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Abstract To each flat conformal structure (FCS) of hyperbolic type in the sense of
Kulkarni-Pinkall, we associate, for all θ ∈ [(n − 1)π/2, nπ/2[ and for all r > tan(θ/n)

a unique immersed hypersurface �r,θ = (M, ir,θ ) in H
n+1 of constant θ -special Lagrangian

curvature equal to r . We show that these hypersurfaces smoothly approximate the bound-
ary of the canonical hyperbolic end associated to the FCS by Kulkarni and Pinkall and
thus obtain results concerning the continuous dependance of the hyperbolic end and of the
Kulkarni-Pinkall metric on the flat conformal structure.
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1 Introduction

A flat conformal structure (FCS) (or Möbius structure) on an n-dimensional manifold, M ,
is an atlas of M whose charts lie in Sn and whose transition maps are restrictions of con-
formal (i.e. Möbius) mappings of Sn . Such structures arise naturally in different domains of
mathematics. To every FCS of hyperbolic type may be canonically associated a complete
hyperbolic manifold with convex boundary called the hyperbolic end of that structure. The
purpose of this paper is to associate to every such FCS defined over a compact manifold fam-
ilies of foliations of neighbourhoods of the finite boundary of its hyperbolic end consisting
of smooth, convex hypersurfaces of constant curvature.

The history of FCSs begins with the 2-dimensional case. Here, Thurston shows, for exam-
ple, that the moduli space of FCSs over a compact surface, M , is homeomorphic to the
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Cartesian product T × ML(M) of the Teichmüller space of M with the space of measured
geodesic laminations over M (see [10] or [20] for details). An important step in Thurston’s
proof involves the construction of a convex, pleated, equivariant “immersion” iT : M̃ → H

3

from the universal cover of M into H
3 which is canonically associated to the FCS. This

construction generalises that of the Nielsen Kernel of a quasi-Fuchsian manifold (see [5] for
a detailed study of its properties in this case).

In the higher dimensional case, Kapovich [11] provides information on the moduli space
of FCSs, but much remains unknown. However, when M is of hyperbolic type (see Sect. 2.2),
Kulkarni and Pinkall showed in [13] that Thurston’s construction may still be carried out.
This yields a convex, stratified, equivariant “immersion” iK P : M → H

n+1 canonically asso-
ciated to the Möbius structure, as well as a canonical C1,1 metric over M with a.e. defined
sectional curvatures taking values between −1 and 1. We call this metric the Kulkarni-Pinkall
metric of the Möbius structure and denote it by gK P .

Heuristically, a hyperbolic end over a manifold M is a complete, hyperbolic manifold
with concave, stratified boundary whose interior is homeomorphic to M × R. A detailed
description is provided in Sects. 2.1 and 2.3. Strictly speaking, we call the boundary of E the
finite boundary, and we denote it by ∂0E . This distinguishes it from the ideal boundary, ∂∞E ,
which is the set of equivalence classes of complete half geodesics whose distance from ∂0E
tends to infinity.

In [13], Kulkarni and Pinkall show that the “immersion” iK P may be interpreted as the
finite boundary of a hyperbolic end, E which is also canonically associated to the FCS and
whose ideal boundary ∂∞E is conformally equivalent to M . E thus provides a cobordism
between iK P and M (c.f.[12]). It is for neighbourhoods of the finite boundaries of these
hyperbolic ends that foliations by hypersurfaces of constant curvature will be constructed.
These foliations may thus be considered as families of smoothings of iK P . This construc-
tion generalises to higher dimensions the result [15] of Labourie which provides families
of parametrisations of the moduli spaces of three dimensional hyperbolic manifolds with
geometrically finite ends.

The special Lagrangian curvature, Rθ was first developed by the author in [17]. We
recall its construction in Sect. 3.2. Its most important properties are that it is only
defined for strictly convex immersed hypersurfaces and that it is regular in a PDE
sense, which is summarised in this paper in terms of Theorems 3.6 and 3.7 (proven
in [17]) and Theorem 4.4 (proven in [18]).

Of tangential interest, this notion of curvature arises from the natural special Legendrian
structure of the unitary bundle of UH

3. Special Legendrian structures are closely related to
special Lagrangian structures which are studied under the heading of Calabi-Yau manifolds.
Special Lagrangian and Legendrian submanifolds have themselves been of growing inter-
est to mathematicians and physicists since the landmark paper [8] of Harvey and Lawson
concerning calibrated geometries. In its classical form, the special Lagrangian operator is
a second order, highly non-linear partial differential operator of determinant type closely
related to the Monge-Ampère operator, and which is among the archetypical highly non-lin-
ear partial differential operators studied in detail in most standard works on nonlinear PDEs
([2] and [3] to name but two).

The main results of this paper are most appropriately described in terms of developing
maps (see Sect. 2.2). Let M be a manifold. A Möbius structure over M may be considered as
a pair (ϕ, θ) where θ : π1(M) → Conf(Sn) is a homomorphism and ϕ : M̃ → Sn is a local
homeomorphism from the universal cover of M into Sn which is equivariant with respect
to θ . Two pairs are equivalent if and only if they differ by a conformal mapping of Sn . We
furnish the space of Möbius structures with the (quotient of) the topology of local uniform
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convergence. ϕ is called the developing map and θ is called the holonomy of the Möbius
structure.

We define the Gauss mapping −→n : UH
n+1 → ∂∞H

n+1 as follows. For v a unit vector in
UH

n+1, let γv : [0,+∞[→ H
n+1 be the half geodesic such that ∂tγ (0) = v. We define:

−→n (v) = γv(+∞) = Lim
t→+∞ γv(+∞).

We recall that ∂∞H
n+1 may be conformally identified with Sn . Let i : M → H

n+1 be a
convex immersion. Since i is convex, there exists a unique exterior vector field Ni over i in
UH

n+1. We say that i projects asymptotically to the Möbius structure (ϕ, θ) if and only if
i is equivariant with respect to θ , and, up to reparametrisation:

−→n ◦ Ni = ϕ.

Theorem 1.1 Choose η ∈ [(n − 1)π/2, nπ/2[ and r > tan(η/n). Let M be a compact n
dimensional manifold and let (ϕ, θ) be an FCS of hyperbolic type over M. If η > (n−1)π/2,
then there exists a unique, convex, equivariant immersion ir,η : M̃ → H

n+1 such that:

(i) ir,η is a graph over iK P ;
(ii) ir,η projects asymptotically to ϕ;

(iii) Rη(ir,η) = r .

Moreover, the same result holds for η = (n − 1)π/2 provided that (ϕ, θ) is not conformally
equivalent to (Sn−1 × R)/	, where Sn−1 is the (n − 1)-dimensional sphere, and 	 is a
properly discontinuous group of conformal actions.

Remark We thus generalise to higher dimensions the result, [14] of Labourie.

Remark The proof of this theorem uses the Perron method. The finite boundary forms a bar-
rier, which follows from the Geodesic Boundary Property (see Definition 2.7). In particular,
as in the remarks following Definition 2.7, the existence result in fact holds in a much more
general class of negatively curved ends of non-constant sectional curvature bounded above
by −1 whose finite boundary possesses the Geodesic Boundary Property or even the weak
Geodesic Boundary Property.

Since they are graphs over the Kulkarni-Pinkall immersion, these immersed hypersurfaces
may be considered as submanifolds of the hyperbolic end of the FCS:

Theorem 1.2 Let E be the hyperbolic end of an FCS. Let θ ∈ [(n − 1)π/2, nπ/2[ be an
angle. For all r > tan(θ/n), let �r,θ = (S, ir,θ ) be the unique, smooth, convex, immersed
hypersurface in E which is a graph over ∂0E and which satisfies Rθ (ir,θ ) = r .

The family (�r,θ )r>tan(θ/n) foliates a neighbourhood, 
θ , of ∂0E . Morever
(�̂r,θ )r>tan(θ/n) converges towards N∂0E in the C0,α sense for all α as r tends to +∞,
and, for any compact subset, K , of E , there exists θ0 < nπ/2 such that for θ > θ0, K ⊆ 
θ .

Remark The final part of this theorem suggests that by judiciously choosing r as a function
of θ , it may be possible to obtain smooth foliations of the entire hyperbolic end.

Remark Towards completion of this paper, the author was made aware of a recent, comple-
mentary result of Mazzeo and Pacard [16]. There, using entirely different techniques, and
under different hypotheses on the hyperbolic end, the authors prove the existence of foliations
by constant mean curvature hypersurfaces near the ideal boundary, though not near the finite
boundary, as is obtained here. It appears reasonable that a happy marriage of these techniques
could yield more detailed information concerning the structure of the hyperbolic end and its
relation to its ideal boundary.
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In the special case where E is an end of a quasi-Fuchsian manifold, the foliations may be
extended up to the ideal boundary, and we obtain:

Theorem 1.3 Let E be a hyperbolic end of a quasi-Fuchsian manifold. Let θ ∈ [(n − 1)

π/2, nπ/2[ be an angle. For all r > tan(θ/n), let �r,θ = (S, ir,θ ) be the unique, smooth, con-
vex, immersed hypersurface on E which is a graph over ∂0E and which satisfies Rθ (ir,θ ) = r .

The family (�r,θ )r>tan(θ/n) foliates E . Morever (�̂r,θ )r>tan(θ/n) converges towards N∂0E
in the C0,α sense for all α as r tends to +∞, and (�r,θ )r>tan(θ/n) converges to ∂∞E in the
Hausdorff sense as r tends to tan(θ/n).

Remark In fact, this result holds for any FCS whose developing map avoids an open subset
of ∂∞H

n+1.

We next consider how these foliations vary with the FCS:

Theorem 1.4 Let M be a compact manifold. Let (θx , ϕx )‖x‖<ε be a continuous family of
FCSs of hyperbolic type over M whose holonomy varies smoothly. Let θ ∈ [(n−1)π/2, nπ/2[
be an angle, and let r > tan(θ/n). For all x, let �x = (S, ix ) be the unique, smooth, convex,
immersed hypersurface in E(θx , ϕx ) such that Rθ (ix ) = r . Then, up to reparametrisation, ix

varies smoothly with x.

Remark It follows that the space of hypersurfaces of constant special Lagrangian curvature
yields smooth moduli for the space of FCSs of hyperbolic type over M which are compat-
ible with the smooth structure obtained from the canonical embedding of this space into
PSO(n + 1, 1)π1(M), and which also, importantly, encode smooth information about the
hyperbolic end and the Kulkarni-Pinkall metric.

As an illustration of these results, we now consider two special cases. The first is when n
is equal to 2, and θ = π/2. Here the special Lagrangian curvature reduces to the Gaussian
curvature and we recover the following, now classical, result of Labourie [15]:

Theorem 1.5 Labourie (1991) Let � be a compact surface of hyperbolic type. Let (α, ϕ)

be an FCS over � and let E be the hyperbolic end of (α, ϕ). There exists a unique, smooth
foliation (�k)k∈]0,1[ of E such that:

(i) for each k, �k is a smooth, immersed surface of constant Gaussian (extrinsic) curva-
ture equal to k;

(ii) �k tends to ∂0E in the Hausdorff sense as k tends to 0; and
(iii) �k tends to ∂∞E in the Hausdorff sense as k tends to 1.

Remark The geometric properties particular to this special case allow us to extend the foli-
ations up to the ideal boundary (see also [16] and [19]).

The second special case is when n = 3 and θ = π . In this case, the special Lagrangian
curvature still has a very simple expression:

Theorem 1.6 Let M be a compact three dimensional manifold. Let (α, ϕ) be an FCS over
M of hyperbolic type. Let E be the hyperbolic end of (α, ϕ). There exists a unique, smooth
foliation (�r )r∈]3,+∞[ of E such that:

(i) for each r, �r is a smooth, immersed hypersurface such that:

H(�r )/K (�r ) = r,

where H(�r ) and K (�r ) are the mean and Gaussian curvatures of �r respectively;
and
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(ii) �r tends to ∂0E in the Hausdorff sense as r tends to +∞.

Towards completion of this paper, the author was made aware of related work by Andersson,
Barbot, Béguin and Zeghib [1]. Here the authors study constant mean curvature foliations
of Lorentzian, anti de-Sitter and de-Sitter spacetimes. There is a natural duality between
hyperbolic ends and de-Sitter spacetimes, and thus a duality between their framework and
our own. One interesting consequence is that, in the 4-dimensional case, Theorem 1.6 yields
foliations of neighbourhoods of the past ends of four dimensional de-Sitter spacetimes by
3-dimensional space-like hypersurfaces of constant scalar curvature. This may be related to
the Yamabe problem of the FCS, which is relevant to [16].

Finally, the proofs of these theorems require a detailed understanding of the geometric
structure of the Kulkarni-Pinkall hyperbolic end of an FCS. We obtain the following char-
acterisation of the Kulkarni-Pinkall end in terms of completeness and local geometric data,
which the author is not aware of in the litterature:

Theorem 1.7 Let Ñ be a hyperbolic end. Suppose that:

(i) Ñ possesses the Geodesic Boundary Property; and
(ii) Ñ is complete.

