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Abstract Let M”" be an n-dimensional complete noncompact oriented submanifold with
finite total curvature, i.e., [, (|A]> — n|H[*)? < oo, in an (n + p)-dimensional simply
connected space form N7 (c) of constant curvature c, where |H| and |A|? are the mean
curvature and the squared length of the second fundamental form of M, respectively. We
prove that if M satisfies one of the following: (i) n > 3,¢ = 0 and fM |[H|" < o0; (i)
n>5c=—land |H| <1— %; (iii)n > 3, ¢ = 1 and | H| is bounded, then the dimension
of the space of L? harmonic 1-forms on M is finite. Moreover, in the case of (i) or (ii), M
must have finitely many ends.
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1 Introduction

In [1], Cao-Shen-Zhu proved that a complete immersed stable minimal hypersurface M" of
R"*! with n > 3 must have only one end. Its strategy was to utilize a result of Schoen-Yau
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asserting that a complete stable minimal hypersurface of R” * ! can not admit a non-constant
harmonic function with finite Dirichlet integral [11]. Assuming that M" has more than one
end, they constructed a non-constant harmonic function with finite Dirichlet integral in [1].
According to the work of Li-Tam [9], Li-Wang modified this proof to show that each end
of a complete immersed minimal submanifold must be non-parabolic in [10]. Due to this
connection with harmonic functions, this allows one to estimate the number of ends of the
above hypersurface by estimating the dimension of the space of bounded harmonic functions
with finite Dirichlet integral. They proved that if M has finite index, then the dimension of
the space of L? harmonic 1-forms M is finite, and M must have finitely many ends [10].
Let M" be an n-dimensional complete oriented submanifold isometrically immersed in an
(n + p)-dimensional complete simply connected Riemannian manifold N* * 7. Fix a point
x € M we choose a local orthonormal frame {ey, ez, ..., e, 1 p} such that {e}, ez, ..., e,}
are tangent fields. Foreacho, n+1 < o < n + p, define alinearmap Ay : TxM — T, M by

(AuX.Y) = (VxY, eq),
where X, Y are tangent fields and V denotes the Riemannian connection on N" + 7. We
denote by H the mean curvature vector of M, i.e.,

n+p

1
H=— Z (TrAy)ey.

a=n+1

Foreacha,n + 1 <« < n + p, define a linear map ¢, : TxM — Ty M by
(b X, Y) = (X, Y)(H, eq) — (Aa X, Y),
and a bilinear map ¢y : Ty M x TyM — T.M* by

n+p

P Y) = D ($uX, Ve

a=n+1
It is easy to see that the tensor ¢ is traceless. Denote by A the second fundamental form
of M. We have
AP = 19 + nlHP.

If N"* P is a nonpositive curved manifold, then by Hoffman and Spruck’s Sobolev
inequality [2,6], there exists a positive constant Cy depending only on the dimension n

such that
(/ 1 )
M

We say that M has finite total curvature if

/M 91" < oo.

Let H'(L%(M)) denote the space of L? harmonic 1-forms on M and A denote the Lapla-
cian on M.
When M"(n > 3) is an oriented stable complete minimal hypersurface in R” * !, Shen
and Zhu [13] showed that if
/ |Al" < oo,
M

n—1

SCo/M(IVfI-FanllfI), Vf e Co(M). ey
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then M must be a hyperplane. When M" (n > 3) is a complete oriented minimal hypersurface
in R” * !, Yun proved that if

" _ 2 n
/|A| (2 ) ,
o = DG

then there are no L2 harmonic 1-forms on M, and M has only one end in [16]. The authors

generalized Yun’s result to the case where M is a complete noncompact oriented submanifold

in space forms [5]. In this paper, using arguments due to Li-Wang and Yun, we study a com-

plete noncompact oriented submanifold with finite total curvature in space forms. Throughout

this article, we always assume that M is a complete, non-compact, connected Riemannian

manifold without boundary. In this case, we will simply say that M is a complete manifold.
Our main results in this paper are stated as follows.

Theorem 1.1 Let M" (n > 3) be an oriented complete submanifold with finite total curvature

in R" TP If
/ |H|" < oo,
M

then dimH'(L*(M)) < oo. In particular, M must have finitely many ends.

From the main theorem in [12], we see that if M"(rn > 3) is an oriented complete sub-
manifold with parallel mean curvature and finite total curvature in R" ™ 7, then M must be
minimal. By Theorem 1.1, we have

Corollary 1.2 Let M"(n > 3) be an oriented complete submanifold with parallel mean
curvature and finite total curvature in R" * P. Then dimH! (LZ(M)) < 00. In particular, M
must have finitely many ends.

