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Abstract. Let Mn be a closed Riemannian manifold with a nontrivial second homology
group. In this paper we prove that there exists a geodesic net on Mn of length at most 3
diameter(Mn). Moreover, this geodesic net is either a closed geodesic, consists of two geo-
desic loops emanating from the same point, or consists of three geodesic segments between
the same endpoints. Geodesic nets can be viewed as the critical points of the length func-
tional on the space of graphs immersed into a Riemannian manifold. One can also con-
sider other natural functionals on the same space, in particular, the maximal length of an
edge. We prove that either there exists a closed geodesic of length � 2 diameter(Mn), or
there exists a critical point of this functional on the space of immersed θ -graphs such that
the value of the functional does not exceed the diameter of Mn. If n=2, then this critical
θ -graph is not only immersed but embedded.

Mathematics Subject Classifications (2000). 53C23, 49Q10.
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1. Main Results

Let Mn be a Riemannian manifold. Define (stationary) geodesic nets on Mn as finite
graphs immersed in Mn so that each edge is an immersed geodesic segment and for
each vertex p ∈Mn the following stationarity condition holds: the sum of unit vectors
tangent to all edges (=geodesic segments) meeting at p and diverging from p equals to
zero. The last condition ensures that the embedded graph is a stationary point for the
length functional on the space of embedded graphs. More precisely, let v be a geodesic
net on Mn, let X be a smooth vector field on Mn, let �X(t) denote the corresponding
1-parametric family of diffeomorphisms of Mn, and lX,v(t)= length(�X(t)(v)). Then
the formula for the first variation, of the length functional implies that dlX,v/dt(0)=0.
Obviously, each closed geodesic on Mn can be regarded as a geodesic net. However, a
geodesic loop corresponds to a geodesic net if and only if it is a closed geodesic. Our
definition is closely related to the definition of geodesic nets given in a paper of Hass
and Morgan [2]. The only difference is that while Hass and Morgan require graphs to be
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Figure 1. Geodesic nets.

embedded, not merely immersed, we allow self-intersections and intersections of edges
at points different from the endpoints.

One of the simplest examples of geodesic nets that does not correspond to
closed geodesics is a θ -graph shaped geodesic net. Namely, consider the graph with
two vertices and three edges connecting them. Embbed it into Mn so that each
edge becomes a geodesic segment. Denote the images of vertices in Mn by p1 and
p2. The stationarity condition is equivalent to the following condition: for each
i = 1,2 the geodesic segments meeting at pi lie in a two-dimensional plane, and
all three angles between them are equal to 2π/3 (see Figure 1(a)).

Hass and Morgan conjectured that if Mn is a closed convex surface in R3 then
there exists a θ -graph shaped geodesic net on Mn. In [2] they proved this conjec-
ture for all convex surfaces in R3 sufficiently close to the standard sphere.

Another possible shape of a geodesic net is figure eight. Namely, consider two
geodesic loops emanating from the same point p ∈ M (see Figure 1(b)). The sta-
tionarity condition is equivalent to the following two conditions: (I) The angles
formed by four vectors at p tangent to branches of these two loops are equal; (II)
The bissectors of these two angles lie on the same straight line in the tangent space
Tp M and have opposite directions. It is easy to see that for n= 2, where n is the
dimension of Mn the geodesic net will be just a closed geodesic that has a self-
intersection at p but if dim M >2 this need not necessarily be the case.

In [4] the authors studied the minimal length of a nontrivial closed geodesic on
a Riemannian manifold diffeomorphic to S2. Improving the constant in the previ-
ous results of Croke [1] and Maeda [3] the authors proved that when Mn is diffeo-
morphic to S2 there exists a nontrivial closed geodesic on Mn of length not exceed-
ing 4 diameter(M). (The same result was also independently proven by Sabourau
[8]). Other curvature-free upper bounds for the length l(M2) of a shortest closed
geodesic on a manifold diffeomorphic to S2 can be found in [6,7]. The paper [6]
contains upper bounds for l(M2) in terms of radii of metric balls covering M2. In
[7] one of the authors proved that l(M2)�4

√
2Area(M2) improving the constant in

previous upper bounds for l in terms of the area obtained in papers [1,4,8]. In [5]
the authors among other results proved that if Mn is a closed Riemannian man-
ifold with a nontrivial second homology group then there exists either a closed
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geodesic or a figure eight shaped geodesic net in Mn of length not exceeding 4
diameter(Mn).

