
Geom Dedicata (2012) 161:109–118
DOI 10.1007/s10711-012-9696-2

ORIGINAL PAPER

Flats and submersions in non-negative curvature

Curtis Pro · Frederick Wilhelm

Received: 27 April 2011 / Accepted: 9 January 2012 / Published online: 21 January 2012
© Springer Science+Business Media B.V. 2012

Abstract We find constraints on the extent to which O’Neill’s horizontal curvature equa-
tion can be used to create positive curvature on the base space of a Riemannian submersion.
In particular, we study when K. Tapp’s theorem on Riemannian submersions of compact Lie
groups with bi-invariant metrics generalizes to arbitrary manifolds of non-negative curvature.
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Until very recently all examples of compact, positively curved manifolds were constructed
as the image of a Riemannian submersion of a Lie group with a bi-invariant metric [5,14,18].
Earlier constructions of positive curvature in [1–3], and [6–8] combined the fact that Lie
groups with bi-invariant metrics are non-negatively curved with the so called Horizontal
Curvature Equation,

secB (x, y) = secM (x̃, ỹ)+ 3 |Ax̃ ỹ|2

[9,17]. Here π : M → B is a Riemannian submersion, {x, y} is an orthonormal basis for a
plane in a tangent space to B, {x̃, ỹ} is a horizontal lift of {x, y} , and A is the “integrability
tensor” for the horizontal distribution—that is,

Ax̃ ỹ ≡ 1

2
[X̃ , Ỹ ]vert

where X̃ and Ỹ are arbitrary extensions of x̃ and ỹ to horizontal vector fields.
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Since the Horizontal Curvature Equation decomposes secB (x, y) into the sum of two
non-negative quantities, we see immediately that Riemannian submersions preserve non-
negative curvature. In addition, if either term on the right is positive, then secB (x, y) > 0.
Naively, one might expect positively curved examples to be constructed by exploiting the
full power of the Horizontal Curvature Equation; however, a survey of the examples shows
that this has never been done. In the context in which the examples in [1–3,6–8], and [22]
were constructed, it is impossible for a Riemannian submersion to create positive curvature
via the A-tensor alone. In fact, in [21] Tapp shows

Theorem 1 (Tapp) Let π : G → B be a Riemannian submersion of a compact Lie group
with a bi-invariant metric. Then

1. Every zero-curvature plane of B exponentiates to a flat (meaning a totally geodesic
immersion of R

2 with a flat metric), and
2. Every horizontal zero-curvature plane of G projects to a zero-curvature plane of B.

In the case of bi-quotients of Lie groups, this is a consequence of an equation in [10]. This
was first observed explicitly in [24].

Examples 2 and 3 (below) show that the theorem fails if the Lie group G is replaced by
an arbitrary, compact, non-negatively curved Riemannian manifold M . The inhomogeneous
metrics of these examples have zero-planes whose exponentials are locally, but not globally,
flat.

Recall, if σ is a zero-curvature plane in a Lie group G with bi-invariant metric, then exp(σ )
is a (globally) flat submanifold of G. So it is natural to ask about the extent to which Tapp’s
theorem holds if σ is assumed to be a horizontal zero-curvature plane whose exponential
image is a flat submanifold of M . More formally, we pose:

Problem 1 If π : M → B is a Riemannian submersion of a compact, non-negatively
curved manifold M and σ is a horizontal zero-curvature plane in M such that exp(σ ) is a flat
submanifold, does it follow that π∗(σ ) is a zero-curvature plane in B?

We emphasize that the given flat is not assumed to be globally horizontal.
The following easy consequence of Lemma 1.5 in [20] shows that an affirmative answer

to our problem implies that both M and B have a lot of additional structure.

Theorem 2 Let π : M → B be a Riemannian submersion of complete, non-negatively
curved manifolds. Let σ be a zero-curvature plane in B and σ̃ a horizontal lift of σ so that
exp(σ̃ ) is a flat in M. Then

1. The plane σ exponentiates to a flat in B, and
2. Every horizontal lift of σ exponentiates to a horizontal flat in M.

In Theorem 2, we do not require that M is compact; on the other hand, without compact-
ness, the answer to Problem 1 is “no”, even when M is a Lie group.