Theorem 1.3 Let M" (n > 5) be an oriented complete submanifold with finite total curvature

in the hyperbolic space H" * P. If

2
|Hl <1—- —

v
then dimH'(L*(M)) < oo, and M must have finitely many ends.

Theorem 1.4 Let M"(n > 3) be an oriented complete submanifold with bounded mean
curvature | H| and finite total curvature in a unit sphere S* * 7. Then dimHY(L3(M)) < oo,
and the number of non-parabolic ends of M is at most finitely many.

2 Preliminary

Let M"(n > 3) be an oriented complete immersed submanifold with mean curvature |H| in
a complete simply connected N”* T ” of nonpositive sectional curvature.

2 — 1)
If |H| < a < oo, putting f =g -2 withg e Cé(M) in(1), we get

Ty
(/ |g|nan2) Sggn ;;26‘0(/ Vgl +noz/g2). 2)

If |H| € L" (M), then there exsits a compact subset D C M satisfying

1
H n < —.
| H |l LM\ D) mCo
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Thus

1

1 n—1
nco/ HIIf| < nco(/ |H|”) (/ |f|#)
M\D M\D M\D

n—1

1 / n n
<3 IfI"*I)
2( M\D

Substituting the above inequality into (1), we have

n—

1
(/ Iflﬁ) SZCO/ IVfl. VfeCyM\D). 3)
M\D M\D
Putting f = g =7 with g € CL(M\D) in(3), we obtain
2n n n —
|g|ﬁ) < 16702/ IVgl*. )
(/M\D n —22"° Jup

In this paper, we will investigate the number of ends of submanifolds. Now we state some
definitions and theorems.

Definition 2.1 Let D C M be a compact subset of M. An end E of M with respect to D is
a connected unbounded component of M\ D. When we say that E is an end, it is implicitly
assumed that E is an end with respect to some compact subset D C M.

Definition 2.2 ([8]) A manifold is said to be parabolic if it does not admit a positive Green’s
function. Conversely, a nonparabolic manifold is one which admits a positive Green’s func-
tion. An end E of a manifold is said to be nonparabolic if it admits a positive Green’s function
with Neumann boundary condition on 9 E. Otherwise, it is said to be parabolic.

Theorem 2.3 ([10]) Let M be a complete manifold. Let H% (M) denote the space of bounded
harmonic functions with finite Dirichlet integral. Then the number of non-parabolic ends of
M is at most the dimension ofHOD (M).

Theorem 2.4 ([10]) Let E be an end of a complete manifold. Suppose for some v > 1, E
satisfies a Sobolev type inequality of the form

(/ |f|2“); < C/ IVF?, YfeChE).
E E

then E must either have finite volume or be non-parabolic.

Let |H| € L"(M). By the definition of end, every end E of M is contained in M\ D, then
from (3), it follows that

n—1
(/ |f|ﬁ) §2C0/ IVfl. Yf e CUE). )
E E

For every geodesic ball B, (r) of E and sufficiently small € > 0, we consider the Lipschitz
function

1, x € By(r),
Jex) = J1- éd(x, 0B,(r)), x € E\B,(r),d(x,dB,(p)) <e,
0, otherwise.
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By using the regularization argument, we have

(1)

n—1

(volBp(r)) ™ < 2CovoldB,(r).

n—1

< 2C0/ IV fel.
E

This implies that

Integrating the above, we get
vol B (r) > Cyr'.

Hence the volume of every end E of M is infinite, and the volume of M is also infi-
nite. By Theorem 2.4 and (4), every end of M is non-parabolic, and M is non-parabolic too.
Furthermore, according to Theorem 2.3, the number of its ends is no more than di mH% (M).

3 Proof of the theorems

For each w € H'(L?(M)), it is the well-known Bochner formula that
Alw> = 2(|Vo|> + Ric(w, »)). (6)
On the other hand, we have

Alol* = 2(jolAlw| + Vo). (7

From(6),(7) and the generalized Kato’s inequality —~|V|w|[* < |Vo|? in [15], we
obtain

lw|Alw| > Ric(w, w) + |V]wl|[>. ®)

n— 1

In [14], Shiohama and Xu proved that the following estimate holds for Ricci curvature
of a submanifold M in the simply connected space form N” ™ ”(c) with constant sectional
curvature ¢ :

. n— 1 nn — 2) 2
Ric > ne + 2n|HP — 7 |H|VIA?2 — n|H?2 — |A .
. ( HI = S =S IHIVIAR = nlHE = |4

