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Abstract A curvature-type tensor invariant called para contact (pc) conformal curvature is
defined on a paracontact manifold. It is shown that a paracontact manifold is locally paracon-
tact conformal to the hyperbolic Heisenberg group or to a hyperquadric of neutral signature
iff the pc conformal curvature vanishes. In the three dimensional case the corresponding
result is achieved through employing a certain symmetric (0,2) tensor. The well known result
of Cartan–Chern–Moser giving necessary and sufficient condition a CR-structure to be CR
equivalent to a hyperquadric in C

n+1 is presented in-line with the paracontact case. An
explicit formula for the regular part of a solution to the sub-ultrahyperbolic Yamabe equation
on the hyperbolic Heisenberg group is shown.
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1 Introduction

A paracontact structure on a real (2n+1)-dimensional manifold M is a codimension one
distribution H and a paracomplex structure I on H, i.e. I 2 = id and the ± eigen-
distributions H

± have equal dimension. Locally, H is the kernel of a 1-form η, H = K er η.
A paracontact Hermitian structure is a paracontact structure with the additional assumption
that η is a para Hermitian contact form in the sense that we have a non-degenerate pseudo-
Riemannian metric g, which is defined on H, and compatible with η and I, dη(X, Y )=
2g(I X, Y ), g(I X, I Y )= − g(X, Y ), X, Y ∈ H. The signature of g on H is necessarily of
(signature) type (n,n). A para contact structure is said to be integrable if the para complex
structure I on H is formally integrable, i.e., [H±,H±] ⊂ H

±. A para-contact manifold with
an integrable para-contact structure is called a para CR-manifold

The 1-form η is determined up to a conformal factor and hence H become equipped with
a conformal class [g] of neutral Riemannian metrics of signature (n,n). Transformations pre-
serving a given para contact hermitian structure η, i.e. η̄ = µη for a non-vanishing smooth
function µ are called para contact conformal (pc conformal for short) transformations [19].

A basic example is provided by a para-Sasakian manifold, which can be defined as a
(2n + 1)-dimensional Riemannian manifold whose metric cone is a para-Kähler manifold
[1]. It was shown in [19] that the torsion endomorphism of the canonical connection is the
obstruction for a given integrable para contact hermitian structure to be locally para-Sasakian,
up to a multiplication with a constant factor.

Any non-degenerate hypersurface in (R2n+2, I, g) considered with the standard flat para-
hermitian structure inherits an integrable para-contact hermitian structure. We consider the
(2n+1)-dimensional Heisenberg group with a left-invariant para-contact hermitian structure
η and call it hyperbolic Heisenberg group, denoted by (G (P), η). We show that in dimension
greater than three the hyperbolic Heisenberg group is the unique example of an integrable
para-contact hermitian structure with flat canonical connection. In the three dimensional case
the same statement holds under the additional assumption of vanishing of the torsion tensor.
As a manifold G (P) = R

2n × R with the group law given by (p′′, t ′′) = (p′, t ′) ◦ (p, t) =
(p′ + p, t ′ + t − ∑n

k=1(u
′
kvk − v′

kuk), where p′, p ∈ R
2n with the standard coordi-

nates (u1, v1, . . . , un, vn) and t ′, t ∈ R. Define the ’standard’ para-contact structure by the
left-invariant para-contact form

�̃ = −1

2
dt −

n∑

k=1

(ukdvk − vkduk).

In this paper we find a tensor invariant characterizing locally the integrable para-
contact hermitian structures which are para-contact conformally equivalent to the flat
structure on G (P). To any integrable para-contact hermitian structure we associate a curva-
ture-type tensor W pc defined in terms of the curvature and torsion of the canonical connection
by (5.12), whose form is similar to the Weyl conformal curvature in Riemannian geometry
(see e.g. [6]) and to the Chern-Moser curvature in CR geometry [3]. We call W pc para-
contact conformal curvature or pc conformal curvature. When M is three dimensional, we
define in (5.13) a symmetric (0,2) tensor F on H, which plays a role similar to the Schouten
tensor in a 3-dimensional locally conformally flat Riemannian manifold.

The main purpose of this article is to prove the following two results.
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Theorem 1.1 The pc conformal curvature W pc of an integrable para-contact hermitian
manifold is invariant under para-contact conformal transformations.

Theorem 1.2 Let (M, η) be a 2n + 1 dimensional integrable para-contact hermitian
manifold.

(i) If n > 1 then (M, η) is locally para-contact conformal to the standard flat para-con-
tact hermitian structure on the hyperbolic Heisenberg group G (P) if and only if the
para-contact conformal curvature vanishes, W pc = 0.

(ii) If n = 1 then W pc vanishes identically and (M, η) is locally para-contact conformal
to the standard flat para-contact hermitian structure on the 3-dimensional hyperbolic
Heisenberg group G (P) if and only if the symmetric tensor F vanishes, F = 0.

We define a Cayley transform which establishes a conformal para-contact equivalence
between the standard para-Sasaki structure on the hyperboloid, cf. 4.2,

HS2n+1 = {
(x1, y1, . . . , xn+1, yn+1) : x2

1 + · · ·
+x2

n+1 − y2
1 − · · · − y2

n+1 = 1
} ⊂ R

2n+2 (1.1)

and the standard para-contact hermitian structure on G (P). As a consequence of Theorem 1.2
and the fact that the Cayley transform is a para-contact conformal equivalence between the
hyperboloid and the group G (P), we obtain

Corollary 1.3 Let (M, η) be a 2n + 1 dimensional integrable para-contact hermitian man-
ifold. (M, η) is locally para-contact conformal to the hyperboloid HS2n+1 if and only if
conditions i) or ii) of Theorem 1.2 hold.

Our investigations are close to the classical approach used by Weyl (see e.g. [6]) and
follow the steps of [8], compare with [3] where the Cartan method of equivalence is used.
Recall, that in the CR case the vanishing of the Chern-Moser tensor is a necessary and suf-
ficient condition for a non-degenerate CR manifold M of dimension 2n + 1, n > 1, to be
locally equivalent to a real hyperquadric in C

n+1 of the same signature as M. When M is
three dimensional, the same conclusion can be reached using the Cartan invariant [2]. Both
results can be obtained following the steps of the proof of Theorem 1.2. In particular, we
express the flatness condition for an abstract three-dimensional pseudohermitian structure in
terms of the covariant derivatives of the pseudohermitian scalar and torsion of the Webster
connection.

Let us note that, as observed, the hyperboloid HS2n+1 is always para-contact conformally
flat, while the hyperboloid HS4n+1 considered as an embedded CR submanifold of C

2n+1 is
a degenerate CR manifold.

In the last section we consider the CR-Yamabe equation on a CR manifold of neutral
signature. This leads to the non-linear sub ultra-hyperbolic Eq. (8.1), which coincides with
the Yamabe equation for the considered para CR manifolds. Using this relation we show an
explicit formula for the regular part of solutions to the Yamabe equation.

The paper uses a Webster-like connection, the canonical connection considered in [19]
and the properties of its torsion and curvature described in Sect. 3.
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Convention 1.4 In the first six sections of the paper we use

(a) X, Y, Z ... denote horizontal vector fields, i.e. X, Y, Z ... ∈ H

(b) {e1, . . . , en, I e1, . . . , I en} denotes an adapted orthonormal basis of the horizontal
space H.

(c) The summation convention over repeated vectors from the basis {e1, . . . , e2n} will be
used. For example, for a (0,4)-tensor P we have

P(eb, X, Y, eb) =
n∑

b=1

g(eb, eb)P(eb, X, Y, eb)+
n∑

b=1

g(I eb, I eb)P(I eb, X, Y, I eb).

2 Integrable para-contact manifolds

A para-contact manifold (M2n + 1, η, I, g) is a (2n + 1)-dimensional smooth manifold
equipped with a codimension one distribution H, locally given as the kernel of a 1-form η,
H = K er η and a paracomplex structure I on H. Recall that a paracomplex structure is an
endomorphism I satisfying I 2 = id and the ± eigen-distributions have equal dimension. If
in addition there exists a pseudo-Riemannian metric g defined on H compatible with η and
I in the sense that

g(I X, I Y ) = −g(X, Y ), dη(X, Y ) = 2g(I X, Y ), X, Y ∈ H, (2.1)

we have para contact hermitian manifold. The signature of g restricted to H is necessarily
neutral of type (n, n).

