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1. Introduction

Three groups F � T � V, known as Thompson groups, have generated interest since

R. J. Thompson introduced them in the late 1960s. Part of their initial interest was

the fact that T and V supplied the first known examples of infinite, simple, finitely

presented groups. Since then, other properties of the groups have been studied as

well as their interaction with other areas of mathematics. The standard reference for

the groups F � T � V is [1]. It is not necessary to have [1] in hand while reading this

paper, but it would not hurt.

The largest group V can be described as a subgroup of the homeomorphism group

of the Cantor set C. Intrinsic to this description is the standard ‘deleted middle

thirds’ construction of the Cantor set as a subset of the unit interval. Since the unit

interval is a one-dimensional object, we will refer to V as a one-dimensional

Thompson group.

In this paper, we describe an intrinsically two-dimensional group 2V that is more

naturally described as a subgroup of the homeomorphism group of C� C. We will

show in this paper that 2V is infinite, simple and finitely generated, and in another

paper [2], that 2V is finitely presented.

In spite of the fact that C� C is homeomorphic to C, we will also show in this

paper that 2V is not isomorphic to V. In fact, we will show that 2V is not isomorphic

to any group in a list of other infinite, simple, finitely presented groups that are

closely related to T and V. However, we do not show that 2V is not isomorphic to all

known infinite, simple, finitely presented groups.

The group 2V is a member of a family of groups nV of which 1V ¼ V. We describe

these groups for n > 2, but prove little about them. They are all infinite and it is a

reasonable guess that they are also simple and finitely presented. Part of the charm of

the family of groups nV is the uncanny resemblance they have to the little cube

operads of [3, 4]. The importance of this resemblance is speculative.
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It would be nice to claim that 2V is a new infinite, simple, finitely presented group.

As the list of such groups grows longer, such claims become less interesting and

harder to support. The difficulty of establishing such a claim is increased by the lack

of an official list. So we make no such claim and introduce the groups here for their

pleasant properties and their potential applicability to other areas of mathematics.

See the discussion in Sections 9.2 and 10.1 for references to all infinite, simple,

finitely presented groups that the author is aware of.

The proof that 2V is not isomorphic to V and other simple groups is not algebraic.

We invoke a difficult theorem of M. Rubin that gives conditions under which iso-

morphism implies topological conjugacy. Then we demonstrate irreconcilable dif-

ferences between the dynamics of V and 2V: there is an element of 2V exhibiting

‘chaotic’ behavior and there is no such element of V. Thus part of this paper studies

properties of the older group V. Dynamical properties of Thompson groups have

been studied before in [5, 6].

The chaotic element in 2V is a well-known map often referred to as the baker’s

map. Some aspects of the baker’s map are discussed briefly in the last two sections of

the paper. In particular we show that the baker’s map is a product of commutators

of some rather easily described homeomorphisms of the Cantor set.

The paper [1] (in Sections 1 and 2 and the first few pages of 5 and 6) covers the

representation of the groups F, T and V as homeomorphism groups and also the

encoding of the elements of the groups by pairs of trees. We will need the pairs of

trees point of view in analyzing the dynamics of elements of V.

2. Defining 2V

We will define the group 2V as a subgroup of the group HðC2Þ of self-homeomor-

phisms of C2 ¼ C� C. We introduce some conventions that we will use.

In this paper, homeomorphisms will act on the left and will be composed from

right to left. The support of an element h of 2V, denoted SuppðhÞ, will be the closure
of fx 2 C� C j x 6¼ hðxÞg. We will use hg to denote ghg�1 and from this, we will

have SuppðhgÞ ¼ gðSuppðhÞÞ. We will use ½h; g� to denote the commutator

hgh�1g�1 ¼ hðh�1Þg.
We will think of the Cantor set C as the usual deleted middle thirds subset of the

unit interval I ¼ ½0; 1� and we will identify elements of C with infinite words in the

alphabet f0; 1g. These words are just functions from the natural numbers

N ¼ f0; 1; 2; . . .g to f0; 1g. The identification of these words with elements of C takes

words beginning with 0 to points in ½0; 13�, words beginning with 1 to points in ½23 ; 1�,
words beginning with 00 to points in ½0; 19� and so forth. If w is an infinite word in

f0; 1g, then doubling all the ‘digits’ in w gives the ternary expansion as a real number

of the image of w in C.

We view C� C as a subset of the unit square I2 ¼ ½0; 1� � ½0; 1�. We next develop

methods of describing individual elements of 2V.
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2.1 PATTERNS OF RECTANGLES

We will describe certain partitions of C� C by patterns of rectangles in the unit

square. First we describe the patterns, and then we say what partitions of C� C the

patterns are describing.

We inductively define what we call patterns in I2. Each pattern is a finite set of

rectangles in I2 with pairwise disjoint, nonempty interiors, with sides parallel to the

sides of I2 and whose union is all of I2. The first pattern is I2 itself and will be called the

trivial pattern. If P is a pattern and R is one of the rectangles in P, then we can create a

new pattern by removing R from P and replacing it with two congruent rectangles R0

and R00 obtained from R by dividing R exactly in half by either a horizontal line, or a

vertical line. A pattern is one that can be obtained from the trivial pattern in this way in

a finite number of steps.

Below we show four patterns. Pattern ðaÞ is the trivial pattern and patterns ðcÞ and
ðdÞ are obtained from pattern ðbÞ by the two possible ways of dividing the upper left

rectangle in ðbÞ.

We note that different sequences of modifications to the trivial pattern can result

in the same pattern. Several of the fundamental relations that we will work with

come from the several sequences of operations that yield the pattern below when

starting from the trivial pattern.

We next number our patterns. A numbered pattern is a pattern with a one-to-one

correspondence between f0; 1; . . . ; n� 1g and the rectangles in the pattern where n is

the number of rectangles in the pattern. Below we show two different numbered

patterns based on the same pattern.
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2.2. PARTITIONS FROM PATTERNS

Each rectangle in a pattern corresponds to a closed and open subset of C� C. We

describe this correspondence inductively.

The rectangle I2 corresponds to all of C� C.

Let a rectangle R in a pattern correspond to the subset AðRÞ in C� C. Let R0 and

R00 be obtained from R by dividing R equally by a vertical line, with R0 the left

rectangle and R00 the right. Then R0 corresponds to the left third of AðRÞ and R00

corresponds to the right third of AðRÞ.
Similarly, if R0 and R00 be obtained from R by dividing R equally by a horizontal

line, with R0 the bottom rectangle and R00 the top. Then R0 corresponds to the bottom

third of AðRÞ and R00 corresponds to the top third of AðRÞ.
The next figures give the basic correspondences for the patterns obtainable from

the trivial pattern I2 using one division.

Thus it is seen that a pattern is just a lazy way of drawing a particular partition of

C� C into closed and open sets in C� C. Each rectangle in the pattern gives one set

in the partition. An example is pictured below.

Each numbered pattern corresponds to a numbered partition of C� C in the

obvious way. To make sure that we agree on this, we give the above example a

numbering.

2.3. HOMEOMORPHISMS FROM NUMBERED PATTERN PAIRS

Let P1 and P2 be numbered patterns with the same number n of rectangles in each.

Let the rectangles in P1 be R0, R1; . . . ;Rn�1, where the subscripts reflect the num-

bering, and let the rectangles in P2 be T0, T1; . . . ;Tn�1 with the same comment. We

will get a self-homeomorphism h ¼ hðP1;P2Þ of C� C from the pair ðP1;P2Þ.
We let AðRiÞ and AðTiÞ be the closed and open sets in C� C associated, respec-

tively, to Ri and Ti, and we let h take AðRiÞ onto AðTiÞ affinely so as to preserve the
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orientation in each coordinate. By this we mean that the restriction of h to AðRiÞ is
the restriction of the unique self homeomorphism of R2 of the form

ðx; yÞ 7! ðaþ 3jx; bþ 3kyÞ that maps AðRiÞ onto AðTiÞ. Thus, the four corners of

AðRiÞ, the lower left, lower right, upper right, and upper left, are each carried to the

corner of AðTiÞ with the same description. Doing this for each i in f0; 1; . . . ; n� 1g
defines a homeomorphism hðP1;P2Þ from C� C to itself.

We picture such homeomorphisms by giving a pair of numbered patterns with an

arrow from the numbered pattern describing the domain to the numbered pattern

describing the range. The pair below represents an element called the ‘baker’s map’.

This particular map will be discussed later in this paper.

2.4. THE GROUP 2V

The group 2V is the set of all self homeomorphisms of C� C of the form hðP1;P2Þ,
where P1 and P2 are numbered patterns with the same number of rectangles. The

group operation is composition. Closure under inversion is immediate and closure

under composition is a pleasant exercise. Those that wish to defer the exercise can

wait until Section 5.2 where techniques for multiplying elements will be given.

