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Abstract We investigate singularities of a general plane section of the dual variety
of a smooth projective variety, or more generally, the discriminant variety associated
with a linear system of divisors on a smooth projective variety. We show that, in charac-
teristic 3, singular points of E6-type take the place of ordinary cusps in characteristic 0.
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1 Introduction

We work over an algebraically closed field k.
Let X be a smooth projective variety of dimension n > 0, and let L be a line bundle

on X. We consider the m-dimensional linear system |M| of divisors on X correspond-
ing to a linear subspace M of H0(X, L) with dimension m + 1 > 1. The discriminant
variety of |M| is the locus of all points t ∈ P∗(M) such that the corresponding divisor
Dt ∈ |M| is singular ([2, Sect. 2]). When the linear system |M| embeds X into a projec-
tive space P

m, then the parameter space P∗(M) of the linear system |M| is identified
with the dual projective space (Pm)∨ of P

m, and the discriminant variety of |M| is
called the dual variety of X ⊂ P

m.
Since the paper of Wallace [24], it has been noticed that the geometry of dual

varieties in positive characteristics is quite different from that in characteristic 0. For
example, the reflexivity property does not hold in general in positive characteristics.
See [8, 17] for the definition and detailed accounts of the reflexivity. Many papers have
been written about this failure of the reflexivity property in positive characteristics.
For example, see [6, 7, 9, 11–13, 19].
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However, if the linear system |M| is sufficiently ample, then the peculiarity about
the reflexivity in positive characteristics vanishes except for the case when char k is
2 and dim X is odd. Namely we have the following theorem ([14, Théorème 2.5],
[8, Theorem (5.4)]):

Theorem 1.1 Suppose that char k �= 2 or dim X is even. Let A be a very ample line
bundle of X, and let X be embedded in P

m by the complete linear system |A⊗d| with
d ≥ 2. Then the dual variety of X ⊂ P

m is a hypersurface of (Pm)∨, and X ⊂ P
m is

reflexive.

In this paper, we show that the singularity of the dual variety has a peculiar feature
in characteristic 3 that does not vanish however ample the linear system may be.

We assume that |M| is sufficiently ample. By cutting the dual variety by a general
plane in P∗(M) = (Pm)∨, we obtain a singular plane curve. If char k > 3 or char k = 0,
the plane curve has only ordinary cusps as its unibranched singular points. We show
that, if char k = 3, the plane curve has E6-singular points as its unibranched singular
points.

In fact, we prove our results in the more general setting of discriminant varieties
associated with (not necessarily very ample) linear systems. Here in Introduction,
however, we state our results in the case of dual varieties.

We assume that the base field k is of characteristic �= 2. Let X ⊂ P
m be a smooth

projective variety of dimension n>0. We assume that X is not contained in any hyper-
plane of P

m, so that the dual projective space

P: = (Pm)∨

of P
m is regarded as the parameter space P∗(M) of the linear system |M| of hyperplane

sections on X, where M is a linear subspace of H0(X, OX(1)). We use the same letter
to denote a point H ∈ P and the corresponding hyperplane H ⊂ P

m. We denote by
D ⊂ X × P the universal family of hyperplane sections. The support of D is equal to
the closed subset

{(p, H) ∈ X × P | p ∈ H}
of X ×P. It is easy to see that D is smooth of dimension n+m−1. Let C be the critical
locus of the second projection D → P with the canonical scheme structure (Defini-
tion 2.15). Then C is smooth, irreducible and of dimension m − 1. In fact, if N is the
conormal sheaf of X ⊂ P

m, then C is isomorphic to P
∗(N ) ([14, Remarque 3.1.5]). The

support of C is equal to the set

{ (p, H) ∈ D | the divisor H ∩ X of X is singular at p }.
The image of C by the projection to P is called the dual variety of X ⊂ P

m, or the
discriminant variety of the linear system |M| on X.

We will study the singularity of the dual variety by investigating the critical locus E
of the second projection C → P. The codimension of E in C is ≤ 1. If the codimension
is 0, then either the dual variety is not a hypersurface of P, or C is inseparable over the
dual variety. By [14, Proposition 3.3] or Proposition 3.14 of this paper, the complement
C \ E is set-theoretically equal to

{(p, H) ∈ C | the Hessian of the singularity of H ∩ X at p is non-degenerate}.
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We equip the critical locus E with the canonical scheme structure by Definition 2.15,
and put

Esm: = { (p, H) ∈ E | E is smooth of dimension m − 2 at (p, H) },
which is a Zariski open (possibly empty) subset of E . Note that, if Esm is non-empty,
then E is of codimension 1 in C, and hence the dual variety is a hypersurface in P.
Moreover, if Esm is non-empty, then the generalized Monge–Segre–Wallace criterion
([16, Theorem (4.4)] or [17, Theorem (4)]) implies that X ⊂ P

m is reflexive.
We put

EA2 : = { (p, H) ∈ E | the singularity of H ∩ X at p is of type A2 }.
See Definition 2.13 for the definition of the hypersurface singularity of type A2.

We will show that E is irreducible and the loci Esm and EA2 are dense in E if |M| is
sufficiently ample (Proposition 4.9).

Let P = (p, H) be a closed point of E , and let � ⊂ P be a general plane passing
through H ∈ P. We denote by C� the pull-back of � by the projection C → P. Our
main goal is to investigate the singularity of the morphism C� → � at P ∈ C�.

Theorem 1.2 Suppose that char k > 3 or char k = 0. Then the following two conditions
are equivalent:

(i) P ∈ EA2 ,
(ii) P ∈ Esm, and the projection E → P induces a surjective homomorphism

(OP,H)
∧ →→ (OE ,P)

∧

on the completions of the local rings.

Moreover, if these conditions are satisfied, then C� is smooth of dimension 1 at P, and
the morphism C� → � has a critical point of A2-type at P (Definition 2.1).

This result seems to be classically known. See Proposition 4.4 and Theorem 5.2 (1)
of this paper for the proof.

Now we assume that k is of characteristic 3. Then P ∈ EA2 does not necessarily
imply P ∈ Esm. Our main results are as follows.

(I) The projection Esm → P factors as

Esm q−→ (Esm)K τ−→ P,

where q: Esm → (Esm)K is the quotient morphism by an integrable subbundle K of the
tangent vector bundle T(Esm) of Esm with rank 1 (Definition 2.18). In particular, q is
a purely inseparable finite morphism of degree 3.

(II) Suppose that P = (p, H) is a point of Esm ∩ EA2 . Then the morphism
τ : (Esm)K → P induces a surjective homomorphism

(OP,H)
∧ →→ (O(Esm)K,q(P))

∧.

Moreover, the scheme C� is smooth of dimension 1 at P, and the morphism C� → �

has a critical point of E6-type at P (Definition 2.3).
In the case where (n, m) = (1, 2), the locus Esm is always empty. In this case,

we have the following result. Let X ⊂ P
2 be a smooth projective plane curve. The

first projection C → X is then an isomorphism with the inverse morphism given by
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p �→ (p, Tp(X)), where Tp(X) ⊂ P
2 is the tangent line to X at p. The projection

C → P = (P2)∨ is therefore identified with the Gauss map

γX : X → P

that maps p ∈ X to Tp(X) ∈ P. The image of γX is the dual curve X∨ of X. A point
P = (p, Tp(X)) of C is a point of E if and only if Tp(X) is a flex tangent line to X at p,
and P is a point of EA2 if and only if Tp(X) is an ordinary flex tangent line to X at p.

(III) Suppose that γX induces a separable morphism from X to X∨. Then E is of
dimension 0. Let P = (p, Tp(X)) be a point of E . Then the length of OE ,P is divisible
by 3. Suppose that p is an ordinary flex point of X. Then γX is formally isomorphic at
p to the morphism

Tl: t �→ (u, v) = ( t3l+1, t3 + t3l+2 )

from Spec k[[t]] to Spec k[[u, v]], where l: = length OE ,P/3. Hence the singular point
Tp(X) of X∨ is formally isomorphic to the plane curve singularity defined by

x3l+1 + y3 + x2ly2 = 0.

Suppose that all flex points of X ⊂ P
2 are ordinary. Let tl be the number of critical

points of Tl-type in the morphism γX . Then we have
∑

ltl = d − 2 + 2g, (1.1)

where d is the degree of X ⊂ P
2 and g is the genus of X.

Remark 1.3 The critical point of T1-type is a critical point of E6-type.

Remark 1.4 By the Monge–Segre–Wallace criterion, the condition that X be sepa-
rable over X∨ by γX is equivalent to the condition that the plane curve X ⊂ P

2 is
reflexive. See [7, 9, 11, 19] for the properties of non-reflexive curves.

Remark 1.5 If char k > 3 or char k = 0, and if the dual curve X∨ has only ordinary
nodes and ordinary cusps as its singularities, then the number of the ordinary cusps is
equal to 3(d − 2 + 2g).

The simplest example of the result (III) is as follows. Let E ⊂ P
2 be a smooth cubic

curve. We fix a flex point O ∈ E, and regard E as an elliptic curve with the origin O.
Since char(k) �= 2, the dual curve E∨ is of degree 6, and the Gauss map γE induces
a birational morphism from E to E∨. The singular points of E∨ are in one-to-one
correspondence with the flex points of E via γE. On the other hand, the flex points of
E are in one-to-one correspondence with the 3-torsion subgroup E[3] of the elliptic
curve E. We have

E[3] ∼=






Z/3Z × Z/3Z if char(k) �= 3,
Z/3Z if char(k) = 3 and E is not supersingular,
0 if char(k) = 3 and E is supersingular.

Then the critical locus of γE: E → P consists of





9 points of A2-type if char(k) �= 3,
3 points of E6-type if char(k) = 3 and E is not supersingular,
1 point of T3-type if char(k) = 3 and E is supersingular.
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The plan of this paper is as follows. In Sect. 2, we fix some notions and notation. In
Sect. 3, we define the schemes D, C and E in the setting of discriminant varieties, and
study their properties. The results in this section are valid in any characteristics includ-
ing the case where char k = 2. In Sect. 4, we assume that char k �= 2, and study the
scheme E more closely. Then we show that, in characteristic 3, the projection from Esm

to P factors through the quotient morphism by an integrable tangent vector bundle
of rank 1 (Theorem 4.5). In Sect. 5, we prove a normal form theorem (Theorem 5.2)
on the critical points of the morphism C� → � under the assumption that char k �= 2,
and prove the result (II) above. In Sect. 6, we treat the case where char k = 3 and
(n, m) = (1, 2), and prove the result (III) above, except for the formula (1.1). In
Sect. 7, we calculate the degree of E with respect to OP(1), count the number of the
unibranched singular points on C�, and prove (1.1).