The para-contact Reeb vector field ξ (of length −1) is the dual vector field to η via the
metric g, g(X, ξ) = η(X), η(ξ) = −1 satisfying dη(ξ, .) = 0. The metric g extends to
the metric in the whole manifold by requiring g(ξ, ξ) = −1. In addition, the 1-form η is a
contact form and the fundamental 2-form is defined by

2ω(X, Y ) = 2g(I X, Y ) = dη(X, Y ). (2.2)

The paracomplex structure I on H is formally integrable [19] if the ± eigen-distrubutions
H

± of I in H are formally integrable in the sense that [H±,H±] ∈ H
±. Using the Nijenhuis

tensor N (X, Y ) = [I X, I Y ] + [X, Y ] − I [I X, Y ] − I [X, I Y ], the formal integrability of I
is equivalent to

N (X, Y ) = 0 and [I X, Y ] + [X, I Y ] ∈ H. (2.3)

A para-contact manifold is called para-sasakian if N (X, Y ) = dη(X, Y )ξ .

2.1 The canonical connection

The canonical para-contact connection ∇ on a para-contact hermitian manifold defined in
[19] is similar to the Webster connection in the pseudohermitian case. We summarize the
properties of ∇ on an integrable para-contact hermitian manifold from [19]).

Theorem 2.1 [19] On an integrable para-contact hermitian manifold (M, η, I, g) there
exists a unique linear connection preserving the integrable para-contact hermitian struc-
ture, i.e.

∇ξ = ∇I = ∇η = ∇g = 0 (2.4)
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with torsion tensor T (A, B) = ∇A B − ∇B A − [A, B] given by

T (X, Y ) = −dη(X, Y )ξ = −2ω(X, Y )ξ, T (ξ, X) ∈ H, (2.5)

g(T (ξ, X), Y ) = g(T (ξ, Y ), X) = g(T (ξ, I X), I Y ) = 1

2
Lξ g(X, Y ). (2.6)

It is shown in [19] that the endomorphism T (ξ, .) is the obstruction an integrable
para-contact hermitian manifold to be parasasakian. We denote the symmetric endomor-
phism Tξ : H −→ H by τ and call it the torsion of the integrable para-contact hermitian
manifold. It follows that the torsion τ is completely trace-free [19], i.e.

τ(ea, ea) = τ(ea, I ea) = 0. (2.7)

3 The Bianchi identities

Let R = [∇,∇] − ∇[,] be the curvature of the canonical connection ∇. We shall also denote
with R the corresponding (0,4) tensor defined with the help of the metric g. The Ricci tensor
r , the Ricci 2-form ρ and the pc-scalar curvature Scal of ∇ are defined, respectively, by

r(A, B) = R(ea, A, B, ea), ρ(A, B) = 1

2
R(A, B, ea, I ea),

Scal = r(ea, ea), A, B ∈ �(T M).

Proposition 3.1 Let (M, η, I, g) be an integrable para-contact hermitian manifold. Then:

(i) The curvature of the canonical connection has the properties:

R(X, Y, I Z , I V ) = −R(X, Y, Z , V ),
(3.1)

R(X, Y, Z , V ) = −R(X, Y, V, Z), R(X, Y, Z , ξ) = 0.

R(X, Y, Z , V )+ R(I X, I Y, Z , V )

= 2 [g(X, Z)τ (Y, I V )+ g(Y, V )τ (X, I Z)− g(Y, Z)τ (X, I V )

− g(X, V )τ (Y, I Z)]

+ 2 [ω(X, Z)τ (Y, V )+ ω(Y, V )τ (X, Z)− ω(Y, Z)τ (X, V )

−ω(X, V )τ (Y, Z)] ; (3.2)

R(ξ, X, Y, Z) = (∇Y τ)(Z , X)− (∇Z τ)(Y, X). (3.3)

(ii) The horizontal Ricci tensor is symmetric, r(X, Y ) = r(Y, X) and has the property

r(X, Y )+ r(I X, I Y ) = 4(1 − n)τ (X, I Y ). (3.4)

(iii) The horizontal Ricci 2-from satisfies the relations

2ρ(X, I Y ) = r(X, Y )− r(I X, I Y ) = R(ea, I ea, X, I Y ). (3.5)

(iv) The following differential identity holds

2(∇ea r)(ea, X) = dScal(X). (3.6)

Proof Equation (2.4) implies immediately (3.1). The first Bianchi identity
∑

(A,B,C)

{R(A, B)C − (∇AT )(B,C)− T (T (A, B),C)} = 0, A, B,C ∈ �(T M). (3.7)
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together with (2.5) and (2.6) yield

R(X, Y, Z , V )− R(Z , V, X, Y ) = 2ω(X, Z)τ (Y, V )+ 2ω(Y, V )τ (X, Z)

− 2ω(Y, Z)τ (X, V )− 2ω(X, V )τ (Y, Z). (3.8)

R(ξ, X, Y, Z)− R(Y, Z , ξ, X) = (∇Y τ)(Z , X)− (∇Z τ)(Y, X). (3.9)

Combining (3.1) with (3.8) and (3.9) we obtain (3.2) and (3.3).
When we take the trace of (3.8), use (2.6) and (2.7) we find

r(Y, Z)− r(Z , Y ) = 2ω(ea, Z)τ (Y, ea)+ 2ω(Y, ea)τ (ea, Z)

= −2τ(I Z , Y )+ 2τ(Y, I Z) = 0.

Furthermore, (3.1) and (3.2) imply

r(Y, Z)+ r(I Y, I Z) = R(ea, Y, Z , ea)+ R(I ea, Y, Z , I ea)+ 4(1 − n)τ (Y, I Z)

= 4(1 − n)τ (Y, I Z).

The first Bianchi identity (3.7) together with (2.4) and (2.6) yields

2ρ(X, I Y ) = r(X, Y )− r(I Y, I X)+ 2τ(X, I Y )− 2τ(I Y, X)

= r(X, Y )− r(I X, I Y ).

The second Bianchi identity reads
∑

(A,B,C)

{(∇A R)(B,C, D, E)+ R(T (A, B),C, D, E)} = 0,

A, B,C, D ∈ �(TM). (3.10)

A suitable trace of (3.10) leads to

(∇ea R)(X, Y, Z , ea)− (∇Xr)(Y, Z)+ (∇Y r)(X, Z)+ 2R(ξ, Y, Z , I X)

−2R(ξ, X, Z , I Y )+ 2ω(X, Y )r(ξ, Z) = 0. (3.11)

The trace of (3.11) gives 2(∇ea r)(X, ea)− dScal(X)+ 4r(ξ, I X)− 4ρ(ξ, X) = 0 while
Eq. (3.3) implies r(ξ, I X) = (∇ea τ)(I X, ea) = ρ(ξ, X). Now, the identity (3.6) follows
from the last two equalities. ��

4 Basic examples

Let {x1, y1, . . . , xn+1, yn+1} be the standard coordinate system in R
2n+2. The standard

parahermitian structure (I, g) is defined by

I
∂

∂x j
= ∂

∂y j
, I

∂

∂y j
= ∂

∂x j
, g

(
∂

∂x j
,
∂

∂xk

)

= −g

(
∂

∂y j
,
∂

∂yk

)

= δ jk,

g

(
∂

∂x j
,
∂

∂yk

)

= 0,

where j, k = 1, . . . , n. Recall that a smooth map f = (u1, v1, . . . , un, vn) : R
2n+2 −→

R
2n+2 preserves the paracomplex structure I iff it is paraholomorphic, i.e., satisfies the (para)

Cauchy-Riemann equations, see e.g.[12], d f ◦ I = I ◦ d f , or,

∂uk

∂x j
= ∂vk

∂y j
,
∂u j

∂y j
= ∂vk

∂x j
. (4.1)
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Let (R2n+2, I, g) be the standard flat parahermitian structure on R
2n+2 and M2n+1 be a

hypersurface with unit normal N such that Tp M2n+1 ⊕ N = R2n+2, p ∈ M2n+1. Consider
the vector field ξ := IN , the dual 1-form η(ξ) = −1 and denote H = ξ⊥ = K er η. A para
CR-structure on M is defined by (H, I = I|H). Moreover

dη(X, Y ) = −η([X, Y ]) = −dη(I X, I Y )

in view of the integrability condition (2.3). If in addition dη|H is non-degenerate then it
necessarily has signature (n, n) and (M, η) is an integrable para-contact hermitian manifold.

