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Abstract In this paper, we consider the behavior of the total absolute and the total curva-
ture under the Ricci flow on complete surfaces with bounded curvature. It is shown that they
are monotone non-increasing and constant in time, respectively, if they exist and are finite
at the initial time. As a related result, we prove that the asymptotic volume ratio is constant
under the Ricci flow with non-negative Ricci curvature, at the end of the paper.
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1 Introduction

The Ricci flow equation ∂
∂t

gij = −2Rij , where Rij denotes the Ricci tensor of g(t), which
was introduced by Hamilton, has been and will be a powerful tool in Riemannian geome-
try. In the present paper, we are concerned with the behavior of the Ricci flow mainly on
non-compact surfaces.

We define the Ricci flow on surfaces. Let (M, g0) be a Riemannian surface. A one-param-
eter family of Riemannian metrics g(t), t ∈ [0, T ), on M is called the Ricci flow with the
initial metric g0 if it satisfies the following evolution equation:

∂

∂t
g = −Rg, g(0) = g0, (1)

where R = R(x, t) denotes the scalar curvature at the point x ∈ M for g(t). The scalar
curvature is twice the Gaussian curvature on surfaces.
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Since the Ricci flow on closed manifolds does not preserve its volume in general, we
can rescale the flow so that the volume is constant in time. The resulting flow is called the
normalized Ricci flow. Hamilton and Chow proved the long time existence and convergence
of the normalized Ricci flow on closed surfaces:

Theorem 1 (Hamilton [7], Chow [1]) For any closed Riemannian surface (M, g0), the nor-
malized Ricci flow g(t) with the initial metric g0 exists for t ∈ [0,∞) and converges to the
constant curvature metric as t → ∞.

We refer the reader to Hamilton’s original paper [7] and [3, Chap. 5] for the basic properties
of the Ricci flow on surfaces.

On the other hand, there are few results about the behavior of the Ricci flow on non-com-
pact surfaces ([10]). The main interest of this paper lies in a better understanding of it. We
consider the unnormalized Ricci flow g(t) which is complete as a Riemannian metric with
sectional curvature bounded in absolute value by K(t) > 0 at each time. Here K(t) depends
on t continuously. The existence of such a Ricci flow for complete initial metric with bounded
curvature was established by Shi [11].

Our main theorems are as follows.

Theorem 2 Let g(t) be a Ricci flow which is complete with bounded curvature on a possibly
compact surface M . Assume that the scalar curvature R(·, 0) of the initial metric g(0) is an
L1-function. Then the total absolute curvature

∫
M

|R(·, t)|dµ is monotone non-increasing.
In particular, the Ricci flow on surfaces preserves the L1-property of its scalar curvature.

Theorem 3 Let g(t) be a Ricci flow which is complete with bounded curvature on a surface
M . Assume that the initial metric g(0) admits finite total scalar curvature

∫
M

R(·, 0)dµ. Then
the total scalar curvature

∫
M

R(·, t)dµ exists and remains constant for t ≥ 0.

As far as the author knows, the Ricci flow on non-compact surfaces was studied at first in
[13], where some claims similar to our main theorems are stated. She argued in the proof of
Proposition 7.4. in [13] as follows:

d

dt

∫

M

|R|dµ = d

dt

∫

M+

Rdµ − d

dt

∫

M−

Rdµ

=
∫

M+

�Rdµ −
∫

M−

�Rdµ

=
∫

∂M+

〈∇R, ν+〉 −
∫

∂M−

〈∇R, ν−〉

≤ 0,

where M+ and M− are the regions where R is non-negative or non-positive, respectively,
and ν± denote the outward normal vectors along the boundaries ∂M±. It is not clear to the
author whether her argument works well because the integrability of �R and the smoothness
of the boundary ∂M± are not discussed there.

Although Theorems 2 and 3 may be proved by using tools of the PDE theory, we are inter-
ested in these invariants from the geometrical view point. The proof given below consists of
geometrical techniques. The author expects that our proof will contribute to further study of
the behavior of the Ricci flow on surfaces.
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2 Preliminaries

In this section, we collect some formulae and properties of the Ricci flow. These are also
found in the book [3].