Example 1 Let (R2, ḡ) be the Cheeger deformation of R
2 obtained from the standard S1

action on R
2. Let s and g be the usual metrics on S1 and R

2, respectively. Recall that ḡ is
defined so that the quotient map,

Q : (S1 × R
2, s + g) → (R2, ḡ)

given by Q(z, q) = z̄q is a Riemannian submersion. This new metric is positively curved
and is a paraboloid asymptotic to a cylinder of radius 1. All horizontal planes have zero
curvature, but each projects to a positively curved plane. So positive curvature is created via
the A-tensor alone.
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Example 2 (Fish Bowl) Let ψ : [0, π ] −→ R be a smooth, concave-down function that
satisfies

ψ (t) =
{

t for t ∈ [
0, π4

]
π − t for t ∈ [ 3π

4 , π
]

Consider the warped product metric

gψ = dt2 + ψ2dθ2

on S2 = [0, π]×ψ S1. As before, S1 acts isometrically on
(
S2, gψ

)
, so we get a Riemannian

submersion (
S2, gψ

) × S1 −→ (
S2, ḡψ

)
,

where ḡψ is the metric induced by the submersion. Notice that
(
S2, gψ

) × S1 is flat in a
neighborhood of the set {0, π} × S1, but, as in Example 1 ,

(
S2, ḡψ

)
is positively curved in

the image of this neighborhood. If, in addition,

ψ ′′|( π
4 ,

3π
4

) < 0,

then
(
S2, ḡψ

)
is positively curved. This shows that even in the compact case, the A-tensor

can be responsible for creating positive curvature and that conclusion 2 of Tapp’s theorem
fails for arbitrary Riemannian submersions of compact, non-negatively curved manifolds.

Example 3 To see how conclusion 1 of Tapp’s theorem can fail to hold, choose ψ in the
previous example to be constant in a neighborhood of π/2. This makes

(
S2, gψ

)
isometric

to a flat cylinder near a neighborhood of the equator. In the Cheeger deformed metric, the
image of this region is a smaller flat cylinder. Since the base,

(
S2, ḡψ

)
, is not flat, we have

zero–curvature planes near the equator that do not exponentiate to flats.

If we assume the fibers of the submersion are totally geodesic, then, even in the
non-compact case, the conclusion of Tapp’s theorem holds.

Theorem 3 Let π : M → B be a Riemannian submersion of complete, non-negatively
curved manifolds with totally geodesic fibers. Let σ̃ be a horizontal zero-curvature plane in
M such that exp(σ̃ ) is a flat. Then

1. σ̃ projects to a zero-curvature plane σ in B that exponentiates to a flat submanifold of
B, and

2. Every horizontal lift of σ exponentiates to a horizontal flat in M.

We also give an affirmative answer to Problem 1 in the special case when the submersion
is induced by an isometric group action with only principal orbits.

Theorem 4 Let a compact Lie group G act by isometries on a compact, non-negatively
curved manifold M. Suppose all of the orbits are principal, and let π : M → M/G be the
induced Riemannian submersion.

Suppose σ̃ is a horizontal zero-curvature plane in M such that expp(σ̃ ) is a flat. Then

1. σ̃ projects to a zero-curvature plane σ in M/G that exponentiates to a flat submanifold
of M/G, and

2. Every horizontal lift of σ exponentiates to a horizontal flat in M.
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Example 1 shows that this result does not hold if we remove the hypothesis that M is
compact. On the other hand, appropriate associated bundles also inherit this property.

Corollary 1 Let G be a compact Lie group, P be compact, andπP : P → B ≡ P/G a prin-
cipal G–bundle with non-negatively curved G–invariant metric. Let F be a non-negatively
curved manifold that carries an isometric G–action and π : E := P ×G F → B the cor-
responding associated bundle with fiber F. Give E and B the corresponding non-negatively
curved metrics so that π and Q : P × F → P ×G F = E become Riemannian submersions.