Proposition 4.1 Any non-degenerate hypersurface in (R2n+2, I, g) admits an integrable
para-contact hermitian structure.

Since the horizontal space H is invariant under the standard paracomplex structure of
R

2n+2, a restriction of a paraholomorphic map f : R2n+2 −→ R2n+2 on (M2n+1, η) induces
a para conformal transformation of the embedded paracontact hermitian structure η̄ = µη

on the hypersurface M2n+1.

4.1 Hyperbolic Heisenberg group

The hyperbolic Heisenberg group is the example of an integrable para-contact hermitian
structure with flat canonical connection. The difference between this group and the standard
Heisenberg group is in the metric, while the groups are identical. As a group G (P) = R

2n ×R

with the group law given by

(p′′, t ′′) = (p′, t ′) ◦ (p, t) =
(

p′ + p, t ′ + t −
n∑

k=1

(
u′

kvk − v′
kuk

)
)

.

where p′, p ∈ R
2n, t ′, t ∈ R, p = (u1, v1, . . . , un, vn) and p′ = (u′

1, v
′
1, . . . , u′

n, v
′
n). A

basis of left-invariant vector fields is given by Uk = ∂
∂uk

−2vk
∂
∂t , Vk = ∂

∂vk
+2uk

∂
∂t , ξ = 2 ∂

∂t .

Define �̃ = − 1
2 dt − ∑n

k=1(ukdvk −vkduk)with corresponding horizontal bundle H given
by the span of the left-invariant horizontal vector fields {U1, . . .Un, V1 . . . Vn, }. We con-
sider an endomorphism on H by defining IUk = Vk, I Vk = Uk , hence I 2 = Id on H

and I is a paracomplex structure on H. The form �̃ and the para-complex structure I (on
H) define a para-contact manifold, which will be called the hyperbolic Heisenberg group.
Note that by definition {U1, ...Un, V1...Vn, ξ} is an orthonormal basis of the tangent space,
g(U j ,U j ) = −g(Vj , Vj ) = 1, j = 1, ..., n.

Theorem 4.2 Let (M, η, I, g) be an integrable para-contact hermitian manifold of dimen-
sion 2n + 1.

(i) If n > 1 then (M, η, I, g) is locally isomorphic to the hyperbolic Heisenberg group
exactly when the canonical connection has vanishing horizontal curvature,
R(X, Y, Z , V ) = 0,

(ii) If n = 1 then (M, η, I, g) is locally isomorphic to the 3-dimensional hyperbolic Heisen-
berg group exactly when the canonical connection has vanishing horizontal curvature
and zero torsion.

Proof It is easy to see that the canonical connection on the hyperbolic Heisenberg group is
the left-invariant connection on the group which is flat and with zero torsion endomorphism.
For the converse, we first show that if n > 1 and the horizontal curvature vanishes then the
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canonical connection is flat and with zero torsion endomorphism, R = τ = 0. Indeed, (3.4)
yields τ = 0 and (3.3) shows R(ξ, X, Y, Z) = 0.

Let {e1, . . . , en, I e1, . . . , I en, ξ} be a local basis parallel with respect to ∇. Then (2.5)
and (2.6) show that M has the structure of the Lie algebra of the hyperbolic Heisenberg
group, which proves the claim. ��
4.2 Hyperboloid of neutral signature.

Let {x0, y0, . . . , xn, yn} be the standard coordinate system in (R2n+2, I, g). Consider the
hypersurface

HS2n+1 = {
(x0, y0, . . . , xn, yn) ⊂ R

2n+2 | x2
0 + · · · + x2

n − y2
0 · · · − y2

n = 1
}
.

HS2n+1 carries a natural para-CR structure inherited from its embedding in (R2n+2, I, g).
The horizontal bundle H is the maximal subspace of the tangent space of HS2n+1 which is
invariant under the (restriction of the) action of I. We take

η̃ = −
n∑

j=0

(
x j dy j − y j dx j

)

noting that here N = ∑n
j=0

(
x j

∂
∂x j

+ y j
∂
∂y j

)
and ξ = ∑n

j=0

(
x j

∂
∂y j

+ y j
∂
∂x j

)
. We will

also consider HS2n+1 as the boundary of the “ball” B = {(x0, y0, . . . , xn, yn) ⊂ R
2n+2 :

x2
0 + · · · + x2

n − y2
0 · · · − y2

n < 1}.
4.3 The Cayley transform

Let
0 = {(x0, y0, . . . , xn, yn) ∈ HS2n+1 : (1+x0)
2 = y2

0 }. The Cayley transform (centered
at 
0), is defined as follows

C : HS2n+1 \
0 → G (P)

t = 2y0

(1 + x0)2 − y2
0

, uk = xk(1 + x0)− yk y0

(1 + x0)2 − y2
0

, vk = yk(1 + x0)− xk y0

(1 + x0)2 − y2
0

. (4.2)

A small calculation shows

C∗�̃ = 1

(1 + x0)2 − y2
0

η̃.

Furthermore, the para-complex structure is preserved. In order to see the last claim, we
can consider G (P) as the boundary of the domain D = {

(u0, v0, . . . , un, vn) ⊂ R
2n+2 :

u2
1 + · · · + u2

n − v2
1 · · · − v2

n < v0
}

by identifying the point (p, t) ∈ G (P) with the point
(t, 
n

k=1

(
u2

k − v2
k

)
, u1, v1 . . . , un, vn) ∈ ∂D and define the diffeomorphism C : B \
0 →

D \�0, �0 = {
(1 + u0)

2 − v2
0 = 0

}
,

u0 = 2y0

(1 + x0)2 − y2
0

, v0 = 1 − x2
0 + y2

0

(1 + x0)2 − y2
0

uk = xk(1 + x0)− yk y0

(1 + x0)2 − y2
0

, vk = yk(1 + x0)− xk y0

(1 + x0)2 − y2
0

.

A calculation shows that the above map is para-holomorphic, i.e., the coordinate functions
satisfy the (para) Cauchy-Riemann equations (4.1). Thus, C preserves the para-CR structure
when considered as a map between the boundaries of B and D.
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Using hyperbolic rotations, which preserve the para-contact structure, and Cayley maps
similar to the above we see that the hyperboloid is locally para-contact conformal to the
hyperbolic Heisenberg group.

Finally, it is worth noting that according to Theorem 1.2 the hyperboloid H S4n+1is para-
contact conformally flat, while regarded as a CR submanifold of C

2n+1 it is a degenerate CR
manifold.

5 Paracontact conformal curvature

In this section we define para-contact conformal invariant and prove Theorem 1.1.

5.1 Paracontact conformal transformations

A conformal para-contact transformation (pc transformartion ) between two para-contact
manifold is a diffeomorphism � which preserves the para-contact structure i.e. �∗η = µη,

for a nowhere vanishing smooth function µ.
Let u be a smooth nowhere vanishing function on a para-contact manifold (M, η). Let

η̄ = 1
2 e−2uη be a conformal deformation of η. We will denote the objects related to η̄ by

over-lining the same object corresponding to η. Thus, dη̄ = −e−2udu ∧η + 1
2 e−2udη, ḡ =

1
2 e−2u g. The new para-contact Reeb vector field ξ̄ is [19]

ξ̄ = 2e2u ξ + 2e2u I∇u, (5.1)

where ∇u is the horizontal gradient defined by g(∇u, X) = du(X), X ∈ H. The horizon-
tal sub-Laplacian and the norm of the horizontal gradient are defined respectively by u =
tr g

H (∇du) = ∇du(ea, ea) = ∑n
s=1(∇du(es, es) − ∇du(I es, I es)), |∇u|2 = du(ea)

2 =∑n
s=1(du(es)

2 − du(I es)
2). The canonical para-contact connections ∇ and ∇̄ are related by

a (1,2) tensor S,

∇̄A B = ∇A B + SA B, A, B ∈ �(T M). (5.2)

Suppose the para contact structure is integrable. The conditions (2.5) and ∇̄ ḡ = 0 deter-
mine g(S(X, Y ), Z) for X, Y, Z ∈ H due to the equality

g(S(X, Y ), Z) = − du(X)g(Y, Z)− du(I X)ω(Y, Z)− du(Y )g(Z , X)

+ du(I Y )ω(Z , X)+ du(Z)g(X, Y )+ du(I Z)ω(X, Y ). (5.3)

We obtain after some calculations using (5.1) that

τ̄ (X, Y )− 2e2uτ(X, Y )− g(S(ξ̄ , X), Y ) = −2e2u∇du(X, I Y )− 4e2udu(X)du(I Y ).