The evolution equation of the scalar curvature under the Ricci flow on surfaces is given
by

∂

∂t
R = �R + R2. (2)

The time-derivative of the volume form dµ = dµt induced by the Ricci flow g(t) is

∂

∂t
dµ = −Rdµ. (3)

Next, we present some properties of the Ricci flow which are useful for studying the
behavior of it. One can see that many quantities increase at most or decrease at worst expo-
nentially, and hence change continuously with respect to t under the Ricci flow with bounded
Ricci curvature.

Proposition 1 Let g(t), t ∈ [0, T ], be a Ricci flow with bounded Ricci curvature |Ric| ≤ K

on an n-manifold M . Then the following hold: for all p ∈ M, r > 0 and t1, t2 ∈ [0, T ] with
t2 − t1 = �t ,

(1)

Bt2(p, re−K|�t |) ⊂ Bt1(p, r) ⊂ Bt2(p, reK|�t |), (4)

where Bt(p, r) denotes the open metric ball of center p ∈ M and radius r with respect
to g(t).

(2) If g(t1) is complete, then so is g(t2).
(3) For any time-independent measurable set S ⊂ M ,

Volt2(S)e−nK|�t | ≤ Volt1(S) ≤ Volt2(S)enK|�t |, (5)

where we used Volt (S) to denote the volume of S ⊂ M with respect to g(t).
(4) Put ν(t) := lim supr→∞ Volt (Bt (p, r))/rn. Then,

ν(t2)e
−2nK|�t | ≤ ν(t1) ≤ ν(t2)e

2nK|�t |. (6)

The same is true for ν(t) := lim infr→∞ Volt (Bt (p, r))/rn.

Proof These properties follow form the fact that the metrics g(t1) and g(t2) are equivalent
to each other:

e−2K|�t |g(t2) ≤ g(t1) ≤ e2K|�t |g(t2), (7)

which simply follows from the Ricci flow equation and the bound on the Ricci curvature
|Ric| ≤ K . 
�

A slightly weaker result than the following lemma is stated in [8, Theorem 18.3]. It is
assumed there that the curvature operator is non-negative.

Lemma 1 Let g(t), t ∈ [0, T ), be a Ricci flow which is complete with bounded curvature
on a non-compact n-manifold M . Suppose that |Ric|(x, t) → 0 as dt (x, p) → ∞ for all
t ∈ [0, T ), where p ∈ M is a fixed point. Then ν(t) and ν(t) are constant on [0, T ). In
particular, if the asymptotic volume ratio ν(t) := limr→∞ Volt (Bt (p, r))/rn exists at the
initial time, then ν(t) exists and is constant for all t ∈ [0, T ).
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Proof We only prove that ν(t) is constant. All we have to do is to modify the proof of
Proposition 1.(1) by utilizing that the Ricci curvature is arbitrarily small outside a compact
set.

For any t1, t2 ∈ [0, T ) and ε > 0, take σ,K > 0 and T1, T2 satisfying that t1, t2 ∈
[T1, T2] ⊂ [0, T ) and that for all t ∈ [T1, T2],

|Ric| ≤ ε on M \ Bt(p, σ ), and |Ric| ≤ (K + 1)ε on Bt(p, σ ). (8)

Then, for any q ∈ M ,

d+

dt
dt (p, q) := lim sup

t ′↘t

dt ′(p, q) − dt (p, q)

t ′ − t

≤ lim
t ′↘t

Lengt ′(γt ) − Lengt (γt )

t ′ − t

=
∫

γ

−Ric(γ ′
t , γ

′
t )ds

≤ (K + 1)εσ + ε(dt (p, q) − σ)

= ε(Kσ + dt (p, q)),

where dt (p, q) and γt denote the distance and a minimal geodesic for g(t) between p and q,
respectively.

Similarly,

d−

dt
dt (p, q) := lim inf

t ′↗t

dt (p, q) − dt ′(p, q)

t − t ′
≥ −ε(Kσ + dt (p, q)). (9)

Then, putting �t := t2 − t1,

dt2(p, q) ≤ dt2(p, q) + Kσ ≤ (dt1(p, q) + Kσ)eε|�t |, (10)

or equivalently,

Bt2(p, r) ⊂ Bt1

(
p, (r + Kσ)eε|�t |) , (11)

for all r > 0.
Using this and Proposition 1.(3),

ν(t2) = lim sup
r→∞

Volt2
(
Bt2(p, r) \ ∪s∈[T1,T2]Bs(p, σ )

)

rn

≤ lim sup
r→∞

Volt1
(
Bt2(p, r) \ ∪s∈[T1,T2]Bs(p, σ )

)
enε|�t |

rn

≤ lim sup
r→∞

Volt1
(
Bt1

(
p, (r + Kσ)eε|�t |)

)
enε|�t |

rn

= ν(t1)e
2nε|�t |.