Then Ñ is the Kulkarni-Pinkall hyperbolic end of its quotient Möbius manifold.
Moreover, if N is a compact Möbius manifold, then the family of hyperbolic ends whose

quotient Möbius manifold is N is partially ordered, and the Kulkarni-Pinkall hyperbolic end
of N is the unique maximal element of this family.

Indeed, as noted in the remark following Theorem 1.4, the foliations constructed here encode
smooth information about the hyperbolic end whilst depending smoothly on the conformal
structure. We therefore expect them to be of considerable use in the future study of FCSs.
Indeed, as examples of possible applications of these results, we state two immediate corol-
laries. The first concerns continuous dependence of N∂0E which we think of as an equivariant
C0,1 immersed hypersurface in UH

n :

Theorem 1.8 Let M be a compact manifold. Let (θn, ϕn)n∈N, (θ0, ϕ0) be FCSs of hyperbolic
type over M such that (θn, ϕn)n∈N converges to (θ0, ϕ0), then (N∂0E(θn, ϕn))n∈N converges
to (N∂0E(θ0, ϕ0)) in the C0,α Cheeger/Gromov sense for all α ∈]0, 1[.
And the second result concerns the Kulkarni-Pinkall metric. Let D, V and I represent the
diameter, volume and injectivity radius respectively of the Kulkarni-Pinkall metric. We obtain
the following continuity and compactness result:

Theorem 1.9 Let M be a compact manifold. Let (θn, ϕn)n∈N, (θ0, ϕ0) be FCSs of hyper-
bolic type over M such that (θn, ϕn)n∈N converges to (θ0, ϕ0), then the sequence of
C0,1 Riemannian manifolds (M, gK P (ϕn))n∈N converges to (M, gK P (ϕ0)) in the C0,α

Cheeger/Gromov sense for all α ∈]0, 1[.
In particular, D, V and I define continuous functions over the space of FCSs of hyper-

bolic type over M. Moreover, the pairs (I, D) and (I, V ) define proper functions over the
space of FCSs of hyperbolic type.

This paper is structured as follows:

(a) In Sect. 2, we define hyperbolic ends and FCSs, we describe the relationship between
the two and prove Theorem 1.7;
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(b) In Sect. 3, we define special Lagrangian curvature and prove or recall various analytic
properties therof including local rigidity, compactness and the Geometric Maximum
Principal;

(c) In Sect. 4, we study immersions of constant special Lagrangian curvature in hyperbolic
ends, and prove all the remaining results of this paper; and

(d) In Appendix A, we show how the Kulkarni-Pinkall metric may be used to furnish a
simpler proof of a result of Kamishima.

This paper has known a long and tortuous evolution since its conception. I would like to thank
Kirill Krasnov, François Labourie and Jean-Marc Schlenker for encouraging me to study this
problem in the first place. I am equally grateful to Werner Ballmann, Ursula Hamenstaedt
and Joan Porti for many useful conversations about FCSs (and to the latter two for drawing
attention to the various errors in earlier drafts of this paper). Finally, I would like to thank the
Max Planck Institutes for Mathematics in the Sciences in Leipzig, the Max Planck Institute
for Mathematics in Bonn and the Centre de Recerca Matemàtica in Barcelona for providing
the conditions required to carry out this research.

2 Hyperbolic ends and flat conformal structures

2.1 Hyperbolic ends

For all m, let H
m+1 be (m + 1)-dimensional hyperbolic space. Let UH

m+1 be the unitary
bundle over H

m+1 (i.e., the bundle of unit vectors in T H
m+1). Let K be a convex subset of

H
m+1. We define N (K ), the set of normals over K by:

N (K ) = {
vx ∈ UH

m+1 s.t. x ∈ ∂K and vx is a supporting normal to K at x
}
.

N (K ) is a C0,1 submanifold of UH
m+1. Let 
 be an open subset of N (K ). We define E(
),

the end over 
 by:

E(
) = {Exp(tvx ) s.t. t � 0, vx ∈ 
}.
We say that a subset of H

m+1 has concave boundary if and only if it is the end of some open
subset of the set of normals of a convex set. We refer to 
 as the finite boundary of E(
).

We extend this concept to more general manifolds. Let (M, ∂ M) be a smooth manifold
with continuous boundary. A hyperbolic end over M is an atlas A such that:

(i) every chart of A has convex boundary, and
(ii) the transition maps of A are isometries of H

m+1.

We refer to ∂ M as the finite boundary of M . In the sequel, we will denote it by ∂0 M in order
to differentiate it from the ideal boundary ∂∞M of M .

We can construct hyperbolic ends using continuous maps into UH
m+1. Let M be an

m-dimensional manifold without boundary. Let i : M → UH
m+1 be a continuous map.

We say that i is a convex immersion if and only if for every p in M , there exists a neigh-
bourhood 
 of p in M and a convex subset K ⊆ H

m+1 such that the restriction of i to

 is a homeomorphism onto an open subset of N (K ). In this case, we define the mapping
I : M × [0,∞[→ H

m+1 by:

I (p, t) = Exp(ti(p)).

We refer to I as the end of i . I is a local homeomorphism from M×]0,∞[ into H
m+1. If g

is the hyperbolic metric over H
m+1, then I ∗g defines a hyperbolic metric over this interior.
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I ∗g degenerates over the boundary, and we identify points that may be joined by curves of
zero length. We denote this equivalence by ∼ and we define E(i), which we also call the end
of i by:

E(i) = (M×]0,∞[)∪(M/ ∼).

We shall see presently that every hyperbolic end may be constructed in this manner. Thus, if
M̂ is an end, and if i : M → UH

m+1 is a convex immersion such that M̂ = E(i), then we
say that i is the boundary immersion of M̂ .

2.2 Flat conformal structures

Let H
n+1 be (n + 1)-dimensional hyperbolic space. We identify ∂∞H

n+1 with the
n-dimensional sphere Sn . Isom(Hn+1) is identified with PSO(n + 1, 1). This group acts
faithfully on Sn = ∂∞H

n+1. The image is a subgroup of the group of homeomorphisms of
the sphere. We denote this group by Mob(n) and we call elements of Mob(n) conformal
maps.

Let M be a manifold. A flat conformal structure (FCS) on M is an atlas A of M in Sn

whose transformation maps are restrictions of elements of Mob(n). Trivially, every element
of Mob(n) is uniquely determined by its germ at a point. Thus, any chart of A uniquely
extends to a local homeomorphism from M̃ , the universal cover of M , into Sn which is
equivariant with respect to a given homomorphism. This yields an alternative definition of
FCSs which is better adapted to our purposes:

Definition 2.1 Let M be a manifold. Let π1(M) be its fundamental group and let M̃ be its
universal cover. A flat conformal structure over M is a pair (ϕ, θ) where:

(i) θ : π1(M) → Mob(n) is a homomorphism, and
(ii) ϕ : M̃ → Sn is a local homeomorphism which is equivariant with respect to θ .

θ is called the holonomy and ϕ is called the developing map of the flat conformal structure.
We refer to a pair (M, (ϕ, θ)) consisting of a manifold M and a flat conformal structure

over M as a Möbius manifold. In the sequel, where no ambiguity arises, we refer to the
manifold with its conformal structure merely by M .

Remark A canonical differential structure on M is obtained by pulling back the differential
structure of Sn through ϕ.

Möbius manifolds are divided into three types (for more details, see [13]):

(i) manifolds of elliptic type, whose universal cover is conformally equivalent to Sn ,
(ii) manifolds of parabolic type, whose universal cover is conformally equivalent to R

n ,
and

(iii) manifolds of hyperbolic type, consisting of all other cases.

In the sequel, we study FCSs of hyperbolic type over compact manifolds.
Let (ϕ, θ) be an FCS over M . A geometric ball in M is an injective mapping α : B → M̃

from a Euclidean ball B into M̃ such that ϕ ◦ α is the restriction of a conformal mapping.
Geometric balls form a partially ordered set with respect to inclusion. In [13], it is shown that
when M is of hyperbolic type, every point of M̃ is contained within a maximal geometric
ball. Every geometric ball carries a natural complete hyperbolic metric. Indeed, ∂(ϕ ◦ α(B))

bounds a totally geodesic hyperplane in H
n+1 and orthogonal projection defines a homeo-

morphism from (ϕ ◦ α)(B) onto this hyperplane. The hyperbolic metric on B is obtained by
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pulling back the metric on this hyperplane through the orthogonal projection. We denote this
metric by gB . It is trivially conformal with respect to the conformal structure of M .

We define the Kulkarni-Pinkall metric gK P over M̃ by:

gK P (p) = Inf {gB(p) s.t. B is a geometric ball and p ∈ B}.
This definition is slightly different to that given in [13], although it trivially yields the same
metric, whilst revealing more clearly how the Kulkarni-Pinkall metric is the analogue in the
Möbius category of the Kobayashi metric for Riemann surfaces. Trivially, gK P is equivariant
and thus quotients to a metric over M . The main result of [13] is:

Theorem 2.2 [Kulkarni, Pinkall] Let M be a Möbius manifold of hyperbolic type. Then gK P

is positive definite and of type C1,1.

Let gS be a spherical metric over ∂∞H
n+1. Let M be the metric completion of M̃ with respect

to ϕ∗gS . Since any two spherical metrics are uniformly equivalent, the topological space M
is independant of the choice of spherical metric. Trivially ϕ extends to a continuous map
from M into ∂∞H

n+1. We call ∂ M̃ := M \ M̃ the ideal boundary of M̃ .
Let (B, α) be a geometric ball. We define C(B) to be the convex hull in B (with respect

to the hyperbolic metric) of α(B) ∩ ∂∞M̃ . In proposition 4.1 of [13], Kulkarni and Pinkall
obtain:

Proposition 2.3 [Kulkarni, Pinkall] If M is a Möbius manifold of hyperbolic type, then for
every point p ∈ M̃ there exists a unique maximal geometric ball (B, α) such that p ∈
α(C(B)).

We denote this ball by B(p). Kulkarni and Pinkall show that:

gK P (p) = gB(p)(p).

In [13], Kulkarni and Pinkall use these maximal geometric balls to associate a canonical
hyperbolic end to each FCS. These are the ends that will interest us in the sequel. We refer
the reader to [13] for the details of this construction. Let ϕ be the developing map of the FCS.
We denote the canonical hyperbolic end associated to it by Kulkarni and Pinkall by E(ϕ)

and we refer to it as the Kulkarni-Pinkall hyperbolic end of ϕ. Let UH
n+1 be the unitary

bundle of H
n+1, let −→n : UH

n+1 → ∂∞H
n+1 be the Gauss map and let π : UH

n+1 → H
n+1

be the canonical projection. Let ı̂ : M̃ → UH
n+1 be the boundary immersion of E(ϕ) and

define i = π ◦ ı̂ . E(ϕ) has the following useful properties:

(i) ϕ = −→n ◦ ı̂ ;
(ii) if p ∈ M̃ , if P is the totally geodesic hyperplane in H

n+1 normal to ı̂(p) at i(p), if g
is the hyperbolic metric of P and if πp : ∂∞H

n+1 → P is the orthogonal projection,
then gK P (p) coincides with (πp ◦ ϕ)∗g(p); and

(iii) for all p ∈ M̃ , there exists a curve γ :] − ε, ε[→ M̃ such that γ (0) = p and i ◦ γ is
a geodesic segment in H

n+1.

Remark Condition (iii) is a strong statement about the curvature of the finite boundary of
E(ϕ), which can be defined and vanishes in the direction of the geodesic. We shall see
presently how this condition alone defines the geometry of the boundary immersion.
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2.3 The relationship between these families

As discussed in the preceeding section, to every Möbius manifold, we may canonically
associate a unique hyperbolic end. In this section we will first show that, conversely, to every
hyperbolic end, we may canonically associate a unique Möbius manifold, which we refer
to as its quotient Möbius manifold. It is therefore natural to study to what extent the one
operation is the inverse of the other. It is not hard to show that for any given Möbius man-
ifold, there exist infinitely many hyperbolic ends whose quotient Möbius manifold is that
manifold. Indeed, if M := (M, ϕ) is a Möbius manifold, and if E(ϕ) is its Kulkarni-Pinkall
hyperbolic end, then, for all r > 0, the set of points in E(ϕ) lying at distance greater than or
equal to r from the finite boundary is a hyperbolic end whose quotient Möbius manifold is
M . Moreover, each of these ends are distinct, as can be seen be estimating the volumes of
their finite boundaries.

However, for a given Möbius manifold, M := (M, ϕ), it turns out that the family of
hyperbolic ends whose quotient is M nonetheless possesses an interesting structure. Indeed,
we will see that:

(i) the Kulkarni-Pinkall hyperbolic end of M is characterised among all hyperbolic ends
whose quotient is M by the Geodesic Boundary Property; and

(ii) the family of hyperbolic ends whose quotient is M carries a canonical partial order
such that the Kulkarni-Pinkall hyperbolic end is (up to isometry) the unique maximal
element of this family.

These properties are summarised in Theorem 1.7, which we prove at the end of this section.
We begin by examining the basic geometry of general hyperbolic ends:

Lemma 2.4 Let Ñ be a hyperbolic end. Ñ is foliated by complete half-geodesics normal to
the finite boundary.