The following is clear.

LEMMA 2.1. The group 2V is countably infinite and contains all finite groups.

3. Simplicity of the Commutator Subgroup

It is usually the case that a sufficiently transitive permutation group generated by

elements ‘of small support’ has a simple commutator subgroup (see [7] or [8]). This

section contains the arguments to show the simplicity of the commutator subgroup

of 2V. This section is self-contained since it is often just as easy to apply the tech-

niques of [7] and [8] as it is to quote them.

Later in the paper, we will know that 2V equals its commutator subgroup. Thus,

we will have proven that 2V is simple.

3.1. TRANSITIVITY

We establish that 2V is sufficiently ‘transitive’.

LEMMA 3.1. Let K be a closed, proper subset of C� C and let U be a non-empty open

set in C� C. Then there is an element h of 2V so that hðKÞ is contained in U.

Proof. SinceK is closed and not all ofC� C, there is a patternP1 where not all the

rectangles are needed to get a set S of rectangles whose corresponding closed and open

sets in C� C cover K. There is a pattern P2 with more than one rectangle and with a
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rectangleR so thatAðRÞ is contained inU. If n is the number of rectangles in S, then we

can apply n� 1 subdivision operations at random to the rectangle R to create a new

pattern P02 containing n different rectangles that are contained in R whose corre-

sponding sets in C are thus contained in U. Using further subdivisions if necessary in

some rectangle not in S or inR, we can get the number of rectangles in P1 and P02 to be

the same. Now an element of 2V can be built that carries the rectangles in S into R.(

3.2. SMALL GENERATORS

Our next step is to argue that 2V is generated by elements ‘of small support’.

The word small is misleading. All that we will need from the notion of small is that

a composition of a fixed number of elements of sufficiently small support yields an

element whose support is a closed, proper subset of C� C. Our notion of small will

also cooperate equally well with Cn and CN.

We will measure size in one coordinate only. Since C has measure 0, we will not

measure in C itself, but in I. We use the notion of patterns in I in a manner parallel to

patterns in I2. The unit interval I ¼ ½0; 1� is the trivial pattern and all other patterns

are derived from the trivial pattern by dividing intervals at their midpoints.

Given an � > 0, we say that a set in C is of size no more than � if it is in a collection

of disjoint closed and open sets in C corresponding to a set of intervals in a pattern

on I whose lengths sum to no more than �. Now we say that a set in C� C is of size

no more than � if the projection of the set to the first coordinate is of size no more

than �. Given � > 0, let B� be the set of those elements of 2V that have support of size

no more than �.

PROPOSITION 3.2. Given � > 0, the group 2V is generated by B�.

Proof. Let A0 be the elements in 2V with support in the left half of C� C, and let

A1 be the elements with support in the right half of C� C. The elements of A0 and

A1 have support of size no more than 1
2.

Let h be in 2V. We will show first that h is the composition of elements of

B� [ A0 [ A1. The claimed result will follow from this because an identical exercise

will then show that elements in each Ai will be compositions of elements in

B� [ Ai0 [ Ai1 where Ai0 and Ai1 are the sets of elements whose supports are con-

tained in, respectively, the left and right halves of the half of C� C containing the

support of the elements of Ai. Thus, elements of the Aij have supports of size no more

than 1
4. Continuing in this way, we get h to be a composition of elements in B�.

We will alter h and then work with the alterations. To simplify the notation, we

will use h to refer to the current alteration. The alterations will be to compose h with

elements of A0 and A1, and the goal will be to reduce h to an element of B�.

We may assume that h is not trivial and thus x 6¼ hðxÞ for some x. Let us assume

for now that x is in the left half of C� C. There are two disjoint closed and open sets

E and F corresponding to rectangles in patterns with x 2 E, hðxÞ 2 F so that h carries
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E affinely onto F. We can choose E to be contained in the left half of C� C. We do

not care about the location of F.

At the expense of making the sets smaller, we can find a pattern so that both E and

F correspond to rectangles in the pattern. This allows us to build an element h1 that

agrees with h on E, and that does nothing but interchange E and F so that Suppðh1Þ
is in E [ F. Using the uniform continuity of h, we can choose E small enough so that

h1 is in B�. Because E and F are disjoint, we note that h�11 h fixes the nonempty open

set E and that Suppðh�11 hÞ is contained in SuppðhÞ. We replace h by h�11 h.

Using Lemma 3.1, we can build an element g of A0 that carries the subset E onto

the complement in the left half of C� C of an open set U whose closure has size no

more than �=2. Now SuppðhgÞ ¼ gðSuppðhÞÞ, so we know that the size of SuppðhgÞ in
the left half of C� C is of size no more than �=2. We replace h by hg.

We now move our attention to the right half of C� C. If there is some x there with

x 6¼ hðxÞ, then we repeat the above operations except that the conjugating element g is

from A1. The result is an h whose support in the right half of C� C is of size no more

than �=2. Of the two steps in the modification, the first (replacing h by h�11 h) does not

increase support, and the second (conjugating by g) only modifies the support in the

right half of C� C. Thus, these modifications will not affect the fact that the support

of the new h in the left half of C� C is of size no more than �=2. This reduces the

support of h to have size no more than �. (

3.3. SIMPLICITY OF THE COMMUTATOR SUBGROUP

The ideas in the next lemma are to be found in [7] and [8].

PROPOSITION 3.3. The commutator subgroup of 2V is simple.

Proof. Let W be the commutator subgroup of 2V. Let j be a nontrivial element of

W and let N be the normal closure of j in W. We must show that elements of 2V

commute modulo N. It suffices to show that any two generators of 2V commute

modulo N. Thus we let h and g be elements of 2V with very small supports.

There is some open and closed setE in the support of j so thatE and jðEÞ are disjoint.
If some element k of W carries the union of the supports of g and h into E, then

Suppðhðjk
�1 ÞÞ ¼ k�1jkðSuppðhÞÞ � k�1jðEÞ

is disjoint from SuppðgÞ � k�1ðEÞ, and g and h commute modulo N. Thus, we are

done if we find such an element k.

Let X be the union of the supports of h and g. By Lemma 3.1, there is an element

k0 in 2V that carries X into E. Since this can be done by interchanging rectangles, we

can keep the support of k0 contained in a small neighborhood of X [ E. Since this

can be kept very small, there is an r in 2V that carries X [ E to a set disjoint from

X [ E. Thus, it is seen that the element k ¼ ½k0; r� ¼ k0ððk0Þ�1Þr ofW agrees with k0 on

X. This completes the proof. (
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4. Groups Related to 2V

4.1. THE GROUPS nV AND xV

For each n there is a group nV that acts on the product Cn. There is also a group

xV that acts on the countably infinite product CN. It is the ascending union of the

nV. Patterns for nV would consist of rectangular solids in In. These are easiest to

code by n-tuples of finite (and possibly empty) words in the alphabet f0; 1g. The
n-tuple of empty words corresponds to In. If a rectangular solid is given by the

n-tuple ðw0;w1; . . . ;wn�1Þ, then a division into two solids by a cut perpendicular to

coordinate axis i would result in the two solids given by replacing wi by wi0 or

wi1.

For xV, solids in IN would be given by infinite sequences of finite words in f0; 1g
such that all but finitely many of the words in the sequence are the empty word. A

division of a solid would be similar to a division in I n.

The group 1V is the Thompson group V as described in [1]. We show below that V

and 2V are not isomorphic. The groups 2V and xV are not isomorphic since one is

finitely generated and the other is not. It is not known whether any other pairs of the

nV with n > 1 or xV are isomorphic to each other, but it would be pleasant if the

answer were no.

It is clear that some of the results of this paper and [2] should apply to the nV

and xV, but it is not clear how many. Lemma 2.1 clearly applies. The simplicity

results of this paper do not depend on finding a presentation, but they do depend

on finding enough relations to prove that the Abelianization is trivial. At this

point, one can only say that it is believable that this can be done for the nV and

xV. It can be said that the results of Section 3 apply and that nV and xV possess

simple commutator subgroups. Whether a calculation of a full, finite presentation

can be carried out for all these groups comes under other descriptions. For the nV

with n finite, it is to be hoped for. The group xV is another matter since it is not

finitely generated. For xV the hope would be to write down any reasonable pre-

sentation.

4.2. OTHER RELATED GROUPS

In [9], groups are defined that are called Gn;r there, but which we will relable as Vk;r

here to conform to the letter V used in [1] and to avoid conflict with our use of n.