Since ε > 0 and t1, t2 ∈ [0, T ) are arbitrary, we have that ν(t) is constant. This proves
Lemma 1. 
�

We need Shi’s derivative estimate below. For the convenience of the reader, we state it
here in the form we will apply later.
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Theorem 4 (Shi’s gradient estimate [8, Theorem 13.1]) Let g(t), t ∈ [0, T ], be a Ricci
flow which is complete with bounded curvature |R| ≤ K on a surface M . Then,

|∇R(p, t)| ≤ Const.K/
√

t, (12)

for any p ∈ M , and t ∈ (0, min{1/K, T }].

3 Proof of Theorem 2

Let us put R± := max{±R, 0}. Then
∫

M

Rdµ =
∫

M

R+dµ −
∫

M

R−dµ, and
∫

M

|R|dµ =
∫

M

R+dµ +
∫

M

R−dµ. (13)

The total curvature
∫
M

Rdµ exists if and only if at least one of the integrals of R+ and R− is
finite.

∫
M

|R|dµ < ∞ is equivalent to that
∫
M

Rdµ exists and is finite.
The geometry of complete open surfaces and its total curvature have been studied actively

by many people. We refer the reader to [12] for these topics. The following theorem tells a
lot about complete non-compact surfaces which admit total curvature.

Theorem 5 (Shiohama [12, Theorem 5.2.1]) Let (M, g) be a complete non-compact surface
which is finitely connected, i.e., M is homeomorphic to a closed surface with finitely many
points deleted. Suppose that the total curvature of (M, g) exists. Then the following holds:

4πχ(M) −
∫

M

Rdµ = 2 lim
r→∞

Leng(∂B(p, r))

r
= 4 lim

r→∞
Area(B(p, r))

r2 , (14)

where χ(M) denotes the Euler number of M .

It follows from Cohn-Vossen’s inequality that 4πχ(M)− ∫
M

Rdµ is non-negative. In the
sequel, we shall call limr→∞ Area(B(p, r))/r2 the asymptotic area ratio, or shortly AAR of
(M, g).

For complete surfaces which are not finitely connected, Huber proved

Theorem 6 ([9]) If a complete infinitely connected surface (M, g) admit total curvature,
then its value is −∞.

It is a corollary of Theorem 5 and 6 that the total curvature exists if and only if
∫
M

R+dµ <

∞.
X. Dai and Li Ma stated in [5, Theorem 11] that the Ricci flow preserves the L1-property

of the scalar curvature under the condition that
∫ T

0

∫
M

|Ric|2dµdt < ∞ and R = O(r−σ )

for r = dt (·, p) and some σ ≥ n − 2. We use their technique but do not need a curvature
decay condition. We invoke Theorem 5 instead.

Proof (of Theorem 2) Take any p > 1, ε > 0, and T0 < ∞ such that g(t) exists and
|R| ≤ K on t ∈ [0, T0]. Put u := √

R2 + ε. Then u ≥ √
ε > 0 and u satisfies

∂

∂t
u ≤ �u + Ru + ε. (15)
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For r > 0, take a time-independent cut-off function η = ηr : M → [0, 1] satisfying the
following properties:

η(x) =
{

1 if d0(x, p) ≤ r/2
0 if d0(x, p) ≥ r,

(16)

|∇η|2g(0) ≤ 5

r2 , and hence |∇η|2g(t) ≤ 5

r2 eKt (17)

Claim If R(·, 0) ∈ L1 ∩ L∞ ⊂ Lp, then R(·, t) ∈ Lp for all p > 1 and t ∈ [0, T0].
Proof To begin with, note that the bounded function R(·, 0) is Lp-function for all p > 1.