Our first result improves the constant 4 in this theorem (at the expense of intro-
ducing another possible type of the geodesic net).

THEOREM 1. Let Mn be a closed manifold with a nontrivial second homology
group. Then either there exists a closed geodesic of length �3diameter(Mn) on Mn,
or there exists a geodesic net of length not exceeding 3diameter(Mn) represented by
an immersed figure eight or a θ -graph. If n = 2, and there is no nontrivial closed
geodesic of length � 3diameter(M2), then there exists a geodesic net of length �
3diameter(M2) represented by an embedded θ -graph.

Along with the length functional one can consider other natural functionals on
the spaces of immersed graphs, for example, the functional F defined as the max-
imal length of an edge of the graph. We call an immersed θ -graph � critical if (a)
No two edges of � form a closed geodesic; and (b) For each smooth vector field
X on Mn the first variation of F in the direction of X at � is nonnegative. Note
that, in principle, F can be not differentiable in the direction of X at �. Therefore
condition (b) should be stated more rigorously. A rigorous way to state condition
(b) is that for every smooth vector field X on

Mn lim inf
t→0+

F(�t
X(�))−F(�)

t
�0.

Here �t
X, (t ∈ R), denotes the 1-parametric flow of diffeomorphisms of Mn gener-

ated by X. In fact, it is not difficult to see that for all X,� there exists the right-
derivative φ′

X,�(0+), where φX,�(t) is defined as F(�t
X(�)). Now condition (b) is

equivalent to the condition that for all smooth vector fields Xφ′
X,�(0+) � 0. The

following proposition provides an explicit characterization of critical θ -graphs:

PROPOSITION 2. Assume that no two edges of an immersed θ -graph � in Mn form
a closed geodesic. Then � is a critical θ -grpah if and only if the following three con-
ditions hold:

(1) Each edge of � is a geodesic between its endpoints.

(2) For each of the two vertices of � vectors tangent to the three geodesic segments
meeting at this vertex lie in a 2-dimensional plane in the corresponding tangent
space. However, they do not belong to any half-plane of this 2-plane.

(3) All three edges of � have the same length.

(4) Each digon formed by two edges of � has equal angles at its two vertices.

THEOREM 3. Let Mn be a closed Riemannian manifold with a nontrivial second
homology group. Then either there exists a nontrivial closed geodesic on Mn of length
not exceeding 2 diameter(Mn) or there exists a critical θ -graph with edges of length
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Figure 2. Illustration of the proof of Theorems 1 and 3.

� diameter(Mn). If n = 2, and there is no nontrivial closed geodesic of length � 2
diameter(M2) on M2, then there exists an embedded critical θ -graph with edges of
length � diameter(M2).

Note that it is a well-known fact that if Mn is not simply connected, then
there exists a (noncontractible) closed geodesic on Mn of length � 2 diameter(Mn).
Therefore, we need to prove Theorems 1 and 3 only in the case, when Mn is
simply-connected. Now the proofs of Theorems 1 and 3 boil down to the follow-
ing idea: assume that there are no ‘short’ closed geodesics and ‘short’ θ -graphs in
the manifold. Consider a cell subdivision of S2 into three 2-cells, three 1-cells and
two 0-cells by an embedded θ -graph. Consider a noncontractible map of the subdi-
vided sphere into Mn such that each of 2-cells is mapped by contracting the image
of the digon in its boundary without increasing the length using the Birkhoff curve
shortening process (BCSP). Then we use an appropriate curve shortening process
to contract the image of the 1-skeleton to a point and the rest of the sphere will
follow by application of the BCSP. That is, the homotopy between θ -graph and
a point will, in the lack of geodesics, extend to a homotopy of the map of the
whole sphere, thus providing us with a contradiction, (see Figure 2). Of course,
here we use the continuity of the BCSP (with respect to the initial closed curve)
in the absence of ‘short’ closed geodesics.