Groups nVk;r can be defined to parallel the Vk;r so that 1Vk;r ¼ Vk;r. The group

nVk;r would consist of self-homeomorphisms of r copies of Cn. To obtain the

defining patterns of these homeomorphisms, the basic inductive step would be to

divide a rectangular solid into k congruent pieces by cuts perpendicular to a par-

ticular axis. We will not treat the nVk:r here. It should be noted, that not all the Vk;r

are simple, but in [9] it is shown they have infinte, simple, finitely presented

commutator subgroups that are of index 1 when k is even and index 2 when k > 2

is odd.
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4.3. THE CONTAINING GROUP c2V OF 2V

The group 2V is contained in a ‘larger’ finitely presented group c2V. The relation

between 2V and c2V is similar to the relation between BV and cBV in [10]. In [10], the

group cBV is analyzed first and this analysis is then used to analyze its subgroup BV.

This outline will be partly followed here. We briefly discuss why and why only partly.

Once generators are found for 2V, the word problem is theoretically solvable. The

elements of 2V are specific permutations of C� C and a word in specific elements is

trivial if and only if the resulting permutation is trivial. However, there is a large

difference between theory and practice and we need a more practical way to identify

the trivial element.

The group BV involves braids, and identifying the trivial element in BV is even less

trivial. Triviality in BV is detected by its setting as a subgroup of cBV which has a

known, finite presentation and a strong normal form (Lemma 10.3 of [10]). While c2V
has a known, finite presentation, it does not have as nice a normal form. This is

discussed in [2]. Thus we need another technique for identifying trivial elements. This

is solved in [2] by finding a less nice normal form for elements of c2V and an algo-

rithm for acheiving the form.

Even before we need to understand trivial elements, we need to be able to multiply

easily in 2V. It turns out that c2V has a very easy multiplication since it is a group of

fractions of a very well-behaved monoid P of positive elements with an even easier

multiplication. Applying the multiplication in P to 2V will be discussed more fully

below (see Section 5.2).

One last reason for discussing c2V is that the advertised resemblance to the little

cubes operads of [3, 4] is seen most strongly in the monoid P.

4.4 THE POSITIVE MONOID OF c2V
We start with the monoid P. Elements of the monoid will correspond to certain

‘numbered sequences of patterns’. We make this specific by starting with an infinite

sequence of pairwise disjoint unit squares ðS0;S1; . . .Þ in the plane. To be very specific,

we can take them in the upper half plane so that Si intersects the x-axis in the interval

½2i; 2iþ 1�. Now a sequence of patterns (we will number them shortly) is an infinite

sequence ðP0;P1; . . .Þ of patterns where Pi is thought of as a pattern in Si and only

finitely many of the Pi are not trivial.

A numbering of such a sequence of patterns is a one-to-one correspondence be-

tween N and the rectangles in the sequence for which there are j and k in N so that

i > k implies that the pattern Pi that is applied to Si is the trivial pattern and that the

number of the rectangle consisting of Si is iþ j. In words, the numbering eventually

becomes a consecutive numbering, from left to right, of unsubdivided unit squares.

An example is given below where it is assumed that all squares not pictured are

numbered consecutively from left to right starting with 10. Thus in this example,

k ¼ 3 and j ¼ 5 work for the required restriction.
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If we let X be the union of the Si, then a numbered sequence of patterns

ðP0;P1; . . .Þ describes a continuous function from X to itself. The function simply

takes the square Si, affinely and with orientation of each coordinate preserved, to

rectangle i in the numbered sequence of patterns. Under composition of functions,

this is a submonoid of the monoid C 0ðXÞ of continuous functions from X to itself.

The identity element is given by the trivial sequence in which every Si is a rectangle

and the number of Si is i.

If h is an element of the monoid described by a sequence of patterns

P ¼ ðP0;P1; . . .Þ, then we can think of h as carrying the trivial sequence to the

sequence P. Thus, we can be less efficient and think of two pieces of information as

describing h: the sequence P and the trivial sequence. The trivial sequence describes a

structure of the domain of h and the sequence P describes the structure of the range

of h. This lack of efficiency anticipates what we need to describe elements of the full

group c2V.
It is easy to argue that this monoid is cancellative and has common right multiples

(if composition proceeds from right to left) and thus has a group of fractions by

Ore’s theorem (see Theorem 1.23 of [8]). However, this is not necessary. We can

‘invert’ the elements by representing them as homeomorphisms rather than contin-

uous functions. This version with invertible elements will be what we call the monoid

P.

4.5. THE GROUP c2V
Each square Si contains a copy of C� C in the obvious way, and we let Y be the

union of all these copies of C� C. The numbered sequence of patterns gives a

numbering of closed and open sets in Y that correspond to the rectangles in the

sequence of patterns. Now a homeomorphism from Y to Y comes out of a numbered

sequence by taking the entire copy of C� C in Si to the closed and open set num-

bered i by an affine map that preserves orientation in each coordinate. This is done

exactly as described in Section 2.3.

We will use P to denote this monoid of self-homeomorphisms of Y. The group of

fractions that we want is the group generated by the elements ofP and their inverses.

That this corresponds to the group of fractions construction follows from Problem 3

on page 37 and Theorem 1.24 of [11].

The group c2V is the group just described. Elements can be represented by pairs of

numbered sequences of patterns. If P and Q are patterns representing elements g and

h, respectively, in P, then each is a homeomorphism from Y to Y. Each has its

domain structure described by the trivial sequence of patterns. The range structure
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for g is described by P and the range structure for h is described by Q. If we consider

the element gh�1 of c2V, then the resulting homeomorphism from Y to itself is

described by using Q to determine the structure of the domain and by using P to

determine the structure of the range. For each i, the homeomorphism gh�1 takes the

set corresponding to rectangle i in Q to the set corresponding to the rectangle i in P.

If we use the pair ðP;QÞ to represent the element gh�1 in c2V, then we can think of

this as a map from Q to P. We use the right element of ðP;QÞ to represent the pattern

for the domain so that right to left composition reads nicely as in

ðP;QÞðQ;RÞ ¼ ðP;RÞ.
One can also define groups cnV and dxV in a similar manner, but we have nothing

to say about these groups.

In the next few paragraphs, we will discuss the product inP, we will describe some

elements ofP that clearly generateP, and we will describe some relations satisfied by

those elements. The relations that we give suffice to presentP but this will be less clear

and a proof of this fact will be given in [2].

4.6. MULTIPLICATION IN THE POSITIVE MONOID OF c2V
If a sequence of patterns P ¼ ðP0;P1; . . .Þ represents an element h in the positive

monoid P of c2V and Q ¼ ðQ0;Q1; . . .Þ represents g 2 P, then the sequence of pat-

terns PQ for hg (recall that g is applied first) is gotten by pasting the pattern Qi

affinely into the rectangle i of P for each i 2 N. The numbering of the resulting

pattern is that of Q. That is, when the pattern Qi is pasted into rectangle i of P, the

rectangle numbers of Q are pasted in along with the pattern. We illustrate this below

where the squares not pictured in P are not subdivided and as rectangles they are

numbered consecutively, left to right, from 7. Similarly in Q the corresponding

number is 14, and in PQ the corresponding number is 17.
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4.7. ELEMENTS OF THE POSITIVE MONOID OF c2V
For iP0, let vi be as pictured below.

In the above picture, each square Sj with j 6¼ i has the trivial pattern, each square

Sj with j < i is numbered j and each square Sj with j > i is numbered jþ 1.

For iP0, let hi be as pictured below.

In the above picture, each square Sj with j 6¼ i has the trivial pattern, each square

Sj with j < i is numbered j and each square Sj with j > i is numbered jþ 1.

For iP0, let ri be as pictured below.

In the above picture, every Sj has the trivial pattern and every Sj with j j2fi; iþ 1g
is numbered j.

We make some remarks about multiplying by these elements on the right. If P is

any numbered sequence of patterns, then Pvi is obtained from P by dividing rect-

angle i of P vertically, giving the number i to the left half and the number iþ 1 to the

right half, preserving the numbers of all rectangles numbered less than i in P, adding

1 to the numbers of all rectangles numbered greater than i in P.

Similar remarks apply to Phi except that rectangle i of P is now divided hori-

zontally with the lower half numbered i and the upper half numbered iþ 1. Lastly

Pri is obtained from P by exchanging the numbers of rectangles numbered i and

iþ 1 and making no other changes.

It is clear from the description of the multiplication in P as described in Section

4.6 that any sequence of patterns (with perhaps the wrong numbering) can be ob-

tained as a word in the vi and hi. Now the numbering can be fixed up by following

this word with a word in the ri. Thus P is generated by fvi; hi; ri j i 2 Ng.
The previous paragraph says more. It implies that every element of P can be

written as a word in the vi and hi followed by a word in the ri. This will be supported
by the claims that we make next.