d

dt

∫

M

η2updµ ≤
∫

M

pη2up−1 (�u + Ru + ε) − η2upRdµ

≤
∫

M

−2pηup−1〈∇η,∇u〉 − p(p − 1)η2up−2|∇u|2dµ

+(p − 1)

∫

M

η2upRdµ + ε

∫

M

pη2up−1dµ

≤ p

p − 1

∫

M

up|∇η|2dµ + (p − 1)

∫

M

η2upRdµ + ε

∫

M

pη2up−1dµ

≤ 5peKt

(p − 1)r2

∫

B0(p,r)

updµ + (
(p − 1)K + p

√
ε
)
∫

M

η2updµ,

where we have used Cauchy’s inequality to derive the third inequality:

− 2ηup−1〈∇η,∇u〉 ≤ 1

p − 1
up|∇η|2 + (p − 1)η2up−2|∇u|2. (18)

Letting ε → 0 yields

d+

dt

∫

M

η2|R|pdµ ≤ 5peKt

∫

B0(p,r)

(p − 1)r2
|R|pdµ + (p − 1)K

∫

M

η2|R|pdµ. (19)

The assumption R(·, 0) ∈ L1 implies the existences of finite asymptotic area ratio ν(0)

of g(0) by Theorem 5, and hence by Proposition 1.(3), the first term of the right hand side of
(19) is bounded above by 10pe2KT0Kpν(0)/p − 1 on [0, T0], for sufficiently large r .

Solving ordinary differential inequality (19) gives

∫

M

η2|R(·, t)|pdµ ≤
⎡

⎣
∫

M

η2|R(·, 0)|pdµ + 10pe2KT0Kp−1ν(0)

(p − 1)2

⎤

⎦ exp(p − 1)Kt. (20)

We let r → ∞ to see that Lp-properties of the scalar curvature are preserved on [0, T0]
for all p > 1:

∫

M

|R(·, t)|pdµ ≤
⎡

⎣
∫

M

|R(·, 0)|pdµ + 10pe2KT0Kp−1ν(0)

(p − 1)2

⎤

⎦ exp(p − 1)Kt. (21)


�
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Next, we see that the L1-norm of the scalar curvature is non-increasing.
Let us return to the inequality (19) above again. Integrating both sides of (19) on [0, t] ⊂

[0, T0] gives
∫

M

η2|R(·, t)|pdµ −
∫

M

η2|R(·, 0)|pdµ

≤
t∫

0

dt

⎡

⎢
⎣

5peKt

(p − 1)r2

∫

B0(p,r)

|R|pdµ + (p − 1)K

∫

M

η2|R|pdµ

⎤

⎥
⎦ .

We let r → ∞ and p → 1 keeping in mind that R(·, t) ∈ Lp for any p > 1, and apply
the monotone convergence theorem to obtain the desired inequality

∫

M

|R(·, t)|dµ ≤
∫

M

|R(·, 0)|dµ. (22)

This completes the proof of Theorem 2 since T0 < ∞ is arbitrary. 
�

4 Proof of Theorem 3

Before we get into the proof of Theorem 3, we would like to remark that it is proved in [4] that
Theorem 3 holds for ancient solutions to the Ricci flow on surfaces. Ancient solution is the
solution g(t) to the Ricci flow equation which exists on (−∞, T ). It is known that non trivial
ancient solutions have positive scalar curvature, and hence the curvature is integrable due to
Cohn-Vossen’s inequality. We extend the argument to general finitely connected surfaces.

Proof (of Theorem 3) First of all, according to Theorem 2, we know that the total curvature
exists and remains finite on [0, T ). The finiteness of the total curvature implies that M is
finitely connected by Huber’s theorem.

By Theorem 5, we only have to show that the asymptotic area ratio remains constant under
the Ricci flow as in Theorem 3. Since we consider an asymptotic invariant on manifolds with
finitely many ends, we may assume that M has only one end without loss of generality.

The proof consists of several steps.
At first, we suppose that

∫
M

R(·, 0)dµ = 4πχ(M). In this case, the AAR exists and
is equal to 0 on [0, T ) by Theorem 5 and Lemma 1.(4). Thus the total curvature remains
constant on [0, T ) by Theorem 5 again.