Remark In the sequel, we will refer to this foliation as the vertical foliation.

Proof Every subset of H
n+1 with concave boundary is foliated in this manner. Since the

transition maps preserve the concave boundary, they also preserve the foliation. The result
follows. �
This induces an equivalence relation on the hyperbolic end: we say that two points of Ñ are
equivalent if and only if they lie on the same leaf of the foliation, and we denote this relation
by ∼
Lemma 2.5 Ñ/ ∼ has the structure of a smooth manifold.

Proof Let d denote the distance in Ñ from the finite boundary. Choose r > 0. We claim
that Nr := d−1({r}) is a C1,1 embedded submanifold of Ñ . Indeed, let 
 ⊆ H

n+1 have
concave boundary and let d
 denote the distance in 
 from the finite boundary. It follows
from the properties of convex sets that d−1


 ({r}) is a C1,1 embedded submanifold of 
. Since
these embedded submanifolds are preserved by the transition maps, the assertion follows.
Using smoothing functions (c.f. [18], for example), we deform Nr to a smooth embedded
submanifold N ′

r which is close to Nr in the C1 sense. Given two such deformations, N ′
r and

N ′′
r sufficiently close to Nr in the C1 sense, the closest point projection from one to the other

is a smooth diffeomorphism, and it follows that all such embeddings sufficiently close to Nr

have the same C∞ structure. Since we identify Ñ/∼ with Nr and Nr ′ , the result follows. �
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We denote N := Ñ/ ∼.

Lemma 2.6 If Ñ is simply connected, then there exists a convex immersion, i : N → H
n+1,

which is canonical up to composition by isometries of H
n+1 such that:

Ñ = E(i).

Remark in particular, if Ñ is an arbitrary hyperbolic end, then we may define a canonical
ideal boundary ∂∞ Ñ of Ñ as well as a canonical topology of Ñ ∪ ∂∞ Ñ .

Proof Trivially, N is simply connected. Let d be the distance in Ñ from its finite boundary.
Choose r > 0. By the proof of Lemma 2.5, we may identify N with d−1({r}). Choose p ∈ N .
Let (α, U, V ) be a coordinate chart of Ñ about p. Thus α : U → V , and V ⊆ H

n+1 has
concave boundary. Define ir : N ∩ U → H

n+1 by:

ir (q) = α|N ∩ U .

ir is a C1,1 immersion bounding a convex set. For all q ∈ N ∩ U , let γq be the unit speed
geodesic leaving ir (q) in the direction of the exterior supporting normal of ir (N ∩ U ) at q
(which is unique). Define ı̂(q) : N ∩ U → UH

n+1 by:

ı̂(q) = ∂tγq(−r).

Let K ⊆ H
n+1 be a convex set such that the finite boundary of V is an open subset, 
 of

N (K ). Trivially, ı̂ defines a homeomorphism from N ∩ U to 
. It follows that ı̂ is a convex
immersion. Moreover, ı̂ is independant of r , and:

V = E(ı̂).

Since N is simply connected, ir and ı̂ can be extended to mappings defined over the whole
of N which are canonical up to composition by isometries of H

n+1. Ñ = E(ı̂), and the result
follows. �
The convex immersion ı̂ : N → H

n+1 yields an immersion I : N×]0,∞[→ H
n+1 which is

the end of ı̂ . I extends continuously to a map from N×]0,∞] to H
n+1 ∪ ∂∞H

n+1. We define
ϕ : N → ∂∞H

n+1 by:

ϕ(p) = I (p,∞).

Since ı̂ is a convex immersion, ϕ is a local homeomorphism and ϕ thus defines an FCS over
N . Moreover, ϕ is smooth with respect to the C∞ structure of N and thus the underlying
C∞ structure of the FCS induced on N coincides with the preexisting C∞ structure on N .
We refer to (N , ϕ) as the quotient Möbius manifold of the hyperbolic end Ñ .

Let Ñ1 and Ñ2 be hyperbolic ends. Let (N1, ϕ1) and (N2, ϕ2) be their respective quotient
Möbius manifolds. We define a morphism between Ñ1 and Ñ2 to be a pair (, ̃) such that:

(i)  : N1 → N2 is a locally conformal mapping;
(ii) ̃ : Ñ1 → Ñ2 is a local hyperbolic isometry; and

(iii) ̃ extends to a continuous map from ∂∞ Ñ1 = N1 to ∂∞ Ñ2 = N2 which coincides
with .

In the sequel, we denote such a morphism merely by .
We define the relation “<” over the family of hyperbolic ends such that, if Ñ1 and Ñ2 are

hyperbolic ends, then Ñ1 < Ñ2 if and only if there exists an injective morphism ̃ : Ñ1 →
Ñ2. If Ñ1 < Ñ2, then we say that Ñ1 is contained in Ñ2. We shall see presently that “<”
defines a partial order over the family of hyperbolic ends whose quotient Möbius manifold
is compact.
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Definition 2.7 (Geodesic Boundary Property) Let Ñ be a simply connected hyperbolic end.
Let N = Ñ/ ∼ and let ı̂ : N → H

n+1 be the convex immersion such that Ñ = E(i). We say
that Ñ possesses the Geodesic Boundary Property if and only if, for every point p ∈ N
there exists:

(i) a real number ε > 0;
(ii) a unit speed geodesic segment γ :] − ε, ε[→ H

n ; and
(iii) a continuous path α :] − ε, ε[→ N ,

such that α(0) = p and, for all t ∈] − ε, ε[:
γ (t) = (π ◦ ı̂ ◦ α)(t).

Remark Heuristically, Ñ possesses the Geodesic Boundary Property if and only if, at every
boundary point, there exists a non-trivial geodesic segment passing through that point which
remains in the boundary.

Remark The Geodesic Boundary Property is a natural property of minimal convex sets in
manifolds of constant curvature. Indeed, any such set possesses the Geodesic Boundary
Property, since, otherwise, there would be a point at which it would be strictly convex, and
therefore not minimal.

Remark Importantly, the Geodesic Boundary Property may be substituted by a weaker ver-
sion, where the geodesic is substituted by a curve whose geodesic curvature vanishes at p.
The reader may verify that this Weak Geodesic Boundary Property may be substited for the
Geodesic Boundary Property at every stage in the sequel where it is used. As the Geodesic
Boundary Property is a natural property of minimal convex sets in manifolds of constant
sectional curvature, so the Weak Geodesic Boundary Property is a natural property of min-
imal convex sets in general manifolds. We thus see how the results of this paper may be
extended to a much more general setting than where they are currently presented.

We now obtain a geometric characterisation of the Kulkarni-Pinkall hyperbolic end. Let Ñ
be a hyperbolic end. Let d denote the distance in Ñ along the vertical foliation from the finite
boundary ∂0 Ñ of Ñ . For all δ > 0, let Nδ denote the level hypersurface d−1({δ}). We say
that Ñ is complete if and only if Nδ is complete for some (and therefore for all) δ > 0.

Lemma 2.8 Let Ñ be a hyperbolic end. Suppose that:

(i) Ñ possesses the Geodesic Boundary Property; and
(ii) Ñ is complete.

Then Ñ is the Kulkarni-Pinkall hyperbolic end of its quotient Möbius manifold.

Proof Let p ∈ ∂0 Ñ be a point in the finite boundary of Ñ . Let Np be a supporting normal to
∂0 Ñ at p and let Hp ⊆ Ñ be the supporting totally geodesic hyperspace to ∂0 Ñ at p whose
normal at p is Np . Since Ñ is complete, so is Hp .

Since Hp is complete, it is isometric to H
n . Let K = Hp ∩ ∂0 Ñ be the intersection of Hp

with the finite boundary of Ñ . Since the distance to the finite boundary in a hyperbolic end is
a convex function, K is a convex subset of Hp . Moreover, K is closed and, by the Geodesic
Boundary Property, for every q ∈ K , there exists ε > 0 and a unit speed geodesic segment
γ :] − ε, ε[→ K such that γ (0) = q . We refer to this as the Local Geodesic Property. Let
∂∞K be the intersection of the closure of K with ∂∞ Hp . We claim that K is the convex hull
of ∂∞K .
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We show by induction that any closed, convex subset of H
n satisfying the Local Geodesic

Property is, in fact, the convex hull of its intersection with ∂∞H
n . Indeed, let X ⊆ H

n be
such a convex subset. Let q ∈ ∂ X be a boundary point. Let Hq ⊆ H

n be a supporting totally
geodesic hyperplane to X at q . Let X ′ ⊆ Hq be the intersection of X with Hq . X ′ is convex,
closed and possesses the Local Geodesic Property.

We now characterise convex hulls: suppose that for every q ∈ ∂ X and for every sup-
porting hyperplane H ⊆ H

n to X at q, q lies in the convex hull of ∂ X ∩ ∂∞ H in H . Then
we claim that X is the convex hull of ∂∞ X . Indeed, in this case, ∂ X is contained in the
convex hull of ∂∞ X . Now consider q ∈ X and let γ be any geodesic in H

n passing through
q . The endpoints of γ ∩ X lie either in ∂∞ X or in ∂ X , both of which are subsets of the
convex hull of ∂∞ X . γ ∩ X therefore lies in the convex hull of ∂∞ X and the assertion now
follows.

Now suppose that K is not the convex hull of ∂∞K . Then, by the preceeding charac-
terisation, there exists q ∈ ∂K and a supporting totally geodesic hyperplane Hq ⊆ Hp to
K at q such that q does not lie in the convex hull of ∂∞ Hq ∩ ∂∞K . Let Kq be the inter-
section of K with Hq . Kq is convex, closed, and possesses the Local Geodesic Property.
Moreover, defining ∂∞Kq as before, by definition, Kq is not the convex hull of ∂∞Kq in Hq .
Proceeding by induction, we obtain a 1-dimensional subset of the real line which is convex,
closed, possesses the Local Geodesic Property, but is not contained within the convex hull
of its intersection with the ideal boundary of the real line. This is absurd, and the assertion
follows.

It follows that p is contained in the convex hull of K ∩ ∂∞ Hp . This condition characterises
the Kulkarni-Pinkall hyperbolic end, and the result follows. �
In the compact case, moreover, the Kulkarni-Pinkall hyperbolic end is the unique maximal
end. First we prove:

Lemma 2.9 Let Ñ1 and Ñ2 be compact hyperbolic ends. Suppose, moreover that Ñ2 pos-
sesses the Geodesic Boundary Property. Let (N1, ϕ1)and (N2, ϕ2)be their respective quotient
flat conformal manifolds. If (N1, ϕ1) and (N2, ϕ2) are isomorphic, then Ñ1 < Ñ2. Moreover,
the finite boundary, ∂0 Ñ1, of Ñ1 is a graph over the finite boundary, ∂0 Ñ2, of Ñ2.

Proof Let N̂1 and N̂2 be the universal covers of Ñ1 and Ñ2 respectively. Let ̂1 : N̂1 →
H

n+1 and ̂2 : N̂2 → H
n+1 be their respective developing maps. We may assume that

∂∞ N̂1 = ∂∞ N̂2 and that ̂1 = ̂2 on this set.
The identity on the ideal boundaries extends to an equivariant isometry � from an equi-

variant open subset, U1, of ∂∞ N̂1 in N̂1 into an equivariant open subset, U2, of ∂∞ N̂2 in
N̂2 as follows: choose p ∈ ∂∞ N̂1 = ∂∞ N̂2. For i ∈ {1, 2}, let (αi , Ui , Vi ) be a chart of
N̂i containing p. Thus Ui ⊆ N̂i ∪ ∂∞ N̂i , Vi ⊆ H

n+1 ∪ ∂∞H
n+1 has concave boundary and

αi : Ui → Vi is an isometry such that:

αi |∂∞Ui = ϕi |∂∞Ui .

Denote q := ϕ1(p) = ϕ2(p) and let 
 ⊆ V1 ∩ V2 be a neighbourhood of q . Denote

p = ϕ−1

1 (
), and define �p over 
p by:

�p = ϕ−1
2 ◦ ϕ1.

We see that (�p,
p) is independant of the charts chosen, so long as they have concave
boundary and contain 
p . Thus, for any other p′ ∈ N1, if (�p′ ,
p′) is defined in a similar
manner, and if 
p′ ⊆ 
p , then �p′ = �p over 
p′ . Thus, more generally, if 
p′ ∩ 
p �= ∅,
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then �p′ = �p over this intersection. Now choose an equivariant family (
p)p∈N1 . Define
U1 to be the union of the 
p , and define � : U1 → N̂2 such that, for all p:

�|
p = �p.

We thus obtain the desired local isometry in a neighbourhood of the boundary. We aim to
extend this isometry to a mapping from the whole of N̂1 into N̂2 which is a homeomorphism
onto its image.

Let d : N̂1 → [0,∞[ be the distance in N̂1 to ∂ N̂1. For all r > 0, let N̂1,r be the
hypersurface at constant distance r from ∂ N̂1:

N̂1,r = d−1({r}).
For sufficiently large r, N̂1,r is contained in U1. We identify N̂1,r with (N̂1,r ) ⊆ N̂2. We aim
to show that, as we reduce r continuously, N̂1,r can always be identified with a hypersurface
in N̂2, and since this holds for all r , we may thus identify N̂1 with a subset of N̂2.