(5.4)

From (5.4) and (2.6) we find

g(S(ξ̄ , X), Y )− g(S(ξ̄ , I X)I Y ) = 2e2u [∇du(X, I Y )− ∇du(I X, Y )

+ 2du(X)du(I Y )− 2du(I X)du(Y )] . (5.5)
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The condition ∇̄I = ∇ I = 0 yield g(S(ξ̄ , X), Y ) = −g(S(ξ̄ , I X)I Y ). Substitute the
latter into (5.4) and (5.5), use (5.1) and (5.3) to get

g(S(ξ, X), Y ) = 1

2
[∇du(X, I Y )− ∇du(I X, Y )]

− du(X)du(I Y )+ du(I X)du(Y )+ |∇u|2ω(X, Y ), (5.6)

τ̄ (X, Y ) = e2u [2τ(X, Y )− ∇du(X, I Y )− ∇du(I X, Y )

− 2du(X)du(I Y )− 2du(I X)du(Y )] . (5.7)

In addition, the pc-scalar curvature changes according to the formula [19]

Scal = 2e2u Scal − 8n(n + 1)e2u |∇u|2 + 8(n + 1)e2uu. (5.8)

The identity d2 = 0 yields ∇du(X, Y )− ∇du(Y, X) = −du(T (X, Y )). Applying (2.5),
we can write

∇du(X, Y ) = [∇du][sym](X, Y )+ du(ξ)ω(X, Y ), (5.9)

where [.][sym] denotes the symmetric part of the corresponding (0,2)-tensor.

5.2 Paracontact conformal curvature tensor

Let (M, η, I, g) be a (2n+1)-dimensional integrable para-contact hermitian manifold. Let us
consider the symmetric (0,2) tensor L defined on H by the equality

L(X, Y ) = 1

2(n + 2)
ρ(X, I Y )− τ(I X, Y )

− Scal

8(n + 1)(n + 2)
g(X, Y ), X, Y ∈ H. (5.10)

We define the (0,4) tensor PW on H by

g(PW (X, Y )Z , V ) = g(R(X, Y )Z , V )+ g(X, Z)L(Y, V )+ g(Y, V )L(X, Z)

− g(Y, Z)L(X, V )− g(X, V )L(Y, Z)+ ω(X, Z)L(Y, I V )

+ω(Y, V )L(X, I Z)− ω(Y, Z)L(X, I V )− ω(X, V )L(Y, I Z)

+ω(X, Y ) [L(Z , I V )− L(I Z , V )]

+ω(Z , V ) [L(X, I Y )− L(I X, Y )] . (5.11)

Proposition 5.1 The tensor PW is completely trace-free, i.e.

r(PW ) = ρ(PW ) = 0.

Proof The claim follows after taking the corresponding traces in (5.11) keeping in mind
(5.10). ��

If we compare (5.11) and (3.3) we obtain the following

Proposition 5.2 For n > 1 the tensor PW has the properties

PW (X, Y, Z , V )+ PW (I X, I Y, Z , V ) = 0,
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PW (X, Y, Z , V )− PW (I X, I Y, Z , V ) = R(X, Y, Z , V )− R(I X, I Y, Z , V )

+ Scal

2(n + 1)(n + 2)
[ω(X, Z)ω(Y, V )− ω(Y, Z)ω(X, V )+ 2ω(X, Y )ωs(Z , V )]

− Scal

2(n + 1)(n + 2)
[g(X, Z)g(Y, V )− g(Y, Z)g(X, V )] + 2

n + 2
[ω(X, Y )ρ(Z , V )

+ω(Z , V )ρ(X, Y )] + 1

n + 2
[g(X, Z)ρ(Y, I V )− g(Y, Z)ρ(X, I V )

+ g(Y, V )ρ(X, I Z)− g(X, V )ρ(Y, I Z)] + 1

n + 2
[ω(X, Z)ρ(Y, V )

−ω(Y, Z)ρ(X, V )+ ω(Y, V )ρ(X, Z)− ω(X, V )ρ(Y, Z)] . (5.12)

For n = 1 the tensor PW vanishes identically.

Definition 5.3 We denote the tensor PW (X, Y, Z , V )− PW (I X, I Y, Z , V ) by 2W pc and
call it the para-contact conformal curvature.

If n = 1 we define on H the following symmetric (0,2) tensor F by the equality

F(X, Y ) = (∇d(Scal))(X, I Y )+ (∇d(Scal))(Y, I X)+ 16(∇2
Xea
τ)(Y, ea)

+ 16(∇2
Y ea
τ)(X, ea)− 48(∇2

ea I ea
τ)(X, I Y )+ 36Scalτ(X, Y )

+ 3g(X, Y )(∇d(Scal))(ea I ea). (5.13)

5.3 Proof of Theorem 1.1

First we show

Theorem 5.4 The para-contact conformal curvature W pc of an integrable para-contact
hermitian manifold is invariant under conformal para-contact transformations, i.e., if

2η̄ = e−2uη for any smooth function u then 2e2u W pc
η̄ = W pc

η .

Proof After a straightforward computation using (5.2), (5.3) and (5.6) we obtain the formula

2e2u g(R̄(X, Y )Z , V )− g(R(X, Y )Z , V ) = −g(Z , V ) [M(X, Y )− M(Y, X)]

− g(X, Z)M(Y, V )− g(Y, V )M(X, Z)+ g(Y, Z)M(X, V )+ g(X, V )M(Y, Z)

−ω(X, Z)M(Y, I V )− ω(Y, V )M(X, I Z)+ ω(Y, Z)M(X, I V )+ ω(X, V )M(Y, I Z)

−ω(X, Y ) [M(Z , I V )− M(I Z , V )] − ω(Z , V ) [M(X, I Y )− M(Y, I X)] . (5.14)

where the (0,2) tensor M is given by

M(X, Y ) = ∇du(X, Y )+ du(X)du(Y )+ du(I X)du(I Y )− 1

2
g(X, Y )|∇u|2. (5.15)

Let tr M = M(ea, ea) be the trace of the tensor M . Using (5.15) and (5.9) we obtain

tr M = u − n|∇u|2, M(X, Y )+ M(I X, I Y ) = M(Y, X)+ M(I Y, I X), (5.16)

M(ea, I ea) = −2ndu(ξ), M(ea, I ea)ω(X, Y ) = −n [M(X, Y )− M(Y, X)] . (5.17)

Taking the trace in (5.14) and using (5.15), (5.16), and (5.17) we come to

r(X, Y )− r(X, Y ) = (n + 1)M(X, Y )+ nM(Y, X)− M(I X, I Y )

− 2M(I Y, I X)+ tr M g(X, Y ); (5.18)

e−2u Scal − 2 Scal = 8(n + 1)tr M.
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Proposition 3.1 together with (5.18) and (5.10) imply

M[sym](X, Y ) = L(X, Y )− L(X, Y ). (5.19)

Now, from (5.15) and (5.9) we obtain

M(X, Y ) = M[sym](X, Y )+ du(ξ)ω(X, Y ). (5.20)

Substituting (5.19) into (5.20), then inserting the obtained equality in (5.14) and finally
using (5.16) allows us to complete the proof of Theorem 5.4. ��

At this point a combination of Theorem 5.4 and Proposition 5.2 ends the proof of Theo-
rem 1.1.

6 Converse problem. Proof of Theorem 1.2

Suppose W pc = 0, hence PW = 0 by Proposition 5.2. We shall show that in this case there
exists (locally) a smooth conformal factor u which changes by a pc conformal transformation
the integrable para-contact hermitian structure to a torsion-free flat one.