Note that Theorems 1 and 3 are new even in the case when M is a convex sur-
face in R3.

2. Proof of Proposition 2

Consider an immersed graph in Mn and a smooth vector field X. Assume that
all edges of the graph are immersed as geodesic segments. The formula for the
first variation of the arclength implies that the first variation of the length of an
edge e= [vivj ], (vivj ∈Mn are the endpoints of e), is determined by the formula –
〈X(vi), e

′(vi)〉 – 〈X(vj ), e
′(vj )〉, where e′(vi), e

′(vj ) denote the unit tangent vectors
to e at vi and vj that are directed inwards. In particular, it depends only on the
values of the vector field at vi and vj . Therefore, if we would like to investigate the
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first variation in the direction of a vector field of lengths of edges of an immersed
θ -graph such that all its edges are realized by geodesics, then only the values of
this vector field at the vertices matter.

Now we are going to prove the necessity of conditions (1)–(4). The necessity of
condition (1) is obvious. The necessity of condition (2) is easy to prove: Assume
that three vectors tangent to geodesic segments meeting at a vertex do not lie in
any 2-plane. Then they lie in an open half-space of the three-dimensional subspace
spanned by these three vectors. A small perturbation of the vertex in the direc-
tion of the vector normal to the boundary of this half-space and pointing inwards
decreases the lengths of all three geodesic segments. Similarly, these three vectors
cannot lie in a half-plane in this 2-plane since otherwise a small perturbation in
the direction of the normal pointing inwards will be length-decreasing.

Also, if no two of the three segments form a closed geodesic then all three edges
have the same length. Indeed, there is always a small perturbation of the θ -graph
that lowers the lengths of any two chosen edges (but this perturbation can increase
the length of the third edge). The same argument implies that no small perturba-
tion of the θ -graph can lower the length of one edge keeping the lengths of other
two edges constant. Otherwise, we will be able to make the lengths of all three
edges smaller proceeding as follows: Let F1 be a vector field such that the first var-
iation of length of edge 1 and the first variation of length of edge 2 with respect
to F1 is 0, but the first variation of the length of edge 3 with respect to F1 is neg-
ative. Let F2 be a vector field such that the first variation of length of edge 1 and
the first variation of length of edge 2 with respect to F2 is negative, but the first
variation of the length of edge 3 with respect to F2 is, possibly, positive. Then for
all sufficiently small positive ε the first variations of lengths of all three edges with
respect to F1 + εF2 will be negative.

Denote the vertices of the θ -graph by v1, v2 ∈ Mn. Now our strategy will be to
look for X ∈T Mn

v1
, Y ∈T Mn

v2
such that the first variation of lengths of two edges in

the direction of a vector field extending X,Y is zero, and the first variation of the
length of the third edge is negative. (As we previously noticed the first variation of
the length of a geodesic with respect to a vector field depends only on its values at
the endpoints. So, only X and Y matter.) Enumerate all three edges of the θ -graph
by 1, 2, 3. Choose Y as a parallel translation of X along the geodesic corresponding
to the edge 1. So, the variation of the length of edge 1 is zero for any choice of X.
The variations of the length of two other edges now become functions of X. These
functions are odd. Therefore, varying X we can find X0 such that the variation of
the length of edge 2 is zero. If the variation of the edge 3 is negative, we arrive at a
contradiction. If it is positive, we replace X0 by −X0 and arrive at a contradiction.
Therefore, it must be zero, and we obtain a constraint on six unit vectors tangent to
three edges of the graph at v1 and v2. Now, we can obtain similar constraints for the
remaining five ways to number the three edges of the graph by 1,2,3. An elementary
analysis of these constraints shows that they are equivalent to equiangularity of each
of the three digons formed by the edges of the graph.
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By analyzing all possibilities for choosing X,Y it is not difficult to see that con-
ditions 1–4 are also sufficient conditions for an immersed θ -graph being the local
minimum of the considered functional.