If σ̃ is a π–horizontal zero-curvature plane in E such that expp(σ̃ ) is a flat, then

1. σ̃ projects to a zero-curvature plane σ in B that exponentiates to a flat submanifold of
B, and

2. Every horizontal lift of σ exponentiates to a horizontal flat in E.

There is an abstract application of Theorem 2 in [19]. It allows for a simplification of
one of the axioms for the Orthogonal Partial Conformal Change. There are also quite a few
concrete examples of our results in the literature that are not examples of Theorem 1.

Example 4 Grove and Ziller have shown how to lift the product metric on S2 × S2 and
Cheeger’s metric on CP2# − CP2 to various principal SO (k) bundles and hence to all of
the associated bundles [15]. According to Lemma 4 (below) the flat tori in S2 × S2 lift to
flats in all of these non-negatively curved bundles. Similarly, the flat Klein bottles in Chee-
ger’s CP2# − CP2 must also lift to flats in all of the non-negatively curved bundles of [15].
It follows from the construction of the metric that the principal bundles all have totally geo-
desic fibers. Therefore the principal bundles give examples of Theorems 2, 3, and 4. The
associated bundles give examples of Theorem 2 and Corollary 1.

To prove Theorems 3 and 4 we establish a main lemma on holonomy fields, whose defin-
tion we recall from [11].

Definition 1 Given a Riemannian submersion π : M → B let A and T be the correspond-
ing fundamental tensors as defined in [17]. A Jacobi field J along a horizontal geodesic
c : I → M is said to be a holonomy field if J (0) is vertical and satisfies

J ′(0) = Aċ(0) J (0)+ TJ (0)ċ(0). (0.1)

Main Lemma Let π : M → B be a Riemannian submersion of complete, non-negatively
curved manifolds so that each holonomy field is bounded. Let σ̃ be a horizontal zero-curvature
plane in M such that exp(σ̃ ) is a flat. Then

1. σ̃ projects to a zero-curvature plane σ in B that exponentiates to a flat submanifold of
B, and

2. Every horizontal lift of σ exponentiates to a horizontal flat in M.

The Main Lemma is a consequence of Lemmas 3 and 4 (below). These along with
Theorems 2 and 3 are proven in Sect. 1. In Sect. 2, we prove Theorem 4 by showing that such
submersions satisfy the hypotheses of the main lemma. Corollary 1 is also proven in Sect. 2.

1 Jacobi fields along geodesics contained in flats

The symmetries of the curvature tensor imply that the map X �−→ R (X,W )W is self-
adjoint. This combined with the spectral theorem yields the following result, which appears
implictly in [18].
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Proposition 1 Let span {X,W } be a zero-curvature plane in a nonnnegatively curved
manifold, then

R (X,W )W = R (W, X) X = 0.

In a compact Lie group G with bi-invariant metric, solutions to the Jacobi equation along
a geodesic γ (t) have the form

J (t) = E0 + t F0 +
l∑

i=0

(
cos(

√
ki t)Ei + sin(

√
kir)Fi

)
,

where Ei and Fi are parallel along γ (see [16]). We generalize this decomposition in the
following way:

Lemma 1 Suppose γ is a geodesic in a complete, non-negatively curved manifold M, and
suppose J0 is a normal, parallel, Jacobi field along γ , then any normal Jacobi field J along
γ can be written as

J (t) = (a + bt)J0(t)+ W (t), (1.1)

where a, b ∈ R and W and W ′ are perpendicular to J0.

Proof Extend J0 to an orthonormal basis {J0, E2, ..., En−1} of normal, parallel fields along
γ . Since J0(t) and γ ′(t) span a zero-curvature plane and M is non-negatively curved,
R(J0, γ

′)γ ′ = 0, by Proposition 1. Therefore, if we write

J (t) = f (t)J0(t)+
n−1∑
i=2

fi (t)Ei (t),

we have

J ′′(t) = −R(J (t), γ ′(t))γ ′(t)

= −
n−1∑
i=2

fi (t)R(Ei , γ
′(t))γ ′(t)

and

〈R(Ei , γ
′)γ ′, J0〉 = 〈R(J0, γ

′)γ ′, Ei 〉 = 0

by a symmetry of the curvature tensor. Thus J ′′ ⊥ J0. Since {J0, E2, ..., En−1} is parallel
and orthogonal, we also have

J ′′(t) = f ′′(t)J0(t)+
n−1∑
i=2

f ′′
i (t)Ei (t).