Let V1 and V2 be the fields of vertical vectors over N̂1 and N̂2 respectively. Let (pn)n∈N ∈
U1 be a sequence converging to a point p0 ∈ ∂∞ N̂1. Then:

(〈V1(pn),�∗V2(pn)〉)n∈N → 1,

where 〈·, ·〉 is the inner product. Thus, by cocompactness, for sufficiently large r, �(N̂1,r ) is
transverse to the vertical foliation of N̂2. Therefore, by cocompactness, the projection from
�(N̂1,r ) onto ∂0 N̂2 is a covering map, and so �(N̂1,r ) is a graph over ∂0 N̂2. Moreover,
�(N̂1,r ) is a strict graph in the sense that it does not intersect ∂0 N̂2.

Observe that, by cocompactness, any small deformation of (N̂1,r ) is also a strict graph
over ∂0 N̂2. Thus, by continuously reducing r, U1 and � may be extended to contain N̂1,r at
least as long as �(N̂1,r ) remains a strict graph over ∂0 N̂2 (it will always be an immersion).
Suppose therefore that there exists r0 > 0 such that �(N̂1,r0) is not a strict graph over ∂0 N̂2

but �(N̂1,r ) is for all r > r0.
Suppose that �(N̂1,r0) intersects ∂0 N̂2 non-trivially. �(N̂1,r0) is an external tangent to ∂ N̂2

at this point. By the Geodesic Boundary Property of N̂2, and convexity of (N̂1,r0), at least
one of the principal curvatures of (N̂1,r0) vanishes at this point. However, by Lemma 3.12
the second fundamental form of �(N̂1,r0) is bounded below by tanh(r0)Id in the weak sense.
This is absurd and so �(N̂1,r0) therefore lies strictly above ∂0 N̂2.

Suppose that �(N̂1,r0) is not a graph over ∂0 N̂2. Then there exists p ∈ N̂1,r0 such that
�(N̂1,r0) is vertical at this point (in other words, it is tangent to the foliation by vertical geo-
desics at this point). Let q ∈ ∂0 N̂2 be the vertical projection of p. Let γ : [0, d(p, q)] → N̂2

be the vertical geodesic segment in N̂2 from q to p. γ lies below the graph of �(N̂1,r ) for all
r > r0. γ is therefore an interior tangent to �(N̂1,r0) at p. Thus, by convexity of �(N̂1,r0), at
least one of its principal curvatures vanishes at p. However, as in the preceeding paragraph,
�(N̂1,r0) is strictly convex at p, and this yields a contradiction.

It follows that �(N̂1,r ) remains a strict graph over ∂0 N̂2 for all r > 0. Letting r → 0, it
follows that U1 = N̂1,r and that �(∂0 N̂1) is a graph over ∂0 N̂2. The result now follows by
taking quotients. �
This allows us to verify that “<” does indeed define a partial order:

Lemma 2.10 “<” defines a partial order over the family of hyperbolic ends whose quotient
Möbius manifold is compact.
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Proof Let N̂ be a hyperbolic end. Let Ñ be the universal cover of N̂ and let N be the
quotient Möbius manifold of Ñ . Let ı̂ : N → UH

n+1 be the boundary immersion of Ñ . Let
π : UH

n+1 → H
n+1 be the canonical projection. Define i = π ◦ ı̂ .

Let g be the hyperbolic metric of H
n+1. Since i is C0,1, i∗g defines an equivariant L∞

metric over N (which may be degenerate). Let dVoli be the induced equivariant L∞ volume
form. By compactness, integrating dVoli yields a well defined volume for ∂0 N̂ , which we
denote by Vol(N̂ ).

Now let N̂1 and N̂2 be hyperbolic ends such that N̂1 < N̂2. By the proof of Lemma 2.9,
∂0 N̂1 may be considered as a graph over ∂0 N̂2. By convexity and hyperbolicity, the projection
from ∂0 N̂1 to ∂0 N̂2 is contracting. Thus:

Vol(N̂2) < Vol(N̂1).

In particular, N̂1 is not contained in N̂2 and so “<” is anti-symmetric. Since “<” is trivially
transitive, we deduce that it is a partial order, and the result follows. �
We also obtain existence and uniqueness of the maximal ends in the compact case:

Lemma 2.11 Let M be a compact Möbius manifold. The Kulkarni-Pinkall hyperbolic end
of M is the unique maximal end amongst all ends whose quotient Möbius manifold is M.

Proof The Kulkarni-Pinkall hyperbolic end in particular possesses the Geodesic Bound-
ary Property, and maximality therefore follows by Lemma 2.9. It thus remains to prove
uniqueness. However, if M̃ ′ is another maximal end whose quotient Möbius manifold is M ,
then, since M̃K P possesses the Geodesic Boundary Property, it follows by Lemma 2.9 that
M̃ ′ � M̃K P . By maximality of M̃ ′, M̃ ′ = M̃K P , and uniqueness follows. �
In addition, we also obtain the following useful result:

Lemma 2.12 Let Ñ1 and Ñ2 be compact hyperbolic ends having the same quotient Möbius
manifold. Then there exists a unique hyperbolic end Ñ12 such that:

(i) Ñ1 and Ñ2 are contained in Ñ12; and
(ii) if Ñ1 and Ñ2 are contained in Ñ , then Ñ12 is also contained in Ñ .

Proof Let ÑK P be the Kulkarni-Pinkall hyperbolic end of the quotient Möbius manifold. By
Lemma 2.11, Ñ1 and Ñ2 are contained in ÑK P and ∂0 Ñ1 and ∂0 Ñ2 are graphs over ∂0 ÑK P .
Let f1 and f2 be their respective graph functions. The graph of Min( f1, f2) in ÑK P is convex
and yields the desired hyperbolic end. �
We conclude with the proof of Theorem 1.7:

Proof of Theorem 1.7 This is the union of Lemma 2.8, Corollary 2.10 and Lemma 2.11. �

3 Special lagrangian curvature

3.1 Immersed submanifolds and the cheeger/gromov topology

Let M be a smooth Riemannian manifold. An immersed submanifold is a pair � = (S, i)
where S is a smooth manifold and i : S → M is a smooth immersion. A pointed
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immersed submanifold in M is a pair (�, p) where � = (S, i) is an immersed sub-
manifold in M and p is a point in S. An immersed hypersurface is an immersed subman-
ifold of codimension 1. We give S the unique Riemannian metric i∗g which makes i into
an isometry. We say that � is complete if and only if the Riemannian manifold (S, i∗g)

is.
Let U M be the unitary bundle of M . In the cooriented case (for example, when I is con-

vex), there exists a unique exterior normal vector field N over i . We denote ı̂ = N and call it
the Gauss lift of i . Likewise, we call the manifold �̂ = (S, ı̂) the Gauss lift of �.

A pointed Riemannian manifold is a pair (M, p) where M is a Riemannian manifold and
p is a point in M . Let (Mn, pn)n∈N be a sequence of pointed Riemannian manifolds. For all
n, we denote by gn the Riemannian metric over Mn . We say that the sequence (Mn, pn)n∈N

converges to the pointed manifold (M0, p0) in the Cheeger/Gromov sense if and only if for
all n, there exists a mapping ϕn : (M0, p0) → (Mn, pn), such that, for every compact subset
K of M0, there exists N ∈ N such that for all n � N :

(i) the restriction of ϕn to K is a C∞ diffeomorphism onto its image, and
(ii) if we denote by g0 the Riemannian metric over M0, then the sequence of metrics

(ϕ∗
n gn)n�N converges to g0 in the C∞ topology over K .

We refer to the sequence (ϕn)n∈N as a sequence of convergence mappings of the sequence
(Mn, pn)n∈N with respect to the limit (M0, p0). The convergence mappings are trivially not
unique.

Let (�n, pn)n∈N = (Sn, pn, in)n∈N be a sequence of pointed immersed submanifolds in
M . We say that (�n, pn)n∈N converges to (�0, p0) = (S0, p0, i0) in the Cheeger/Gromov
sense if and only if the sequence (Sn, pn)n∈N of underlying manifolds converges to (S0, p0)

in the Cheeger/Gromov sense, and, for every sequence (ϕn)n∈N of convergence mappings of
(Sn, pn)n∈N with respect to this limit, and for every compact subset K of S0, the sequence
of functions (in ◦ ϕn)n�N converges to the function (i0 ◦ ϕ0) in the C∞ topology over K .

We define Ck,α Cheeger/Gromov convergence for manifolds and immersed manifolds in
an analogous manner.

3.2 Special lagrangian curvature

The special Lagrangian curvature, which only has meaning for strictly convex immersed
hypersurfaces, is defined as follows. Denote by Symm(Rn) the space of symmetric matrices
over R

n . We define  : Symm(Rn) → C
∗ by:

(A) = Det(I + i A).

Since  never vanishes and Symm(Rn) is simply connected, there exists a unique analytic
function ̃ : Symm(Rn) → C such that:

̃(I ) = 0, ẽ(A) = (A) ∀A ∈ Symm(Rn).

We define the function arctan : Symm(Rn) → (−nπ/2, nπ/2) by:

arctan(A) = Im(̃(A)).

This function is trivially invariant under the action of O(Rn). If λ1, . . . , λn are the
eigenvalues of A, then:

arctan(A) =
n∑

i=1

arctan(λi ).
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For r > 0, we define:

SLr (A) = arctan(r A).

If A is positive definite, then SLr is a strictly increasing function of r . Moreover, SL0 = 0
and SL∞ = nπ/2. Thus, for all θ ∈]0, nπ/2[, there exists a unique r > 0 such
that:

SLr (A) = θ.

We define Rθ (A) = r . Rθ is also invariant under the action of O(n) on the space of positive
definite, symmetric matrices.

Let M be an oriented Riemannian manifold of dimension n + 1. Let � = (S, i) be
a strictly convex, immersed hypersurface in M . For θ ∈]0, nπ/2[, we define Rθ (�) (the
θ -special Lagrangian curvature of �) by:

Rθ (�) = Rθ (A�),

where A� is the shape operator of �.

3.3 Local rigidity

Let N and M be Riemannian manifolds of dimensions n and (n +1) respectively. The special
Lagrangian curvature operator sends the space of smooth immersions from N into M into
the space of smooth functions over N . These spaces may be viewed as infinite dimensional
manifolds (strictly speaking, they are the intersections of infinite nested sequences of Banach
manifolds). Let i be a smooth immersion from N into M . Let N be the unit exterior normal
vector field of i in M . We identify the space of smooth functions over N with the tangent
space at i of the space of smooth immersions from N into M as follows. Let f : N → R be
a smooth function. We define the family (t )t∈R : N → M by:

t (x) = Exp(t f (x)N(x)).

This defines a path in the space of smooth immersions from N into M such that 0 = i .
It thus defines a tangent vector to this space at i . Every tangent vector to this space may be
constructed in this manner.

Let A be the shape operator of i . This sends the space of smooth immersions from N into
M into the space of sections of the endomorphism bundle of T N . We have the following
result:

Lemma 3.1 Suppose that M is of constant sectional curvature equal to −1, then the deriv-
ative of the shape operator at i is given by:

Di A · f = f Id − Hess( f ) − f A2,

where Hess( f ) is the Hessian of f with respect to the Levi-Civita covariant derivative of the
metric induced over N by the immersion i .

Proof See the proof of proposition 3.1.1 of [14]. �

We consider the operators SLr = SLr (A�) and Rθ = Rθ (A�). Using Lemma 3.1, we
immediately obtain:
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Lemma 3.2 Suppose that M is of constant sectional curvature equal to −1.

(i) The derivative of SLr at i is given by:

(1/r)Di SLr · f = −Tr((Id + r2 A2)−1Hess( f )) + Tr((Id − A2)(Id + r2 A2)−1) f.

(ii) Likewise, the derivative of Rθ at i is given by:

Tr(A(I + A2 R2
θ )

−1)Di Rθ · f = Rθ Tr((Id + r2 A2)−1Hess( f ))

+Rθ Tr((Id − A2)(Id + r2 A2)−1) f.

These operators are trivially elliptic. We wish to establish when they are invertible. We first
require the following technical result:

Lemma 3.3 Let 0 < n < m be positive integers. If t ∈]0, π/2], then:

nsin2(t/n) � msin2(t/m),

With equality if and only if n = 1, m = 2 and t = π/2.

Proof The function sin2(t/2) is strictly convex over the interval [0, π/4]. Thus, for all
0 < x < y � π/4:

(1/x)sin2(x) < (1/y)sin2(y).

Thus, for m > n � 2, we obtain:

nsin2(t/n) > msin2(t/m).

We treat the case n = 1 separately. For t � π/4, the result follows as before. We there-
fore assume that t > π/4. Since the function sin2(t/2) is strictly concave over the interval
[π/4, π/2], it follows that sin2(t) � 2t/π , with equality if and only if t = π/2. However:

sin2(π/4) = 1/2 = (2/π)(π/4).