3. Length-Decreasing Processes for θ -graphs

Choose one of two functionals considered in this paper: the total length or the
maximal length of an edge. Denote by Tx the set of immersed θ -graphs in Mn,
where the value of this functional does not exceed x. We would like to construct
a flow on Tx that decreases the value of the given functional. We are going to use
the following

ASSUMPTION A. If the considered functional is the total length functional then we
assume that there are no stationary θ -graphs, stationary double loops and closed geode-
sics of a positive length � x in Mn. If the considered functional is the maximal length
of an edge, then we are going to assume that there are no critical θ -graphs with edges
of nonzero length � x and nontrivial closed geodesics of length � 2x in Mn.

Formally speaking, we will be looking for a deformation D : T̄x × [0,1] → T̄x ,
where T̄x denotes the closure of Tx in the space of continuous maps of the θ -graph
to Mn, such that for every � D(�,1)=�, length(D(�,1))= 0, and the considered
functional decreases along every trajectory D(�, t), t ∈ [0,1], of D. (The closure of
Tx will also contain closed curves and points that can be regarded as degenerate θ -
graphs.) The next lemma establishes the existence of such D if assumption A holds.

LEMMA 4. If assumption A holds, then there exists a deformation retraction of the
closure of Tx to Mn (regarded as the subset of the closure of Tx made of θ -graphs
that degenerate to a point) such that the considered functional decreases along every
trajectory of the deformation.

Sketch of the proof. Here we are going to present only the basic ideas of the con-
struction of the deformation retraction, since a detailed description can be found
in [5]. (There we dealt with the case of the total length functional but defined on
spaces of arbitrary immersed graphs. Some technical difficulties that arise in the
general situation do not arise for θ -graphs. The same proof works for the func-
tional defined as the maximal length of one of three edges of a θ -graph.)

The first step is to find a deformation retraction of the closure of Tx to a finite-
dimensional space such that the length of every edge does not increase during the
deformation. This space will be the subset of T̄x formed by all elements such that
each edge is mapped to a piecewise geodesic with geodesic segments of length �
inj(Mn)/4, where inj(Mn) denotes the injectivity radius of the ambient manifold.
(We will be denoting this space by Gx .) Indeed, it is well known how to construct
a length nonincreasing homotopy between a curve of length � x and a piecewise
geodesic connecting its endpoints and made of [4x/inj(Mn)]+1 geodesic segments
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Figure 3. Length decreasing process for a θ -graph.

of length < inj (Mn)/4 so that the homotopy will depend continuously on the ini-
tial curve. (Such a homotopy is the first step of the BCSP; cf. [1,5]). The space Gx

can be regarded as a subset of (Mn)N for a sufficiently large N =N(Mn, x).
If assumption A holds, then for every point g ∈Gx there exists a vector tangent

to Gx such that the first variation of the considered functional in the direction
of this vector is negative. Let us call this vector a vector of a steep descent. (See
Figure 3 for the illustration of how to construct this vector for the total length
functional.) The same will be true for every point p of Gx sufficiently close to g,
if we consider the parallel translation of the choosen vector of a steep descent to p

along the minimal geodesic from g to p in Gx . (This geodesic can be regarded as
a finite collection of geodesics on Mn.) Then choosing an appropriate locally finite
partition of unity we can construct a vector field on Gx such that the first varia-
tion of the functional in the direction of this field is negative, and Gx deforms to
G0 in a finite time. (This field will be called a gradient-like vector field below.)