Applying the above inequality to the traceless second fundamental form |¢| and using the
identity |A|> = |$|> + n|H|?, we get the following inequality:

Ric> (@ — De + (n — DIHP — &= 2)@|¢||H| G —n1)|¢|2.(9)
Substituting (8) into (9), we obtain
0lAlw] 2 ——|Viol? + (1 = Delof?
_[(n - 2)@@”1% Lo —nl)|¢>|2 - 1)|H|2} ol
(10)
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Proof of Theorem 1.1 By the assumption fM |H|" < oo, we choose B, (r) such that the
inequality (4) holds on M\B,(r). Let o € H'(L?>(M)) and n € CL(M\B,(r)). Multiply-
ing (10) by »? and integrating by parts over M\B,(r), we get

1
0< / (n2|w|A|w| - —nzwmnz)
M\B,(r) n—1

n — 2WWnn — 1 H n — 1 2
+S/ nz(( wWn( el |+( el= (n—1)|H|2) ol
M\B,(r) n n
n n—1
= —2/ n(Vn, Viel)o| — —— N |Viw|* + —— 11wl
M\B,(r) n—1JmB,w noJM\B, ()
n — 2)/nin — 1)
+ / Bl H I |wl* — (n — 1) |H*n*|o|*
n M\B,(r) M\B)(r)
n n
< —2/ 2V, Vi) ol / PVl + 7/ Pl
M\B,(r) n — 1J)m\B,r 4 Jm\B,(r)
(11)
On the other hand, it follows from (4) and Holder inequality that
2 n—2
n 27’1 n
/ Plollol < / 61" / (o722
M\B,(r) M\B,(r) M\B,(r)
(n — 1)? 2 2
<16 = D yc / (Vi)
(n —2)? 0 M\B,(r)
(n — 1)? 2/ Qo2 L 2 2
=16—-—F5¢0C lw|*|Vnl® 4+ 17| Viwl|
n—2277° M\Bp(r)( )
n -1
+16 5$0Ch 2n{Vn, Vi|w|)|wl, (12)
( 2) M\B, ()
2
where ¢g = (fM\Bp(r) |¢|”) " Substituting (12) into (11), we have
— 1?2
0= 2(4n(,17)2¢0C§ - 1)/ 1V, Viol) o
(n —2) M\B,(r)
(n — 1)2 2 n )/ 2 2
+\4n—"500C5 — —— n°|Viwl|
( n—22""" n—-1 M\B,(r)
n — 1)2
+4n%¢0c§/ lw|?| V|2, (13)
(n —2) M\B,(r)

Using the Schwarz inequality, we get

2

1
/ 0V, Vo))l fe/ n2|V|w||2+*/ WP IVaP. (14)
M\B(r) M\By(r) € M\B(r)
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From (13) and (14), we obtain

1 dn(n — D2¢oC%|  4n(n — 1)2¢yC?

- P0Co | 4 PN [ e
€ n — 2 (n — 2 M\B,(r)

4n(n — 1)*¢oC}
> n B n(n ) (1250 0\ _ 1 ¢ / n2|V|a)||2.
n—1 (n —2) M\B,(r)

15)
We note that the condition f y |#1" < ooimplies that there is a decreasing positive function
€(r) satisfying lim,_, y 5 €(r) = 0 such that

/ 61" < €(r)
M\B(r)

for r large enough. Thus we can choose r = rgp > 0 and € = €p > 0 such that(15) is written
as follows:

dn(n — 1)2¢oC?
(- 27

[ pweirze [ v, (16)
M\B)(ro) M\B)(ro)
where positive constant C| depends only on n. Putting & = |w| in(16), we have
/ VA < cl/ [V |*h?. (17)
M\Bp(r()) M\Bp(r())
Applying (4) to nh, we get
n=—2 )
n " - l
/ ()2 < 16%@3/ |Vnh!|?
M\Bp(r()) (n - 2) M\Bp(r())
n — 1)2
< 32%05/ M?|VR> + |V *h?).
(n —2) M\B,(ro)
Combining with (17), we obtain
2) 2,2
[ am) e ()
M\B)(ro) M\B)(ro)

where positive constant C; depends only on n. For r > rg + 1, let us choose the function

0, x € B,(ro),
d(x,p)—ro, x € Bp@ro + D\B,(rp),
nx)y=11 x € Bp(r)\B,(ro + 1),
T odp)  x e B,Q2r\By(r),
0, x € M\B,(2r).