Since m � 2, it follows by concavity that:

msin2(t/m) � sin2(t),

with equality if and only if m = 2 and t = π/2. The result now follows. �
Using Lagrange multipliers to determine critical points, we obtain:

Lemma 3.4 If θ � (n − 1)π/2 and r > tan(θ/n), then the coefficient of the zeroth order
term is non-negative:

Tr((Id − A2)(Id + r2 A2)−1) � 0.

Moreover, this quantity reaches its minimum value of 0 if and only if r = tan(θ/n) and A is
proportional to the identity matrix.

Proof For all m, we define the functions m and �m over R
m by:

m(x1, . . . , xm) =
m∑

i+1

1 − x2
i

1 + r2x2
i

, �m(x1, . . . , xm) =
m∑

i=1

arctan(r xi ).
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Since the derivative of �m never vanishes, �−1
m (θ) is a smooth submanifold of R

m . Suppose
that m achieves its minimum value on the interior of �−1

m (θ). Let (x̃1, ..., x̃m) be a critical
point of the restriction of m to this submanifold. For all i , let θ̃i ∈ [0, π/2[ be such that:

tan(θ̃i ) = r x̃i .

Using Lagrange multipliers, we find that there exists η ∈ [0, π/2] such that, for all i :

θ̃i ∈ {η, π/2 − η}.
Let k be the number of values of i such that θ̃i � π/4. Since θ � (m − 1)π/2:

k � m/2.

Choose η � π/4. Since θ̃1 + · · · + θ̃m = θ :

η = θ − (m − k)π/2

2k − m
= m(θ/m) − 2(m − k)(π/4)

2k − m
.

If ̃m is the value acheived by m at this point, then:

̃m = r−2(1 + r2)(2k − m)cos2(η) + (m − k)r−2(1 + r2) − mr−2.

However:

π/4 � θ/m � η < π/2.

Thus, since the function cos2 is convex in the interval [π/4, π/2]:

cos2(η) �
mcos2(θ/m) − 2(m − k)cos2(π/4)

2k − m
,

with equality if and only if k = m. Thus:

̃m � mr−2(1 + r2)cos2(θ/m) − mr−2,

with equality if and only if θ̃1 = · · · = θ̃m . Since r � tan(θ/m), this is non-negative, and is
equal to 0 if and only if r = tan(θ/m).

We now show that m attains its minimum over �−1
m (θ). We treat first the case θ >

(m −1)π/2. Suppose the contrary. The functions m and �m extend to continuous functions
over the cube [0,+∞]m . Let (x̃1, ..., x̃m) be the point in �−1

m (θ) where m is minimised,
and suppose now that it lies on the boundary of the cube. Since θ > (m − 1)π/2, x̃i > 0 for
all i . Without loss of generality, there exists n < m such that:

x1, ..., xn < +∞, xn+1, ..., xm = +∞.

Let (θ̃1, ..., θ̃m) be as before. We define θ ′ by:

θ ′ = θ̃1 + · · · + θ̃n .

Since θ̃n+1 = · · · = θ̃m = π/2, it follows that θ ′ = θ − (m − n)π/2. Moreover:

m(x1, ..., xm) = n(x1, ..., xn) − (m − n)r−2.

Since (x̃1, ..., x̃m) minimises m it follows that (x̃1, ..., x̃n) is the minimal valued critical
point of n in �−1

n (θ ′). Thus:

m(x1, ..., xm) = nr−2(1 + r2)cos2(θ ′/n) − mr−2.
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Let η ∈]0, π/2[ be such that:

θ = nπ/2 − η.

We have:

ncos2(θ ′/n) = nsin2(η/n), mcos2(θ/m) = msin2(η/m).

It follows by Lemma 3.3 that:

m(x1, ..., xm) > mr−2(1 + r2)cos2(θ/m) − mr−2.

It follows that (x̃1, ..., x̃m) cannot be the minimum of m over �−1
m (θ), which is absurd. The

result now follows in the case θ > (m − 1)π/2.
It remains to study the case θ = (m − 1)π/2. This follows as before, with the single

exception that it is now possible that x̃1 = 0, in which case x̃2 = · · · = x̃n = +∞. However:

m(0,+∞, ...,+∞) = 1 − (m − 1)r−2.

However, r � tan((m − 1)π/2m). For x ∈ [0, 1], tan(πx/4) � x . Thus, since m � 2:

r−1 � tan(π/2m) = tan((π/4)(2/m)) � 2/m.

Thus:

m(0,+∞, ...,+∞) � 1 − 4(m − 1)/m−2 = (m − 2)2m−2 � 0,

The result now follows. �
Lemma 3.5

(i) If SLr (i) � (n − 1)π/2 and tan(SLr (i)/n) � r , then Di SLr is invertible.
(ii) Likewise, if θ � (n − 1)π/2 and Rθ (i) � tan(θ/n), then Di Rθ is invertible.

Proof This follows immediately from the preceeding lemma, the maximum principal and
the fact that second order elliptic linear operators on the space of smooth functions over a
compact manifold are Fredholm of index 0. �
3.4 Compactness

A relatively trivial variant of the reasoning used in [17] yields:

Theorem 3.6 Let M be a complete Riemannian manifold.

(i) Let (pn)n∈N, p0 ∈ M be such that (pn)n∈N converges to p0;
(ii) Let (θn)n∈N, θ0 ∈](n − 1)π/2, nπ/2[ be such that (θn)n∈N converges to θ0;

(iii) Let (rn)n∈N, r0 ∈ C∞(M) be strictly positive functions such that (rn)n∈N converges
to r0 in the C∞

loc sense; and
(iv) Let (�n, qn)n∈N = (Sn, in, qn)n∈N be pointed, convex immersed hypersurfaces such

that, for all n:

(a) in(qn) = pn, and
(b) �n is complete, convex and Rθn (in) = rn ◦ in .

Then there exists a complete, pointed immersed submanifold (�0, q0) = (S0, i0, q0) in M
such that, after extraction of a subsequence, (�n, qn)n∈N converges to (�0, q0) in the pointed
Cheeger/Gromov sense.
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The limit case where θ = (n − 1)π/2 exhibits more interesting geometric behaviour. We
only require it in the constant curvature case:

Theorem 3.7 Let M be a complete Riemannian manifold.

(i) Let (pn)n∈N, p0 ∈ M be such that (pn)n∈N converges to p0;
(ii) Let (θn)n∈N ∈ [(n − 1)π/2, nπ/2[ be such that (θn)n∈N converges to (n − 1)π/2;

(iii) Let (rn)n∈N, r0 ∈]0,∞[ be strictly positive real numbers such that (rn)n∈N converges
to r0; and

(iv) Let (�n, qn)n∈N = (Sn, in, qn)n∈N be pointed, convex immersed hypersurfaces such
that, for all n:

(a) in(qn) = pn, and
(b) �n is convex, Rθn (in) = rn, and the Gauss lifting, �̂n, is a complete submanifold

of U M.

Then there exists a complete, pointed immersed submanifold (�̂0, q0) = (S0, ı̂0, q0) in U M
such that, after extraction of a subsequence, (�̂n, qn)n∈N converges to (�̂0, q0) in the pointed
Cheeger/Gromov sense. Moreover:

(i) either there exists a convex, immersed hypersurface �0 in M of constant (n − 1)π/2-
special Lagrangian curvature equal to r0 such that �̂0 is the Gauss lifting of �0 (in
other words, if π : U M → M is the canonical projection, then π ◦ ı̂0 is an immersion);

(ii) or �̂0 is a covering of a complete sphere bundle over a complete geodesic.

Remark Heuristically, if (�n, pn)n∈N = (Sn, in, pn)n∈N is a sequence of pointed, immersed
submanifolds of constant (n − 1)π/2-special Lagrangian curvature equal to r , then
(�n, pn)n∈N subconverges to (�0, i0, p0) where �0 is either another such immersed sub-
manifold or a complete geodesic. This (slightly abusive) language will be use in the sequel.

3.5 The geometric maximum principal

Let E be a hyperbolic end possessing the Geodesic Boundary Property and let ∂0E be its finite
boundary. For all d , let Md be the hypersurface in E at a distance d from ∂0E . We make the
following definition:

Definition 3.8 Let M be a manifold and let � = (S, i) be a C0 convex immersed hypersur-
face in M. Let A be a family of positive definite, symmetric, bilinear forms defined on the
supporting tangent planes of �. The second fundamental form of � at p is said to be at least
(resp. at most) A in the weak sense if and only if, for all p ∈ S and for each supporting tangent
space E p of � at p, there exists a smooth, convex, immersed submanifold �′ = (S, i ′) which
is an exterior (resp. interior) tangent to � with tangent space E p at p and whose second
fundamental form is bounded below (resp. above) by A(E p).

Likewise, if p ∈ S, if θ ∈]0, nπ/2[ and if r > 0, then the θ -special Lagrangian curvature
of � at p is said to be at least (resp. at most) r in the weak sense if and only if there exists
a smooth, convex, immersed submanifold �′ = (S′, i ′) of θ -special Lagrangian curvature
equal to r which is an exterior (resp. interior) tangent to � at p.

Remark If the second fundamental form of � is bounded above and below, then � is neces-
sarily of type C1,1.

This definition is well adapted to the Geometric Maximum Principal, whose proof requires
the following result concerning symmetric matrices:
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Lemma 3.9 (Minimax Principal) Let A be a symmetric matrix of rank n. If λ1 � · · · � λn

are the eigenvalues of A arranged in ascending order, then, for all k:

λk = Inf
Dim(E)=k

Sup
v∈E\{0}

〈Av, v〉/‖v‖2.

Proof Let e1, . . . , en be the eigenvectors of A. We define Ê by:

Ê = 〈e1, . . . , ek〉.
Let π be the orthogonal projection onto Ê . Let E be a subspace of R

n of dimension k. For
all v in E :

〈Aπ(v), π(v)〉‖v‖2 � 〈Av, v〉‖π(v)‖2.

If the restriction of π to E is an isomorphism, then it follows that:

λk = Sup
v∈Ê\{0}

〈Av, v〉/‖v‖2 � Sup
v∈E\{0}

〈Av, v〉/‖v‖2.

Otherwise, there exists a non-trivial v ∈ E such that π(v) = 0, in which case:

〈Av, v〉 � λk+1‖v‖2 � λk‖v‖2.

The result now follows. �
Corollary 3.10 Let A,A′ be two symmetric matrices of rank n such that A′ � A. If λ1, ..., λn

and λ′
1, ..., λ

′
n are the eigenvalues of A and A′ respectively arranged in ascending order, then,

for all k:

λ′
k � λk .

We now obtain the Geometric Maximum Principal for hypersurfaces of constant special
Lagrangian curvature:

Lemma 3.11 (Geometric Maximum Principal) Let M be a Riemannian manifold and let
� = (S, i) and �′ = (S′, i ′) be C0 convex, immersed hypersurfaces in M. For θ ∈]0, nπ/2[,
let Rθ and R′

θ be the θ -special Lagrangian curvatures of � and �′ respectively. If p ∈ S
and p′ ∈ S′ are such that q = i(p) = i ′(p′), and �′ is an interior tangent to � at q, then:

Rθ (p) � R′
θ (p′).

Proof If A and A′ are the shape operators of � and �′ respectively, then:

A′(p′) � A(p).

It follows that:

arctan(Rθ (p)A′(p′)) � arctan(Rθ (p)A(p)) = θ = arctan(R′
θ (p′)A′(p′)).

The result now follows since the mapping ρ �→ arctan(ρ A′(p′)) is strictly increasing. �
Lemma 3.12 For all d > 0, the second fundamental form of Md is at least tanh(d)Id in the
weak sense.

Proof It suffices to calculate the second fundamental form of a hypersurface equidistant from
a supporting totally geodesic hypersurface at some point of ∂E . The result now follows from
Lemma 3.1. �
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Corollary 3.13 Let θ ∈]0, nπ/2[ be an angle. For all d > 0, the θ -special Lagrangian
curvature of Md is at most tan(θ/n)/tanh(d) in the weak sense.

For d > 0, define the matrix A0(d) by:

A0(d) =
(

tanh(d)

coth(d)Idn−1

)
,

where Idn−1 is the (n − 1)-dimensional identity matrix.

Lemma 3.14 For all d > 0, there exists a (not necessarily continuous) field A of symmetric,
bilinear forms over Md such that:

(i) for all p ∈ Md , A(p) is conjugate to A0; and
(ii) the second fundamental form of Md is bounded above by A in the weak sense.

Proof For all q ∈ ∂E , there is a geodesic segment passing through p which remains in ∂E .
Thus, for all p ∈ Md , there is a cylinder at a distance d from a geodesic segment which is
an interior tangent to Md at p. By Lemma 3.1, the second fundamental form of this cylinder
is conjugate to A0. The upper bound of the curvature at p thus follows. �
Corollary 3.15 Let θ ∈](n − 1)π/2, nπ/2[ be an angle. There exists a function κ :
[0,+∞[→ [0,+∞[, which tends to +∞ as d tends to 0, such that the θ -special Lagrangian
curvature of Md is at least κ(d) in the weak sense.

