊗S V ∗)⊗ L K ),

the following holds: if at least one of the subbundles V1 or V2 is proper, then

deg(V1)+ deg(V2) < deg(V )

and in any other case,

deg(V1)+ deg(V2) � deg(V ).

Remark 6.13 (1) The general notion of semistability of G-Higgs bundles depends on a
parameter α ∈ √−1h ∩ z where z is the centre of hC. For G = ESp(2n,R), we have√−1h ∩ z = √−1(u(1) ⊕ u(1)) = R × R, so there is a (α1, α2)-semistability condi-
tion. This is very similar to the case of G = Sp(2n,R). However, if (V, L , β, γ ) is an
ESp(2n,R)-Higgs bundle, it can be seen that if α2 �= deg(L), then it is (α1, α2)-unsta-
ble. Therefore we are considering α2 = deg(L) fixed. Also, in the preceding theorem,
we have restricted ourselves to the case of α1 = 0 semistability, because it is for this
value of the parameter that the fundamental correspondence between moduli spaces
G-Higgs bundles and G-character varieties (Theorem 6.15 below) holds.

(2) The notion of polystablity of ESp(2n,R)-Higgs bundles is analogous to the one in
Proposition 4.16 of [11], with the obvious modifications.

With regard to the relation between the stability conditions for PSp(2n,R)-Higgs bundles
and ESp(2n,R)-Higgs bundles we have the following result.

Proposition 6.14 An ESp(2n,R)-Higgs bundle (V, L , β, γ ) is polystable if and only if the
associated PSp(2n,R)-Higgs bundle is polystable.

Proof This can be checked by specializing and comparing directly the general polysta-
bility conditions given in [11]. An alternative proof can be given by invoking the Hitchin
Kobayashi correspondence proved in that paper, since the existence of solutions to the Hitchin
equations on an ESp(2n,R)-Higgs bundle is clearly equivalent to the existence of solutions
on the corresponding PSp(2n,R)-Higgs bundle. ��
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Next we recall the non-abelian Hodge theory correspondence. Let G be a connected semi-
simple real Lie group with maximal compact subgroup H ⊆ G. By a representation of π1 X
in G we mean a homomorphism ρ : π1 X → G. A representation ρ is reductive if its com-
position with the adjoint representation of G on g is a completely reducible representation.
The character variety for representations of π1 X in G is

R(π1 X,G) = Homred(π1 X,G)/G,

where G acts by overall conjugation on homomorphisms. Any representation ρ has a topo-
logical invariant c(ρ) ∈ π1 H defined as the topological class of the associated flat bundle.
Let

Rd(π1 X,G) ⊂ R(π1 X,G)

be the subspace of equivalence classes of representations whose topological invariant is
c(ρ) = d .

The non-abelian Hodge Theorem ([9–11,19,29]) now states the following.

Theorem 6.15 There is a homeomorphism

Md(X,G) ∼= Rd(π1 X,G).

6.4 Bounds on invariants

From now on we restrict to the case of n being even. Let

Md1,d2 = Md1,d2(X,ESp(2n,R))

the moduli space of polystable ESp(2n,R)-Higgs bundles (V, L , β, γ ) with deg(V ) = d1

and deg(L) = d2. Let also

M̂a,b = Ma,b(X,PSp(2n,R)),

the moduli space of polystable PSp(2n,R)-Higgs bundles with topological invariants (a, b) ∈
Z × Z/2.

For a semistable ESp(2n,R)-Higgs bundle (V, L , β, γ )with deg(V ) = d1 and deg(L) =
d2, we have a Milnor-Wood inequality (a Higgs bundle proof of this inequality can be easily
given, cf. [5] for the case G = U(p, q) which implies the result in the current setting):

n(1 − g)+ d2 � d1 � n(g − 1)+ d2. (6.13)

This is equivalent to

|a| � n(g − 1)

where a = d1 − nd2/2 ∈ Z is the invariant introduced in (6.11). In the context of surface
group representations the invariant a is the Toledo invariant.

Furthermore, for (d1, d2) ∈ Z × Z such that (6.13) holds, we have the isomorphism

Md1,d2
∼= Mnd2−d1,d2

given by (V, L , β, γ ) → (V ∗ ⊗ L , L , γ t ⊗ 1K , β
t ⊗ 1K ) and the induced isomorphism

M̂a,b ∼= M̂−a,b.

We can, therefore, assume that

0 � a � n(g − 1). (6.14)
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Let now L0 be a fixed line bundle of degree 1 over X . Denote by

Md,L0 ⊂ Md,1

be the subspace of ESp(4,R)-Higgs bundles (V, L , β, γ ) with L = L0. Similarly, let

Md,O ⊂ Md,0

be the subspace of ESp(4,R)-Higgs bundles (V, L , β, γ ) with L isomorphic to the trivial
line bundle O.

From Corollary 6.8 and (6.10) the following is clear:

Proposition 6.16 Let d and d ′ be two integers satisfying 0 � d � n(g − 1) and 1 �
d ′ � n(g − 1) + 1. Let [(V, L , β, γ )] denote the class of the corresponding PSp(4,R)-
Higgs bundle under the equivalence relation given in Proposition 6.7. Then the projection
(V, L , β, γ ) → [(V, L , β, γ )] yields a continuous surjective map

Md,O � Md ′,L0 −→ M̂d,0 � M̂d ′−1,1

preserving the decompositions.