In the paper [22], we will study the singularity of discriminant varieties in charac-
teristic 2 in the case where dim X is even.

The author would like to thank Professor Hajime Kaji for many valuable comments
and suggestions.

Notation and terminology

(1) Throughout this paper, we work over an algebraically closed field k. A variety
is a reduced irreducible quasi-projective scheme over k. A point means a closed
point unless otherwise stated.

(2) Let X be a variety, and P a point of X. We denote by TP(X) the Zariski tangent
space to X at P. When X is smooth, we denote by T(X) the tangent bundle of X.

(3) Let f : X → Y be a morphism from a smooth variety X to a smooth variety Y,
and let P be a point of X. Then f is said to be a closed immersion formally at P
if the differential homomorphism dPf : TP(X) → Tf (P)(Y) of f at P is injective,
or equivalently, the induced homomorphism (OY,f (P))

∧ → (OX,P)
∧ from the

formal completion (OY,f (P))
∧ of OY,f (P) to the formal completion (OX,P)

∧ of
OX,P is surjective.

2 Definitions

2.1 Curve singularities

Let ϕ: C → S be a morphism from a smooth curve C to a smooth surface S. Let P be
a point of C, t a formal parameter of (OC,P)

∧, and (u, v) a formal parameter system
of (OS,ϕ(P))

∧. We have a local homomorphism

ϕ∗ : (OS,ϕ(P))
∧ = k[[u, v]] → (OC,P)

∧ = k[[t]].
Definition 2.1 We say that ϕ has a critical point of A2-type at P if

ϕ∗u = a t2 + b t3 + (terms of degree ≥ 4) and

ϕ∗v = c t2 + d t3 + (terms of degree ≥ 4)

with ad − bc �= 0 hold.

Remark 2.2 If ϕ has a critical point of A2-type at P, then it is possible to choose t and
(u, v) in such a way that

ϕ∗u = t2 and ϕ∗v = t3.
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The image of the germ (C, P) by ϕ is then defined by u3 − v2 = 0. This holds even
when char k is 2.

Definition 2.3 We say that ϕ has a critical point of E6-type at P if

ϕ∗u = a t3 + b t4 + (terms of degree ≥ 5) and

ϕ∗v = c t3 + d t4 + (terms of degree ≥ 5)

with ad − bc �= 0 hold.

Remark 2.4 Suppose that ϕ has a critical point of E6-type at P. If char k is not 2 nor
3, then, under suitable choice of t and (u, v), we have

ϕ∗u = t3 and ϕ∗v = t4,

and the image of the germ (C, P) is given by u4 − v3 = 0. If char k = 3, then, under
suitable choice of t and (u, v), we have either

(ϕ∗u = t3, ϕ∗v = t4) or (ϕ∗u = t3 + t5, ϕ∗v = t4).

In the former case, the image of the germ (C, P) is given by u4 − v3 = 0, while in the
latter case, the image is formally isomorphic to the germ of a plane curve singularity
defined by

x4 + y3 + x2y2 = 0.

In the notation of Artin [1] and Greuel-Kröning [4], they are denoted by E0
6 and E1

6,
respectively. See Remark 2.7 and Propositions 6.2 and 6.3.

From now until the end of this subsection, we assume that char k = 3. For
F ∈ (OS,ϕ(P))

∧, we denote by F[t,ν] the coefficient of tν in the formal power series
ϕ∗F of t.

Definition 2.5 Let l be a positive integer. We say that ϕ has a critical point of Tl-type
at P if the following conditions are satisfied:

u[t,ν] �= 0 �⇒ ν > 3l or 3|ν,
v[t,ν] �= 0 �⇒ ν > 3l or 3|ν,

and (2.1)

∣∣∣∣
u[t,3] u[t,3l+1]
v[t,3] v[t,3l+1]

∣∣∣∣ �= 0,
∣∣∣∣
u[t,3l+1] u[t,3l+2]
v[t,3l+1] v[t,3l+2]

∣∣∣∣ �= 0. (2.2)

Remark 2.6 Note that the conditions (2.1) and (2.2) do not depend on the choice of
the formal parameters t and (u, v). Indeed, suppose that (u, v) satisfies (2.1). If

u′ =
∑

αijuivj and v′ =
∑

βijuivj

form another formal parameter system of (OS,ϕ(P))
∧, then (u′, v′) also satisfies (2.1),

and
[

u′[t,3] u′
[t,3l+1] u′

[t,3l+2]
v′[t,3] v′

[t,3l+1] v′
[t,3l+2]

]
=

[
α10 α01
β10 β01

] [
u[t,3] u[t,3l+1] u[t,3l+2]
v[t,3] v[t,3l+1] v[t,3l+2]

]

holds. If s is another formal parameter of (OC,P)
∧ that relates to t by

t =
∑

γisi,
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then u[s,ν] and v[s,ν] satisfy (2.1), and we have

[
u[s,3] u[s,3l+1] u[s,3l+2]
v[s,3] v[s,3l+1] v[s,3l+2]

]
=

[
u[t,3] u[t,3l+1] u[t,3l+2]
v[t,3] v[t,3l+1] v[t,3l+2]

]


γ 3

1 0 0
0 γ 3l+1

1 0
0 0 γ 3l+2

1



 .

Remark 2.7 The critical point of T1-type is just the critical point of E1
6-type.

Remark 2.8 In Sect. 6, we will show that, if ϕ has a critical point of Tl-type at P, then,
by choosing appropriate formal parameters t and (u, v), we have

ϕ∗u = t3l+1 and ϕ∗v = t3 + t3l+2,

and the image of the germ (C, P) by ϕ is formally isomorphic to the germ of a plane
curve singularity defined by

x3l+1 + y3 + x2ly2 = 0.

2.2 Hypersurface singularities

Let X be a smooth variety of dimension n, and let D ⊂ X be an effective divisor of X
that is passing through a point P ∈ X and is singular at P. Let (x1, . . . , xn) be a formal
parameter system of X at P, and let f = 0 be the local defining equation of D at P.
The symmetric bilinear form

Hf ,P : TP(X)× TP(X) → k

defined by

Hf ,P

(
∂

∂xi
,
∂

∂xj

)
= ∂2f
∂xi∂xj

(P)

does not depend on the choice of the formal parameter system (x1, . . . , xn), and does
not depend on the choice of f except for multiplicative constants. We call Hf ,P the
Hessian of D at P.

Definition 2.9 We say that the singularity of D at P is non-degenerate if Hf ,P is
non-degenerate.

From now on to the end of this subsection, we assume that char k is not 2.

Definition 2.10 A formal parameter system (x1, . . . , xn) of X at P is called admissible
with respect to f if

f = x2
1 + · · · + x2

r + (terms of degree ≥ 3)

holds in (OX,P)
∧ = k[[x1, . . . , xn]], where r is the rank of Hf ,P.

Remark 2.11 Since char k is not 2, any formal parameter system at P can be turned
into an admissible formal parameter system with respect to f by means of a linear
transformation of parameters.

Proposition 2.12 Suppose that the Hessian of D at P is of rank n−1. Then the following
two conditions are equivalent.
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(i) There exist a local defining equation f = 0 of D at P and a formal parameter
system (x1, . . . , xn) admissible with respect to f such that the coefficient of x3

n in f
is non-zero.

(ii) For any local defining equation f = 0 of D at P and for every formal param-
eter system (x1, . . . , xn) admissible with respect to f , the coefficient of x3

n in f is
non-zero.

Proof Let f = 0 and g = 0 be local defining equations of D at P. Suppose that
(x1, . . . , xn) and (y1, . . . , yn) are formal parameter systems of X at P admissible with
respect to f and g, respectively. Let T be the n × n-matrix whose (i, j)-component is

∂yi

∂xj
(P).

Since the rank of the Hessian of D at P is n − 1, we have

tT




In−1 0

t0 0



 T = c




In−1 0

t0 0



 ,

where c is a non-zero constant. Therefore we have
∂yi

∂xn
(P) �= 0 ⇐⇒ i = n. (2.3)

There exists a formal parameter series u(x1, . . . , xn) with u(0, . . . , 0) �= 0 such that

f (x1, . . . , xn) = u(x1, . . . , xn)g(y1, . . . , yn)

holds. Expanding u(x1, . . . , xn)g(y1, . . . , yn) in the formal power series of (x1, . . . , xn)

using (2.3), we see that the coefficient of x3
n in f is equal to

u(0, . . . , 0)
(
∂yn

∂xn
(P)

)3

times the coefficient of y3
n in g. �

Definition 2.13 We say that the singularity of D at P is of type A2 if the Hessian of
D at P is of rank n − 1, and the conditions (i) and (ii) in Proposition 2.12 above are
satisfied.

2.3 Degeneracy subschemes

Definition 2.14 Let X be a variety, and let E and F be vector bundles on X with
rank e and f , respectively. We put r: = min(e, f ). For a homomorphism σ : E → F, we
denote by D(σ ) the closed subscheme of X defined locally on X by all r-minors of the
f × e-matrix expressing σ , and call D(σ ) the degeneracy subscheme of σ .

For P ∈ X, let mP denote the maximal ideal of OP: = OX,P, and let

σP: = σ ⊗ OP/mP : E ⊗ OP/mP → F ⊗ OP/mP

be the linear homomorphism induced from σ on the fibers over P. The support of
D(σ ) is equal to

{ P ∈ X | the rank of σP is < r }.
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Definition 2.15 Let φ: X → Y be a morphism from a smooth variety X to a smooth
variety Y. The critical subscheme of φ is the degeneracy subscheme of the homomor-
phism

dφ : T(X) → φ∗ T(Y),

and is denoted by Cr(φ).