4.8. RELATIONS IN THE POSITIVE MONOID OF c2V
We give four sets of relations that the elements vi, hi and ri satisfy. The fact that they
hold is important and the reader should verify that they do so by drawing pictures.

The first set is
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xjyi ¼ yixjþ1; i < j; ð1Þ
where the symbols x and y come independently from the set of symbols fh; vg. We

refer to the relations in (1) as the ‘Thompson relations’ because of their resemblance

to the relations in Thompson’s group F and because of their power in reducing

infinite presentations to finite presentations.

The next set is

r2i ¼ 1; iP0; ð2Þ
rirj ¼ rjri; ji� jjP2; ð3Þ
ririþ1ri ¼ riþ1ririþ1; iP0; ð4Þ

which are simply the relations of the infinite permutation group generated by the

transpositions ri.
The third set is

rjxi ¼

xirjþ1; i< j,
xjþ1rjrjþ1; i= j,
xjrjþ1rj; i= j+1,
xirj; i> j+1,

8><>: ð5Þ

where the symbol x comes from fv; hg. These relations give the interaction between

the vi and hi on the one hand and the ri on the other. The relations (5) tell how to

‘switch’ an xi and rj that occur in the ‘wrong’ order. The relations (5) give another

argument for the claim that any element of P can be written as a word in the vi and

hi followed by a word in the ri.
The last set is

vihiþ1hi ¼ hiviþ1viriþ1; iP 0; ð6Þ
which we refer to as the ‘cross relations’. A picture is warranted to explain why. On

the left we show square 0 of v0h1h0 and on the right we show square 0 of h0v1v0.

(Note the omission of r1 from the second expression.)

4.9. REMARK

There seems to be no group 2F. The construction of the group F uses the natural

left–right order in the unit interval to define a subgroup of V ¼ 1V of elements that

preserve this order. The author’s attempts to select a preferred order for rectangles in

the unit square have resulted in failure. The effort was to construct a submonoid of

P that was cancellative, had common right multiples and that respected some se-

lected order of rectangles. The most successful attempt achieved cancellativity and

common right multiples, but was not a submonoid of P since the resulting multi-

plication was not associative.
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5. Generators for 2V

In this section, we find generators for 2V and we will prove that they generate. In the

next section, we will find relations for 2V but we will not prove that they suffice to

give a presentation. However, in order to do what we want in this section and the

next, we need to be able to multiply elements. We only have to multiply in practice

and not in theory. Thus it will be sufficient to give a method for multiplying elements

that works for all the calculations that we need, but we will not have to prove that

our method always works. In fact it does, and the curious reader can supply the

reasons why.

Before we develop a method for mutliplying elements, we will work out a nice

method for representing elements that will make use of our knowledge of the positive

monoid P of c2V.
5.1. ELEMENTS AS PAIRS OF WORDS

Each element of 2V is a homeomorphism from C� C to itself. Each element of c2V is

a homeomorphism from Y, a countable union of copies of C� C, to itself. We can

think of 2V as a subgroup of c2V by thinking of 2V as those elements of c2V that take

the copy of C� C in square 0 onto itself and that is the identity on all other copies of

C� C.

If we view elements of c2V as pairs of numbered sequences of patterns, then the

elements of 2V are those pairs in which the patterns are both trivial after square 0, in

which the numbering in both patterns of the rectangles is consecutive after square 0,

and in which the count of rectangles in square 0 is the same for both patterns. LetP0 be

the set (it is a submonoid, but in a very uninteresting way) of those elements of P
corresponding to numbered sequences of patterns that are trivial after square 0 and

which number the squares consecutively after square 0. Then 2V is given by pairs ða; bÞ
with a and b inP0 and so that the count of rectangles in square 0 is the same for both a

and b.

Let w be a word in the elements of Section 4.7 in the form discussed at the end of

Section 4.7. That is, w is a word in fvi; hi; ri j i 2 Ng consisting of a word p in

fvi; hi j i 2 Ng followed by a word q in the ri. From the discussion in Section 4.7, we

give sufficient conditions for such a word to give an element of P0.

We can build up the word p letter by letter from the trivial word. As we do so, we

create approximations to the pattern determined by p. The addition of each letter

divides one rectangle in the pattern built to that stage. We assume that each stage is a

pattern in P0. Because of the nature of multiplying on the right by a letter in

fvi; hi j i 2 Ng, if the next letter subdivides a rectangle in square 0, the result of

adding that letter will also give an element ofP0. The trivial pattern is inP0, thus the

word p gives an element of P0 if adding each letter to the prefix before it represents a

division of a rectangle in square 0. It follows from this that if

p ¼ xi0xi1 . . . xik�1 ;
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where each x independently represents either the letter v or the letter h and ij O j for

0O j < k, then p represents an element of P0.

The letters in q are transpositions. If p is as given above, then the pattern that p

represents has kþ 1 rectangles in square 0 numbered from 0 through k. As long as

the permutation given by q affects only rectangles 0 through k, the word w ¼ pq will

give an element in P0. Thus the sufficient condition that we get is as follows.

LEMMA 5.1. Let w ¼ pq be a word with p ¼ xi0xi1 . . . xik�1 a word in fvi; hi j i 2 Ng in
that each x independently stands for v or h, and q ¼ rm0

rm1
. . . rmn�1 a word in the ri. If

ij O j for 0O j < k and mj < k for 0O j < n, then w represents an element of P0.

We need a partial converse to Lemma 5.1.

LEMMA 5.2. Let a be in P0. Then there is a word w ¼ pq satisfying the description in

Lemma 5.1 that represents a.

Proof. We know that there is a word pq0 with p ¼ xi0xi1 . . . xik�1 a word in

fvi; hi j i 2 Ng and q0 a word in the ri representing a. Part of the conclusion is forced.

If any ij is greater than j, then some square other than square 0 is divided into smaller

rectangles. This is something that cannot be undone, so we must have ij O j for all j.

Thus p represents an element of P0. This means that the ordering of all the squares

other than square 0 is already correct. The only way that this can still be true of pq0 is

for q0 to be the trivial permutation above k. This means that q0 is a permutation on

f0; 1; . . . ; kg and can be rewritten as a word q in fr0; r1; . . . ; rk�1g. The desired word

is pq. (

5.2. MULTIPLYING PAIRS OF WORDS

If ða; bÞ is an element of c2V with a and b in P, then it represents the element ab�1 inc2V. Thus we get ða; bÞ�1 ¼ ðb; aÞ and ða; bÞðb; cÞ ¼ ða; cÞ. This makes it easy to invert

pairs ða; bÞ representing elements of 2V with a and b in P0 since ðb; aÞ is still a pair of

words with both entries in P0.

If ða; bÞ and ðc; dÞ are pairs with all entries in P0, then we take advantage of the

fact that ðax; bxÞ represents the same element as ða; bÞ for any x. We only need to

find x and y so that bx ¼ cy and so that all of ax, bx, cy and dy are in P0 to write

ða; bÞðc; dÞ ¼ ðax; bxÞðcy; dyÞ ¼ ðax; dyÞ:
In fact, this can always be done, but we do not have to prove that. As long as it

always happens for the calculations that we do, we are in good shape.
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5.3. THE GENERATORS

The reader can verify that all of the following represent elements of 2V:

Ai ¼ ðviþ10 v1; v
iþ2
0 Þ; iP 0;

Bi ¼ ðviþ10 h1; v
iþ2
0 Þ; iP 0;

Ci ¼ ðvi0h0; viþ10 Þ; iP 0;

pi ¼ ðviþ20 r1; v
iþ2
0 Þ; iP 0;

pi ¼ ðviþ10 r0; v
iþ1
0 Þ; iP 0:

We let

R ¼ fAi;Bi;Ci; pi; pi j i 2 Ng:
In the above list, the reader will note that C0 is the element we called the baker’s map

in Section 2.3. The reader will also note that all second entries in the pairs are powers

of v0. We let 2V0 be the set of elements that can be represented by a pair ða; vk0Þ with a

in P0. Note that k is determined from a since vk0 cuts square 0 into kþ 1 rectangles

and a will only cut square 0 into kþ 1 rectangles if there are exactly k appearances of

the letters h or v in a.

Now if ða; vk0Þ and ðb; vk0Þ are elements of 2V0 (the fact that they use the same

power if v0 is deliberate), then ða; vk0Þðb; vk0Þ
�1 ¼ ða; vk0Þðvk0; bÞ ¼ ða; bÞ is an element of

2V. Conversely, if ða; bÞ is in 2V, then a and b divide square 0 into the same number

(say kþ 1) of rectangles and ða; vk0Þ and ðb; vk0Þ are in 2V with ða; bÞ ¼ ða; vk0Þðb; vk0Þ
�1.