6.5 Relation with quadratic pairs and connectedness theorems

For the remainder of the paper we specialize to the case n = 2, i.e., G = ESp(4,R) or
G = PSp(4,R). Our goal is to count the number of connected components of M̂a,b for
(a, b) ∈ Z × Z/2 such that 0 < |a| < 2g − 2. The situation for |a| = 0 and |a| = 2g − 2 is
somewhat special and, at any rate, in these cases the count follows from the results of [16]
and [7]. Note also that the count for b = 0 (corresponding to PSp(4,R)-Higgs bundles which
lift to Sp(4,R)-Higgs bundles) follows from the results of García-Prada and Mundet [14].

We will analyze the spaces Md,0 and Md,L0 and from that draw our conclusions about
M̂a,b, using Proposition 6.16. Let us deal first with Md,L0 , with

1 < d < 2g − 1.

We introduce the following Hitchin functional. It is defined as

f : Md,L0 −→ R

(V, L0, β, γ ) −→ ‖β‖2
L2 + ‖γ ‖2

L2

Remark 6.17 The definition of the Hitchin functional uses a harmonic metric on V coming
from the Hitchin-Kobayashi correspondence—see [19].

Using the Hitchin equations and Uhlenbeck’s weak compactness theorem it follows that
the Hitchin functional is proper (see Hitchin [19, Proposition 7.1]). The following is an ele-
mentary consequence of properness of the non-negative function f (cf. [19] or Proposition 4.3
of [5]).

Proposition 6.18 The space Md,L0 is connected if the subspace of local minima of the
Hitchin proper function is connected.

Using very similar methods to the ones of [12,14,16] for G = Sp(2n,R), one can prove
the following result:

Proposition 6.19 Let (V, L0, β, γ ) represent a point in Md,L0 , with 1 < d < 2g − 1. Then
(V, L0, β, γ ) is a minimum of f if and only if β = 0.
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We have the following immediate corollary.

Proposition 6.20 For any integer 1 < d < 2g − 1, the subvariety of local minima of f is
the moduli space

Nd,L0

of semistable ESp(4,R)-Higgs bundles (V, L0, 0, γ ) such that V is a rank 2 holomorphic
vector bundle of degree d and γ ∈ H0(X, S2V ∗ ⊗ L0 K ).

Now, we connect this with the study of quadratic pairs made in the first part of the paper.
Let

N0(2, d)

be the moduli space of 0-semistable L0 K -quadratic pairs of type (2, d).

Proposition 6.21 The spaces Nd,L0 and N0(2, d) are isomorphic.

Proof In view of Proposition 6.20 the result follows by comparing the notions of 0-
(semi,poly)stability given in Proposition 2.9 for quadratic pairs, and from the notion of
(semi,poly)stability for ESp(4,R)-Higgs bundles in Theorem 6.12. By considering all possi-
ble filtrations 0 ⊂ V1 ⊂ V2 ⊂ V of the rank 2 bundle V in Theorem 6.12, one easily checks
that these notions coincide. ��
Proposition 6.22 For each integer d such that 3 − 2g < d < 2g − 1 and d �= 1, the space
Md,L0 is connected.

Proof Recall that we can assume 1 < d < 2g − 1. By Theorem 5.3 one has that N0(2, d) is
connected for every 1 < d < g, hence, by Proposition 6.21, the same is valid for Nd,L0 for
such d .

If g � d < 2g − 1, then N0(2, d) corresponds to the case Nα−
m
(2, d), because in this

case the formula for αm given in Notation 3.4, yields αm = d − g + 1 > 0. Hence, from
Theorem 5.1, N0(2, d) is connected, so Proposition 6.21, says that Nd,L0 is connected as
well.

Now the result follows from Proposition 6.18. ��
The connectedness of Md,O with 0 < d < 2g − 2 was proved by García-Prada and

Mundet (alternatively the argument used above to prove Proposition 6.22 could be applied
to give a proof):

Proposition 6.23 ([14, Theorem 5]) For each integer d such that 0 < |d| < 2g − 2, Md,O
is connected.

We are now ready to state the theorem on the connectedness of the moduli space of
PSp(4,R)-Higgs bundles, with fixed topological classes.

Theorem 6.24 For each (a, b) ∈ Z × Z/2 such that 0 < |a| < 2g − 2, the space M̂a,b is
connected.

Proof Follows from Propositions 6.22, 6.23 and 6.16. ��
Using the non-abelian Hodge theory correspondence of Theorem 6.15, we can rephrase

our Theorem 6.24 as follows:
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Theorem 6.25 For each (a, b) ∈ Z × Z/2 such that 0 < |a| < 2g − 2, the space
Ra,b(π1 X,PSp(4,R)) is connected.

Recalling the correspondence of Remark 6.11, we can alternatively consider the character
variety

Ra,w(π1 X,SO0(2, 3))

of representations of π1 X in SO0(2, 3) with invariants (a, w) ∈ Z × Z/2. We then have an
identification

Ra,w(π1 X,SO0(2, 3)) = Ra,b(π1 X,PSp(4,R))

where the invariants are related by (a, b) = (a, a + w mod 2) (see (6.12)). (There is of
course an analogous identification of the corresponding Higgs bundle spaces.) We thus have
the following equivalent formulation of Theorem 6.25:

Theorem 6.26 For each (a, w) ∈ Z × Z/2 such that 0 < |a| < 2g − 2, the space
Ra,w(SO0(2, 3)) is connected.

Acknowledgments We thank I. Biswas for useful discussions.
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