By using the regularization argument, applying 7 to (18), we have

n—2

2}1 n
/ hi-2 < c2/ h2+c2r*2/ n.
By (r)\Bp(ro + 1) B (ro + D\Bp(ro) B, (2r)\Bp(r)
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Since h € L%*(M), letting r — o0, the second term in the above tends to 0. Hence
we have

n—2

/ hits <G, / 2. (19)
M\B,(ro + 1) By(ro + D\B(ro)

By Holder inequality, we get

n—2

2 2n "
/ h? <woln (By(ro + 2)) / hn—2
Bp(ro + 2\Bp(ro + 1) Bp(ro + 2)\Bp(ro + 1)

Together with (19), we conclude that there exists a positive constant C3 depending only on n
and vol(B,(ro + 2)) such that

/ h* < C3 / h’. (20)
Bp(ro +2) Bp(ro + 1)

2
Leta = | &= Z)V"(Z — DIglH] | (= 7,11”"” — (n — 1)|H|?|. From(10), we see that

1
hAh > —ah® + 71|Vh|2. 1)
n —
Forn € C& (By (1)), multiplying (21) by nzh”’z and integrate by parts over B, (1), we get

1 1
(p—l—e+ )/ n*h? = 2|Vh|? 5/ (oszr*IVnIz) h?,(22)
n—1)Jp.m By (1) €

for any real number € > 0 and p > 2. Itis easy to see that

/ v (r;h§)|2 < 3(5 +e)/ nzh”’2|Vh|2+(1+£)/ \Vn2h?.
B.(1) 21\2 B.(1) 2¢/ JB.(1

(23)

Substituting (22) into (23) and taking € = %, we obtain

[ v () E=pes [ o+ wn, 24
By (1) By (1)

where Cy is a positive constant depending only on n and supg () o.
On the other hand, applying (1) to f? with f € C(l) (Bx (1)), we get

n—1
2n n
(/ f) sco/ QIFIVFI+ 1HIF)
B, (1) By (1)
1 1
2 2 2 2 . 2
SZCO/ f / vi2) +cosw i [ f
B (1) By (1) B (1) By (1)
1 1 1
2 2 2
) G ()
By (1) By (1) By (1) B, (1)
1 2n % 2%
SZCOUOIZ”(Bx(l))/ Fit / v/l
B, (1) B (1)

.\ L\ N
+ Covol > (B (1)) sup |H]| fr= f
By (1) By (1) By (1)
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From the above inequality, we have

n—1
2n n 2 2
(/ f) SCS/ (VA + £, 25)
By (1) By (1)

where positive constant Cs depends only on 1, vol (B, (1)) and supg_(;y |H|. Applying(25)

3
tonhz, we get

n—1
( / (nzh")ﬁ) < Cs / (17 (n08) P2+ 2n7). (26)
B, (1) B, (1)

Substituting (24) into (26), we obtain

-1

(/ (WP)ﬁ) < pCs / (V> + n?Hh?, 27)
B (1) By (1)

where positive constant C¢ depends only on n, vol (B (1)), supp (1)« and supg_(;y | H|. Let
Pk = % and px = % + ﬁ, fork =0,1,2,.... We choose ny € Ci°(Bx(1)) such

that gz = 1 on By(px 4 1) and [Vn| < 2%+ 3. Replacing p and 5 in(27) by px and 7y,
respectively, we then obtain

i N L
(/ hpk+1)pk+l 5(2C6pk4k+3)pk (/ h[’k)pk. (28)
By (pk + 1) By (pr)

Applying the Moser iteration to the function / via(28), we conclude that
pw=c [ w 29)
By (1)

where C7 is a positive constant depending only onn, vol (B (1)), supg () @ andsupg 1y |H|.
In particular, if x € B, (r9 + 1) has the property that

hz(x) = sup h?,
Bp(ro + 1)

it follows from (29) that

sup h? < C7/ hZ.
Bp(ro + 1) Bp(ro +2)

This together with (20) implies that there exists a positive constant Cg depending only on
n,vol(By(ro + 2)),8Upg, (, + 2) @ and supp (4 2) [H ], such that

sup  h? < Cg / h?. (30)
Bp(ro + 1) Bp(ro + 1)

We are now in a position to prove that H1(L%(M)) is of finite dimensional. It suffices
to show that any finite dimensional subspace . of H L(L2(M)) must have its dimension
bounded by a fixed constant. Let / be the dimension of .. Let us consider the bilinear form
defined on . given by

/ (@,0).
Bp(ro + 1)
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Note that if