Suppose that dim X ≤ dim Y. Then a point P ∈ X is in the support of Cr(φ) if and
only if φ fails to be a closed immersion formally at P. (See Notation and Terminology
(3)).

2.4 The quotient morphism by an integrable subbundle

In this subsection, we assume that char k = p > 0. Let X be a smooth variety, and let
N be a subbundle of T(X).

Definition 2.16 We say that N is integrable if N is closed under the pth power opera-
tion D �→ Dp and the bracket product

(D, D′) �→ [D, D′]: = DD′ − D′D

of derivations.

Proposition 2.17 ([21] Théorème 2) Let X be a smooth variety, and N an integra-
ble subbundle of T(X). Then there exists a unique morphism q: X → XN with the
following properties;

(i) q induces a homeomorphism on the underlying topological spaces,
(ii) q is a radical covering of height 1, and

(iii) the kernel of dq: T(X) → q∗ T(XN ) coincides with N .

Moreover the variety XN is smooth, and q is a purely inseparable finite morphism of
degree pr, where r is the rank of N .

Indeed, the scheme structure of XN is given on the topological space Xsp underlying
X by putting

�(U, OXN ): = �(U, OX)
�(U, N )

for each affine Zariski open subset U of Xsp, where �(U, N ) is considered as a mod-
ule of derivations on �(U, OX), and �(U, OX)

�(U, N ) is the sub-algebra of �(U, OX)

consisting of all the elements that are annihilated by every derivation in �(U, N ). The
inclusions

�(U, OXN ) ↪→ �(U, OX)

together with the identity map on Xsp yield the radical covering q: X → XN . See [21]
for more detail.

Definition 2.18 Let X be a smooth variety, and N an integrable subbundle of T(X).
The morphism q: X → XN is called the quotient morphism by N .

Remark 2.19 Let q: X → XN be as in Definition 2.18. Suppose that N is of rank r.
Let P be a point of X. Then there exists a local parameter system (x1, . . . , xn) of X at
P such that

(xp
1 , . . . , xp

r , xr+1, . . . , xn)
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is a local parameter system of XN at q(P). See [21, Proposition 6]. In particular,
(OX,P)

∧ is a free module of rank pr over (OXN, q(P))
∧, and hence (OX,P)

∧ is faithfully
flat over (OXN, q(P))

∧.

Remark 2.20 Let f : X → Y be a morphism from a smooth variety X to a smooth
variety Y. Suppose that the kernel K of the homomorphism df : T(X) → f ∗ T(Y) is a
subbundle of T(X). (This assumption is always satisfied if we replace X with a Zariski
open dense subset of X.) Then K is integrable, and the morphism f : X → Y factors
canonically as

X
q−→ XK −→ Y,

where q: X → XK is the quotient morphism by K.

3 The discriminant variety of a linear system

We make no assumptions on the characteristic of the base field k in this section.
Let X be a projective variety of dimension n > 0. Let L → X be a line bundle on

X, and M a linear subspace of H0(X, L) with dimension m + 1 ≥ 2. We denote by

P: = P∗(M)

the projective space of one-dimensional linear subspaces of M, which is the parameter
space of the linear system |M|. We put

X: = X \ (Sing(X) ∪ Bs(|M|)),
where Sing(X) is the singular locus of X and Bs(|M|) is the base locus of the linear
system |M|. We denote by

 : X → P∨

the morphism induced by the linear system |M|. Let

pr1 : X × P → X and pr2 : X × P → P

be the projections. For a non-zero element f of M, we denote by [f ] the point of P
corresponding to f , and by D[f ] ∈ |M| the divisor of X defined by f = 0. We then put

D[f ]: = D[f ] ∩ X.

In the vector bundle M⊗kOP on P, there exists a tautological subbundle S ↪→ M⊗kOP
of rank 1, which is isomorphic to OP(−1). Hence we have a canonical section

OP −→ M ⊗k OP(1) (3.1)

of M ⊗k OP(1). On the other hand, the inclusion M ↪→ H0(X, L) induces a natural
homomorphism

M ⊗k OX −→ L. (3.2)

We put

L̃: = pr∗
1 L ⊗ pr∗

2 OP(1).
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Composing the pull-backs of (3.1) and (3.2) to X × P, we obtain a section

OX×P −→ L̃. (3.3)

Definition 3.1 We fix a non-zero element

σ ∈ H0(X × P, L̃)
corresponding to (3.3), which is unique up to multiplicative constants. We denote by
D the subscheme of X × P defined by σ = 0, and by

p1: D → X and p2: D → P

the projections.

It is easy to see that the support of D coincides with the set

{ (p, [f ]) ∈ X × P | p ∈ D[f ] }.
Proposition 3.2 The scheme D is smooth.

Proof Since the linear system |M| has no base points on X, the first projection p1: D →
X is a smooth morphism with fibers being hyperplanes of P. Since X is smooth, so is
D. �

Definition 3.3 Let C denote the critical subscheme Cr(p2) of p2: D → P.

Let U be a Zariski open subset of X × P. Assume that there exists a trivialization

τ : L̃ | U
∼→ OX×P | U

of the line bundle L̃ over U. Let� be a section of T(X × P) over U, which is regarded
as a derivation on �(U, OX×P). Since D is defined by σ = 0, the element

τ−1(�(τ(σ ))) | D ∈ �(U ∩ D, L̃ ⊗ OD)

does not depend on the choice of the trivialization τ . Hence we denote it by (�σ) | D.
It is obvious that, if two sections� and�′ of T(X ×P) over U are mapped to the same
element in �(U ∩ D, T(X × P)⊗ OD), then we have (�σ) | D = (�′σ) | D. Therefore
we have a natural homomorphism

dσ : T(X × P)⊗ OD → L̃ ⊗ OD

of vector bundles on D defined by

� | D �→ (�σ) | D.

We then denote by

dσX : p∗
1 T(X) → L̃ ⊗ OD

the restriction of dσ to the direct factor p∗
1 T(X) of

T(X × P)⊗ OD = p∗
1 T(X) ⊕ p∗

2 T(P).

Proposition 3.4 (1) The critical subscheme C of p2: D → P coincides with the degener-
acy subscheme D(dσX) of dσX.

(2) A point (p, [f ]) of D is contained in C if and only if the divisor D[f ] of X is singular
at p ∈ X.



152 Geom Dedicata (2006) 120:141–177

Construction 3.5 In order to prove Proposition 3.4, we introduce a formal parame-
ter system of D at a point P = (p, [f ]) ∈ D. We choose a formal parameter system
(x1, . . . , xn) of X at p ∈ X. Since the linear system |M| has no base points on X, we
can choose a global section β of L such that β(p) �= 0. Then we can choose a basis
(b0, . . . ,bm) of M in such a way that

b0 = f , bm = β,

and that the functions

φi: = bi/β (i = 0, . . . , m − 1)

on X defined locally at p satisfy

φ0(p) = · · · = φm−1(p) = 0.

Let (y1, . . . , ym) be the affine coordinate system of P such that a point (c1, . . . , cm)

corresponds to the one-dimensional linear subspace of M spanned by

b0 + c1b1 + · · · + cmbm ∈ M.

Then [f ] = [b0] ∈ P is the origin (0, . . . , 0).
We will regard φ0,…, φm−1 as formal power series of (x1, . . . , xn) so that we will

write φi(0) instead of φi(p), for example. We put

�: = φ0 + y1φ1 + · · · + ym−1φm−1 + ym.

Then we have

σ = c�β for some c ∈ k× (3.4)

in L̃⊗OP (OP)
∧, where OP is the local ring OX×P,P. Hence D is given by� = 0 locally

at P. Since
∂�

∂ym
(0, 0) = 1,

we see that

(ξ , η) = (ξ1, . . . , ξn, η1, . . . , ηm−1): = (p∗
1x1, . . . , p∗

1xn, p∗
2y1, . . . , p∗

2ym−1)

is a formal parameter system of D at P.

Proof of Proposition 3.4 Let P = (p, [f ]) be a point of D. We use the formal parameter
system (ξ , η) of D at P and the affine coordinate system (y1, . . . , ym) of P with the
origin [f ] given in Construction 3.5. We write the pull-back p∗

2ym of ym to D as a
formal power series of (ξ , η):

p∗
2ym = gm(ξ , η) in (OD,P)

∧ = k[[ξ , η]].
Then the Jacobian matrix of p2: D → P is as follows:





0 Im−1

∂gm

∂ξ1
· · · ∂gm

∂ξn
∗
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because p∗
2yi = ηi for i = 1, . . . , m − 1 and p∗

2ym = gm(ξ , η). Hence the degenerate
subscheme C of p2: D → P is defined locally at P by the ideal

〈
∂gm

∂ξ1
, . . . ,

∂gm

∂ξn

〉
⊂ (OD,P)

∧ = k[[ξ , η]]. (3.5)

On the other hand, by (3.4), the degeneracy subscheme of dσX : p∗
1 T(X) → L̃ ⊗ OD

is defined locally at P by the ideal
〈
∂�

∂x1

∣∣∣∣D , . . . ,
∂�

∂xn

∣∣∣∣D

〉
⊂ (OD,P)

∧. (3.6)

By the definition of gm, we have

�(ξ1, . . . , ξn, η1, . . . , ηm−1, gm(ξ , η)) ≡ 0.

Applying ∂/∂ξi to this identity, we obtain

∂�

∂xi

∣∣∣∣D + ∂�

∂ym

∣∣∣∣D · ∂gm

∂ξi
≡ 0.

Because ∂�/∂ym ≡ 1, the ideals (3.5) and (3.6) coincide in (OD,P)
∧. Therefore the

assertion (1) is proved. Because

∂�

∂xi
(0, 0) = ∂φ0

∂xi
(0),

the origin P ∈ D is contained in the subscheme C of D defined by the ideal (3.6) if and
only if we have

∂φ0

∂x1
(0) = · · · = ∂φ0

∂xn
(0) = 0;

that is, the divisor D[f ] = {φ0 = 0} is singular at p. Thus the assertion (2) is also proved.
�

Corollary 3.6 The subscheme C of X × P is defined by

� = ∂�

∂x1
= · · · = ∂�

∂xn
= 0

locally at a point P = (p, [f ]) of D, where � is the function on X × P defined locally at
P given in Construction 3.5.