Combining this with J ′′ ⊥ J0, we see that f ′′ = 0 as claimed.
Since W ′ = ∑n−1

i=2 f ′
i (t)Ei (t), we also have W ′ ⊥ J0. ��

Given a Riemannian submersion π : M → B , let V and H be the vertical and horizontal
distributions. As holonomy fields are the variational fields arising from horizontal lifts of
geodesics in B, they never vanish, they remain vertical, and they satisfy (0.1) for all time.
In fact, we can find a collection {Ji (t)} of such fields that span V along c. This description
of V allows one to determine precisely when a field along a curve in M has values in H.
In particular, we have the following, as observed by Tapp when M is a Lie group.
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Lemma 2 Suppose π : M → B is a Riemannian submersion of a complete, non-negatively
curved manifold M, γ is a horizontal geodesic in M, and J0 is a parallel Jacobi field along
γ such that J0(0) is horizontal. If all holonomy fields V along γ have bounded length, then
J0 is everywhere horizontal.

Proof Let V be a holonomy field. Since V is always vertical, the decomposition in Lemma 1
simplifies to

V (t) = bt J0(t)+ W (t).

Since V has bounded length, b = 0 and therefore V (t) = W (t), which is perpendicular to
J0. As the collection of all holonomy fields spans the vertical distribution along γ , the result
follows. ��

Part 1 of the main lemma is a consequence of the next result.

Lemma 3 Suppose π : M → B is a Riemannian submersion of a complete, non-
negatively curved manifold M, and all holonomy fields of π have bounded length. Suppose
σ̃ is a horizontal zero-curvature plane and exp (σ̃ ) is a totally geodesic flat.

Then σ := dπ (σ̃ ) has a zero-curvature and exp(σ ) is a totally geodesic flat submanifold
of B.

Proof Let {X, Y } be any orthonormal pair in σ̃ . Let γ be the geodesic: t �−→ exp (t X) , and
let J be the parallel Jacobi field along γ with J (0) = Y. Then by the previous Lemma, J (t)
is horizontal for all t. Hence exp (σ̃ ) is everywhere horizontal, and, by assumption, a totally
geodesic flat.

It follows from the Horizontal Curvature Equation thatπ(exp (σ̃ )) is also flat, and from the
formula for covariant derivatives of horizontal fields it follows that π(exp (σ̃ )) is totally geo-
desic. Since horizontal geodesics project to geodesics,π(exp (σ̃ )) = exp(dπ (σ̃ )) = exp(σ ).
So exp(σ ) is a totally geodesic flat submanifold of B. ��

The following lemma is probably a well known application of the Horizontal Curvature
Equation. We include it as it establishes part 2 of our main lemma and is also used in the
proof of Theorem 2.

Lemma 4 Let π : M → B be a Riemannian submersion of a complete, non-negatively
curved manifold M. Let σ be a tangent plane to B so that exp(σ ) is a totally geodesic flat.

Then for any horizontal lift σ̃ of σ, exp(σ̃ ) is a totally geodesic flat that is everywhere
horizontal.

Proof The Horizontal Curvature Equation implies that any horizontal lift τ̂ of a plane τ
tangent to exp(σ ) satisfies

secM
(
τ̂
) = 0 and A

(
τ̂
) = 0.

In particular, the collection of all such τ̂ s gives us an integrable 2-dimensional distribution
that is horizontal. The vanishing A-tensor combined with our hypothesis that exp(σ ) is totally
geodesic gives us that all the integral submanifolds of this distribution are also totally geo-
desic. If σ̃ is a horizontal lift of σ , then it follows that exp(σ̃ ) is tangent to this distribution
and hence is a totally geodesic flat that is everywhere horizontal.