Thus, if for every a in P0 we can show that ða; vk0Þ, with kþ 1 the number of

rectangles in square 0 of the pattern for a, is a word in the elements of R, then we will

have shown that R is a generating set for 2V.

In order to do this, we must understand how products of elements in R behave.

5.4. BUILDING A PATTERN

Let w ¼ pq be a word as described in Lemma 5.1 representing an element of P0. We

want to show that ðw; vk0Þ can be obtained as a word in R.
We will modify some of the descriptions in Section 5.3 to make them more con-

venient to work with. To do this we take advantage of the fact that for any c, the pair

ðac; bcÞ represents the same element ða; bÞ.
We give two sets of alternate formulations of some of the generators. The second

set of formulations is just re-indexing of the first. The first set uses the relations (1)

and (5) to replace v1v
j�1
0 by v j�10 vj and so forth:

Ai ¼ ðviþj0 vj; v
iþjþ1
0 Þ; iP 0; jP 1;

Bi ¼ ðviþj0 hj; v
iþjþ1
0 Þ; iP 0; jP 1;

pi ¼ ðviþjþ10 rj; v
iþjþ1
0 Þ; iP 0; jP 1;
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Ai ¼ ðvk0vk�i; vkþ10 Þ; iP 0; k > i;

Bi ¼ ðvk0hk�i; vkþ10 Þ; iP 0; k > i;

pi ¼ ðvkþ10 rk�i; v
kþ1
0 Þ; iP 0; k > i:

We are now ready to build ðw; vk0Þ with w ¼ pq as in Lemma 5.1. We start with

ðp; vk0Þ. Lemma 5.1 implies that if p is the empty word, then so is q, so we assume that

p has at least one letter.

We have p ¼ xi0xi1 . . . xik�1 a word in fvi; hi ji 2 Ng with each ij O j. This makes xi0
equal to v0 or h0. We will build ðp; vk0Þ as a word in R, and the first letter of this word

is the trivial element represented as ðv0; v0Þ if xi0 ¼ v0, and the first letter is

C0 ¼ ðh0; v0Þ if xi0 ¼ h0.

Now for j with 0 < j < k� 1, we let pj be the prefix xi0xi1 . . . xij�1 of p of length j

and assume that ðpj; vj0Þ has been represented as a word in R. There are four cases to
consider:

xij ¼

v0;

vm; 0 < mO j,

h0;

hm; 0 < mO j.

8>><>>:
In the first case, we multiply by the identity since ðpj; vj0Þ represents the same element

as ðpjv0; vjþ10 Þ ¼ ðpjþ1; v
jþ1
0 Þ. In the second case, we write

ðpjþ1; vjþ10 Þ ¼ ðpjvm; v
jþ1
0 Þ ¼ ðpjvm; v

j
0vmÞðv

j
0vm; v

jþ1
0 Þ ¼ ðpj; v

j
0ÞAj�m:

Similarly, the third case leads to ðpjþ1; vjþ10 Þ ¼ ðpj; v
j
0ÞCj and the last case leads to

ðpjþ1; vjþ10 Þ ¼ ðpj; v
j
0ÞBj�m. Inductively, we get to ðp; vk0Þ as a word in R.

Now we know that q is a word in fr0; r1; . . . ; rk�1g. We have available in R the

elements pk�1 ¼ ðvk0r0; vk0Þ and pi ¼ ðvk0rk�1�i; vk0Þ for 0O i < k� 1. Setting

m ¼ k� 1� i, gives 0 < mO k� 1 and pk�1�m ¼ ðvk0rm; vk0Þ. As three of the four

cases just above were handled, it is now elementary that ðw; vk0Þ ¼ ðpq; vk0Þ can be

written as a word in R.
From Lemma 5.2, we know that any element of P0 is represented by a word as

described in Lemma 5.1. Thus, we have shown the following proposition:

PROPOSITION 5.3. The set R is a generating set for the group 2V.

6. Relations for 2V

There is no subtlety in this section. We have the following proposition:

PROPOSITION 6.1. The following 17 infinite families of relations hold in 2V. In the

following the letters X and Y represent symbols from fA;Bg.
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XqYm ¼ YmXqþ1; m < q;

pqXm ¼ Xmpqþ1; m < q;

pqXq ¼ Xqþ1pqpqþ1; qP 0;

pqXm ¼ Xmpq; m > qþ 1;

�pqXm ¼ Xm�pqþ1; m < q;

�pmAm ¼ pm�pmþ1; mP 0;

�pmBm ¼ Cmþ1pm�pmþ1; mP 0;

CqXm ¼ XmCqþ1; m < q;

CmAm ¼ BmCmþ2pmþ1; mP 0;

pqCm ¼ Cmpq; m > qþ 1;

AmBmþ1Bm ¼ BmAmþ1Ampmþ1; mP 0;

pqpm ¼ pmpq; jm� qjP 2;

pmpmþ1pm ¼ pmþ1pmpmþ1; mP 0;

�pqpm ¼ pm�pq; qPmþ 2;

pm�pmþ1pm ¼ �pmþ1pm�pmþ1; mP 0;

p2m ¼ 1; mP 0;

�p2m ¼ 1; mP 0:

It will be shown in [2] that the above list of relations suffices to present 2V.

Proof. The above is nothing but calculation. We illustrate some and leave the rest

for the reader.

For the first line with X ¼ Y ¼ A, we assume m < q < k

AqAm ¼ ðvk0vk�q; vkþ10 Þðvkþ10 vkþ1�m; v
kþ2
0 Þ

¼ ðvk0vk�qvkþ1�m; vkþ20 Þ
¼ ðvk0vk�mvk�q; vkþ20 Þ
¼ ðvk0vk�m; vkþ10 Þðvkþ10 vkþ1�ðqþ1Þ; v

kþ2
0 Þ

¼ AmAqþ1:

Similarly, we get all of

AqBm ¼ BmAqþ1;

BqBm ¼ BmBqþ1;

BqAm ¼ AmBqþ1:

We now turn to the pi. We note that
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m < q ! ðkþ 1�mÞ > ðk� qÞ þ 1;

m ¼ q ! ðkþ 1�mÞ ¼ ðk� qÞ þ 1;

m ¼ qþ 1 ! ðkþ 1�mÞ ¼ ðk� qÞ;
m > qþ 1 ! ðkþ 1�mÞ < ðk� qÞ:

Now we get

pqAm ¼ ðvkþ10 rk�q; v
kþ1
0 Þðvkþ10 vkþ1�m; v

kþ2
0 Þ

¼ ðvkþ10 rk�qvkþ1�m; v
kþ2
0 Þ

¼

ðvkþ10 vkþ1�mrk�q; vkþ20 Þ ¼ Ampqþ1; m < q;

ðvkþ10 vk�mrkþ1�mrk�m; vkþ20 Þ ¼ Amþ1pmpmþ1

¼ Aqþ1pqpqþ1; m ¼ q;

ðv0vkþ2�mrk�qrkþ1�q; vkþ20 Þ ¼ Am�1pqþ1pq

¼ Aqpqþ1pq; m ¼ qþ 1;

ðvkþ10 vkþ1�mrkþ1�q; vkþ20 Þ ¼ Ampq; m > qþ 1:

8>>>>>>>>>><>>>>>>>>>>:
Note that the case m ¼ qþ 1 (not mentioned in the statement of the proposition)

actually follows from the case m ¼ q since each pi is its own inverse.

We get similar calculations for pqBm.