Consider the following system of differential equations with respect to the unknown func-
tion u

∇du(X, Y ) = −L(X, Y )− du(X)du(Y )− du(I X)du(I Y )

+ 1

2
g(X, Y )|∇u|2 + du(ξ)ω(X, Y ) (6.1)

∇du(X, ξ) = −B(X, ξ)− L(X, I∇u)+ 1

2
du(I X)|∇u|2 − du(X)du(ξi ) (6.2)

∇du(ξ, ξ) = −B(ξ, ξ)− B(I∇u, ξ)− 1

4
|∇u|4 − (du(ξ))2, (6.3)

where B(X, ξ) and B(ξ, ξ) do not depend on the function u and are determined in (6.7) and
(6.22).

In order to prove Theorem 1.2 it is sufficient to show the existence of a local smooth
solution to (6.1). Indeed, suppose u is a local smooth solution to (6.1). Then the canonical
connection of the para-contact hermitian structure 2η̄ = e−2uη has in view of (5.7) zero
torsion. Furthermore, the curvature restricted to H vanishes when W pc = 0 taking into
account Proposition 5.2 and the proof of Theorem 5.4. Therefore, we can apply Theorem 4.2
to conclude the result.

The rest of this section is devoted to showing the existence of a smooth solution to the
system (6.1)–(6.3).

The integrability conditions for this overdetermined system are the Ricci identities,

∇du(A, B,C)− ∇du(B, A,C) = −R(A, B,C,∇u)− ∇du((T (A, B),C),

A, B,C ∈ �(T M). (6.4)

We consider as separate cases the four possibilities for A, B and C .

Case 1 [A, B,C ∈ H ]. Invoking (2.5) we see that Eq. (6.4) on H has the form

∇du(Z , X, Y )− ∇du(X, Z , Y )+ R(Z , X, Y,∇u)− 2ω(Z , X)∇du(ξ, Y ) = 0, (6.5)
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Take a covariant derivative of (6.1) along Z ∈ H, substitute in the obtained equality (6.1)
and (5.10), anticommute the covariant derivatives, let W pc = 0 in (5.11), and finally use
(6.2) and (6.1) to see that the integrability condition (6.5) is

(∇Z L)(X, Y )− (∇X L)(Z , Y ) = ω(Z , Y )B(X, ξ)− ω(X, Y )B(Z , ξ)

+ 2ω(Z , X)B(Y, ξ). (6.6)

The 1-forms B(X, ξ) can be determined by taking traces in (6.6). Thus, we have

(∇ea L)(I ea, I X) = −(2n + 1)B(I X, ξ) and (∇X tr L)− (∇ea L)(ea, X)

= 3B(I X, ξ). (6.7)

Notice that the consistence of the first and second equalities in (6.7) is equivalent to (3.6).

Lemma 6.1 Suppose W pc = 0 and the dimension is bigger than three. Then (6.6) holds.

Proof Using (2.5), the second Bianchi identity (3.10) gives

(∇ea R)(X, Y, Z , ea)− (∇Xr)(Y, Z)+ (∇Y r)(X, Z)+ 2R(ξ, Y, Z , I X)

−2R(ξ, X, Z , I Y )+ 2ω(X, Y )r(ξ, Z) = 0, (6.8)

(∇Xρ)(Y, Z)+ (∇Yρ)(Z , X)+ (∇Zρ)(X, Y )

−2ω(X, Y )ρ(ξ, Z)− 2ω(Y, Z)ρ(ξ, X)− 2ω(Z , X)ρ(ξ, Y ) = 0, (6.9)

(∇Xρ)(Y, Z)+ (∇ea R)(I ea, X, Y, Z)+ 2(n − 1)R(ξ, X, Y, Z) = 0. (6.10)

From W pc = 0 and (5.10) we can express r, ρ and τ in terms of L and tr L , obtaing

r(X, Y ) = (2n + 1)L(X, Y )− 3L(I X, I Y )+ (tr L)g(X, Y ) (6.11)

ρ(X, Y ) = (n + 2)L(X, I Y )− (n + 2)L(I X, Y )− (tr L)ω(X, Y ) (6.12)

2τ(I X, Y ) = −L(X, Y )− L(I X, I Y ). (6.13)

Inserting (5.11) and (3.3) in (6.8), and then using (6.11), (6.13) we come after some
standard calculations to the following identity

−3g(Z , X)B(I Y, ξ)+ 3g(Z , Y )B(I X, ξ)− (2n + 1)ω(X, Z)B(Y, ξ)

+(2n + 1)ω(Y, Z)B(X, ξ)− 2(2n + 1)ω(X, Y )B(Z , ξ)+ 2n [(∇X L)(Y, Z)

−(∇Y L)(X, Z)] + [(∇I Z L)(X, I Y )− (∇I Z L)(I X, Y )] − [(∇I X L)(I Y, Z)

−(∇I Y L)(I X, Z)] − 2 [(∇I X L)(Y, I Z)− (∇I Y L)(X, I Z)]

−3 [(∇X L)(I Y, I Z)− (∇Y L)(I X, I Z)] = 0. (6.14)

A substitution of (5.11) and (3.3) in (6.9) together with (6.12) give

(n + 2)[(∇X L)(Y, I Z)− (∇Y L)(X, I Z)] − (n + 2)[(∇X L)(I Y, Z)− (∇Y L)(I X, Z)]
+ (n + 2)[(∇Z L)(X, I Y )− (∇Z L)(I X, Y )] − 2(n + 2) [ω(X, Y )B(I Z , ξ)

+ω(Y, Z)B(I X, ξ)+ ω(Z , X)B(I Y, ξ)] = 0. (6.15)

Take I Z instead of Z in (6.15), then set I X and I Y , correspondingly, for X and Y into
the obtained result. Taking the sum of thus achieved equalities we derive

[(∇X L)(Y, Z)− (∇Y L)(X, Z)] − [(∇X L)(I Y, I Z)− (∇Y L)(I X, I Z)]+[(∇I X L) (I Y, Z)

−(∇I Y L)(I X, Z)] − [(∇I X L)(Y, I Z)− (∇I Y L)(X, I Z)] + 2g(Y, Z)B(I X, ξ)

− 2g(Z , X)B(I Y, ξ)+ 2ω(Y, Z)B(X, ξ)− 2ω(X, Z)B(Y, ξ) = 0. (6.16)
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Insert (5.11), (3.3) in (6.10) using (6.12), (6.13), replace Y and Z respectively with I Y
and I Z into the obtained equality and then take the sum of both equations to obtain

(n − 1) [(∇I Z L)(X, I Y )− (∇I Y L)(X, I Z)]

+(n − 1) [(∇I Z L)(I X, Y )− (∇I Y L)(I X, Z)]

+(n − 1) [(∇Z L)(X, Y )− (∇Y L)(X, Z)]

+(n − 1) [(∇Z L)(I X, I Y )− (∇Y L)(I X, I Z)] = 0. (6.17)

Substitute X by Z , and Z by X in (6.17). The sum of the obtained equalities and (6.16)
yield

[(∇X L)(Y, Z)− (∇Y L)(X, Z)] + [(∇I X L)(I Y, Z)− (∇I Y L)(I X, Z)] − g(X, Z)B(I Y, ξ)

+ g(Y, Z)B(I X, ξ)− ω(X, Z)B(Y, ξ)+ ω(Y, Z)B(X, ξ) = 0. (6.18)

The cyclic sum in (6.18) gives

[(∇I Z L)(X, I Y )− (∇I Z L)(I X, Y )] = [(∇I X L)(I Y, Z)− (∇I Y L)(I X, Z)]
− [(∇I X L)(Y, I Z)− (∇I Y L)(X, I Z)] + 2ω(Z , X)B(Y, ξ)

+ 2ω(Y, Z)B(X, ξ)+ 2ω(X, Y )B(Z , ξ). (6.19)

Now, identity (6.6) follows from (6.14), (6.18) and (6.19). ��
Case 2 [A, B ∈ H, C = ξ ]. In this case, with the help of (2.5), (6.4) turns into the equation

∇du(Z , X, ξ)− ∇du(X, Z , ξ) = −R(Z , X, ξ,∇u)− ∇du(T (Z , X), ξ)

= 2ω(Z , X)∇du(ξ, ξ). (6.20)

Take a covariant derivative of (6.2) along Z ∈ H, substitute (6.1) and (6.2) in the obtained
equality, then anticommute the covariant derivatives and substitute the result in (6.20) together
with the already established (6.6), (6.3) and (5.10) to get after some standard calculations
that the integrability condition in this case is

(∇Z B)(X, ξ)− (∇X B)(Z , ξ)+ L(Z , I L(X))− L(X, I L(Z)) = 2B(ξ, ξ)ω(Z , X). (6.21)

Here, the function B(ξ, ξ) is independent of u and is uniquely determined by

B(ξ, ξ) = − 1

2n

[
(∇ea B)(I ea, ξ)+ L(ea, I L(I ea))

]
. (6.22)

Lemma 6.2 If W pc = 0 and the dimension is bigger than three, then (6.21) holds.