Note that the expected dimension of C is m − 1.

Proposition 3.7 The subscheme C is smooth of dimension m − 1 at a point P = (p, [f ])
of C if one of the following holds;

(i) the singularity of D[f ] at p is non-degenerate, or
(ii) the morphism: X → P∨ induced by the linear system |M| is a closed immersion

formally at p.

Proof We use the formal parameter system (x1, . . . , xn, y1, . . . , ym) of X ×P at P given
in Construction 3.5. By Corollary 3.6, the subscheme C is smooth of dimension m − 1
at the origin P if and only if the (n + m)× (n + 1)-matrix
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J: =





∂φ0

∂x1
(0)

...
∂2φ0

∂xi∂xj
(0) (i,j=1,...,n)

∂φ0

∂xn
(0)

0
...

∂φi

∂xj
(0) (

i = 1, . . . , m − 1,
j = 1, . . . , n

)

0

1 0 . . . 0










n






m

is of rank n + 1. Here we have used the following equalities:

∂�

∂xi
(0, 0) = ∂φ0

∂xi
(0),

∂�

∂yj
(0, 0) =

{
φj(0) = 0 if j < m,
1 if j = m,

and

∂

∂xj

(
∂�

∂xi

)
(0, 0) = ∂2φ0

∂xj∂xi
(0),

∂

∂yj

(
∂�

∂xi

)
(0, 0) =






∂φj

∂xi
(0) if j < m,

0 if j = m.

Suppose that the condition (i) holds. Then the Hessian matrix
(
∂2φ0

∂xi∂xj
(0)

)

of D[f ] at p is non-degenerate, and hence the matrix J is of rank n+1. Suppose that the
condition (ii) holds. Then there exist n divisors D1, . . . , Dn ∈ |M| that pass through p,
are smooth at p, and intersect transversely at p. The local defining equations of these
Di at P are linear combinations of φ1, . . . ,φm−1, because the divisor D[f ] = {φ0 = 0}
is singular at p and the divisor corresponding to bm does not pass through p. Hence
the (m − 1)× n-matrix

(
∂φi

∂xj
(0)

)

i=1,...,m−1, j=1,...,n

is of rank n, and thus J is of rank n + 1. �

Assumption 3.8 From now on until the end of the paper, we assume that m > n, and
that the locus

X◦: = { p ∈ X | the morphism : X → P∨ is a closed immersion formally at p }
is dense in X.

Note that if X is smooth and the linear system |M| is very ample, then X◦ coincides
with X.

Definition 3.9 We put

C◦: = C ∩ (X◦ × P),



Geom Dedicata (2006) 120:141–177 155

and denote by

π1: C◦ → X◦ and π2: C◦ → P

the projections.

Proposition 3.10 The scheme C◦ is a smooth irreducible closed subscheme of X◦ × P
with dimension m − 1.

Proof The fact that C◦ is smooth of dimension m − 1 follows from Proposition 3.7
and the definition of X◦. We will prove the irreducibility of C◦. For each point p ∈ X◦,
there exists a unique n-dimensional linear subspace Lp ⊂ P∨ passing through (p)
such that the image of the injective homomorphism dp: Tp(X◦) → T(p)(P∨) coin-
cides with T(p)(Lp) ⊂ T(p)(P∨). The fiber of π1: C◦ → X◦ over p coincides with the
linear subspace

{ H ∈ P | Lp ⊂ H }
of P. Hence C◦ is irreducible. �

Remark 3.11 The above proof of Proposition 3.10 shows that, if m = n + 1, then
π1: C◦ → X◦ is an isomorphism with the inverse morphism given by p �→ (p, Lp). In
this case, the morphism π2: C◦ → P is identified with the Gauss map X◦ → P of the
morphism : X◦ → P∨.

Definition 3.12 Let E denote the critical subscheme Cr(π2) of π2: C◦ → P.

Definition 3.13 We will construct the universal Hessian

H : π∗
1 T(X◦)⊗OC◦ π∗

1 T(X◦) → L̃ ⊗ OC◦

on C◦. Let U be a Zariski open subset of X◦. Making U smaller if necessary, we may
assume that there exist regular functions (u1, . . . , un) on U that form a coordinate
system on U, and that there exists a trivialization L | U ∼= OU of L over U. Let V be
a Zariski open subset of P over which the line bundle OP(1) is trivialized. Let �U×V
denote the regular function on U × V obtained from the fixed global section σ of L̃
via a trivialization τ : L̃ | (U × V) ∼= OU×V . We define H on C◦ ∩ (U × V) by

H
(
∂

∂ui
,
∂

∂uj

)
: = τ−1

(
∂2�U×V

∂ui∂uj

)
.

It is easy to see that this definition does not depend on the choice of the coordinate sys-
tem (u1, . . . , un) on U and the trivializations of the line bundles, because the functions
�U×V and ∂�U×V/∂u1, . . . , ∂�U×V/∂un are constantly equal to zero on C◦ ∩ (U × V)
by Corollary 3.6. Therefore we can define H globally on C◦. We denote by

H :̃ π∗
1 T(X◦) → L̃ ⊗ π∗

1 T(X◦)∨

the homomorphism induced from H.

The following proposition is a scheme-theoretic refinement of [14, Proposition 3.3].
See also the Hessian criterion of Hefez and Kleiman [17, Theorem (12)], [8, Theo-
rem 3.2].

Proposition 3.14 The critical subscheme E of π2: C◦ → P coincides with the degeneracy
subscheme D(H˜) of H .̃
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Construction 3.15 In order to prove Proposition 3.14, we introduce a formal para-
meter system of C◦ at a point P = (p, [f ]) ∈ C◦. We use the same notation as in
Construction 3.5. Since p ∈ X◦, we can assume that the vectors b1, . . . ,bn among
the basis b0, . . . ,bm of M define divisors that pass through p, are smooth at p, and
intersect transversely at p. Then we can take (φ1, . . . ,φn) as the formal parameter
system (x1, . . . , xn) of X◦ at p; that is, we have

φ1 = x1, . . . ,φn = xn,

and hence we have

� = φ0 + y1x1 + · · · + ynxn + yn+1φn+1 + · · · + ym−1φm−1 + ym.

By a further linear transformation of the basis b0, . . . ,bm, we can also assume that

∂φi

∂xj
(0) = 0 for i = n + 1, . . . , m − 1 and j = 1, . . . , n

hold; that is, the functions φn+1, . . . ,φm−1 have no linear terms as formal power
series of x1, . . . , xn. By Corollary 3.6, the local defining equations of C◦ in X◦ × P at
P = (p, [f ]) are as follows.

φ0 + y1x1+ · · · + ynxn+ yn+1φn+1 + · · · + ym−1φm−1 + ym = 0,

∂φ0

∂x1
+ y1 + yn+1

∂φn+1

∂x1
+ · · · + ym−1

∂φm−1

∂x1
= 0,

. . .

. . .

∂φ0

∂xn
+ yn + yn+1

∂φn+1

∂xn
+ · · · + ym−1

∂φm−1

∂xn
= 0.

We see that

(u, v) = (u1, . . . , un, vn+1, . . . , vm−1): = (π∗
1 x1, . . . ,π∗

1 xn,π∗
2 yn+1, . . . ,π∗

2 ym−1)

is a formal parameter system of C◦ at P = (p, [f ]).

Proof of Proposition 3.14 Let P = (p, [f ]) be a point of C◦. We use the formal param-
eter system (u, v) of C◦ at P and the affine coordinate system (y1, . . . , ym) of P with
the origin [f ] given in Construction 3.15. We put

γj: = π∗
2 yj (j = 1, . . . , m).

Since γj = vj for j = n + 1, . . . , m − 1, the Jacobian matrix of π2: C◦ → P is of the form
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∂γi

∂uj
(i,j=1,...,n) ∗

0 Im−n−1

∂γm

∂u1
. . .

∂γm

∂un
∗





.

Hence the defining ideal of the critical subscheme E of π2 at P is generated by all
n-minors of the (n + 1)× n matrix





a1
...

an

am




: =





∂γ1

∂u1
. . .

∂γ1

∂un
...

. . .
...

∂γn

∂u1
. . .

∂γn

∂un

∂γm

∂u1
. . .

∂γm

∂un





.

Since � | C◦ ≡ 0, we have

φ̃0 + γ1u1 + · · · + γnun + vn+1φ̃n+1 + · · · + vm−1φ̃m−1 + γm ≡ 0, (3.7)

where

φ̃i: = φi(u1, . . . , un) = π∗
1φi.

Applying ∂/∂ui to (3.7), we obtain

∂φ̃0

∂ui
+ γi +

n∑

ν=1

∂γν

∂ui
uν +

m−1∑

µ=n+1

vµ
∂φ̃µ

∂ui
+ ∂γm

∂ui
≡ 0. (3.8)

Since (∂�/∂xi) | C◦ ≡ 0 for i = 1, . . . , n, we have

∂φ̃0

∂ui
+ γi +

m−1∑

µ=n+1

vµ
∂φ̃µ

∂ui
≡ 0, (3.9)

because (∂φj/∂xi) | C◦ = ∂φ̃j/∂ui. Combining the identities (3.8) and (3.9), we obtain

∂γm

∂ui
≡ −

n∑

ν=1

∂γν

∂ui
uν (i = 1, . . . , n).

Thus we have

am = −
n∑

ν=1

uνaν .
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Therefore the defining ideal of E at P is generated by

det A: = det




a1
...

a n





in (OC◦,P)
∧. On the other hand, we have

∂2�

∂xi∂xj

∣∣∣∣C◦ ≡ ∂2φ̃0

∂ui∂uj
+

m−1∑

µ=n+1

vµ
∂2φ̃µ

∂ui∂uj
. (3.10)

Applying ∂/∂uj to (3.9), we obtain

∂2φ̃0

∂ui∂uj
+ ∂γi

∂uj
+

m−1∑

µ=n+1

vµ
∂2φ̃µ

∂ui∂uj
≡ 0. (3.11)

Combining (3.10) and (3.11), we obtain

∂2�

∂xi∂xj

∣∣∣∣C◦ ≡ − ∂γi

∂uj
. (3.12)

We denote by

S: =



s1
...
sn



 =
(

∂2�

∂xi∂xj

∣∣∣∣C◦

)

the n × n matrix representing the universal Hessian H locally at P. From (3.12), we
obtain

si = −ai (i = 1, . . . , n).