Note, that for our purposes we do not need to know an explicit vector of a
steep descent for the considered functionals on Gx . Yet, it is not difficult to con-
struct such a vector. Every element of Gx has two triple points, where three edges
of the graph meet, and a finite number of double points, which are, by definition,
all endpoints of the geodesic segments that are not triple points. To define the vec-
tor of a steep descent for Gx we need to define its components at all double and
triple points. (Each of these components is a tangent vector to Mn at the consid-
ered point.) For both functionals we define the component of the vector of steep
descent at each double point as the sum of unit tangent vectors to two geodesic
segments meeting at this point, and directed from it. For the total length func-
tional we define the three unit tangent vectors to geodesic segments meeting at this
point and directed from this point. In the case of the ‘maximal length of an edge’
functional we define the components of the vector of a steep descent at two tri-
ple points using the proof of Proposition 2: if one of conditions (2)–(4) in the text
of Proposition 2 provides us with an explicit way to define the components of the
vector of a steep descent at both triple points. If conditions (2)–(4) hold, then both
these components are equal to zero.
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There will be two technical difficulties worth mentioning here. First, we need
to prove that the constructed deformation reaches G0 in finite time. The diffi-
culty here is that we constructed a gradient-like vector field on a (noncompact) set
Gx\G0, so the finiteness of time does not immediately follow from a compactness
argument. For the total length functional we checked the finiteness of time in [5],
Sections 3.5 and A.8. It is very easy to verify that the same proof with obvious
modifications works for the maximal edge length functional.

The second difficulty arises from the fact that even if the total length decreases,
the length of individual geodesic segments can increase. We definitely do not want
the distance between two points, that need to be connected by the minimizing geo-
desic, to become as large as the injectivity radius of Mn. Therefore we proceed as
follows. We deform Gx using the constructed gradient-like flow for a ‘safe’ time
t∗. This time is so small, that we can be sure that the length of the individual
geodesic segments will stay � inj(M)/2. Then we ‘forget’ that there edges between
the triple points are already piecewise-geodesic, and replace them by broken geo-
desics with segments of length � inj (Mn)/4 exactly as it was done at the beginning
of the construction. Then we continue to deform Gx following the trajectories of
the gradient-like field for the time t∗. Then we stop and replace all three edges by
piecewise geodesics with shorter segments, etc. (cf. [5], Section 3.6). There is, how-
ever, one ‘residual’ inconvenience: since the length of individual geodesic segments
can become > inj(Mn)/4 we need to consider a space G̃x defined almost in the
same way as Gx with the only one difference: the geodesic segments are allowed
to have length � inj(Mn)/2 instead of � inj(Mn)/4. The space Gx will be deformed
to G0 inside a larger space G̃x .

4. Proof of Theorems 1 and 3

As we mentioned before, it is sufficient to consider only the case, when Mn is sim-
ply-connected. (Otherwise, there exists a noncontractible closed geodesic of length
� 2 diameter(Mn.) Let δ be a positive number, which can be chosen as small as
one wishes. Let d denote the diameter of M. In order to prove Theorem 1 we
need to assume that l(Mn)>3d + δ and in order to prove Theorem 3 assume that
l(Mn) > 2d + δ. Let f : S2 → Mn be a noncontractable map. If n = 2 and M2 is
diffeomorphic to S2, assume that f is a diffeomorphism. Let S2 be triangulated
into very fine simplices, so that the image of every 1-simplex has length <δ. Let
D3 be triangulated as a cone over S2. We will begin by extending the map f to
the 2-skeleton of D3. The procedure will be inductive to skeleta of D3. We will
begin with the 0-skeleton. To extend to 0-skeleton we will assign to the center of
the disc p an arbitrary point p̃∈Mn. Next to extend to 1-skeleton we will assign to
1-simplex [p, vi1 ] a minimal geodesic segment connecting p̃ and a point ṽi1 =f (vi1)

and denoted [p̃, ṽi1 ]. This segment has length of at most d. Finally, to extend to
the 2-skeleton of D3 consider an arbitrary 2-simplex σ 2

i = [p, vi1 , vi2 ]. Consider its
boundary ∂σ 2

i = [vi1 , vi2 ] − [p, vi2 ] + [p, vi1 ]. It is mapped by f to a closed curve
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of length at most 2d + δ. By our assumption it can be contracted to a point with-
out increasing the length using the BCSP (cf. [1] for a detailed description of the
BSCP). We will define f on σ 2

i using this BSCP homotopy regarded as a map of
the 2-disc into Mn.