Proof Differentiate the already proved (6.6), take the corresponding traces and use the sym-
metry of L to see

(∇2
ea ,I ea

L)(Y, Z)− (∇2
ea ,Y L)(I ea, Z) = (∇Z B)(Y, ξ)− ω(Y, Z)(∇ea B)(I ea, ξ)

+ 2(∇Y B)(Z , ξ) (6.23)

− (∇2
ea ,Y L)(I ea, Z)+ (∇2

ea ,Z L)(I ea, Y ) = −(∇Z B)(Y, ξ)− 2ω(Y, Z)(∇ea B)(I ea, ξ)

+ (∇Y B)(Z , ξ) (6.24)

(∇2
Y,ea

L)(I ea, Z) = −(2n + 1)(∇Y B)(Z , ξ). (6.25)

A combination of (6.23), (6.25) and (6.24) yields
[
(∇2

Y,ea
L)− (∇2

ea ,Y L)
]
(I ea, Z)− [

(∇2
Z ,ea

L)− (∇2
ea ,Z L)

]
(I ea, Y )

= 2n(∇Z B)(Y, ξ)− ω(Y, Z)(∇ea B)(I ea, ξ)− 2n(∇Y B)(Z , ξ). (6.26)
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The Ricci identities, (2.5), (3.5), (6.11), (6.12) and (6.13) give
[
(∇2

Y,ea
L)− (∇2

ea ,Y L)
]
(I ea, Z) = 2(∇ξ L)(Y, Z)− (tr L)[L(Y, I Z)+ L(I Y, Z)]

+ (2n + 1)L(Y, I L(Z))− 3L(I Y, L(Z))− 3L(I Z , L(Y ))

+ L(Z , I L(Y ))+ ω(Y, Z)L(ea, I L(ea)). (6.27)

(∇2
ea ,I ea

L)(Y, Z) = (n + 2)[L(I Y, L(Z))− L(Y, I L(Z))] − (n + 2)L(Z , I L(Y ))

+ (n + 2)L(I Z , L(Y ))− 2n(∇ξ L)(Y, Z)+ (tr L)(L(I Y, Z)+ L(Y, I Z)). (6.28)

The identity (6.21) follows from (6.26) and (6.27). ��
Case 3 [A = ξ, B,C ∈ H ]. In this case (6.4) becomes

∇du(ξ, X, Y )− ∇du(X, ξ, Y )+ R(ξ, X, Y,∇u)+ ∇du(T (ξ, X), Y ) = 0. (6.29)

Take the covariant derivative of (6.1) along ξ and a covariant derivative of (6.2) along
a horizontal direction, apply (6.2), (6.1), (6.3), use (3.3) and a suitable traces of (6.1) and
(6.13) to get from (6.29) with the help of (6.13), (5.10) and the already proved (6.6) that the
integrability condition (6.29) becomes

(∇X B)(Y, ξ)− (∇ξ L)(X, Y ) = L(Y, I L(X))+ τ(X, L(Y ))+ τ(Y, L(X))

+ B(ξ, ξ)ω(X, Y ). (6.30)

Notice that Case 3 implies Case 2 since (6.21) is the skew-symmetric part of (6.30).

Lemma 6.3 Suppose W pc = 0 and dimension is bigger than 3. Then (6.30) holds.

Proof Combine (6.23), (6.25), (6.24) and the already proved (6.21) to obtain

(∇2
ea ,I ea

L)(Y, Z)+ [
(∇2

Y,ea
L)− (∇2

ea ,Y L)
]
(I ea, Z) = −2(n − 1)(∇Y B)(Z , ξ)

− 2ω(Y, Z)B(ξ, ξ)+ L(Y, I L(Z))− L(Z , I L(Y ))− ω(Y, Z)(∇ea B)(I ea, ξ) (6.31)

Now, (6.27), (6.28) and (6.31) imply (6.30). ��
Case 4 [A ∈ H, B = C = ξ ]. In this case (6.4) has the form

∇du(X, ξ, ξ)− ∇du(ξ, X, ξ) = −R(X, ξ, ξ,∇u)+ ∇du(T (ξ, X), ξ)

= τ(X, ea)∇du(ea, ξ). (6.32)

Take the covariant derivative of (6.2) along ξ and a covariant derivative of (6.3) along a
horizontal direction, then use (6.1), the already proved (6.30), apply (6.2) to see that (6.32)
is equivalent to

(∇ξB)(X, ξ)− (∇X B)(ξ, ξ)− 2B(ea, ξ)L(X, I ea)+ τ(X, ea)B(ea, ξ) = 0. (6.33)

Lemma 6.4 Suppose W pc = 0 and dimension is bigger than 3. Then (6.33) holds.

Proof Differentiate the already proven (6.21), (6.30), the first equality in (6.7), take the
corresponding traces, use the symmetry of L , τ and (6.7) to get

(∇2
ea ,I ea

B)(Y, ξ) = (n + 2)[L(I Y, eb)− L(Y, I eb)]B(eb, ξ)

− (tr L)B(I Y, ξ)− 2n(∇ξB)(Y, ξ) (6.34)

(∇2
eb,I eb

B)(Y, ξ)− (∇2
eb,ξ

L)(I eb, Y ) = −(2n + 1)B(ea, ξ)[L(Y, I ea)+ τ(Y, ea)]
+ (∇Y B)(ξ, ξ)+ [(∇eb L)(Y, I ea)+ (∇ebτ)(Y, ea)]L(I eb, ea)

+ (∇ebτ)(I eb, ea)L(Y, ea)+ τ(I eb, ea)(∇eb L)(Y, ea) (6.35)

(∇2
ξ,eb

L)(I eb, Y ) = −(2n + 1)(∇ξB)(Y, ξ). (6.36)
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The Ricci identities, Eq. (3.3) in Proposition 3.1, (2.6), (2.7) and the symmetry of L imply

(∇2
ξ,eb

L)(I eb, Y )− (∇2
eb,ξ

L)(I eb, Y ) = − (∇I ebτ)(eb, ea)L(Y, ea)

+ τ(eb, I ea)(∇ea L)(eb, Y )+ [(∇ea τ)(eb, Y )

−(∇Y )τ )(eb, ea)]L(ea, I eb). (6.37)

A small calculation taking into account (6.34), (6.35), (6.36), (6.37) and using (6.13)
yields

(∇ξB)(Y, ξ)− (∇Y B)(ξ, ξ)− 3[L(Y, I ea)+ τ(Y, ea)]B(ea, ξ) = −(tr L)B(I Y, ξ)

+[(∇eb L(Y, I ea)+ (∇ebτ(Y, ea)− (∇ea τ(Y, eb)+ (∇Y )τ (eb, ea)]L(I eb, ea). (6.38)

Now, apply the already proven (6.6) together with (6.13) to (6.38) to get the proof of
(6.33). ��

Thus, the proof of Theorem 1.2 i) is complete.

6.1 The three dimensional case

If the dimension is equal to 3 then it is easy to check that W pc = 0 and the integrability
conditions (6.6) and (6.21) are trivially satisfied. Thus, the existence of a smooth solution
depends only on the validity of (6.30) since the proof of Lemma 6.4 shows that (6.33) follows
from (6.30) also in dimension three. The next Lemma 6.5 implies Theorem 1.2 ii).

Lemma 6.5 If n = 1 and F = 0 then (6.30) holds.

Proof Suppose n = 1. Then r(X, Y ) = ρ(X, I Y ) = Scal
2 g(X, Y ) and (5.10) yields

L(X, Y ) = Scal

16
g(X, Y )− τ(X, I Y ). (6.39)

Apply (6.39) to (6.28) to get

2(∇ξ L)(X, Y ) = −(∇2
ea I ea

L)(X, Y )− Scal.τ (X, Y ). (6.40)

The skew symmetric part of (6.30) is satisfied because n = 1. Now, (6.25), (6.40) and
(6.39) give that the symmetric part of (6.30) is equivalent to F(X, Y ) = 0. ��

The proof of Theorem 1.2 is completed.