Hence det A and det S generate the same ideal in (OC◦, P)
∧. Therefore E coincides with

D(H˜) locally at P. �

Corollary 3.16 ([14], Proposition 3.3) The morphism π2: C◦ → P is a closed immersion
formally at a point (p, [f ]) ∈ C◦ if and only if the singularity of the divisor D[f ] of X◦ at
p ∈ X◦ is non-degenerate.

Corollary 3.17 The subscheme E of X◦ × P is defined by

� = ∂�

∂x1
= · · · = ∂�

∂xn
= det

(
∂2�

∂xi∂xj

)
= 0

locally at a point P = (p, [f ]) of C◦, where � is the function on X◦ × P defined locally
at P given in Construction 3.15.

Remark 3.18 By Corollaries 3.6 and 3.17, the scheme E is of codimension ≤ 1 in C◦. It
was observed by Wallace [24] that, in positive characteristics, E and C◦ may coincide.
For example, let X be the Fermat hypersurface

Xq+1
0 + Xq+1

1 + · · · + Xq+1
n+1 = 0
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of degree q + 1 in P
n+1, where q = lν is a power of the characteristic l > 0 of k, and

let M be the complete linear system |OX(1)|. Then, at every point p of X, the divisor
Tp(X) ∩ X of X has a degenerate singular point at p, and hence E = C◦ holds. In this
case, the morphism C◦ → P is purely inseparable of degree qn onto its image. See [14,
Example 3.4] or [23] for the details.

4 The scheme E

In this section, we assume that char k is not 2.

Construction 4.1 Let P = (p, [f ]) be a point of E , and let r be the rank of the Hessian
of D[f ] at p. By Corollary 3.16, we have r < n. We choose a formal parameter system
(x1, . . . , xn, y1, . . . , ym) of X◦ × P at P given in Construction 3.15. Since char k �= 2, we
can assume that the functions

φ1 = x1, . . . ,φn = xn

form an admissible formal parameter system with respect to φ0 at p ∈ X◦ by a linear
transformation of the basis b0, . . . ,bm of M. (See Remark 2.11). Thus we have

φ0 = x2
1 + · · · + x2

r + (terms of degree ≥ 3) in (OX◦, p)
∧ = k[[x1, . . . , xn]].

Definition 4.2 Let

�1: E → X◦ and �2: E → P

be the projections. We put

Esm: = { P ∈ E | E is smooth of dimension m − 2 at P },
which is a Zariski open subset of E , and let

� sm
1 : Esm → X◦ and � sm

2 : Esm → P

be the restrictions of�1 and�2 to Esm. Note that, if Esm is non-empty, then the image
of the projection π2: C◦ → P is a hypersurface. We also put

EA2 : = { (p, [f ]) ∈ E | the singularity of the divisor D[f ] at p is of type A2 }.
In the following, Proposition 4.3 concerns with both the cases of characteristic 3 and
characteristic �= 3, Proposition 4.4 treats the case where char k �= 3, and Theorem 4.5
is a result in characteristic 3.

Proposition 4.3 If P = (p, [f ]) is a point of Esm, then the rank of the Hessian Hφ0,p of
the divisor D[f ] at p is n − 1.

Conversely, let P = (p, [f ]) be a point of E , and suppose that the rank of Hφ0,p
is n − 1. Let (x1, . . . , xn, y1, . . . , ym) be the formal parameter system of X◦ × P at P
given in Construction 4.1. Let ai (i = 1, . . . , n) be the coefficient of xix2

n in φ0, and let
bj (j = n + 1, . . . , m − 1) be the coefficient of x2

n in φj. Then P ∈ Esm holds if and only
if at least one of

a1, . . . , an−1, 3an, bn+1, . . . , bm−1

is not zero.
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Proposition 4.4 Suppose that char k �= 3. Then we have

EA2 = Esm\ Cr(d� sm
2 ).

Theorem 4.5 Suppose that char k = 3. We denote by K the kernel of the homomor-
phism

d� sm
2 : T(Esm) → � sm∗

2 T(P).

Then K is an integrable subbundle of T(Esm) with rank 1. Let

Esm q−→ (Esm)K τ−→ P

be the canonical factorization of � sm
2 , where q is the quotient morphism by K. Then

we have

q(EA2 ∩ Esm) ⊂ (Esm)K \ Cr(τ ).

Proof of Propositions 4.3, 4.4 and Theorem 4.5 Let P = (p, [f ]) be a point of E , and
let r be the rank of the Hessian Hφ0,p of D[f ] at p. We use the formal parameter system
(x1, . . . , xn, y1, . . . , ym) of X◦ × P at P given in Construction 4.1. For a formal power
series F of (x1, . . . , xn, y1, . . . , ym), we denote by F[1] the homogeneous part of degree
1 of F. Then we have

�[1] = ym,
(
∂�

∂xi

)[1]
= 2xi + yi (i = 1, . . . , r),

(
∂�

∂xi

)[1]
= yi (i = r + 1, . . . , n),

and

(
det

(
∂2�

∂xi∂xj

))[1]
=






0 if r < n − 1,
(
∂2�

∂x2
n

)[1]
if r = n − 1,

=






0 if r < n − 1,

2(a1x1 + · · · + an−1xn−1 + 3anxn
+bn+1yn+1 + · · · + bm−1ym−1)

if r = n − 1.

By Corollary 3.17, the Zariski tangent space TP(E) to E at P is identified with the
linear space defined by these n + 2 linear forms in the (n + m)-dimensional linear
space with coordinates (x1, . . . , xn, y1, . . . , ym). Hence Proposition 4.3 is proved.

If char k �= 3 and P ∈ EA2 , then P ∈ Esm because 3an �= 0. Suppose that P ∈ Esm.
The kernel of the linear homomorphism

dP�
sm
2 : TP(Esm) → T[f ](P)

is identified with the intersection of the linear space defined by the n + 2 linear forms
above and the linear space defined by

y1 = · · · = ym = 0.

Hence Ker(dP�
sm
2 ) is of dimension 0 if and only if 3an �= 0. Thus Proposition 4.4 is

proved.
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We now assume that char k = 3. Suppose that P = (p, [f ]) ∈ Esm. The kernel of the
linear homomorphism dP�

sm
2 is of dimension 1 and is generated by

(
∂

∂xn

)

P
∈ TP(Esm).

Since this holds at every point P of Esm, we see that the sub-sheaf K = Ker(d� sm
2 )

of T(Esm) is a subbundle of rank 1. The integrability of K follows trivially from the
definition. From now on, we further assume that P ∈ EA2 ; that is, an �= 0. The fiber

Z: = (� sm
2 )

−1
( [f ] )

of � sm
2 passing through P is defined by

φ0 = ∂φ0

∂x1
= · · · = ∂φ0

∂xn
= det

(
∂2φ0

∂xi∂xj

)
= 0

in X◦ ×{[f ]} ∼= X◦ locally at P. We will calculate dimk OZ,P. Since� sm
2 factors through

the radical covering q: Esm → (Esm)K of degree 3, we have

dimk OZ,P ≥ 3.

We put

ξi: = xi | Z (i = 1, . . . , n − 1) and t: = xn | Z.

Using the identity ∂φ0/∂x1 = · · · = ∂φ0/∂xn−1 = 0 on Z and Lemma 4.6 below, we
can write ξi in formal power series of t as follows:

ξi = ait2 + (terms of degree ≥ 3) (i = 1, . . . , n − 1).

Making substitutions xi = ξi for i = 1, . . . , n − 1 and xn = t in φ0, we obtain a formal
power series

φ0 | Z = ant3 + (terms of degree ≥ 4).

Since an �= 0, we obtain dimk OZ,P ≤ 3. Therefore dimk OZ,P = 3 holds. We put

A: = (OEsm,P)
∧, B: = (O(Esm)K,q(P))

∧, C: = (OP,[f ])∧,

and let mA, mB, mC be their maximal ideals, respectively. From dimk OZ,P = 3 and
Remark 2.19, we have

dimk(A/mCA) = 3 = dimk(A/mBA).

Since mCB ⊆ mB, we obtain

mBA = mCA.

Since A is faithfully flat over B, we obtain mB = mCB, which implies that C → B
is surjective. Hence τ is a closed immersion formally at q(P). Thus Theorem 4.5 is
proved. �
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Lemma 4.6 Let F1(u, t), …, FN(u, t) be formal power series of variables (u, t) =
(u1, . . . , uN , t) such that F1(0, 0) = · · · = FN(0, 0) = 0 and det J �= 0, where

J: =





∂F1

∂u1
(0, 0) . . .

∂F1

∂uN
(0, 0)

...
. . .

...
∂FN

∂u1
(0, 0) . . .

∂FN

∂uN
(0, 0)




.

We put

µ: = min{ ordt=0(Fi(0, t)) | i = 1, . . . , N },
and let αi be the coefficient of tµ in Fi(0, t). We put




β1
...
βN



 : = −J−1




α1
...
αN



 .

Then we can solve the equation

F1(u, t) = · · · = FN(u, t) = 0

with indeterminates u1, . . . , uN in k[[t]] as follows:

ui = βitµ + (terms of degree > µ) (i = 1, . . . , N).

Proof Obvious. �

The following Corollary of Proposition 4.3 plays a crucial role in the proof of
Theorem 5.2.

Corollary 4.7 Suppose that char k = 3. If P ∈ Esm, then at least one of

a1, . . . , an−1, bn+1, . . . bm−1

is not zero. In particular, if (n, m) = (1, 2), then Esm = ∅.

Remark 4.8 Suppose that the Hessian Hφ0,p of D[f ] at p is of rank n−1. Then the con-
dition that at least one of a1, . . . , an−1, 3an be non-zero is independent of the choice of
the admissible formal parameter system (x1, . . . , xn) of X at p with respect to φ0. The
condition that at least one of bn+1, . . . , bm−1 be non-zero is equivalent to the condi-
tion that there exists a divisor D ∈ P passing through p and having a non-degenerate
singular point at p.