We now obtain upper and lower bounds for the distance between a hypersurface of bounded
θ -special Lagrangian curvature and ∂E :

Lemma 3.16 Let E be a hyperbolic end. Let ∂E be the boundary of E . Let θ ∈](n − 1)

π/2, nπ/2[ be an angle. There exists a decreasing function δ : [tan(θ/n),+∞[→]0,+∞[
such that if r � R ∈]tan(θ/n),∞[ and if � = (S, i) is a compact, convex immersed
submanifold such that Rθ (i) ∈ [r, R], then, for all p ∈ S:

δ(R) � d(i(p), ∂E) � arctanh(r−1tan(θ/n)).

Proof For all ρ > 0, let Mρ be the level hypersurface in E at a distance of R from ∂E .
Since � is compact, there exists a point p ∈ S maximising the distance from ∂E . Let d be
the distance of i(p) from ∂E . � is an interior tangent to Md at p. The upper bound now
follows by Lemma 3.13 and the geometric maximum principle (Lemma 3.11). The lower
bound follows in an analogous way, using Lemma 3.15 instead of Lemma 3.13. �

4 Immersions in hyperbolic ends

4.1 Deforming equivariant immersions

The results of the previous section permit us to locally deform equivariant immersions of
M̃ in H

n+1. Let 	 ⊆ Isom(M̃) be a cocompact subgroup acting properly discontinuously
on M̃ . Thus M̃/	 is a compact manifold. Let α : 	 → Isom(Hn+1) be a homomorphism.
Let i : M̃ → H

n+1 be an immersion which is equivariant with respect to θ . Thus, for all
γ ∈ 	:

i ◦ γ = α(γ ) ◦ i.
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Let ρ = Rθ (i). Suppose first that i is an embedding. We may therefore extend ρ to a smooth
equivariant function over a neighbourhood of i(M̃) in H

n+1. We obtain the following local
deformation result:

Lemma 4.1 Let θ � (n − 1)π/2 and suppose that ρ � tan(θ/n).

(i) Let (αt )t∈]−ε,ε[ be a smooth family of homomorphisms such that α0 = α;
(ii) let (θt )t∈]−ε,ε[ be a smooth family of angles such that θ0 = θ ; and

(iii) let (ρt )t∈]−ε,ε[ : H
n+1 → R be a smooth family of smooth functions such that ρ0 = ρ.

There exists 0 < δ < ε and a unique smooth family of immersions (it )t∈]−δ,δ[ such that
i0 = i and, for all t:

(i) Rθt (it ) = ρt ◦ it , and
(ii) it is equivariant with respect to αt .

Remark The corresponding result when i is not injective is almost identical. We do not state
it in order to avoid notational complexity. In the sequel, we consider embeddings inside
smooth manifolds or smooth families of smooth manifolds, and so the distinction is not
important.

Proof For ease of presentation, we only prove the case where both ρ and θ are constant. The
general case is proven in a similar manner. The proof is divided into two stages:

(i) We approximate the desired family by constructing a smooth, equivariant family of
deformations of i which are not necessarily immersions, and not necessarily of constant
θ -special Lagrangian curvature. First we construct a fundamental domain for 	. Let p be a
point in M̃ . Let P ⊆ M̃ be the orbit of p under the action of 	. Thus:

P = 	p.

We define 
 ⊆ M̃ to be the set of all points on M̃ which are closer to p than to any other
point in the orbit of p:


 = {
q ∈ H

n s.t. d(q, p) < d(q, p′) for all p′ ∈ P \ {p}}.

 is a polyhedral fundemental domain for 	.

Using 
, we now construct the family of deformations. For each t , we construct a (non-con-
tinuous) deformation be defining it to be equal to i over the interior of 
 and then extending
this function to the orbit of 
 (which is almost all of M̃) by equivariance with respect to αt .
These deformations may trivially be smoothed along ∂
. The only complication is to ensure
that the smoothing is performed in an equivariant manner. The following recipe allows us to
achieve exactly this.

For any submanifold X ∈ M̃ and for all ε > 0, let X ε be the set of all points in X which
are at a distance (in X ) greater than ε from the boundary of X . That is:

X ε = {p ∈ X s.t. dX (p, ∂ X) > ε}.
Choose εn small. For all γ ∈ 	, we define (ı̃ n

t )t∈]ε,ε[ over γ
εn by:

ı̃ n
t (p) = αt (γ )i(γ −1(p)).

This family is trivially equivariant with respect to (αt )t∈]−ε,ε[.
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Choose εn−1 small. Let Fn−1 be any (n−1)-dimensional face of 
. We extend (ı̃ n
t )t∈]−ε,ε[

smoothly across a neighbourhood of Fεn−1
n−1 . Since every element of 	 is of infinite order,

there is no element which fixes any face of 
 (since otherwise it would permute the domains
touching that face, and thus be of finite order). It follows that, by choosing εn and εn−1 small
enough, we may extend this family further to a smooth equivariant extension over every face
in the orbit of Fn−1. We then continue extending this family over every face of 
 until all
(n − 1)-dimensional faces are exhausted. By working downwards inductively on the dimen-
sion of the faces, we thus obtain a smooth equivariant family (ı̃t )t∈]−ε,ε[ = (ı̃0

t )t∈]−ε,ε[ which
extends i .

(i i) We now modify this approximation to obtain the desired family of immersions. Since

 is relatively compact, there exists δ < ε such that, for |t | < δ, ı̃t is an immersion. More-
over, we may suppose that for η > 0 sufficiently small, we may extend ı̃t smoothly along
normal geodesics to a smooth equivariant immersion from M̃×] − η, η[ into H

n+1. We thus
view (ı̃t )t∈]−δ,δ[ as a smooth family of immersions from M̃×] − η, η[ into H

n+1.
We denote by g the hyperbolic metric over H

n+1. We define the family (gt )t∈]−δ,δ[ such
that, for all t :

gt = ı̃∗t g.

The action of 	 over M̃ trivially extends to an action of 	 over M̃×] − η, η[. For all t, gt

is equivariant under this action of 	. We denote M = M̃/	 and we obtain a smooth family,
which we also call (gt )t∈]−δ,δ[, of hyperbolic metrics over M×] − η, η[.

Let j0 be the canonical immersion of M into M×] − η, η[. Trivially, with respect to
g0, Rθ ( j0) = ρ. As in Sect. 3.3, we view Rθ as a second order, non-linear differential oper-
ator sending immersions of M into M×] − η, η[ into functions over M . Since infinitesimal
variations of immersions may be interpreted as functions over M times the normal vector
field of M in M×] − η, η[, the derivative DRθ of Rθ may be interpreted as a second order,
linear differential operator from C∞(M) into C∞(M). By Lemma 3.5, the operator DRθ is
invertible. After reducing δ if necessary, the Implicit Function Theorem for non-linear PDEs
therefore allows us to extend j0 to a smooth family ( jt )t∈]−η,η[ of immersions of M into
M×] − η, η[ such that, for all t , the θ -special Lagrangian curvature of jt with respect to
gt equals ρ. For all t , let j̃t be the lift of jt sending M̃ into M̃×] − η, η[. We now define
it = ı̃t ◦ j̃t . Trivially, (it )t∈]−δ,δ[ is the desired family of immersions, and existence follows.

Let (i ′t )t∈]−δ,δ[ be another family of immersions having the desired properties. For δ suf-
ficiently small, the image of i ′t is contained in the image of ı̃t . For all t , we thus project
j̃ ′

t = ı̃−1
t ◦ i ′t to an immersion j ′t of M into M×] − η, η[. By the uniqueness part of the

Implicit Function Theorem for non-linear PDEs, for all sufficiently small t, j ′t coincides
with jt . Uniqueness now follows by a standard open/closed argument. �

4.2 Uniqueness

We show that the metric induced by i is uniformly equivalent, up to reparametrisation, with
the Kulkarni-Pinkall metric:

Lemma 4.2 Let θ ∈](n −1)π/2, nπ/2[ be an angle, and let r > tan(θ/n) be a positive real
number. There exists K = K (r, θ, n) > 0 which only depends on r, θ and n such that:

(i) if M is a compact manifold and (ϕ, θ) is an FCS of hyperbolic type over M;
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(ii) if i : M → H
n+1 is a complete, equivariant, convex immersion such that Rθ (i) = r

and −→n ◦ ı̂ = ϕ, where ı̂ is the Gauss lifting of i; and
(iii) if α : M → M is a diffeomorphism such that i ◦ α is a graph over ĵ , where ĵ is the

boundary immersion of E(ϕ),

then, if g is the hyperbolic metric on H
n+1:

K −1gK P � (i ◦ α)∗g � K gK P .

Proof Let E(ϕ) be the Kulkarni-Pinkall hyperbolic end of ϕ. Since, in particular, i is a convex
immersion, by Lemma 2.9, i may be viewed as an immersion from M into E(ϕ) which is a
graph over ĵ . Without loss of generality, we may assume that α is the identity. Thus, for all
p ∈ M, i(p) lies above ĵ (p). For all r > 0, let Mr be the hypersurface at distance r from
∂0E(ϕ). By Lemma 3.16, there exists R > ε > 0 such that i(M) lies between Mε and MR .
Let π : UH

n+1 → H
n+1 be the canonical projection. Define j = π ◦ ĵ . For all p ∈ M ,

let γp be the geodesic segment joining j (p) to i(p). Let Np be the exterior normal to i(M)

at p.
We show that there exists δ > 0, which only depends on r, θ and n such that γp makes an

angle of at most π/2 − δ with Np . We assume the contrary, and consider the universal covers
of M and E(p). Let (Mn, pn)n∈N be a sequence of complete, simply connected, pointed man-
ifolds. For all n, let (θn, ϕn) be an FCS of hyperbolic type over Mn and let in : Mn → H

n+1

be a complete, equivariant, convex immersion such that Rθ (in) = r and ϕn = −→n ◦ ı̂n . For all
n, let γn be the geodesic segment joining jn(pn) to in(pn). The length of γn is greater than
ε for all n. Suppose that the angle that γn makes with Npn tends to π/2.

For all n, let Bn be the ball of radius ε about in(pn) in E(ϕn). Since (Mn, in) is a graph
over jn , there exists convex subset Kn ⊆ Bn such that a portion of (Mn, in) coincides with
the boundary ∂Kn ∩ Bn . Moreover, γn ⊆ Kn . For all n, we identify Bn with a ball of radius ε

in hyperbolic space, which we denote by B0. Thus, by compactness of the family of convex
subsets of hyperbolic space, without loss of generality, there exists a convex subset K0 ⊆ B0

and a geodesic segment γ0 to which (Kn)n∈N and (γn)n∈N converge respectively. By Theo-
rem 3.6, the boundary ∂K0 ∩ B0 is smooth and has constant special Lagrangian curvature,
in particular, it is strictly convex. By construction, γ0 is tangent to ∂K0 ∩ B0 at p0. However,
since γ0 ⊆ K0, it is an interior tangent at this point, which contradicts strict convexity.

It thus follows that γp makes an angle of at most π/2 − δ with Np .
For p ∈ M , let Pp be the supporting totally geodesic hyperspace to E(ϕ) normal to γp at

π(p). Since i(M) lies below MR and since its normal makes an angle of at most π/2 − δ

with γp , there exists K , which only depends on R,ε and δ such that the normal projection
from i(M) onto Pp is K -bilipschitz at p. The result now follows by the relationship between
E(ϕ) and gK P . �
This yields uniqueness:

Lemma 4.3 (Uniqueness) Let M be a conformally flat manifold of hyperbolic type. Let
α : π1(M) → Isom(Hn+1) be the holonomy and let ϕ : M̃ → ∂∞H

n+1 be the developing
map.

Let θ ∈ [(n − 1)π/2, nπ/2[ be an angle, and let r � tan(θ/n). Let i, i ′ : M̃ → H
n+1

be complete, equivariant, convex immersions such that Rθ (i) = Rθ (i ′) = r and −→n ◦ ı̂ =−→n ◦ ı̂ ′ = ϕ. Then, up to reparametrisation, i = i ′.
Moreover i = i ′ is a graph over the finite boundary of the Kulkarni-Pinkall hyperbolic

end of M, and is thus strictly contained within this hyperbolic end.
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Proof By Lemma 2.9, we view i and i ′ as immersions inside E(ϕ). We first consider the
case where θ �= (n − 1)π/2 and we extend i and i ′ to unique foliations (it )t∈]r,+∞[ and
(i ′t )t∈]r,+∞[ respectively which cover the lower end of E(ϕ). This is realised as follows: let
I ⊆]r,+∞[ be such that, for all T ∈ I , there exists a foliation (i T

t )t∈[r,T [ of E(ϕ) such that
ir = i and, for all t, Rθ (it ) = t . We aim to show that I =]r,+∞[. First observe that, by
the local uniqueness part of Lemma 4.1, these foliations are unique. In other words, for all
r � t < T < T ′:

i T
t = t T ′

t .