7 A remark on the Cartan–Chern–Moser theorem in the CR case

A CR manifold is a smooth manifold M of real dimension 2n+1, with a fixed n-dimensional
complex subbundle H of the complexified tangent bundle CT M satisfying H ∩ H = 0 and
[H, H ] ⊂ H . If we let H = Re H ⊕ H , the real subbundle H is equipped with a formally
integrable almost complex structure J . We assume that M is oriented and there exists a
globally defined contact form θ such that H = K er θ . Recall that a 1-form θ is a contact
form if the hermitian bilinear form 2g(X, Y ) = −dθ(J X, Y ) is non-degenerate. The vector
field ζ dual to θ with respect to g and satisfying dθ(ζ, .) = 0 is called the Reeb vector field.
A CR manifold (M, θ, g) with fixed contact form θ is called a pseudohermitian manifold.
In this case the 2-form dθ|H := 2� is called the fundamental form. Note that the contact
form is determined up to a conformal factor, i.e. θ̄ = νθ for a positive smooth function ν,
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defines another pseudohermitian structure called pseudo-conformal to the original one. A
basic geometric tool in investigating pseudohermitian structures is the Webster connection
∇cr [17,18] (see also Tanaka [14]).

The Cartan–Chern–Moser results [2,3] are that the vanishing of the pseudoconformal
invariant Chern-Moser tensor S (resp. Cartan invariant for n = 1) is a necessary and suffi-
cient condition a non-degenerate CR-hypersurface in C

n+1, to be locally CR equivalent to
a hyperquadric in C

n+1. A proof of these results can be achieved working similarly to our
proof of Theorem 1.2. We outline below the crucial steps.

It is well known that a pseudohermitian manifold with flat Webster connection (and zero
torsion if n = 1) is locally isomorphic to a Heisenberg group. On the other hand, the Cay-
ley transform is a pseudo-conformal equivalence between the Heisenberg group with its flat
pseudo-hermitian structure and a hypersphere gαβ̄ ZαZ β̄ + W W̄ = 1 in C

n+1 [3, p. 223].
It remains to show that the vanishing of the Chern-Moser tensor, S = 0, is a sufficient con-
dition a given pseudohermitian manifold to be locally pseudoconformally flat provided the
dimension is bigger than three. In dimension three S vanishes identically and the sufficient
condition remains only (7.9) below. The scheme is formally very similar to that used in the
proof of Theorem 1.2. Namely in all formulas in the proof of Theorem 1.2 one formally
replaces I with

√−1J and ξ by
√−1ζ . We indicate below the most important steps.

The superscript cr means that the objects are taken with respect to the Webster connection.
In particular, the pseudohermitian Ricci 2-form ρcr and the pseudohermitian scalar curva-
ture Scalcr are defined by 2ρcr (A, B)= g(Rcr (A, B)εa, Jεa), Scalcr = r(εa, εa), A, B ∈
�(T M).The Chern-Moser tensor S can be obtained from (5.12) formally replacing I, ρ, Scal
and ω with

√−1J, ρcr , Scalcr and �, respectively. The system of PDE which guaranties
the flatness of the pseudoconformal Webster connection and has to be solved is:

∇cr dv(X, Y ) = − C(X, Y )− dv(X)dv(Y )+ dv(J X)dv(JY )+ 1

2
g(X, Y )|∇crv|2

− dv(ζ )�(X, Y ), (7.1)

∇cr du(X, ζ ) = − D(X, ζ )− C(X, J∇v)+ 1

2
dv(J X)|∇crv|2 − dv(X)du(ζ ), (7.2)

∇cr dv(ζ, ζ ) = − D(ζ, ζ )− D(J∇v, ζ )+ 1

4
|∇crv|4 − (dv(ζ ))2, (7.3)

where the symmetric tensor C(X, Y ),D(X, ζ ) and D(ζ, ζ ) do not depend on the function u
and are determined by

C(X, Y ) = − 1

2(n + 2)
ρcr (X, JY )− Scalcr

8(n + 1)(n + 2)
g(X, Y )+ A(J X, Y ) (7.4)

(∇cr
εa

C)(Jεa, J X) = −(2n + 1)D(J X, ζ ), (7.5)

D(ζ, ζ ) = − 1

2n

[

(∇cr
εa

D)(Jεa, ζ )+ C(εb, Jεa)C(Jεb, εa)

]

, (7.6)

and the symmetric tensor A(X, Y ) is the pseudohermitian torsion [11,17,18].
The integrability conditions for the overdetermined system (7.1)–(7.3) are:

(∇cr
Z C)(X, Y )− (∇cr

X C)(Z , Y ) = −�(Z , Y )D(X, ζ )

+�(X, Y )D(Z , ζ )− 2�(Z , X)D(Y, ζ ); (7.7)

(∇cr
Z D)(X, ζ )− (∇cr

X D)(Z , ζ )+ C(Z , JC(X))− C(X, J L(Z))

= −2D(ζ, ζ )�(Z , X); (7.8)

123



96 Geom Dedicata (2010) 144:79–100

(∇cr
X D)(Y, ζ )− (∇cr

ζ C)(X, Y ) = C(Y, JC(X))+ A(X,C(Y ))

+A(Y,C(X))− D(ζ, ζ )�(X, Y ); (7.9)

(∇cr
ζ D)(X, ζ )− (∇cr

X D)(ζ, ζ )− 2D(εa, ζ )C(X, Jεa)+ A(X, εa)D(εa, ζ ) = 0. (7.10)

As in the proof of Theorem 1.2 i) we can see that the vanishing of the Chern-Moser tensor,
S = 0, implies the validity of the integrability conditions (7.7)–(7.10) provided n > 1.

For n = 1 the Chern-Moser tensor is always zero and, following the proof of Theorem 1.2
ii), one checks that the integrability conditions (7.7) and (7.8) are trivially satisfied and (7.10)
is a consequence of (7.9). To have a smooth solution to the system (7.1)–(7.3) one has to
have (7.9) which is equivalent to the vanishing of the symmetric (0,2) tensor Fcar defined
on H by

Fcar (X, Y ) = (∇cr d(Scalcr ))(X, JY )+ (∇cr d(Scalcr ))(Y, J X)+ 16((∇cr )2Xεa
A)(Y, εa)

+ 16((∇cr )2Y εa
A)(X, εa)+ 48((∇cr )2εa Jεa

A)(X, JY )

+ 36Scalcr A(X, Y )+ 3g(X, Y )(∇cr d(Scalcr ))(εa, Jεa). (7.11)

Let us remark that the vanishing of Fcar is equivalent to the vanishing of the Cartan
curvature, cf. [15, Theorem 12.3].

Corollary 7.1 A 3-dimensional Sasakian manifold (M, θ, g, ζ ) is locally pseudoconformal-
ly equivalent to the three dimensional Heisenberg group if and only if its Riemannian scalar
curvature Scalg satisfies

(∇gd(Scalg))(X, JY )+ (∇gd(Scalg))(Y, J X) = 0, (7.12)

where ∇g is the Levi-Civita connection of g.

Proof It is well known that a pseudohermitian structure is Sasakian, i.e. its Riemannian cone
is Kähler, exactly when the Webster torsion vanishes, A = 0. In particular, the Bianchi iden-
tities imply ζ(Scalcr ) = 0. Then the second and the third lines in (7.11) disappeared in view
of (5.9). On the other hand, for a Sasaki manifold, we have ∇cr

X Y = ∇g
X Y + g(J X, Y )ζ and

the Riemannian scalar curvature and the scalar curvature of the Webster connection differ by
an additive constant depending on the dimension, 2Scalcr = Scalg +2n (see e.g. [5]). Now,
(7.12) becomes equivalent to (7.11). Hence, (M, θ) is locally pseudoconformally flat. ��

8 The ultrahyperbolic Yamabe equation

Recall that the CR Yamabe problem is to determine if there exists a pseudohermitian structure
compatible with a given CR structure such that the pseudohermitian scalar, i.e. the scalar cur-
vature of the Webster connection is constant. If the CR structure is strongly pseudo-convex,
i.e. the Levi form is negative definite then the CR Yamabe problem reduces to a subelliptic
PDE which can be solved on a compact manifold [9].