It is impossible to extend f to the 3-skeleton of D3, since this would imply that
the map is contractible. Therefore, there exists a 3-simplex σ 3

i = [p, vi1 , vi2 , vi3 ] such
that f |

∂σ 3
i

is not contractible. Thus, we obtain a noncontractible sphere with three
large ‘tentacles’ and one small one.

At the next stage we will try to deform the map of 1-skeleton of this sphere to
a point.

We will begin by contracting the boundary of [ṽi1 , ṽi2 , ṽi3 ] to a point. That is,
we would like to get rid of the small 2-simplex and to replace the 1-skeleton of
the considered 3-simplex in Mn by a θ -graph that lies very close to the orginial
1-skeleton. This step would have been entirely obvious, if not for the fact that in
the case, when n = 2, we would like to obtain a θ -graph with edges that inter-
sect only at the endpoints. Withough any loss of generality we can assume that
the distances between ṽi1 , ṽi2 and ṽi3 do not exceed the convexity radius of Mn.
First, we introduce a homotopy that transforms the sides of the triangle vi1vi2vi3

to the unique minimizing geodesics. Now there exists an obvious length decreas-
ing homotopy ht that contracts ∂[ṽi1 , ṽi2 , ṽi3 ] to ṽi1 over the above small simplex:
points on the segment [vi2vi3 ] move with constant speeds to vi1 along the corre-
sponding minimizing geodesics connecting them with vi1 . This homotopy can be
extended to the remaining three one-dimensional simplices of the 1-skeleton of ∂σ 3

i

in the following way: let αj = [p̃, ṽij ]. We will let ht (αj )=αj + [ṽij , ht (ṽij )], where
[ṽij , ht (ṽij )] denotes the trajectory of a point ṽij under the homotopy ht from the
starting time to time = t . It is obvious, that the length of the image of each edge
of the θ -graph after this homotopy does not exceed d + δ. Also, note that we can
choose to contract the small simplex to vi2 or to vi3 instead of vi1 . This fact is
important only, when n=2 (and we wish to obtain a θ -graph with edges that inter-
sect only at their endpoints). Recall that in this case f is a diffeomorphism, and
that two minimizing geodesics emanating from the same point can intersect only at
their endpoints. Having this fact in mind, we are going to analyze, whether or not
three edges of the θ -graph obtained at the end of this stage can intersect at points
different from their common endpoints. First, the minimizing geodesic [pvi1 ] can
intersect the minimizing geodesics [pvi2 ], [pvi3 ], [vi1vi2 ] and [vi1vi3 ] only at p and
vi1 . Therefore [pvi1 ] intersects h1([pvi2 ]) = [pvi2 ] + [vi2vi1 ] only at p and vi1 . The
same is true for the intersection of [pvi1 ] and h1([pvi3 ]). Yet we did not exclude a
possibility that h1([pvi2 ]) intersects h1([pvi3 ]) at a point different from p and vi1

since [pvi2 ] can interest [vi1vi3 ], and [pvi3 ] can intersect [vi1vi2 ]. However, these are
the only possibilities of the undesirable intersections. Further, note that two mini-
mizing geodesics on a Riemannian manifold (with possibly different endpoints) can
have at most one point of intersection. Therefore, if, say, [pvi2 ] intersects [vi1vi3 ],
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then the point of intersection is unique, and [pvi2 ] divides the triangle vi1vi2vi3

on the sphere into two halves. Now we see that in this case [pvi1 ] cannot inter-
sect [vi2vi3 ] since otherwise it must also cross [pvi2 ], which is impossible. Similarly,
[pvi3 ] cannot cross [vi1vi2 ]. Our argument demonstrates that there is at most one
l ∈{1,2,3} such that [pvi1 ] crosses the opposite side of the triangle vi1vi2vi3 . Now
we see that if h1([pv2]) intersects h1([pv3]) at a point different from p and vi1 , then
such an l exists and is equal to either 2 or 3. In this case we can choose to con-
tract the boundary of the triangle vi1vi2vi3 to vi1 instead of vi1 (and then to extend
the homotopy to the 1-skeleton of the considered 3-simplex as above). Denote this
new homotopy by h. Now our analysis shows that h([pvij ]) and h([pvik ]) intersect
only at their common endpoints p and vil , if j �=k.