In the case where
∫
M

R(·, 0)dµ < 4πχ(M), we need the following injectivity radius
estimate, which can be immediately generalized to any finitely connected surface. Note that
we can apply this lemma to our situation where AAR > 0. If a non-compact manifold
M would have positive sectional curvature bounded above by K > 0 as in [4], we have
inj(M) ≥ π/

√
K [14].

Lemma 2 Let (M, g) be a complete Riemannian surface with only one end and bounded
curvature |R| ≤ K . Assume that the total curvature of (M, g) exists and that

Leng(∂B(p, r)) ≥ α for all sufficiently large r > 0 and some α > 0. (23)

Then the injectivity radius inj(M, g) is positive.

Proof We argue by contradiction, so assume that inj(M, g) = 0. Then, by the upper bound
of the curvature, we can take a sequence {γi} of geodesic loops at qi ∈ M with Leng(γi) ↘ 0
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and γi ⊂ B(p, ri+1) \ B(p, ri), where ri ↗ ∞. Here, a geodesic loop at q ∈ M means
a geodesic path which starts and ends at q ∈ M . Since we have large R0 > 0 such that
M \ B(p,R0) is homeomorphic to the complement of some compact subset of R

2, each γi

encloses the domain Di with Di ⊂ B(p, ri+1) \ B(p, ri) or Di ⊃ B(p, ri), for large i. We
divide the argument into two cases.

At first, we assume that we can take a subsequence of {γi}, still denoted by {γi}, such that
each Di is homeomorphic to a disk in R

2 and Di’s are pairwise disjoint. In this case, by the
Gauss-Bonnet formula,

2π =
∫

Di

R

2
dµ + (the outer angle at qi) ≤

∫

Di

R

2
dµ + π, (24)

so

2π ≤
∫

Di

Rdµ ≤
∫

Di

R+dµ, for all i = 1, 2, . . . . (25)

This contradicts to the finiteness of
∫
M

R+dµ, which is equivalent to the existence of the
total curvature.

If this is not the case, we have γ = γi with Leng(γ ) = 2ε and p ∈ Di for small ε > 0.
Put rmin := min{d(x, p) | x ∈ γ } and rmax := max{d(x, p) | x ∈ γ }. Now we observe that

diam ∂B(p, rmax) ≤ 3ε. (26)

To see this, take any two points x and y from ∂B(p, rmax). The shortest paths conect-
ing x and y with p intersect γ at x′ and y′, respectively. Since rmax − rmin ≤ ε, we have
d(x, x′), d(y, y′) ≤ ε, and d(x′, y′) ≤ ε because they are on γ . Thus, diam ∂B(p, rmax)≤3ε.

We consider the ε-neighborhood W of ∂B(p, rmax). Since W contains B(p, rmax + ε) \
B(p, rmax), we have

Area(W) ≥
rmax+ε∫

rmax

Leng(∂B(p, r))dr ≥
rmax+ε∫

rmax

αdr = αε. (27)

On the other hand, the diameter of W is not larger than 5ε, and thus, we have

Area(W) ≤ 2π√
K/2

(
cosh

(
5
√

K/2 ε
)

− 1
)

(28)

by the lower bound of the curvature and the Bishop inequality. These lead us to the contra-
diction, if ε > 0 is sufficiently small. 
�

We go back to the proof of Theorem 3. The above injectivity radius estimate, the upper
curvature bound and Shi’s gradient estimate combined with the existence of finite total scalar
curvature let us conclude that |R(x, t)| → 0 as dt (x, p) → ∞, at the time t > 0. To see
this, we assume that we have a sequence of points {xi} ⊂ M satisfying dt0(xi, p) → ∞ and
|R(xi, t0)| ≥ C0 > 0 at some time t0 > 0. Then, the estimates inj(g(t0)) ≥ C1 > 0 and
|∇R(·, t0)| ≤ C2 yield that

∫

Bt0 (xi ,C3)

|R|dµ ≥ C0

2
Area(Bt0(xi, C3)) ≥ C4 > 0, for all i = 1, 2, . . . , (29)

which is in conflict with the existence of finite total scalar curvature. Thus, |R(·, t)| is arbi-
trarily small outside a sufficiently large compact set for any t > 0.
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Therefore, by Lemma 1, the AAR is constant on (0, T ), and hence on [0, T ) by the con-
tinuity of AAR. In the end, the total curvature is constant for t ≥ 0 by Theorem 5. This
concludes the proof of Theorem 3. 
�

5 Asymptotic volume ratio under the Ricci flow

In this section, we prove

Theorem 7 Let g(t) be a Ricci flow which is complete with non-negative bounded cur-
vature operator on an n-manifold M . Then its asymptotic volume ratio ν(t) := limr→∞
Volt (Bt (p, r))/rn is independent on t .