Similarly to the CR case one can pose a Yamabe type problem for a para CR manifold.
Namely, given a para CR structure is there a compatible para hermitian structure such that
the scalar curvature of the canonical connection is a constant.

In the case when the Levi form of a given CR structure has neutral signature of type (n,n)
then the CR Yamabe equation is of the same type as the para CR Yamabe equation [11],
i.e. one has to consider the sub ultrahyperbolic equation (5.8) with respect to the Webster
connection where s̄ = const..
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Here we show an explicit formula for the regular part of a solution to the ultrahyperbolic
Yamabe equation on G (P)

Lϕ ≡
n∑

k=1

(
U 2

k − V 2
k

)
ϕ = −ϕ2∗−1, (8.1)

where 2∗ −1 = (Q +2)/(Q −2) = (n +2)/n with Q = 2n +2 the homogenous dimension
of the group. When n = 2m (8.1) coincides with the Yamabe equation on the Heisenberg
group of (real) signature (2m, 2m) defined by the quadric

Q = {
(z, w) ∈ C

n × C : Imw = H(z, z)
}
,

where H(z, z) = ∑m
j=1

(
z j z′

j − z j+m z′
j+m

)
, with the natural group structure

(z′′, w′′) = (z′, w′) ◦ (z, w) = (
z′ + z, w′ + w + 2Im H(z′, z)

)
.

The left-invariant horizontal vector fields are given by

X j = ∂

∂x j
− 2y j

∂

∂t
, Y j = ∂

∂y j
+ 2x j

∂

∂t

Xm+ j = ∂

∂xm+ j
+ 2y j+m

∂

∂t
, Ym+ j = ∂

∂xm+ j
− 2x j+m

∂

∂t
, j = 1, . . . ,m,

while the left invariant contact form with corresponding metric, for which the above vector
fields are an orthonormal frame, is given by

θ = 1

2
dt +
m

j=1(y j dx j − x j dy j )−
m
j=1(y j+m dx j+m − x j+m dy j+m)

so that g(X j , X j ) = −g(Y j , Y j ) = −g(X j+m, X j+m) = g(Y j+m, Y j+m) = 1,
j = 1, . . . ,m.

By the Cartan–Chern–Moser result, the above quadric is the flat CR structure of (hermitian)

signature (m,m). Henceforth, for u ∈ R
n,u = (u1, . . . , un) we set |u| = (

u2
1 + . . . u2

n

)1/2
.

We observe

Proposition 8.1 Let G (P) be the Heisenberg group of topological dimension 2n + 1. For
every ε > 0 the function

ϕε(u, v, t) =
(

4n2ε2

(ε2 + |u|2 − |v|2)2 − t2

) n
2

, g ∈ G, (8.2)

is a solution of the ultrahyperbolic Yamabe equation (8.1) on the set where |ε2 + |u|2|
−|v|2 �= |t |.

Proof Let f = (
(1 + |u|2 − |v|2)2 − t2

)− n
2 . After a straightforward calculation we find

L f = −4n2 f 2∗−1, which implies easily the equation for ϕ1. Furthermore, using the dila-
tions on the group δλ(u, v, t) = (λu, λv, λ2t) we have that the function fλ(u, v, t) =
λn/2 f (λu, λv, λ2t) satisfies the same equation as f , which implies the equation for ϕε by
taking ε = 1/λ. ��

Since the ultra-hyperbolic Yamabe equation is invariant under translations it follows that
we can construct other solutions, each being a regular function on a corresponding set. The
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question whether there is a global solution, in the sense of distributions, will not be con-
sidered here. In this respect we note that [13,16] found the fundamental solution of the
ultra-hyperbolic operator in the left-hand side of (8.1).

It should be pointed out that there is a correspondence between the regular part of solutions
to partial differential equations on the hyperbolic Heisenberg group and solutions of partial
differential equations on the Heisenberg group. Let Xk = ∂

∂xk
− 2yk

∂
∂s , Yk = ∂

∂yk
+ 2xk

∂
∂s

be the horizontal left invariant vector fields on the standard Heisenberg group. Note that the
difference between this group and the hyperbolic Heisenberg group is in the metric, while
the groups are identical. Given a function f (x, y, t), t ∈ R, x, y ∈ R

n , let g(u, v, t) =
f (i t, u, iv), which could be a complex valued function even when f is real-valued. Since

(Xk f )(x, y, s) = (Uk g)(u, v, t), (Yk f )(x, y, s) = −i(Vk g)(u, v, t) (8.3)

we have
∑n

k=1

(
X2

k + Y 2
k

)
f = ∑n

k=1

(
U 2

k − V 2
k

)
f . In particular, solutions of the

Yamabe equation on the Heisenberg group turn into solutions of the ultra-hyperbolic Yamabe
equation on the hyperbolic Heisenberg group outside a corresponding singular set.

Consider the (standard) Heisenberg group of dimension 2n+1 with typical point (z, s), z ∈
C

n, s ∈ R, and let A = |z|2 + i t . The inversion of the point (z, s) is given by

(z′, s′) de f=
(

− z

Ā
,− s

AĀ

)

, (8.4)

which can also be written in real coordinates as

x′ = x′(x, y, s), y′ = y′(x, y, s), s′ = s′(x, y, s).

If B
def= |z′|2 + is′, then AB = 1 as B = |z|2

AĀ
− is

A Ā
= Ā

A Ā
= 1

A .

Based on the above mentioned formal substitution and the preceding paragraph we define
an inversion on the hyperbolic Heisenberg group as follows. Let � = {p = (u, v, t) ∈
G (P) : ∣

∣|u|2 − |v|2∣∣ = |t |} and p = (t, u, v) ∈ G (P) \ �. We define the inversion on the
hyperbolic Heisenberg group letting

u′ = x′(u, iv, i t), v′ = −iy′(u, iv, i t), t ′ = −is′(u, iv, i t) (8.5)

using the real form of the “standard” inversion on the Heisenberg group. In other words, for
k = 1, . . . , n we have

u′
k = − (|u|2 − |v|2)uk + tvk

(|u|2 − |v|2)2 − t2
, v′

k = − (|u|2 − |v|2)vk + tuk

(|u|2 − |v|2)2 − t2
,

(8.6)
t ′ = − t

(|u|2 − |v|2)2 − t2
,

which defines a point p′ = (u′, v′, t ′) ∈ G (P)\�, or, using w = u+ev with e2 = 1, |w|2 =
|u|2 − |v|2,

w′ ≡ u′ + ev′ = − w
|w|2 − et

t ′ = − t

|w|4 − t2 .

This map will be called the inversion of G (P) centered at �. The inverse transformation
is found by taking into account that the inversion is an involution.

Recall, see [10], that for a function f (z, t) defined on a domain� in the Heisenberg group
we define the Kelvin transform f * on the image�* of� under the inversion by the following
formula

f *
de f= A

n
2 Ā

n
2 f i.e. f *|B|n = f.
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Thus, using the preceding considerations we can define a Kelvin transform on the hyper-
bolic Heisenberg group as follows

(Kϕ)(u, v, t) = (
(|u|2 − |v|2)2 − t2)−n/2

ϕ(u′, v′, t ′),

where (u′v′, t ′) are given by (8.6). Given a function ϕ(u, v, t) we consider ψ(x, y, s) =
ϕ(x,−iy,−is). Thus, using s = i t, x = u and y = iv, we have from (8.5)

ϕ(u′, v′, t ′) = ψ(u′, iv′, i t ′) = ψ
(
x′(u, iv, i t), y′(u, iv, i t), s′(u, iv, i t)

)

= ψ
(
x′(x, y, s), y′(x, y, s), s′(x, y, s)

)
,

which shows that the (hyperbolic) Kelvin transform of ϕ corresponds to the (“standard”
Heisenberg ) Kelvin transform of ψ . Due to (8.3) and the properties of the Kelvin transform
on the Heisenberg group (in fact any group of Iwasawa type), cf. [4] and [7], the hyperbolic
Kelvin transform preserves the ultra-hyperbolic functions, i.e., solutions of

Lϕ ≡
n∑

k=1

(
U 2

k − V 2
k

)
ϕ = 0

and the solutions of the ultra-hyperbolic Yamabe equation. Note that the Kelvin transform
of the functions in (8.2) is given by the same formula.
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