Next we will give a sufficient condition for EA2 and Esm to be dense in E .

Proposition 4.9 For p ∈ X◦, let mp ⊂ Op denote the maximal ideal of the local ring
Op := OX◦, p, and let Lp denote the Op-module L ⊗ Op. Suppose that the evaluation
homomorphism

vp : M → Lp/m
4
pLp ∼= Op/m

4
p

is surjective at every point p of X◦. Then E is irreducible, and EA2 and Esm are dense
in E .
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Proof The space m2
p/m

3
p is regarded as the space of symmetric bilinear forms on

the Zariski tangent space Tp(X◦) = (mp/m
2
p)

∨. The determinant of the symmetric
matrix cuts out the irreducible subscheme D of degenerate symmetric bilinear forms
in m2

p/m
3
p. By Proposition 3.14, there exists a closed variety D̃ ⊂ m2

p/m
4
p ⊂ Op/m

4
p,

which is a cone over D ⊂ m2
p/m

3
p in the subspace m2

p/m
4
p of Op/m

4
p and is invariant

under the multiplications by elements of k×, such that

�−1
1 (p) = P∗(v−1

p (D̃)).

By the definition of hypersurface singularities of type A2, and by Proposition 4.3,
there exist Zariski open dense subsets D̃A2 and D̃sm of D̃, which are invariant under
the multiplications by elements of k×, such that

�−1
1 (p) ∩ EA2 = P∗(v−1

p (D̃A2)) and �−1
1 (p) ∩ Esm = P∗(v−1

p (D̃sm)).

Therefore, if vp is surjective at every point p ∈ X◦, then E is irreducible, and EA2 and
Esm are dense in E . �

Corollary 4.10 Let A be a very ample line bundle on a smooth projective variety X. If
L = A⊗3 and M = H0(X, L), then E is irreducible, and EA2 and Esm are dense in E .

5 A general plane section of the discriminant hypersurface

In this section, we still assume that char k is not 2.

Definition 5.1 Let P = (p, [f ]) be a point of Esm, and let � ⊂ P be a general plane
passing through the point π2(P) = [f ] of P. We denote by

π� : C� → �

the restriction of π2: C◦ → P to

C� := π−1
2 (�) ⊂ C◦.

Note that, if Esm is not empty, then the image of π2: C◦ → P is a hypersurface, and
hence π2(C◦) ∩� is a projective plane curve.

Theorem 5.2 Let P = (p, [f ]) be a point of Esm ∩ EA2 , and let � be a general plane in
P passing through [f ]. Then C� is smooth of dimension 1 at P ∈ C�.

(1) Suppose that char k �= 3. Then the morphism π�: C� → � has a critical point of
A2-type at P.

(2) Suppose that char k = 3. Then the morphism π�: C� → � has a critical point of
E6-type at P.

Proof We use the formal parameter system

(x, y) = (x1, . . . , xn, y1, . . . , ym)

of X◦ × P at P = (p, [f ]) ∈ Esm given in Construction 4.1. Since � ⊂ P is a general
plane passing through the origin [f ], we can take

u: = yn |� and v: = ym |�
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as affine coordinates of � with the origin [f ]. The linear embedding � ↪→ P is given
by

yn = u, ym = v, yi = αiu + βiv (i �= n, m), (5.1)

Where αi and βi(i �= n, m) are general elements of k. For a formal power series
F = F(x, y) of (x, y), we denote by F� the formal power series of

(x, u, v) = (x1, . . . , xn, u, v)

obtained by making the substitutions (5.1) in F. In other words, we put

F�(x, u, v): = F | (X◦ ×�).

For simplicity, we put

�i: = ∂�

∂xi
.

Then C� is defined in X◦ ×� by the equations

�� = �1,� = · · · = �n,� = 0

locally at P. The linear parts �[1]
� ,�[1]

1,�, . . . ,�[1]
n,� of these formal power series are

given as follows:

�
[1]
� = v,

�
[1]
i,� = 2xi + αiu + βiv (i < n),

�
[1]
n,� = u.

Therefore C� is smooth of dimension 1 at P, and the variable

t: = xn | C�

is a formal parameter of C� at P. Hence we can write the functions u | C�, v | C� and
xi | C� (i < n) on C� as formal power series of t with no constant terms:

u | C� = U(t) =
∞∑
ν=1

Uν tν ,

v | C� = V(t) =
∞∑
ν=1

Vν tν ,

xi | C� = Xi(t) =
∞∑
ν=1

Xi,ν tν (i < n).

In order to prove the assertions (1) and (2), it is enough to calculate the coefficients
Uν and Vν up to ν = 3 and up to ν = 4, respectively.

The coefficients are calculated by the following algorithm. Let (S) be a set of
substitutions of the form

(S)






u = Pu(t),
v = Pv(t),
xi = Pxi(t) (i < n),
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where Pu, Pv and Pxi are polynomials in t with coefficients in k and without constant
terms. For a formal power series F of (x, y), we denote by s(F, S) the formal power
series of t obtained from F� = F�(x, u, v) by making the substitutions (S) and xn = t:

s(F, S): = F�(Px1(t), . . . , Pxn−1(t), t, Pu(t), Pv(t)).

We also denote by c(F, S, l) the coefficient of tl in s(F, S).
The (l+1)-st step of the algorithm. Suppose that we have calculated the coefficients

Uν , Vν and Xi,ν for ν ≤ l in such a way that, by making the substitutions

(Sl)






u = P[l]
u (t) = ∑l

ν=1 Uν tν ,

v = P[l]
v (t) = ∑l

ν=1 Vν tν ,

xi = P[l]
xi (t) = ∑l

ν=1 Xi,ν tν (i < n)

and xn = t to the formal power series ��,�1,�, . . . ,�n,� defining C� in X◦ ×�, we
obtain

c(�, Sl, λ) = c(�1, Sl, λ) = · · · = c(�n, Sl, λ) = 0

for λ ≤ l. We then put

(Sl+1)






u = P[l]
u (t)+ Ul+1 tl+1 ,

v = P[l]
v (t)+ Vl+1 tl+1,

xi = P[l]
xi + Xi,l+1 tl+1 (i < n),

and solve the equations

c(�, Sl+1, l + 1) = c(�1, Sl+1, l + 1) = · · · = c(�n, Sl+1, l + 1) = 0

with indeterminates being the new coefficients Ul+1, Vl+1 and Xi,l+1 (i < n).
A monomial M of x = (x1, . . . , xn) is said to be of degree [λ,µ] if M is of degree λ

in (x1, . . . , xn−1) and of degree µ in xn. For a formal power series F of x, we denote
by F[λ,µ] the homogeneous part of degree [λ,µ]. Let M be a monomial of (x, y), or
of (x, u, v). We say that M is of degree [λ,µ, ν] if M is of degree [λ,µ] in x, and is of
degree ν in y = (y1, . . . , ym) or in (u, v), respectively. Let F be a formal power series
of (x, y), or of (x, u, v). We denote by F[λ,µ,ν] the homogeneous part of F with degree
[λ,µ, ν]. Since the embedding � ↪→ P is linear, we obviously have

(F[λ,µ,ν])� = (F�)[λ,µ,ν]

for a formal power series F of (x, y). If the substitutions

(S)






u = Pu(t),
v = Pv(t),
xi = Pxi(t) (i < n)

satisfy

ordt=0 Pu(t) ≥ A, ordt=0 Pv(t) ≥ A, and ordt=0 Pxi(t) ≥ B (i < n),

then we have

c(F, S, l) =
∑

Bλ+µ+Aν≤l

c(F[λ,µ,ν], S, l).
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Recall that

� = φ0 + y1x1 + · · · + ynxn + yn+1φn+1 + · · · + ym−1φm−1 + ym,

where φ0,φn+1, . . . ,φm−1 are formal power series of x = (x1, . . . , xn) such that

φ
[0,0]
0 = φ

[0,0]
n+1 = · · · = φ

[0,0]
m−1 = 0,

φ
[0,1]
0 = φ

[0,1]
n+1 = · · · = φ

[0,1]
m−1 = φ

[1,0]
0 = φ

[1,0]
n+1 = · · · = φ

[1,0]
m−1 = 0,

φ
[2,0]
0 = x2

1 + · · · + x2
n−1, φ

[1,1]
0 = φ

[0,2]
0 = 0.

Recall also that a1, . . . , an, bn+1, . . . , bm−1 are defined in Proposition 4.3 by

φ
[1,2]
0 = (a1x1 + · · · + an−1xn−1)x

2
n, φ

[0,3]
0 = anx3

n,

and

φ
[0,2]
j = bjx2

n (j = n + 1, . . . , m − 1).

By the assumption P ∈ EA2 , we have

an �= 0.

We define e1, . . . , en and f1, . . . , fn by

φ
[1,3]
0 = (e1x1 + · · · + en−1xn−1) x3

n, φ
[0,4]
0 = enx4

n,

φ
[1,4]
0 = (f1x1 + · · · + fn−1xn−1) x4

n, φ
[0,5]
0 = fnx5

n.

We also define homogeneous polynomials Ai(x1, . . . , xn−1)(i < n) of degree 1 and
B(x1, . . . , xn−1) of degree 2 by

Ai: = 1
xn

∂φ
[2,1]
0

∂xi
, B: = ∂φ

[2,1]
0

∂xn
.

Then we obtain Table 1.

Table 1 F[λ,µ,ν] for F = �, �i (i < n) and �n

[λ,µ, ν] F = � F = �i (i < n) F = �n

[0, 0, 0] 0 0 0
[0, 0, 1] ym yi yn
[0, 1, 0] 0 0 0

[0, 1, 1] ynxn – 2
(∑m−1

j=n+1 bjyj

)
xn

[0, 2, 0] 0 aix2
n 3 anx2

n

[0, 3, 0] anx3
n eix3

n 4 enx3
n

[0, 4, 0] enx4
n fix4

n 5 fnx4
n

[1, 0, 0] 0 2xi 0

[1, 1, 0] 0 Ai(x0, . . . , xn−1) xn 2
(∑n−1

i=1 aixi

)
xn

[1, 2, 0]
(∑n−1

i=1 aixi

)
x2

n – 0 if char k = 3

[2, 0, 0]
∑n−1

i=1 x2
i – B(x0, . . . , xn−1)

if ν > 1 0 0 0
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Step 1. We put

(S1)






u = U1 t,
v = V1 t,
xi = Xi,1 t (i < n).