We now proceed with proofs of Theorems 3 and 2. ��
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Proof of Theorem 3 When the fibers of a Riemannian submersion are totally geodesic, the
T -tensor for the submersion vanishes. If V is a holonomy field along a horizontal geodesic
γ , by (0.1) we have

〈V (t), V (t)〉′ = 2〈V (t), V ′(t)〉 = 2〈V (t), TV (t)γ
′(t)〉 = 0,

so V has constant norm. An application of the main lemma completes the proof. ��

In contrast to our other results the proof of Theorem 2 does not use the main lemma.
Instead we exploit the infinitesimal geometry of the submersion.

Proof of Theorem 2 Let σ be a zero-curvature plane in B and σ̃ a horizontal lift of σ so that
exp(σ̃ ) is contained in a flat of M . Let γ be a geodesic in exp(σ̃ ) and J0 be a parallel Jacobi
field along γ such that

σ̃ = span
{
γ ′ (0) , J0 (0)

}
.

Now Aγ ′(0) J0(0) = 0 because secM (σ̃ ) = secB(σ ) = 0; so for any holonomy field V,
we have

〈J0(t), V ′(t)〉∣∣t=0 = 〈J0(t), Aγ ′(t)V (t)〉
∣∣
t=0 , since J0(0) is horizontal

= − 〈Aγ ′(t) J0(t), V (t)〉∣∣t=0

= 0.

On the other hand, differentiating the right hand side of V (t) = bt J0(t)+ W (t), we find

〈J0(t), V ′(t)〉∣∣t=0 = 〈J0(t), bJ0(t)〉|t=0 + 〈J0(t),W ′(t)〉∣∣t=0

= b |J0(0)|2 .
Therefore b = 0 and V = W , and it follows that N := exp(σ̃ ) is everywhere horizontal.
Thus its projection, exp (σ ) , is a totally geodesic flat in B.

By Lemma 4, every horizontal lift of σ exponentiates to a horizontal flat in M . ��

2 The holonomy of π

In this section we prove Theorem 4 by showing that such submersions have bounded holom-
omy fields and hence satisfy the hypotheses of the main lemma. At the end of the section we
prove Corollary 1.

Given a point b ∈ B,we define the holonomy group hol(b) to be the group of all diffeomor-
phisms of the fiber π−1(b) that occur as holonomy diffeomorphisms hc : π−1(b) → π−1(b)
obtained by lifting piecewise smooth loops c at b. If M is compact, the T -tensor is globally
bounded in norm. It follows that each holonomy diffeomorphism hc is Lipschitz with Lips-
chitz constant dependent only on the length of c (see [12], Lemma 4.2). Since this Lipschitz
constant can actually depend on the length of c, this is generally not enough to conclude that
the holonomy fields are uniformly bounded (see [21], Example 6.1).

On the other hand, if B is compact and hol(b) is a compact, finite-dimensional Lie group,
then there is a uniform Lipschitz constant for all of hol(b). Thus the holonomy fields are
uniformly bounded ( [21], Proposition 6.2). So to prove Theorem 4, it suffices to show that
hol(b) is a compact, finite-dimensional Lie group.
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Proof of Theorem 4 Set B = M/G, and for p ∈ M, let G p denote the isotropy subgroup
of G. Note that the map f : G/G p → M given by f (gG p) = g(p) is an imbedding onto
the orbit G(p) of p. Now take any piecewise smooth curve c : [0, 1] → B. The holonomy
diffeomorphism

hc : π−1(c(0)) → π−1(c(1))

is defined by

hc(p) = c̄(1),

where c̄ is the unique horizontal lift of c starting at p. By assumption, G acts isometrically
on M , so gc̄ is also horizontal. Since (gc̄)(1) = g(c̄(1)), we have that

hc(gp) = ghc(p).

In other words, hc is G-equivariant.
By the above, hol(b) is a subgroup of the collection DiffG(π

−1(b)) of all G-equivariant
diffeomorphisms of the fiber π−1(b). Take any p ∈ π−1(b). Set H ≡ G p, and identify
π−1(b) with G/H . Then DiffG(G/H) is isomorphic to the Lie group N (H)/H, where
N (H) is the normalizer of H (see [11], Lemma 2.3.3).