At the second step we extend this homotopy to the 2-skeleton of f (∂σ 3
i ). We

do that by letting ht ([ṽi0 , . . . , ˆ̃vij , . . . , ṽi3 ]) be the surface generated by the BCSP
homotopy that connects its boundary to a point.

Now let S2 denote h1(f (∂σ 3
i )). Its 1-skeleton is a θ -graph that consists of edges

h1(αi), i = 1,2,3. We will next use the deformation retraction from Lemma 4 to
prove the Theorems. Indeed, under our assumptions this deformation will con-
tract the θ -graph to a point. But, the above homotopies extend to all of S2, since
at each point we can contract the three individual digons of θ -graph to a point.
Those homotopies depend continuously on the curve, unless there is a short closed
geodesic. Thus, we have contracted f to a point deriving a contradiction. This
contradiction proves Theorems 1 and 3 with the exception of the assertion that if
n=2, then one can ensure that the stationary (or critical) θ -graph is embedded.

Here is the sketch of the proof of this assertion. Note, that since all edges of a
stationary (or critical) θ -graph are geodesics then all intersections at inner points
(if such intersections exist at all) are transversal. Analyzing the proof of Lemma 4
we see that the stationary (or critical) θ -graph produced by our proof of Theorems
1 and 3 was, in fact, obtained from a θ -graph with three nonselfintersecting edges
that intersect only at their endpoints by applying to it a flow that decreases the
functional of interest (that is, the total length or the maximal length of an edge).
(Recall that we obtained this θ -graph with edges that intersect only at their end-
points after we contracted a small triangle vi1vi2vi3 to a point as described above
in our proof.) If there exist transversal intersections in the stationary (or critical)
θ -graph, then they must appear in pairs bifurcating from a tangent intersection as

intersections not transversal.
We redirect curves making0t=t

(a) (b)

Figure 4. A modification of the length-decreasing homotopy.
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shown on Figure 4(a) below. But for each appearance of a pair of such points at
t = t0 we can alter the homotopy of the θ -graph determined by the flow at times
very close to t0 and greater than t0 to avoid transveral intersections so that the
length of every edge at every moment will not exceed its value before the alter-
ation. The idea of this alteration is to swap the segments between the intersec-
tion points as shown Figure 4(b). Then we just restart the flow constructed in the
proof of Lemma 4. We can similarly treat self-intersections of geodesic segments.
It is not difficult to see that this simple trick ensures that we can get stuck only
at an embedded stationary (or critical) θ -graph. More formally, we will need the
finiteness of the set of points of intersection of the segments formed during the
flow. This finiteness is trivial, if the Riemannian metric on the surface is analytic.
But the general case (of a C∞-smooth Riemannian metric) easily follows from the
analytic case using an analytic approximation of the Riemannian metric.

Remark. Note that we did not use the full strength of the conclusion of Lemma
4 in the proof of Theorems 1, 3. We needed only the connectedness of Tx (instead
of the fact that there is a deformation retraction of Tx on T0 = Mn). The proof
of Lemma 4 easily implies that the connectedness of Tx follows from a weaker
assumption: instead of demanding that there are no stationary (correspondingly,
critical) θ -graphs as in assumption A, one can require only that there are no sta-
tionary (correspondingly, critical) θ -graphs providing a local minimum of the con-
sidered functional. (The idea is that when one descends from a point of Tx and
gets stuck at a critical point in Gx which is not a local minimum, one can exit
from this critical point in the direction, where the functional decreases, and then
continue the descent as in the proof of Lemma 3 until one gets stuck at a critical
point again, etc.) Therefore the conclusion of Theorem 1 (correspondingly, Theo-
rem 3) can be strengthened as follows: Instead of the existence of a stationary (cor-
respondingly, critical) θ -graph one can claim the existence of a stationary θ -graph
providing a local minimum for the total length functional (correspondingly, a crit-
ical θ -graph providing a local minimum for the functional defined as the maximal
length of an edge).
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