Now we look at

�pmBm ¼ ðvmþ10 r0; v
mþ1
0 Þðvmþ10 h1; v

mþ2
0 Þ

¼ ðvmþ10 r0h1; v
mþ2
0 Þ

¼ ðvmþ10 h0r1r0; v
mþ2
0 Þ

¼ ðvmþ10 h0; v
mþ2
0 Þðvmþ20 r1; v

mþ2
0 Þðvmþ20 r0; v

mþ2
0 Þ

¼ Cmþ1pmpmþ1:

One last example is

CmAm ¼ ðvm0 h0v0; vmþ20 Þðvmþ20 v2; v
mþ3
0 Þ

¼ ðvm0 h0v0v2; vmþ30 Þ
¼ ðvm0 h0v1v0; vmþ30 Þ
¼ ðvm0 v0h1h0r1; vmþ30 Þ
¼ ðvmþ10 h1; v

mþ2
0 Þðvmþ20 h0; v

mþ3
0 Þðvmþ30 r1; v

mþ3
0 Þ

¼ BmCmþ2pmþ1:

All of the above are supported by drawing pictures. (

An immediate consequence of Proposition 6.1 is that 2V is finitely generated.
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PROPOSITION 6.2. The group 2V is generated by fAi;Bi; pi; �pi j i ¼ 0; 1g.
Proof. The relations in Proposition 6.1 include relations of the type

ZqAm ¼ AmZqþ1 whenever m < q and Z is from fA;B;C; p; �pg. From this

Zqþ1 ¼ A
�q
0 Z1A

q
0 follows and we see that 2V is generated by

fAi;Bi;Ci; pi; pi j i ¼ 0; 1g.
From CmAm ¼ BmCmþ2pmþ1 and Cmþ1Bm ¼ BmCmþ2 we get CmAm ¼

Cmþ1Bmpmþ1 which gives Cm ¼ Cmþ1ðBmpmþ1A�1m Þ. Now we use �pmBm ¼
Cmþ1pm�pmþ1 to get Cmþ1 ¼ �pmBm�pmþ1pm using the fact that the pi and �pi are invo-

lutions. Combining the two gives Cm ¼ ð�pmBm�pmþ1pmÞðBmpmþ1A�1m Þ. (

7. Simplicity of 2V

From Proposition 3.3, we must show the following:

PROPOSITION 7.1. The group 2V equals its commutator subgroup.

Proof. This is a very straightforward calculation showing that the eight generators

of 2V are all products of commutators. To eliminate a few words, we use V ’W to

mean that V ¼W modulo the commutator subgroup.

From the proof of Proposition 6.2, we already know that Zq ’ Z1 for all q > 1

and Z in fA;B;C; p; �pg.
From p0A0 ¼ A1p1p0, we get A0 ’ A1p1. Similarly, B0 ’ B1p1.
Now p1A1 ¼ A2p1p2 gives p1A1 ’ A1p1p1 ¼ A1 and p1 ’ 1. Thus A0 ’ A1 and

B0 ’ B1. Also p0p1p0 ¼ p1p0p1 gives p0 ’ p1, so p0 ’ 1.

From �p1A1 ¼ p1�p2 ’ �p1 we get A0 ’ A1 ’ 1.

The pair of relations �p0A0 ¼ p0�p1 and p0�p1p0 ¼ �p1p0�p1 give �p0 ’ �p1 ’ 1.

Lastly A0B1B0 ¼ B0A1A0p1 gives B1 ’ 1 so B0 ’ B1 ’ 1. This shows that all eight

generators from Proposition 6.2 are in the commutator subgroup. h

From Propositions 3.3 and 7.1 we get the following theorem:

THEOREM 1. The group 2V is simple.

8. On the Baker’s Map

The baker’s map given by

distinguishes 2V sharply from V. The following lemma and corollary are well known.

We learned of them from Dennis Pixton.

MATTHEW G. BRIN182



Let elements of C� C be represented by based doubly infinite strings in f0; 1g in
the following manner. The first coordinate in C� C will be represented by an infinite

sequence of elements of f0; 1g written from left to right. The second coordinate in

C� C will be represented by an infinite sequence of elements of f0; 1g written from

right to left. The two sequences are then written on the same line separated by a

‘binary point’. Obviously, this can be viewed as a function from the integers Z to

f0; 1g. If this function is written so that xi is the image of i, then the binary point can

be viewed as coming between x�1 and x0 so that the sequence ðxiÞiP 0 gives the first

coordinate in C� C and ðxiÞi<0 gives the second coordinate.

LEMMA 8.1. The baker’s map corresponds to shifting a based doubly infinite sequence

from f0; 1g one position. Specifically, if b is the baker’s map and x : Z! f0; 1g is a
sequence representing a point in C� C, then ðbðxÞÞi ¼ xiþ1.

Proof. There are two cases to consider. If the first coordinate starts with 0, then the

point is from the left half of the unit square in the figure above, and if the first

coordinate starts with 1, then the point is from the right half of the unit square. The

remaining details are easy. (

COROLLARY 8.1.1. There is no bound on the size of the finite orbits of the baker’s

map.

Proof. A periodic function x : Z! f0; 1g with period p lies in a finite orbit of the

baker’s map of size p. (

9. Rubin’s Theorem

The previous section shows that the baker’s map has complex dynamics. In the next

section we will show that no element of V or a related group has such dynamics. We

will make use of these observations by applying results of Mati Rubin. Generally,

these say that under a set of hypotheses, the groups involved in two group actions are

isomorphic if and only the actions are topologically conjugate. Since our observa-

tions will show that the actions of V on C and 2V on C� C cannot be topologically

conjugate, we will have that V and 2V are not isomorphic.

9.1. THE THEOREM

We now give the definitions needed to state Rubin’s result. If X is a topological

space, if HðXÞ is its group of self homeomorphisms, and if F � HðXÞ is a subgroup

of HðXÞ, then we say that F is locally dense if for every x 2 X and every open U � X

with x 2 U, the closure of

f fðxÞ j f 2 F; f jðX�UÞ ¼ 1ðX�UÞg
contains some nonempty open set. In other words, for each open U, the subgroup of

elements fixed off U has every orbit in U dense in some open set in U.
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The following is essentially Theorem 3.1 of [12] where it is described as a com-

bination of parts (a), (b) and (c) of Theorem 3.5 of [13]. The hypothesis that there be

no isolated points was inadvertently omitted from [12] where it is needed. The ter-

minology locally dense is not used in either [12] or [13]. However, in the absence of

isolated points, it implies the notion of locally moving that is used in [12]. The

absence of isolated points seems to correspond to the assumption of ‘no atoms’ in the

Boolean algebras of [13].

THEOREM 2 (Rubin). Let X and Y be locally compact, Hausdorff topological spaces

without isolated points, let HðXÞ and HðYÞ be the self homeomorphism groups of X and

Y, respectively, and let G � HðXÞ and H � HðYÞ be subgroups. If G and H are iso-

morphic and are both locally dense, then for each isomorphism / : G! H there is a

unique homeomorphism s : X! Y so that for each g 2 G, we have /ðgÞ ¼ sgs�1.

9.2. THE SCOPE OF RUBIN’S THEOREM

The Cantor set C is a locally compact, Hausdorff topological space with no isolated

points as is the homeomorphic C� C. That the action of 2V on C� C is locally

dense follows immediately from the construction of the elements.

We will want to apply Rubin’s theorem to other simple groups. Groups Vn;r are

introduced in [9] (where they are called Gn;r) that are generalizations of what we call

1V. Patterns are created in r disjoint copies of the unit interval and these are used to

create self homeomorphisms of r disjoint copies of the Cantor set. The first pattern

consists of the r separate, original unit intervals and new patterns are created by

subdividing intervals into n equal subintervals. Thus 1V ¼ V2;1.

It is shown in [9] that the commutator subgroups Vþn;r of all the Vn;r are infinite,

simple, and finitely presented. Further, in [14], subgroups Ts
n;r of the Vn;r (again, the

Vn;r are called Gn;r in [14]) are given and are shown to be infinite, simple, and finitely

presented. The groups Ts
n;r are the second commutator subgroups of larger groups

Tn;r that are also studied in [14]. It is known that Proposition 3.2 applies to the Vn;r

and Tn;r as well as a strengthening of Lemma 3.1 that says that if K and U of that

lemma are contained in an open V, then the element h of that lemma can be chosen

to have its support in V. It is now easy to argue that the given actions of the Vn;r and

Tn;r are locally dense as well as the restriction of that action to any member of the

derived series. Thus, Rubin’s theorem applies to all of the Vþn;r and Ts
n;r.

10. The Dynamics of Elements of V

The purpose of this section is to prove the following.

PROPOSITION 10.1. Let f be an element of V. Then there is an nðfÞ 2 N so that any

finite orbit of f has no more than nðf Þ elements.
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Trivial modifications of the arguments give the same results for the Vn;r. Since all

of the groups mentioned after the statement of Rubin’s theorem are subgroups of the

Vn;r, we get similar results for them. From Proposition 10.1, Corollary 8.1.1 and

Theorem 2, we get the following theorem:

THEOREM 3. The group 2V is isomorphic to none of the infinite, simple, finitely

presented groups Vþn;r and Ts
n;r.

10.1. THE SCOPE OF THEOREM 3

The papers [15, 16] give constructions of other infinite, simple, and finitely presented

groups. We do not know if Theorem 3 can be extended to cover these groups. There

are also groups with these properties constructed in [17]. The theorem does cover the

groups constructed in [17] for trivial reasons: the groups in [17] are all torsion free.