Then we have

c(F, S1, 1) =
∑

λ+µ+ν≤1

c(F[λ,µ,ν], S1, 1)

for any formal power series F of (x, y). Therefore we obtain equations

V1 = 0, 2 Xi,1 + αiU1 + βiV1 = 0 (i < n), U1 = 0.

Hence we get

U1 = V1 = Xi,1 = 0 (i < n).

Step 2. We put

(S2)






u = U2 t2,
v = V2 t2,
xi = Xi,2 t2 (i < n).

Then we have

c(F, S2, 2) =
∑

2λ+µ+2ν≤2

c(F[λ,µ,ν], S2, 2).

Therefore we obtain equations

V2 = 0,

αiU2 + βiV2 + ai + 2 Xi,2 = 0 (i < n),

U2 + 3 an = 0.

Hence we get

U2 = −3 an, V2 = 0, Xi,2 = (3anαi − ai)/2 (i < n).

Step 3. We put

(S3)






u = U2 t2 + U3 t3,
v = V3 t3,
xi = Xi,2 t2 + Xi,3 t3 (i < n).

Then we have

c(F, S3, 3) =
∑

2λ+µ+2ν≤3

c(F[λ,µ,ν], S3, 3).

Putting F = � in this formula, we obtain an equation

V3 + U2 + an = 0.

Hence we get

V3 = 2an.
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Therefore we have

u | C� = −3 ant2 + (terms of degree ≥ 3),
v | C� = 2 ant3 + (terms of degree ≥ 4).

Thus the assertion (1) in char k �= 3 is proved.
From now on, we assume char k = 3. Then we have

U2 = 3 an = 0, Xi,2 = ai (i < n),

and the substitutions (S3) become as follows:

(S3)






u = U3 t3,
v = V3 t3,
xi = Xi,2 t2 + Xi,3 t3 (i < n).

Therefore we have

c(F, S3, 3) =
∑

2λ+µ+3ν≤3

c(F[λ,µ,ν], S3, 3).

Hence we get equations

V3 + an = 0,

αiU3 + βiV3 + ei + 2 Xi,3 + Ai(X1,2, . . . , Xn−1,2) = 0 (i < n),

U3 + en + 2
( n−1∑

i=1

aiXi,2

)
= 0.

Thus we obtain

U3 = 2 en +
n−1∑

i=1

a2
i , V3 = 2 an,

and

Xi,3 = αiU3 + βiV3 +�i = αi(2 en +
n−1∑

i=1

a2
i )+ 2βian +�i (i < n),

where �1, . . . ,�n−1 do not depend on the parameters αj nor βj(j �= n, m).
Step 4. We put

(S4)






u = U3 t3 + U4 t4,
v = V3 t3 + V4 t4,
xi = Xi,2 t2 + Xi,3 t3 + Xi,4 t4 (i < n).

We have

c(F, S4, 4) =
∑

2λ+µ+3ν≤4

c(F[λ,µ,ν], S4, 4).
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Putting F = � and F = �n into this formula, we obtain equations

V4 + U3 + en +
n−1∑

i=1

aiXi,2 +
n−1∑

i=1

X2
i,2 = 0, and

U4 + 2
m−1∑

j=n+1

bj(αjU3 + βjV3)+ 2fn + 2
n−1∑

i=1

aiXi,3 + B(X1,2, . . . , Xn−1,2) = 0.

From the first equation, we obtain

V4 = −U3 − en − 2
n−1∑

i=1

a2
i = 0.

Since V3 = 2an �= 0, the critical point P of π� is of E6-type if and only if U4 �= 0. From
the second equation, we obtain

U4 = U3

( n−1∑

i=1

aiαi +
m−1∑

j=n+1

bjαj

)
+ V3

( n−1∑

i=1

aiβi +
m−1∑

j=n+1

bjβj

)
+ ϒ ,

where ϒ does not depend on the parameters αj nor βj(j �= n, m). From Corollary 4.7
and the assumption P ∈ Esm, at least one of a1, . . . , an−1, bn+1, . . . , bm−1 is not zero.
Since V3 = 2an �= 0, by choosing β1, . . . ,βn−1,βn+1, . . . ,βm−1 general enough, we
have U4 �= 0. �

6 The dual curve of a plane curve in characteristic 3

Throughout this section, we suppose that char k = 3 and (n, m) = (1, 2).
Recall that, in the case (n, m) = (1, 2), the projection π1: C◦ → X◦ is an isomor-

phism, and π2: C◦ → P is identified with the Gauss map (Remark 3.11).

Theorem 6.1 (1) The critical subscheme E of π2: C◦ → P is of dimension 0 if and only
if π2 is separable onto its image.

(2) Suppose that π2 is separable onto its image. Then, at every point P of E , the length
of OE ,P is a multiple of 3. Let P = (p, [f ]) be a point of EA2 . Then π2 has a critical point
of Tl-type at P, where l: = length OE ,P/3.

Proof If π2 is inseparable onto its image, then the generic point of C◦ is contained in
E , and hence dim E = dim C◦ = 1. Conversely, suppose that π2 is separable onto its
image. Let P = (p, [f ]) be a point of E . We use the formal parameters (x1, y1, y2) of
X◦ × P given in Construction 4.1. We put

φ0 = c3 x3
1 + c4 x4

1 + · · · =
∞∑

ν=1

c3ν x3ν
1 +

∞∑

ν=1

c3ν+1 x3ν+1
1 +

∞∑

ν=1

c3ν+2 x3ν+2
1 .

Then C◦ is defined locally at P by the equations

φ0 + y1x1 + y2 = 0 and φ′
0 + y1 = 0.
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Therefore

t: = x1 | C◦

is a formal parameter of C◦ at P, and π2: C◦ → P is given by

π∗
2 y1 = −φ′

0 | C◦ = −
∑

c3ν+1 t3ν +
∑

c3ν+2 t3ν+1,

π∗
2 y2 = (φ′

0x1 − φ0) | C◦ = −
∑

c3ν t3ν +
∑

c3ν+2 t3ν+2.
(6.1)

Since π2 is separable, there exists a positive integer ν such that c3ν+2 �= 0. By Corol-
lary 3.17, the scheme E is defined on C◦ by

∂2�

∂x2
1

∣∣∣∣∣C◦ = φ′′
0 | C◦ = −

∞∑

ν=1

c3ν+2 t3ν = 0.

Therefore dimP E is 0, and the length of OE ,P is equal to 3l, where

l: = min{ ν | c3ν+2 �= 0 }.
If P ∈ EA2 , then c3 �= 0. Therefore, from (6.1), we see that π2 has a critical point of
Tl-type at P. �

In the rest of this section, we will investigate normal forms of a critical point of
Tl-type. Let ϕ: C → S be a morphism given in Sect. 2.1.

Proposition 6.2 Suppose that ϕ has a critical point of Tl-type at P ∈ C. Then there
exist a formal parameter t of (OC,P)

∧ and a formal parameter system (u, v) of (OS,ϕ(P))
∧

such that ϕ is given by

ϕ∗u = t3l+1 and ϕ∗v = t3 + t3l+2.

Proof Let t and (u, v) be arbitrary formal parameters of (OC,P)
∧ and (OS,ϕ(P))

∧,
respectively. For F ∈ (OS,ϕ(P))

∧, we denote by F[t,ν] the coefficient of tν in ϕ∗F ∈
(OC,P)

∧ = k[[t]]. For A, B ∈ (OC,P)
∧, we write A = B +[≥ N] if A − B is contained in

the Nth power of the maximal ideal of (OC,P)
∧. By the definition of the critical point

of Tl-type, we have

ϕ∗u = u[t,3]t3 + u[t,6]t6+ · · · +u[t,3l]t3l + u[t,3l+1]t3l+1 + u[t,3l+2]t3l+2+ [≥ 3l + 3],
ϕ∗v = v[t,3]t3 + v[t,6]t6+ · · · +v[t,3l]t3l + v[t,3l+1]t3l+1 + v[t,3l+2]t3l+2+ [≥ 3l + 3],

and the coefficients u[t,ν] and v[t,ν] satisfy (2.2). Since (u[t,3], v[t,3]) �= (0, 0), we can
assume that

u[t,3] = 0 and v[t,3] = 1 (6.2)

by a linear transformation of (u, v). If r ≥ 2, then we have

(vr)[t,ν] �= 0 and ν �≡ 0 mod 3 �⇒ ν ≥ 3l + 4.

Therefore, replacing u with

u − c2v2 − · · · − clv
l

with appropriate coefficients c2, . . . , cl, we can assume that

ϕ∗u = u[t,3l+1]t3l+1 + u[t,3l+2]t3l+2 + [≥ 3l + 3].
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By (6.2) and the condition (2.2), we have u[t,3l+1] �= 0. Therefore there exists a formal
parameter s of (OC,P)

∧ such that

ϕ∗u = s3l+1.

By u[s,3] = 0 and the condition (2.2), we can assume

v[s,3] = 1 and v[s,3l+1] = 0

by a linear transformation of (u, v). If r ≥ 2, then we have

(vr)[s,ν] �= 0 and ν �≡ 0 mod 3 �⇒ ν ≥ 3l + 5.

Therefore, replacing v with

v − d2v2 − · · · − dlv
l

with appropriate coefficients d2, . . . , dl, we can assume that

ϕ∗v = s3 + v[s,3l+2]s3l+2 + [≥ 3l + 3].
By the condition (2.2) again, we have v[s,3l+2] �= 0. Replacing (u, v, s) with (αu,βv, γ s)
with appropriate α,β, γ ∈ k×, and denoting s by t, we obtain

ϕ∗u = t3l+1, and

ϕ∗v = t3 + t3l+2 + [≥ 3l + 3].
We put

T: = { 3a + (3l + 1)b | a, b ∈ Z≥0 },
and fix functions

m1 : T → Z≥0 and m2 : T → Z≥0

such that

3m1(ν)+ (3l + 1)m2(ν) = ν

holds for every ν ∈ T. It is easy to see that a non-negative integer ν is in T if and only
if

(ν ≤ 3l and ν ≡ 0 mod 3)

or (3l < ν ≤ 6l + 1 and ν �≡ 2 mod 3)

or (6l + 1 < ν)

holds. Therefore, replacing v with

v −
∑

ν≥3l+3, ν∈T

eνum2(ν)vm1(ν)

with coefficients eν chosen appropriately, we obtain

ϕ∗u = t3l+1, and

ϕ∗v = t3 + t3l+2 +
l−1∑

µ=1

Aµt3l+3µ+2
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with A1, . . . , Al−1 ∈ k. If the coefficients Aµ are all zero, then the proof is finished.
Assume that Aµ �= 0 for some µ < l, and put

m: = min{ µ | Aµ �= 0 }.
We put

u′: = u − Amuvm.