We now show that I is non-empty: by Lemma 4.1, there exists δ > 0 and a smooth family
(it )t∈]r,r+δ[ such that ir = r , and, for all t, Rθ (it ) = t . Let N be the normal vector field
over i . Let f be the function over M such that f N is the infinitesimal deformation of
(it )t∈[r,r+δ[. Then:

Di Rθ f = 1 � 0.

It follows by Lemma 3.4 that f < 0. Thus, by reducing δ if necessary, (it )t∈[r,r+δ[ is a
foliation. I is therefore non-empty.

We now show that I =]r,+∞[. Indeed, let T0 be the suprememum of I and suppose that
T0 < +∞. By uniqueness, there exists a foliation (it )t∈]r,T0[ with the given properties.

For all t ∈ [r, T0[, by Lemma 2.9, it is a graph over ∂E(ϕ). Since (it )t∈[r,T [ is a folia-
tion, the corresponding graphs form a monotone family. In fact, the graphs are monotone
decreasing. For all t , let Volt and Injt be the volume and injectivity radius respectively of
it . By Lemma 4.2, Volt is uniformly bounded above and Injt is uniformly bounded below
for t ∈ T . It follows by Theorem 3.6 that, for every sequence (tn)n∈N which converges to
T, (itn )n∈N subconverges. By monotonicity, all these subsequences converge to the same
immersion, and thus (it )t∈[r,T ] converges as t tends to T . We thus extend (it )t∈[r,T [ to a
foliation (it )t∈[r,T ] defined over the closed interval.

Applying Lemma 4.1 again, this foliation can be extended to a foliation (iT )t∈[r,T +δ[. This
contradicts the definition of T . We thus obtain the desired foliation.

Having constructed these foliations, uniqueness is straightforward: let f and f ′ be the
functions of which i and i ′ are the graphs over ∂E(ϕ). Suppose that f ′ < f at some point. For
all R, let MR be the hypersurface of E(ϕ) at distance R from ∂E(ϕ). Let ε > 0 be such that i
and i ′ lie above Mε . By Lemma 3.16, (it )t∈[r,+∞[ converges to ∂E(ϕ) in the Hausdorff sense
as t tends to +∞. In particular, there exists R0 > r such that iR lies below Mε and thus does
not intersect i ′. Let R be the supremum of all s ∈ [r, R0] such that is intersects i ′ non-trivially.
By compactness iR is an interior tangent to i ′ at some point. However, Rθ (ir ) = R > Rθ (i ′),
which is a contradiction by the Geometric Maximum Principal (Lemma 3.11).

It follows that f ′ � f . By symmetry, f � f ′, and the result now follows for θ �=
(n − 1)π/2.

Suppose that θ = (n − 1)π/2. By Lemma 4.1, there exist smooth families (iη) and (i ′η)
for η ∈ [(n − 1)π/2, (n − 1)π/2 + δ[ such that i = i(n−1)π/2, i ′ = i ′(n−1)π/2 and, for all η:

Rη(iη) = Rη(i
′
η) = r.

By uniqueness for the case where θ �= (n − 1)π/2, iη = i ′η for all η �= (n − 1)π/2 and the
result now follows for θ = (n − 1)π/2 by taking limits. �
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4.3 Main results

Existence follows from Theorem 1.4 of [18]. For the reader’s convenience, we include a
proof based on the more elementary Theorem 1.2 of the same paper. Throughout the rest of
this section, a convex set will be said to be ε-convex for some ε > 0 if and only if its second
fundamental form with respect to every supporting normal is bounded below by εId in the
weak sense. We quote Theorem 1.2 of [18]:

Theorem 4.4 Choose θ ∈ [(n − 1)π/2, nπ/2[. Let H ⊆ H
n+1 be a totally geodesic hyper-

surface. Let 
 ⊆ H be a bounded open subset. Let �̂ ⊆ H
n+1 be a convex hypersurface

which is a graph over 
 such that ∂�̂ = ∂
 and:

Rθ (�̂) � R1,

in the weak sense, where R1 � tan−1(θ/n). If θ > (n − 1)π/2, then, for all r ∈ [R1,∞],
there exists a unique immersed hypersurface �r ⊆ H

n+1 such that:

(i) �r is C0 and C∞ in its interior;
(ii) ∂�r = ∂
;

(iii) �r is a graph over 
 lying below �̂; and
(iv) Rθ (�r ) = r .

Moreover, the same result holds for θ = (n−1)π/2 provided that, in addition, �̂ is ε-convex,
for some ε > 0.

Remark The statement of this theorem differs slightly from that appearing in [18] because
(for technical reasons) the special Lagrangian curvature as defined in [18] is the reciprocal
of the special Lagrangian curvature as defined here.

Following [7] and [18], we use the Perron method to obtain:

Lemma 4.5 Let E be a hyperbolic end satisfying the Geodesic Boundary Condition. For all
θ ∈](n − 1)π/2, nπ/2[ and for all r > tan(θ/n), there exists a strictly convex immersed
hypersurface � = (S, i) in E which is a graph over the finite boundary of E such that
Rθ (i) = r .

Moreover, the same result holds for θ = (n − 1)π/2 provided that the quotient Möbius
manifold of E is not conformally equivalent to (Sn−1 × R)/	, where Sn−1 is the (n − 1)-
dimensional sphere, and 	 is a properly discontinuous group of conformal actions.

Proof We first treat the case where the quotient Möbius manifold of E is compact and
θ > (n − 1)π/2. We prove existence by successively regularising an approximate solution.
Let ∂0E be the finite boundary of E . For d > 0, let �0

d be the level hypersurface at distance
d from ∂0E . By Lemma 3.12, the second fundamental form of �0

d is greater than tanh(d)Id
in the weak sense. Since tanh(d) tends to 1 as d tends to +∞, for sufficiently large d , the
θ -special Lagrangian curvature of �0

d is at most r in the weak sense. Choose such a d and
denote �0 = �0

d . �0 constitutes the approximate solution to be regularised.

Step 1: Perron Regularisation: By definition, �0 is a strict graph over ∂0E . The regulari-
sation procedure is carried out as follows: let �1 be a strict graph over ∂0E lying below �0

such that Rθ (�1) � r in the weak sense. We aim to replace �1 by another strict graph, �2,
over ∂0E , lying below �1 such that Rθ (�2) � r in the weak sense.

There exists ε > 0, which only depends on θ and r such that �1 is ε-convex. In particular,
by Lemma 3.14 and the Geometric Maximum Principal, there exists δ > 0 such that �1 lies at
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Fig. 1 Perron Regularisation

a distance of at least δ from ∂0E . Let U1 be the open set lying between ∂0E and �1. Choose p ∈
�1. Let Np be a supporting normal to �1 at p chosen such that −Np points into U1. Let δ1 > 0
be smaller than the injectivity radius of E at p. Let γ be the unit speed geodesic such that:

∂tγ (0) = Np.

For small t , let Dp,t be the totally geodesic disk in E of radius δ1 about γ (t) whose exterior
normal at γ (t) is ∂tγ (t). By strict convexity, Dp,0 only intersects �1 at a single point. There
therefore exists δ2 > 0 such that, for all t ∈] − δ2, 0[, 
t := U1 ∩ Dp,t is a convex set and
the portion of �1 lying above 
t is a graph over 
t which we denote by �1,t . Moreover, δ2

may also be chosen sufficiently small such that it doesn’t intersect ∂0E . This construction is
illustrated in Fig. 1.

By Theorem 4.4, for all t ∈] − δ2, 0[, there exists a unique graph �′
1,t over 
t , lying

beneath �1,t such that:

Rθ (�
′
1,t ) = r.

For all t ∈] − δ2, 0[, let �′
t be the hypersurface obtained by replacing the portion �1,t of

�1 with �′
1,t . By uniqueness, this is a continuous family. Moreover, for t1 > t2, �′

t1 lies
above �′

t2 .
We claim that Rθ (�

′
t ) � r in the weak sense. It suffices to verify this property along

∂
t = ∂�′
1,t . However, along ∂
t , this property follows by the convexity of the curvature

condition (Rθ is a convex function, c.f. Lemma 2.4 of [18]). The assertion therefore follows.
We claim that �′

t is a strict graph over ∂0E . Indeed, since Dp,t lies strictly above ∂0E , so
does �′

t for all t . �′
t therefore only ceases to be a graph if it becomes vertical at some point

q0 for some value t0 of t . t0 may be chosen such that �t is a graph over ∂0E for all t ∈]t0, 0[.
Let q

0
be the projection of q in ∂0E . Let γ : [0, d(q

0
, q0)] → E be the geodesic segment

in E joining q
0

to q0. For all t , let U ′
t be the open set lying between ∂0E and �′

t . For t > t0,
since �′

t lies above �′
t0 , γ is contained in U ′

t . It follows by continuity that γ is contained
in U ′

t0 , and thus ∂tγ is an interior tangent to �t0 at q0. However, this is absurd, since �′
t0 is

ε-convex, and the assertion follows.
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We choose any t ∈ [−δ2, 0] and define �2 = �′
t . By the preceeding discussion, �2 is

a strict graph over ∂0E such that Rθ (�2) � r in the weak sense, and is the desired partial
regularisation of �1. We call �2 the Perron Regularisation of �1 at height t .

Step 2: Optimising Perron Regularisation: Let F be the family of immersed hypersurfaces
in E obtained from �0 by a finite number of Perron Regularisations. For any � ∈ F , let
U (�) be the open set contained between ∂0E and �, and define V0 � 0 by:

V0 = Inf {Vol(U (�)) s.t. � ∈ F}.
There exists a sequence (�n)n∈N ∈ F such that (Vol(U (�n)))n∈N tends to V0. By compact-
ness of the family of convex sets, we may suppose that there exists a C0,1, locally strictly
convex, immersed hypersurface, �∞ towards which (�n)n∈N converges.

We claim first that �∞ is a strict graph over ∂0E . Indeed, since �n is ε-convex for all n, so is
�∞, and thus, as before,�∞ does not intersect ∂0E and is never vertical. The assertion follows.

We now claim that �∞ is smooth. Indeed, choose p ∈ �∞. Let U∞ be the open set lying
between ∂0E and �∞, and let Np be a supporting normal to �∞ at p such that −Np points
into U∞. We now repeat the same construction as before. Let δ1 > 0 be smaller than the
injectivity radius of E at p. Let γ be the unit speed geodesic such that:

∂tγ (0) = Np.

For small t , let Dp,t be the totally geodesic disk in E of radius δ1 about γ (t) whose exterior
normal at γ (t) is ∂tγ (t). By strict convexity, Dp,0 only intersects �∞ at a single point. There
therefore exists δ2 > 0 such that, for all t ∈] − δ2, 0[, 
t := U (�∞)∩ Dp,t is a convex set
and the portion of �∞ lying above 
t is a graph over 
t .

We aim to show that �∞ is equal to its Perron Regularisation at height t . However, this
is non-trivial, since �∞ is not, itself, an element of F . We get round this problem as fol-
lows: by reducing δ2 if necessary, there exists N ∈ N such that, for all n � N , and for all
t ∈] − δ2, 0[, 
n,t := U (�n)∩ Dp,t is a convex set and the portion of �n lying above 
n,t

is a graph over 
n,t . Choose t ∈] − δ2, 0[ and for all n � N , define �′
n to be the Perron

Regularisation of �n at height t . Trivially, for all n, Vol(�′
n) � Vol(�n). As before, we may

suppose that there exists a C0,1, locally strictly convex, immersed hypersurface, �′∞ towards
which (�′

n)n∈N converges. We view �′∞ as the Perron Regularisation of �∞.
Trivially, �′∞ lies below �∞. We now show that �′∞ = �∞. Indeed, suppose the contrary,

then �′∞ lies strictly below �∞ at at least one point, and so:

Vol(�′∞) < Vol(�∞).

However, for all n, �′
n is an element of F , and so, by definition of V0.

V0 � Lim
n→∞ Vol(�′

n) = Vol(�′∞).

Thus:

Vol(�∞) = Lim
n→∞ Vol(�n) = V0 � Vol(�′∞).

This is absurd, and the assertion follows.
Finally, by Theorem 3.6, the portion of (�′

n)n∈N lying above 
n,t converges in the
C∞

loc sense to the portion of �∞ lying above 
∞,t , which is a non-trivial neighbour-
hood of p. It follows that �∞ is smooth at p and that Rθ (�∞) = r near p. Since
p ∈ �∞ is arbitrary, we conclude that �∞ is smooth and Rθ (�∞) = r everywhere.
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The result now follows for θ > (n − 1)π/2 when the quotient Möbius manifold is com-
pact.

Step 3: The Case When θ = (n − 1)π/2: Suppose now that θ = (n − 1)π/2. Let
(θn)n∈N ∈](n − 1)π/2, nπ/2[ be a decreasing sequence converging towards θ . Suppose
moreover, that for all n:

r > tan−1(θn/n).

For all n, let �n be the immersed hypersurface such that:

Rθn (�n) = r.

For all n, let Un be the open convex set lying between ∂0E and �n . For all d > 0, let Md

be the level hypersurface at distance d from ∂0E . By Lemma 3.12, there exists D > 0 such
that, for all n, and for all d � D, Rθn (Md) is not greater than r . It follows by the Geometric
Maximum Principal that, for all n, �n lies below MD . Thus, by compactness of the family of
convex sets, there exists a convex set U∞, lying below MD to which (Un)n∈N subconverges
in the Haussdorf sense.