10.2. STRATEGY

Elements of V can be determined by pairs of trees plus a permutation. The proof

proceeds by modifying a tree-pair of an arbitrary element f of V until it is possible to

read all of the dynamics of f from the tree-pair.

We note that the modified tree-pair will not be the pair that is usually thought of

as giving a ‘normal form’ for f. The normal form is the smallest in size (see [10]),

while the pair that reveals the dynamics is usually not the smallest.

10.3. ELEMENTS AS PAIRS OF TREES

The statement V ¼ 1V should enable the reader to describe the elements of V: they

are given by pairs of numbered patterns of the unit interval I ¼ ½0; 1�. The discussion
is identical to that in Section 2. We will alter the description to pairs of trees with a

permutation for two reasons. It is traditional (see [1] and [14]) and we will find it

useful.

Let T be the set of finite words (including the empty word) on f0; 1g. It is a

monoid under concatenation (and in fact the free monoid on two generators) with

the empty word / as the identity. We also think of it as the infinite binary tree (and

we refer to the elements of T as nodes when we do) since we can think of v0 and v1 as

the (respectively, left and right) child nodes of the node v 2 T. The empty word / is

the root node of T.

Each node in T corresponds to an interval in a pattern on I. Recursively, /
corresponds to I itself and if v corresponds to ½a; b�, then v0 corresponds to ½a; c� and
v1 corresponds to ½c; b� where c ¼ ðaþ bÞ=2.

For us, a finite tree will be a finite subset D of T so that (1) every prefix of a node

in D is also in D, and (2) v0 is in D if and only if v1 is in D. The leaves of such a D will

be the nodes in D whose children are not in D. Nodes of a tree that are not leaves are
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called interior nodes of a tree. Below is a picture of a finite tree with five leaves and

four interior nodes.

Note that the root of every tree is the empty word /.
The leaves of a finite tree D give a pattern in I by taking the intervals in I

corresponding to the leaves of D. Two trees D and R (for Domain and Range) with

the same number n of leaves define two patterns in I with the same number of

intervals. If we are now given a one-to-one correspondence between the intervals

obtained from D to the intervals obtained from R, then we can build a homeo-

morphism from the Cantor set C to itself in a manner analogous to that in Section

2.3.

We now think of elements of V as triples ðD; r;RÞ where D and R are finite trees

with the same number n of leaves and where r is a bijection from the leaves of D to

the leaves of R.

Note that r can be replaced by numberings of the leaves of D and R (as is done in

[1]), but the triple notation (as used in [14]) will be more convenient for us.

10.4. TREE OPERATIONS AND CARETS

Insisting that every finite tree be a subset of a single infinite tree T will have its

advantages. Given a triple ðD; r;RÞ, we will have reason to refer to D \ R, to D� R,

and to R�D which are now nicely defined. We improve on the niceness by intro-

ducing carets. A caret is any triple ðv; v0; v1Þ in T. Every finite tree is a finite union of

carets if we sloppily declare that the trivial tree f/g is the union of zero carets.

We will insist on this view when we write down D� R and R�D and will say that

D� R is the set of carets in D that are not in R. It is seen that D� R breaks up into a

union of pairwise disjoint ‘trees’ (called the components of D� R) whose roots are

not the empty word /, but are leaves of R. Similar remarks apply to R�D.

In the picture below are two trees with five leaves, one D with solid lines and the

other R with dashed lines. They are drawn slightly offset so they can both be seen. In

the picture, D� R has one component with two carets, and R�D has two com-

ponents with one caret each. It is important to keep in mind that D� R and R�D

are differences of sets of carets.

An important triviality is that the number of leaves of a finite tree is one more than

the number of carets in the tree. Since number of carets is clearly the number of

interior nodes, the number of leaves is one more than the number of interior nodes.
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10.5. ALTERING TREE PAIRS

If ðD; r;RÞ represents an element of V, then we can modify the triple to create

another representing the same element. Let u be one of the leaves of D and let U be a

binary tree with k leaves. We can create a new triple ðD0; r0;R0Þ from ðD; r;RÞ and
the pair ðu;UÞ as follows.

We attach a copy of U to D to form D0 by identifying the root of U to u. Note that

this is simply forming the tree D0 ¼ D [ uU where uU is just the product (concate-

nation) of u with the nodes of U. We get R0 as R [ rðuÞU. Note that the leaves of D0

that are not leaves of D are of the form uv as v runs over the leaves of U. The leaves

of R0 that are not leaves of R are rðuÞv as v runs over the leaves of U.

We define r0 so that it agrees with r on leaves that D0 shares with D and so that it

takes each leaf of the form uv with v a leaf of U to rðuÞv. We call the triple ðD0; r0;R0Þ
an augmentation of ðD; r;RÞ at leaf u by U. The next figure gives an element where

the bijection is illustrated by the labels on the leaves and the result of the modifi-

cation is the pair ðb; Þ.

It is elementary that if ðD0; r0;R0Þ is obtained from ðD; r;RÞ by an augmentation,

then ðD0; r0;R0Þ represents the same element of V as ðD; r;RÞ.

10.6. ITERATED AUGMENTATIONS

Augmentations can be iterated under certain conditions. Assume we have a sequence

of leaves u1; . . . ; un of D so that all of u1; . . . ; un and rðunÞ are different and so that

uiþ1 ¼ rðuiÞ for 1O i < n. Here we take advantage of the fact that all trees are rooted

subtrees of the complete binary tree T. Now given a tree U, we can add, for each

1O iO n, a copy of U to D at ui and a copy of U to R at rðuiÞ. There is a resulting

one-to-one correspondence that makes the resulting triple a representative of the

same element as represented by ðD; r;RÞ. We call the alterations to R and D just

described as an iterated augmentation by U along u1; . . . ; un and we call the sequence

of leaves u1; . . . un that it is based on an iterated augmentation chain.

10.7. THE ARGUMENT

We now look at particular properties of the triple ðD; r;RÞ that represents the

element f of V.

The number of carets of D equals the number of carets of R since the number of

leaves of D equals the number of leaves of R. Let p be the number of carets of D and

of R, and let m be the number of carets of D \ R. Recall that D� R refers to carets

of D that are not in R. Then each of D� R and R�D has p�m carets.
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We call p�m the imbalance of the representative ðD; r;RÞ of f. We assume from

this point on that ðD; r;RÞ has the least imbalance of all the representatives of f.

We now look at the number of components of D� R and R�D. Among the

representatives with minimal imbalance, we take a representative that has the

smallest number of components of D� R. Among all such representatives, we take a

representative that has the smallest number of components of R�D. We now prove

facts about any representative triple ðD; r;RÞ chosen in this manner.

LEMMA 10.2. It is impossible to have an iterated augmentation chain u1; . . . ; un so

that u1 is an interior node of R and rðunÞ is an interior node of D.

Proof. If false, then with U the component of D� R with root at rðunÞ, we can

perform an iterated augmentation by U along u1; . . . ; un. This removes the copy of U

with root at rðunÞ from D� R. There are copies of U added to both D and R at each

ui with 2O iO n so these do not contribute to D� R. Now if k is the number of

carets in U, then the number of carets from the copy of U added to D at u1 that are

added to D� R is strictly fewer than k since u1 is an interior node of R. This would

lower the imbalance which is not possible by choice. (

LEMMA 10.3. It is impossible to have an iterated augmentation chain u1; . . . ; un so

that u1 is not a node of R, so that rðunÞ is an interior node of D and so that the

component of D� R containing u1 is not the component of D� R whose root is at

rðunÞ.
Proof. Let U be the component of D� R whose root is at rðunÞ, and let V be the

component of D� R that contains the leaf u1 of D. An iterated augmentation by U

along u1; . . . ; un would remove U as a component of D� R, would introduce no new

components of D� R and would add a copy of U to the component V of D� R.

This iterated augmentation would leave the imbalance unchanged, and would reduce

the number of components of D� R. This is not possible by choice. (

LEMMA 10.4. It is impossible to have an iterated augmentation chain u1; . . . ; un so

that rðunÞ is not a node of D, so that u1 is an interior node of R and so that the

component of R�D containing rðunÞ is not the component of R�D whose root is at

u1.

Proof. The proof is dual to that of the previous lemma. If V is the component of

R�D whose root is at u1 and U is the component of R�D that contains the leaf

rðunÞ of R, then an iterated augmentation by V along u1; . . . ; un would leave both the

imbalance and the number of components of D� R unchanged, and would reduce

the number of components of R�D. (

LEMMA 10.5. For each nontrivial component U of D� R there is a unique leaf kðUÞ
of U so that if rðUÞ is the root of U, then there is an iterated augmentation chain

kðUÞ ¼ u1; . . . ; un with rðunÞ ¼ rðUÞ.
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For each nontrivial component V of R�D there is a unique leaf kðVÞ of V so that if

rðVÞ is the root of V, then there is an iterated augmentation chain rðVÞ ¼ u1; . . . ; un
with rðunÞ ¼ kðVÞ.