Then we have

ϕ∗u′ = t3l+1 − Amt3l+3m+1 + [≥ 6l + 3m].
There exists a formal parameter s of (OC,P)

∧ such that

ϕ∗u′ = s3l+1.

Then we have

s = t − Amt3m+1 + [≥ 3m + 2],
and therefore

t = s + Ams3m+1 + [≥ 3m + 2].
Let Rr(r ≥ 3m + 1) be the coefficients in

t3 = s3 +
∑

r≥3m+1

Rrs3r.

Because 3l + 2 ≡ −1 mod 3, we have

t3l+2 + Amt3l+3m+2 + [≥3l + 3m + 3] = s3l+2 + [≥3l + 3m + 3].
Therefore we obtain

ϕ∗v = s3 +
l+m∑

r=3m+1

Rrs3r + s3l+2 + [≥3l + 3m + 3].

If r ≥ 3m + 1, then we have

(vr)[s,ν] �= 0 and ν �≡ 0 mod 3 �⇒ ν ≥ 3(r − 1)+ 3l + 2 ≥ 3l + 3m + 3.

Therefore, replacing v with

v −
l+m∑

r=3m+1

R′
rv

r

with appropriate coefficients R′
ν , we can assume that

ϕ∗v = s3 + s3l+2 + [≥ 3l + 3m + 3].
Replacing v with

v −
∑

ν≥3l+3m+3, ν∈T

fνum2(ν)vm1(ν)
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with appropriate coefficients fν and denoting u′ by u and s by t, we get

ϕ∗u = t3l+1 and

ϕ∗v = t3 + t3l+2 +
l−1∑

µ=m+1

A′
µ t3l+3µ+2

with new coefficients A′
m+1, . . . , A′

l−1. Thus we have

min{µ | A′
µ �= 0} > m = min{ µ | Aµ �= 0 }.

Therefore, after repeating this process finitely often, we obtain formal power series
with the desired properties. �

Proposition 6.3 Suppose that ϕ has a critical point of Tl-type at P ∈ C. Then the image
of the germ (C, P) by ϕ is formally isomorphic to the germ of a plane curve singularity
defined by

x3l+1 + y3 + x2ly2 = 0. (6.3)

Proof Let Cl ⊂ A
2 be the affine curve defined by the Eq. (6.3), and let

ν : C̃l → Cl

be the normalization in a neighborhood of O: = (0, 0). Let P ∈ C̃l be a point such
that ν(P) = O. It is enough to show that ν−1(O) consists of a single point P (that is,
Cl is locally irreducible at O), and that the composite of ν and the inclusion Cl ↪→ A

2

has a critical point of Tl-type at P.
We denote by Dm,n the affine curve defined by

xm+1 + y3 + xny2 = 0.

We have Cl = D3l,2l. Let β: (A2)∼ → A
2 be the blowing-up at O. The proper transform

of Dm,n (m ≥ 3, n ≥ 2) by β is isomorphic to Dm−3,n−1, and the proper birational
morphism

ψm,n: = β | Dm−3,n−1

is given by (x, y) �→ (x, xy). We also have

ψ−1
m,n(O) = {O}.

Since

D0,l: x + y3 + xly2 = 0

is smooth at O, the curve D3l,2l = Cl is locally irreducible at O, and the composite

ν: D0,l
ψ3,l+1−→ D3,l+1

ψ6,l+2−→ · · · ψ3l,2l−→ D3l,2l = Cl

is the normalization of Cl in a neighborhood of O. We put

t: = y | D0,l,

which is a formal parameter of D0,l at O. Then

x | D0,l = −t3 − (−1)l t3l+2 + (terms of degree ≥ 3l + 3).
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Since

ν∗(x | Cl) = x | D0,l = −t3 − (−1)l t3l+2 + (terms of degree ≥ 3l + 3) and
ν∗(y | Cl) = (xly) | D0,l = (−1)l t3l+1 + (terms of degree ≥ 3l + 3),

we see that the composite of ν: D0,l → Cl and the inclusion Cl ↪→ A
2 has a critical

point of Tl-type at O ∈ D0,l. �

7 The degree of E

For a smooth projective variety V, we denote by Ak(V) = Adim V−k(V) the abelian
group of rational equivalence classes of k-cycles of V, and by A∗(V) the Chow group
of V. For a closed subscheme W of V, let [W] ∈ A∗(V) be the class of W. We denote
by

∫

V
: A0(V) → Z

the degree map
∑

P nP[P] �→ ∑
P nP.

In this section, we assume the following:

X = X = X◦; (7.1)

that is, X is smooth, the linear system |M| on X has no base points, and the morphism
: X → P∨ induced by |M| is a closed immersion formally at every point of X. We
have C = C◦. For simplicity, we denote by X for X or X◦ and by C for C◦. We also
assume that

E is of codimension 1 in C. (7.2)

Then C and E are closed subschemes of dimensions m − 1 and m − 2, respectively, in
the smooth projective variety X × P. The purpose of this section is to calculate

deg C: =
∫

X×P
c1(pr∗

2 OP(1))m−1 ∩ [C] and deg E : =
∫

X×P
c1(pr∗

2 OP(1))m−2 ∩ [E].

For α ∈ Aa(X) and β ∈ Ab(P), we denote by the same letters α ∈ Aa(X × P) and
β ∈ Ab(X × P) the pull-backs of α and β by the projections. We put

h: = c1(OP(1)) and λ: = c1(L).
It is easy to see that, if α ∈ Aa(X) and β ∈ Ab(P), then

∫

X×P
h(n+m)−(a+b) ∩ αβ =

{
0 if a < n,(∫

X α
) · (∫P hm−b ∩ β) if a = n.

By the definition of the divisor D of X × P, we have

OX×P(D) = L̃ = pr∗
1 L ⊗ pr∗

2 OP(1).

Therefore

[D] = (λ+ h) ∩ [X × P] in A∗(X × P).
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By Proposition 3.4, the subscheme C of D is defined as the degeneracy subscheme of
the homomorphism

(dσX)
∨ : (L̃ ⊗ OD)∨ → (p∗

1 T(X))∨.

Using Thom-Porteous formula [3, Chapter 14], we have

[C] = �(1)n (c(T(X)∨ − L̃∨)) ∩ [D] =
(
(λ+ h)

n∑

i=0

(−1)ici(X)(λ+ h)n−i

)
∩ [X × P]

in A∗(X × P). In particular, we obtain the following well-known formula ([14, 15]):

deg C =
n∑

i=0

{
(−1)i(n − i + 1)

∫

X
ci(X)λn−i ∩ [X]

}
.

By Proposition 3.14, the divisor E of C is defined as the degeneracy subscheme of the
symmetric homomorphism

H :̃ π∗
1 T(X) → L̃ ⊗ π∗

1 T(X)∨

By Harris-Tu-Pragacz formula ([5, Theorem 10], [20, Theorem 4.1], see also [10]), we
have

[E] = 2 c1

(
π∗

1 T(X)∨ ⊗
√

L̃ ⊗ OC
)

∩ [C] ∈ A1(C).

Hence we obtain the following. (Compare with [2, Formula (2.2)].)

Proposition 7.1 In A∗(X × P), we have

[E] = (−2c1(X)+ nλ+ nh) ∩ [C]
=

(
(−2c1(X)+ nλ+ nh)(λ+ h)

n∑

i=0

(−1)ici(X)(λ+ h)n−i

)
∩ [X × P].

Therefore we obtain

deg E = n
n∑

j=0

(−1)n−j(j + 1)(j + 2)
2

∫

X
cn−j(X)λj ∩ [X]

−
n∑

j=1

(−1)n−jj(j + 1)
∫

X
cn−j(X)c1(X)λ

j−1 ∩ [X].

Example 7.2 Suppose that char k = 3. Let X be a smooth projective curve of genus
g, and let |M| be a 2-dimensional linear system on X without base points such that the
induced morphism : X → P∨ = P

2 is a closed immersion formally at every point of
X. Let

γ : X → (P2)∨ = P

be the Gauss map of . For a point p ∈ X, let µp denote the multiplicity at p of the
divisor ∗(γ (p)). Suppose that

(i) µp ≤ 3 at every point p ∈ X, and
(ii) there exists p ∈ X such that µp = 2.
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Then γ : X → P is separable onto its image. Hence E is of dimension 0, and every
critical point of γ is of Tl-type by Theorem 6.1. Let tl be the number of the critical
points of Tl-type. Then we have

∑
ltl = length OE

3
= deg E

3
=

∫

X
(λ− c1(X)) ∩ [X] = deg∗O

P2(1)− 2 + 2g.

Therefore the formula (1.1) is proved.

In characteristic 3, the morphism Esm → P factors through the finite morphism
Esm → (Esm)K of degree 3 by Theorem 4.5. If Esm is dense in E , then deg E must be
divisible by 3. If we take L to be a cube of a very ample line bundle, then the assump-
tions (7.1) and (7.2) are satisfied and Esm is dense in E by Corollary 4.10. Therefore
we obtain the following non-trivial divisibility relation among the Chern numbers of
a smooth projective variety in characteristic 3:

Corollary 7.3 Let X be a smooth projective variety of dimension n in characteristic 3.
Then the integer

∫

X
(n cn(X)+ 2 cn−1(X) c1(X)) ∩ [X]

is divisible by 3.

In fact, this divisibility relation follows from the Hirzebruch–Riemann–Roch theorem
by the argument of Libgober and Wood. See [18, Remark 2.4].
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