In [23], Wilking associates to a given metric foliation F the so-called dual foliation F#.
The dual leaf through a point p ∈ M is defined as all points q ∈ M such that there is a
piecewise smooth, horizontal curve from p to q . Let L#

p be the dual leaf through p.
We shall see that for any p ∈ M, hol(b) is homeomorphic to L#

p ∩ π−1(b).
We have the continuous map

evp : hol(b) → L#
p ∩ π−1(b)

defined by

evp : hc �→ hc(p).

To construct the inverse, let q be in L#
p ∩π−1(b). There is a piecewise smooth, horizontal

curve c̄ from p to q . Now π ◦ c̄ is a piecewise smooth loop at b and

hπ◦c̄(p) = q.

We therefore propose to define ev−1
p by

ev−1
p : q �−→ hπ◦c̄.

To see that ev−1
p is well-defined, suppose c̃ is another piecewise smooth, horizontal curve

from p to q . By construction, we have hπ◦c̄(p) = hπ◦c̃(p). Since all holonomy diffeomor-
phisms are G-equivariant and G acts transitively on π−1(b), it follows that

hπ◦c̄ = hπ◦c̃.

Now take a sequence of points qi ∈ L# ∩ π−1(b) converging to q0 ∈ L# ∩ π−1(b). There
are horizontal curves c̄i from p to qi such that hπ◦c̄i (p) = qi . Again by G-equivariance and
the transitive action of G, these holonomy diffeomorphisms are completely determined by
their behavior at a point. Thus hπ◦c̄i → hπ◦c̄0 , and so ev−1

p is continuous. Therefore hol(b)
is homeomorphic to L# ∩ π−1(b).

Since F is given by the orbit decomposition of an isometric group action, the dual foliation
has complete leaves ([23], Theorem 3(a)). In particular, this says L# ∩ π−1(b) ∼= hol(b) is a
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closed subset of the compact space π−1(b) and hence is also compact. It follows that hol(b)
is closed in the Lie group DiffG(G/H) ∼= N (H)/H, so is a Lie subgroup of DiffG(G/H).
Thus hol(b) is a compact, finite-dimensional Lie group. ��
Remark 1 In general, hol(b) need not even be a Lie group, let alone a compact Lie group
[21]. However, it is shown in [13] that when the fibers come from principal G-actions, hol(b)
is always a Lie group.

Recall (see [11], p. 92) that if P is the total space of the principal G-bundle
πP : P → B := P/G and F is a manifold that carries a G-action, then G acts freely
on the product P × F . In particular, if P and F have G-invariant metrics of non-nega-
tive curvature, G acts by isometries on the product P × F . As a result, the total space
E = P ×G F := (P × F)/G of the associated bundle inherits a metric of non-negative
curvature such that the quotient map Q : P × F → P ×G F is a Riemannian submersion
[4]. Similarly, B inherits a metric of non-negative curvature such that πP : P → B is a
Riemannian submersion. If π1 : P × F → P is projection onto the first factor, the diagram

P × F
Q−−−−→ E

π1

⏐⏐�
⏐⏐�π

P −−−−→
πP

B

commutes and so π : E → B is also a Riemannian submersion.

Proof of Corollary 1: Consider the composition

πP ◦ π1 : P × F −→ B.

The holonomy fields for πP ◦ π1 are the products of holonomy fields for πP : P → B
and π1. The former are bounded by the proof of Theorem 4, the latter are bounded because
the fibers of π1 are totally geodesic.

Now suppose that σ̃ is a horizontal zero-curvature plane for π : E −→ B such that
expp(σ̃ ) is a flat. Apply Lemma 4 to Q : P×F → E to conclude that any horizontal lift σ̃P×F

of σ̃ exponentiates to a (Q–horizontal) flat. Since the holonomy fields of πP ◦ π1 = π ◦ Q
are bounded, we can apply Lemma 3 to conclude that σ := d (π ◦ Q) (σ̃P×F ) = dπ (σ̃ ) is
a zero plane that exponentiates to a flat. Applying Lemma 4 to π : E → B we conclude that
every horizontal lift of σ is a horizontal flat. ��
Remark 2 Combining the Main Lemma with the concept of projectable Jacobi fields from
[11] one gets a shorter (but more learned) proof of the Corollary.

Acknowledgment We are grateful to Owen Dearricott for asking if we could prove Theorem 3.
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