Proof. We consider the first claim. The argument for the second is obtained from

the first by making a few mechanical substitutions.

Consider u1 ¼ r�1ðrðUÞÞ. From previous lemmas, u1 can only be a leaf of D that is

also a leaf of R, or it is a leaf of U.

Now, assume that we have an iterated augmentation chain u1; . . . ; un with

rðUÞ ¼ rðunÞ and with u1 either a leaf of U or a leaf of R. From the previous

paragraph, we know that there is at least one such chain. In the case that u1 is a leaf

of U, we are done.

Assume that u1 is a leaf of R. Increase the subscript of every element of the chain

by 1, so the chain now starts with u2 and consider u1 ¼ r�1ðu2Þ. From previous

lemmas, u1 can only be a leaf of D that is also a leaf of R, or it is a leaf of U. Thus, we

have created a chain that is one longer than the original.

Since the element represented by ðD; r;RÞ is a homeomorphism, the chain cannot

extend to an infinite loop. Since there are finitely many leaves of D, this process must

stop. (

We now make some definitions. A leaf u of D is called:

(1) neutral if it is a leaf of R,
(2) a repeller if it is kðUÞ of some component U of D� R, and
(3) a source if it is a leaf other than kðUÞ of some component U of D� R,
(4) a domain of attraction if it is rðVÞ of some component V of R�D.

From what we have shown, these cases are exhaustive and mutually exclusive.

A leaf v of R is called:

(1) neutral if it is a leaf of D,
(2) an attractor if it is kðVÞ of some component V of R�D, and
(3) a sink if it is a leaf other than kðVÞ of some component V of R�D,
(4) a range of repulsion if it is rðUÞ of some component U of D� R.

From what we have shown, these cases are exhaustive and mutually exclusive.

LEMMA 10.6. The imbalance is the number of sinks and is also the number of sources.

Proof. The imbalance is the number of carets summed over all components of

D� R. If a component U of D� R has n carets, then it has nþ 1 leaves, of which

exactly one is kðUÞ and n are sources. Thus the imbalance is the number of sources.

Similarly, it is the number of sinks. (

Proof of Proposition 10.1. We are now ready to describe the dynamics of an f

whose representative ðD; r;RÞ has been chosen as described before Lemma 10.2.

From Lemmas 10.2 through 10.6, we know the following since r is a bijection from

the leaves of D to the leaves of R.
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The first nonneutral leaf in the forward orbit of a repeller kðUÞ of D is the range of

repulstion rðUÞ of R. The first nonneutral leaf in the forward orbit of a source of D is

a sink of R. The first nonneutral leaf in the forward orbit of a domain of attraction

rðVÞ of D is the attractor kðVÞ of R. A neutral leaf of D that is not in the forward

orbit of a repeller, source or domain of attraction is in a finite cyclic orbit of neutral

leaves.

The interval I in the Cantor set represented by a repeller kðUÞ is properly con-

tained in the interval J represented by rðUÞ and is taken affinely to it by an iterate of

f. Thus, I contains a unique periodic point of f which is represented by rðUÞ followed
by infinite repetitions of the path from rðUÞ to kðUÞ. The period of the periodic point

is the number of iterations of f required to take kðUÞ to rðUÞ.
The interval I in the Cantor set represented by a domain of attraction rðVÞ

properly contains the interval J represented by kðVÞ and is taken affinely to it by an

iterate of f. Thus, I contains a unique periodic point of f which is represented by rðVÞ
followed by infinite repetitions of the path from rðVÞ to kðVÞ. The period of the

periodic point is the number of iterations of f required to take rðVÞ to kðVÞ.
A sink of R is a leaf other than kðVÞ of a component V of R�D, and the points in

the interval I corresponding to the sink are contained in the larger interval J cor-

responding to rðVÞ of D. A finite iteration of f takes all of J into the interval K

corresponding to the attractor kðVÞ of R. Since I and K are disjoint, no point in I is

periodic. Since every source has a sink in its forward orbit, no point in an interval

corresponding to a source of D is periodic.

The neutral leaves not involved in any of the above will be organized into a finite

number of circuits, each of finite period.

The number of periods in the above discussion is finite which completes the

proof. (

11. More on the Baker’s Map

In the next section, we give a simple proof of the simplicity of V. It is much simpler

than our proof the simplicity of 2V. As an obstruction to an analogous proof for 2V

stands the baker’s map.

Since 2V is simple, the baker’s map must be a product of commutators. Before

doing the calculations showing that 2V equals its commutator subgroup, the author

did not believe that it was. A calculation that is an extension of the proof of

Proposition 7.1 yields the following expression of C0 (the baker’s map) as a product

of commutators:

C0 ¼ �p1ðK6K1K2K3K4K5K1K2K8K
�1
4 Þ�p�11 K�12 K�11 K6K6K1K2�

� K3K4K1K2K8K7ðK1K2K3K4K5K1K2Þ�1:
ð7Þ

In that expression
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K1 ¼ ½A�10 ;A1�; K5 ¼ ½A�11 ; p�10 �;
K2 ¼ A1½p�11 ;A�10 �A�11 ; K6 ¼ ½A�10 ;C�11 �;
K3 ¼ ½p�11 ; �p�11 �; K7 ¼ ½B�11 ;p�10 �;
K4 ¼ ½�p�11 ;A�10 �; K8 ¼ ½p�11 ;A�10 �:

The author has no idea if there is a shorter word than (7) expressing the baker’s

map as a product of commutators. The author found (7) quite useless as an aid to

understanding why the baker’s map was in the commutator subgroup.

12. The simplicity of V and the Problem of the Baker’s Map

We give a short proof of the simplicity of V. It is along the lines of the proof in [14]

but seems somewhat shorter. It is much shorter than the proof in [1] where the proof

of simplicity is intimately tied to the calculation of a finite presentation for V. The

proof below is due to Mati Rubin and is included here with his permission. The basic

idea is that V is mostly a permutation group and all the permutations can be made

even by augmentation.

We say that an element of V is a permutation if it is represented by a triple of the

form ðD; r;DÞ. We say that a caret ðu; u0; u1Þ in a finite tree D is exposed if both u0

and u1 are leaves of D. It is clear that every finite tree has at least one exposed caret.

LEMMA 12.1. The permutations generate V.

Proof. Let ðD; r;RÞ represent an arbitrary element f of V. There is a permutation

ðD; s;DÞ so that ðD; s;DÞðD; r;RÞ ¼ ðD; r0;RÞ in which r0 takes the leaves in an

exposed caret of D in left–right order to the leaves in an exposed caret of R. Now the

reverse of an augmentation can remove this exposed caret from both D and R and we

are done by induction since we will ultimately reduce D and R to a tree with no

carets. (

We say that a nonidentity permutation ðD; r;DÞ is a transposition if r fixes all but

two leaves of D. The transposition is proper if D has at least three leaves.

LEMMA 12.2. The proper transpositions generate V.

Proof. By augmenting, every permutation can be represented as ðD; r;DÞ where D
has at least three leaves. The result is clear. (

It is immediate that all of the proper transpositions are conjugate. Thus a normal

subgroup of V is all of V if it contains a proper transposition. We now show that the

normal closure of any nontrivial element contains a proper transposition.

A nontrivial f with normal closure N moves intervals in patterns, but we can think

of this as moving nodes in the infinite binary tree T. Since f must move some interval

off itself, it must move some caret ðu; u0; u1Þ to some caret ðv; v0; v1Þ so that nei-

ther u nor v is in a subtree of T with the other as root. These can be chosen so that

HIGHER DIMENSIONAL THOMPSON GROUPS 191



u and v are at least distance three from the root of T. Let g be a transposition

interchanging u0 with u1. Now h ¼ ½g; f� interchanges u0 with u1 and v0 with v1. Let

j be a transposition interchanging u0 with v0. Now k ¼ ½j; h� interchanges u0 with v0

and u1 with v1. But this just interchanges u with v and is a proper transposition since

u and v are far enough from the root. However, h and thus k are in N. We have

finished the proof of the following proposition:

PROPOSITION 12.3 The group V is simple.

The outline above breaks down at the first step for 2V. The presence of the baker’s

map invalidates the proof of Lemma 12.1 for 2V. It would be interesting to know if

there is a proof of the simplicity of 2V that is shorter than the one in this paper.
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