/ ]2 =0
Bp(ro + 1)

for some w € .7, then by the unique continuation property  identically equals to 0. This
implies that the bilinear form is an inner product defined on ..
According to Lemma 11 of [7], there exists an @ € .& such that

1/ lw|* < vol(B,(ro + 1))(min{n,1}) sup |w|*.
Bp(ro + 1) Bp(ro + 1)
Combining with (30) we conclude that

[ <Cy

with positive constant C9 depending only on n, vol(B,(ro + 2)), sup By(ro +2) @ and
SUpg,(ry + 2) | H|. Hence dimH'(L>*(M)) < oc. Since the number of its ends is no more

than dimH, (M) and dim™M% (M) < dimH"(L*(M)) + 1 in Sect.2, M must have finitely
many ends. o

Lemma 3.1 ([4]) Let M" be an oriented complete submanifold in H" * P with bounded

mean curvature |H|. If |H| < « for some constant 0 < a < 1, then
- D21 —a)?
iy 2 = V0

Theorem 3.2 Let M" (n > 5) be an oriented complete minimal submanifold with finite total
curvature in H* 7. Then dim H' (L*(M)) < oo, and M must have finitely many ends.

Proof of Theorem 1.1 Let w € H' (L?(M)) and 5 € Cé (M\B(r)). Multiplying (10) by n?
and integrating by parts over M\ B, (r), we get the following inequality

n
0< —2/ 0V, VD] - —/ Vol
M\B,(r) n—1Jy

n—1
+ / PIARoR + (n — 1) Pl 31)
n M\B)(r) M\B)(r)

By Lemma3.1, we have

4 2
< [V(nlw)|
M\B,(r) n = 1.J)ma,¢

4
< / (loP?IVal* + n*|V]wl?)
n — 1Ju\B,r

4
+ / 2n{Vn, Vi|w|)|w|.
n = 1./)ms,¢)

Substituting the above inequality into (31), using the same argument as the proof of (15),
we have

/\
N}
I
—_
~
=
_»
g
3]
A

_ -1 = - 17
(=t~ 48210 a0C)) — 1225 — 42215 40CZle) [y, IV I

n—1 n(n — 2)2 n—1 nn — 2)2

1\n—>5 (n—1)3 2 (n—1)> 2 4 2 2
< (1112 - 48205 0GR + 48— 05 403 + 721 Sy i l0PI VP,
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where Ag = fM\Bp(r) |A|". Similar to the proof of (20), we get

/ 1 < Cio / ", (32)
By(ro + 2) By(ro + 1)

where Cyg is a positive constant depending only on n and vol (B (ro + 2)).
Similar to the proof of (24), we obtain

L
/ IV (nh) 12 < Pcn/ (n + VA, (33)
By (1) By (1)
where positive constant C1; depends only on n and supp () |A|%. Applying(2) to nhg, we
get
e =1
e N n — 2N}
(I°hP)" ) < 4702/ IVnh )P (34)
(/Bxa) (=227 Jp,0
Substituting (33) into (34), we obtain
n—1
(nh? = T 2, 2up
n°h") =prCi2 AVnl= +n7)h", (35)
By (1) B, (1)
where Cj is a positive constant depending only on n and supp |A]%. Let py = %

and o = % + ﬂlﬁ, fork =0,1,2,.... We choose iy € C§°(B,(1)) such that n; = 1 on

By (pr + 1) and |Vng| < 2k +3, Replacing p and 5 in(35) by pr and ng, respectively, we
then obtain

1 N 1
(/ hl’k+l)1k+l < (2C12Pk4k+3) P (/ hpk) " (36)
Bx(pk + 1) By (o)

Applying the Moser iteration to the function & via(36), we conclude that

W(x) < clg/ ",
B, (1)

where positive constant Cy3 depends only on n and supp () |A|. By the same argument as

the proof of Theorem 1.1, we show that dimH'(L*(M)) < oo and M must have finitely
many ends. O

Proof of Theorem 1.3 Using an analogous argument of the proof of Theorem 3.2, we obtain
dimHY(LE(M)) < oo. It is easy to see that A1 (M) > 0. By Corollary 2.1 in [3], the volume
of every end of M is infinite. According to Theorems 2.3 and 2.4, M must have finitely many
ends. O

Proof of Theorem 1.4 We choose a real number « such that | H| < «. For isometric immer-
sion M" — "+ P s RP P+ 1 we have

(/M|f|ff”z) " sSE” 2)2Co (/ V£ + 2@ +1>/ |f|2) v/ e chm.

By using the same argument as the proof of Theorem 3.2, we complete the proof of The-
orem 1.4. O
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