In the above theorem, the non-negativity of the curvature operator is assumed because it is
preserved under the Ricci flow with bounded curvature [8]. What we really need is the non-
negativity of the Ricci curvature, under which an asymptotic cone as well as the asymptotic
volume ratio of (M, g(t)) always exist.

Before we begin the proof of Theorem 7, let us recall some definitions.

Definition 1 Let (X, x) and (Y, y) be pointed metric spaces. A map f : (X, p) → (Y, q)

with f (p) = q is called an ε-approximation map if

the ε-neighborhood of f (BX(p, 1/ε)) contains BY (q, 1/ε), (30)

and

|d(x, y) − d(f (x), f (y))| < ε, for any x, y ∈ BX(p, 1/ε). (31)

An ε-approximation map does not need to be continuous.
We say that a sequence {(Xi, xi)} of pointed metric spaces converges to (X, x) in the

Gromov-Hausdorff topology if for any ε > 0, there exists an ε-approximation map from
(X, x) to (Xi, xi) for all large i.

When (M, g) has non-negative Ricci curvature, {(M, r−2
i g, p)} subconverges to a metric

space (X, x) in the pointed Gromov-Hausdorff topology, for any ri ↗ ∞, by Gromov’s
precompactness theorem [6]. This (X, x) is called an asymptotic cone of (M, g).

Our proof of Theorem 7 relies on the following volume convergence theorem.

Theorem 8 (Volume convergence theorem [2]) Let {(Mi, gi, pi)} be a sequence of pointed
n-dimensional complete Riemannian manifolds with uniform lower Ricci curvature bounds
Ricgi

≥ −(n − 1)K . Suppose that Vol(B(pi, 1)) ≥ v > 0 for all i = 1, 2, . . ., and
{(Mi, gi, pi)} converges to a metric space (X, x) in the pointed Gromov-Hausdorff topol-
ogy. Then, for any r > 0,

lim
i→∞ Vol(B(pi, r)) = Hn(BX(x, r)), (32)

where Hn denotes the n-dimensional Hausdorff measure which is normalized to agree with
the n-dimensional Lebesgue measure on R

n.

Proof (of Theorem 7) We fix 0 ≤ t1 < t2 < T and K < ∞ such that 0 ≤ Ric ≤ K on
M × [t1, t2]. Since ν(t1) = 0 if and only if ν(t2) = 0, due to Lemma 1.(4), we may assume
that ν(t) > 0.
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We recall the following lemma which can be deduced from the second variational formula.

Lemma 3 ([8]) Let g(t), t ∈ [0, T ], be a Ricci flow which is complete with Ricci curvature
bounded above Ric ≤ K by K ≥ 0. Then, for any two points x, y ∈ M ,

d−

dt
dt (x, y) ≥ −Const.

√
K. (33)

This lemma tells us that when the Ricci flow as in the lemma shrinks the metric, the dis-
tance does not shrink so much. From this lemma and the non-negativity of the Ricci curvature,
we have

dt1(x, y) ≥ dt2(x, y) ≥ dt1(x, y) − Const.
√

K(t2 − t1), (34)

for any x, y ∈ M .
By assumption, (M, g(t1)) has an asymptotic cone (X, x), and according to (34), (X, x)

is also an asymptotic cone of (M, g(t2)), because the composition of an ε-approximation
map of (X, x) into (M, r−2

i g(t1), p) with the identity map on M is a 2ε-approximation map
of (X, x) into (M, r−2

i g(t2), p) for ri ↗ ∞ and sufficiently large i.
Under this setting, Theorem 7 follows from the volume convergence theorem quoted

above. In fact,
ν(t1) = lim

i→∞ Vol
(
B(p, 1; r−2

i g(t1))
)

= Hn(BX(x, 1))

= lim
i→∞ Vol

(
B(p, 1; r−2

i g(t2))
)

= ν(t2).

This proves Theorem 7. 
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