Let V be the unit tangent vector field to the vertical foliation of E . For all n, since �n is
a graph over ∂0E , if Nn is the outward pointing unit normal vector to �n , then:

〈V, Nn〉 > 0.

Taking limits, if N∞ is a supporting normal to U∞, then:

〈V, Nn〉 � 0.

By Theorem 3.7, the sequence (�n) can only degenerate by converging towards a complete
geodesic. If this happens, then the above condition on the supporting normal to U∞ implies
one of two possibilities:

(i) either this geodesic is vertical, which is impossible, since U∞ lies below MD ;
(ii) or this geodesic coincides with ∂0E , which is excluded by the hypotheses on E .

We thus conclude that �n never degenerates. It follows that �∞ := U∞ is smooth. Moreover,
as before, it is always transverse to V and is therefore a graph over ∂0E which has constant
θ -special Lagrangian curvature equal to r . The concludes the proof when the quotient Möbius
manifold is compact.

Step 4: The Non-Compact Case: To conclude, we outline the proof in the case when the
quotient Möbius manifold is not compact. Let (Un)n∈N be an exhaustion of ∂0E by relatively
compact open sets. For each n, we verify that the Perron method preserves graphs over Un ,
and thus, for all n, we obtain a smooth graph over Un of constant special Lagrangian cur-
vature. Moreover, using the Geometric Maximum Principal, we show that these graphs are
uniformly bounded, and thus subconverge to a smooth graph over the whole of ∂0E which
has the desired properties. The general result now follows. �
Proof of Theorem 1.1 This is the union of Lemmata 4.3 and 4.5. �
Proof of Theorem 1.2 Using Lemma 4.1, these hypersurfaces form a smooth family. More-
over, we can show that the derivative of ir,θ with respect to r is strictly negative. Thus, if
r ′ < r are close, then �r,θ lies strictly below �r ′,θ . It follows that this family defines a folia-
tion. By Lemma 3.16, (�r,θ ) converges to ∂E in the Haussdorf sense as r tends to +∞. Since
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this concerns the convergence of convex functions, it automatically also implies convergence
of the spaces of supporting hyperplanes.

Finally, by Corollary 3.15 and the Geometric Maximum Principle (Lemma 3.11), the
distance of �r,θ from ∂0E is at least R, where:

tanh(R) = tan(θ − (n − 1)π/2)

r
.

Let R̂θ be the maximal value of R which is obtained when r = tan(θ/n):

tanh(R̂θ ) = tan(θ − (n − 1)π/2)

tan(θ/n)
.

This yields a lower bound for the furthest extent of the foliation for each θ . Since (θ − (n −1)

π/2)(θ/n) converges to 1 as θ converges to nπ/2, R̂θ converges to ∞ as θ converges to
nπ/2 and the result follows. �
Proof of Theorem 1.4 This follows from uniqueness and Lemma 4.1. �
Proof of Theorem 1.8 Let M̃ be the universal cover of M . For all n ∈ N ∪ {0}, let ı̂n : M̃ →
H

n+1 be the equivariant convex immersion corresponding to N∂0E(ϕn). By definition of
C0,α Cheeger/Gromov convergence for immersions, it suffices to show that, up to repara-
metrisation, (ı̂n)n∈N converges to ı̂0 in the C0,α sense for all α.

Choose θ ∈](n − 1)π/2, nπ/2[ and r > tan−1(θ/n). For all n ∈ N ∪ {0}, let ir,n : M̃ →
H

n+1 be the unique equivariant immersion of constant θ -special Lagrangian curvature equal
to r which projects asymptotically to ϕn .

For all n ∈ N ∪ {0}, we consider ir,n as an immersed submanifold in E(ϕn) which is a
graph over ∂0E(ϕn). Define in such that, for p ∈ M̃, in(p) is the point in ∂0E(ϕn) lying below
ir,n . Let fn : M̃ → [0,∞[ be the function of which ir,n is the graph over in . By definition,
for all p ∈ M̃ :

fn(p) = d(in(p), ir,n(p)).

By convexity, in is a distance decreasing map with respect to the pull back through in,r of
the hyperbolic metric on H

n+1. In particular it is 1-Lipschitz and fn is therefore 2-Lipschitz.
Consequently, up to reparametrisation, (in)n∈N and ( fn)n∈N converge respectively to i0 and
f0 in the C0,α sense.

By Lemma 3.16, there exists ε > 0 such that, for all n:

fn � ε.

Moreover, if Exp denotes the exponential map of H
n+1, then, up to reparametrisation, for all

n ∈ N ∪ {0} and for all p ∈ M̃ :

ı̂n(p) = 1

fn(p)
Exp−1

in(p)(in,r (p)).

Consequently, up to reparametrisation, (ı̂n)n∈N converges to ı̂0 in the C0,α sense for all α,
and the result follows. �
Proof of Theorem 1.9 We continue to use the same notation as in the proof of Theorem 1.8.
By definition of C0,α Cheeger/Gromov convergence, to prove the first assertion, it suffices
to show that, up to reparametrisation (gK P (ϕn))n∈N converges to gK P (ϕ0) in the C0,α sense
for all α.
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For all n ∈ N ∪ {0}, let Hn(p) be the hyperspace orthogonal to ı̂n(p) in Tin(p)H
n+1, let

gn(p) be the restriction of the hyperbolic metric to Hn(p) and let πn(p) be the orthogonal
projection from Tpir,n(M̃) onto Hn(p). By Theorem 1.8, up to reparametrisation, (Hn)n∈N

converges to H0 in the C0,α sense for all α, and thus (πn)n∈N also converges to π0 in the
C0,α sense for all α. However, for all n ∈ N ∪ {0}, up to reparametrisation:

gK P (ϕn) = π∗
n gn .

It follows that (gK P (ϕn))n∈N converges to gK P (ϕ0) in the C0,α sense for all α, and the first
assertion follows. Continuity of D, V and I follows immediately.

Finally, let ϕ be an FCS over M . Choose θ ∈ ](n − 1)π/2, nπ/2[ and r > tan−1(θ/n).
Let ir (ϕ) denote the unique equivariant immersion of constant θ -special Lagrangian curva-
ture equal to r which projects asymptotically to ϕ. By Lemma 4.2, up to reparametrisation
ir (ϕ)∗g and gK P are uniformly equivalent over the space of Flat Conformal Structures over
M . The properness of (D, I ) and (V, I ) now follows from Theorem 3.6 and classical results
concerning the compactness of spaces of immersed submanifolds. �
4.4 Quasi-Fuchsian manifolds

Quasi-Fuchsian manifolds provide an interesting special case. For all m, let H
m be m-dimen-

sional hyperbolic space. Let M be a compact n-dimensional, hyperbolic manifold. We view
π1(M) as a subgroup 	 of Isom(Hn).

We denote by Rep(Hn, 	) the space of pairs (ϕ, α), where:

(i) α : 	 → Isom(Hn+1) is a properly discontinous representation of 	 in Isom(Hn+1),
and

(ii) ϕ : ∂∞H
n → ∂∞H

n+1 is an injective, continuous mapping which is equivariant with
respect to α.

The set Rep(Hn, 	) is a subset of the set of continuous mappings from ∂∞H
n ∪	 into

∂∞H
n+1 ∪ Isom(Hn+1). We furnish this set with the topology of local uniform convergence.

For all n, H
n embeds totally geodesically into H

n+1. This induces a homomorphism α0 :
PSO(n, 1) → PSO(n + 1, 1) and an injective continuous mapping ϕ0 : ∂∞H

n → ∂∞H
n+1

which is equivariant with respect to α0. The connected component of Rep(Hn, 	) which
contains (ϕ0, α0) is called the quasi-Fuchsian component. The pair (ϕ, α) is then said to be
quasi-Fuchsian if and only if it belongs to the quasi-Fuchsian component.

Let (ϕ, α) be quasi-Fuchsian. Since α(	) is properly discontinuous, it defines a quotient
manifold M̂α = H

n+1/α(	). When α = α0, we call this manifold the extension of M . In
the sequel, we identify a quasi-Fuchsian pair and its quotient manifold, and we say that a
manifold is quasi-Fuchsian if and only if it is the quotient manifold of a quasi-Fuchsian
pair. In this case it may be isotoped to the extension of a compact, hyperbolic manifold.

Let (ϕ, α) be quasi-Fuchsian. The image of ∂∞H
n under the action of ϕ divides ∂∞H

n+1

into two open, simply connected, connected components. The group α(	) acts properly dis-
continuously on each of these connected components. The quotient of each component is a
Möbius manifold homeomorphic to M , and the union of these two quotients forms the ideal
boundary of M̂α .

Let K be the convex hull in H
n+1 of ϕ(∂∞H

n). This is the intersection of all closed sets
with totally geodesic boundary whose ideal boundary does not intersect ϕ(∂∞H

n). This set
is equivariant under the action of α and thus quotients down to a compact, convex subset of
M̂α which we refer to as the Nielsen kernel of M̂α and which we also denote by K . Trivially
M \ K consists of two hyperbolic ends arising from FCSs.
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Let M be a quasi-Fuchsian manifold, let K be its Nielsen kernel and let D be the diameter
of K . Let E be one of the connected components of M \ K . Let θ ∈ [(n − 1)π/2, nπ/2[
be an angle. By Theorem 1.1, there exists a family (�r )r∈]tan(θ/n),∞[ of compact, convex,
immersed hypersurfaces in E such that, for all r :

(i) [�r ] is the fundamental class of E and
(ii) Rθ (�r ) = r .

Moreover, this family foliates a neighbourhood of ∂K ∩ E . We show that this foliation covers
the whole of E :

Lemma 4.6 (�r )r∈]tan(θ/n),+∞[ foliates the whole of E and �r → ∂∞E in the Hausdorff
sense as r → tan(θ/n).

Proof Let K ′
0 be the component of ∂K which does not intersect E (i.e. K ′

0 is the boundary
component of K lying on the other side of K from E). For all d > 0, let K ′

d be the level
hypersurface in E ∪ K at a distance of d from K ′

0. As in Corollary 3.13, for all d > 0, the
θ -special Lagrangian curvature of Kd is at most tan(θ/n)/tanh(d) in the weak sense.

For all r , since �r = (S, ir ) is compact, there exists a point p ∈ S such that d(ir (p), K ′
0)

is minimised. Let d be the distance of ir (p) from K ′
0. � is an exterior tangent to Kd at p. By

the geometric maximum principal:

d(ir (p), K ′
0) � arctanh(r−1tan(θ/n)) − D.

The result now follows. �
The proof of Theorem 1.3 follows immediately:

Proof of Theorem 1.3 This is the union of Theorem 1.1 and Lemma 4.6. �

A Appendix: On a result of kamishima

An earlier revision of this paper relied on a result of Kamishima (Theorem B of [9]) concern-
ing FCSs whose developing maps are not surjective. We discovered that the Kulkarni-Pinkall
metric may be used to provide a relatively short proof of this result, which we thus include
here.

Let 	 be a subgroup of Isom(Hn). The limit set of 	, L(	), is the set of all limit points
of sequences of the form (γn(p))n∈N where p ∈ ∂∞H

n and (γn)n∈N ∈ 	. By definition, this
is a closed set. We recall the following important lemma (see, for example [9]):

Lemma A.1 (Chen and Greenberg, [4]) Let C be a closed subset of ∂∞H
n which contains

more than one point and is invariant under 	, then L(	) ⊆ C.

This yields the following result of Kamishima:

Theorem A.2 (Kamishima [9]) Let M be a closed conformally flat manifold of dimension
at least 3. If the developing map is not surjective, then it is a covering map.

Proof Let M̃ be the universal cover of M , let ϕ : M̃ → ∂∞H
n+1 be its developing map

and let θ : π1(M) → Isom(Hn+1) be its holonomy. We consider the two cases where the
complement of ϕ(M̃) contains only one point and where it contains more than one point
seperately. Suppose first that ϕ(M̃)c contains only one point. This point is invariant under
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the action of 	 := θ(π1(M)). 	 is thus conjugate to a subgroup of the symmetry group of
Euclidean space. The result then follows by [6]. Suppose now that ϕ(M̃)c contains more than
one point. Since it is closed and invariant under the action of 	, it follows from Lemma A.1
that L(	) ⊆ ϕ(M̃c). In other words, ϕ(M̃) ⊆ L(	)c. Let gK P be the Kulkarni/Pinkall metric
of L(	)c [13]. Since L(	) contains at least two points, this metric is non-trivial. Moreover,
it is complete and invariant under the action of 	. Thus ϕ∗gK P is invariant under π1(M).
Since M is compact, ϕ∗gK P defines a complete metric over M̃ . ϕ is thus a local isometry
between complete manifolds, and the result now follows. �
Corollary A.3 Let M be a closed conformally flat manifold of dimension at least 3.
If the developing map ϕ is not surjective, then L(	) = ∂ϕ(M̃).
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