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Abstract. We prove that any simply connected S-manifold of CR-codimension s � 2 is
noncompact by showing that the complete, simply connected S-manifolds are all the CR
products N × R

s−1 with N Sasakian, endowed with a suitable product metric. N is a
Sasakian ϕ-symmetric space if and only if M is CR-symmetric. The locally CR-symmet-
ric S-manifolds are characterized by ∇̃R̃= 0 where ∇̃ is the Tanaka–Webster connection.
This characterization is showed to be nonvalid for nonnormal almost S-manifolds.
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1. Introduction

In this paper, we investigate some geometric features of almost S-manifolds. These
are the Hermitian CR-spaces (M,DM,J, g) such that DM⊥ is trivial, and a global
orthonormal frame ξ1, . . . , ξs of DM⊥ can be chosen in such a way that the dual
1-forms ηi with respect to the metric g satisfy

dηi =�, i=1, . . . , s,

where � is the 2-form with Ker(�)=DM⊥ determined by

∀X,Y ∈�DM, �(X,Y )=g(X,JY ).

Such a frame {ξi} is called characteristic. An almost S-manifold is called an
S-manifold if, in addition, the tensor field

N = [ϕ,ϕ]+2dηi ⊗ ξi
vanishes. Here, ϕ is the f -structure in the sense of Yano, which extends the partial
complex structure J on the whole tangent bundle by the requirement that Ker(ϕ)=
DM⊥.

This notion was studied first by Blair in [3] where various kinds of U(k)×O(s)
structures are considered. More recently, a systematic study of nonnormal almost
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S-manifolds has been developed in [7]. We collect general information on (almost)
S-manifolds in Section 2.

The main motivation in studying this class of manifolds comes from the fact
that they provide a higher CR-codimensional version of Sasakian manifolds.
Indeed, the S-manifolds having CR-codimension 1 are the Sasakian manifolds.
Almost CR-manifolds (M,DM,J ) whose analytic bundle DM admits a triv-
ial complementary subbundle D′M in TM were also studied in a very general
fashion by Mizner in [15]. In particular, Mizner showed that the choice of a
nondegenerate frame for D′M gives rise to a linear connection on M which is
well-adapted to the CR-structure. It turns out that, when specialized to almost
S-manifolds, Mizner’s theory leads to their characterization by means of the exis-
tence of special adapted linear connections. This was proved in [13] by a direct
approach. The connection canonically associated to a characteristic frame of a
CR-integrable almost S-manifold is called its Tanaka–Webster connection (cf. The-
orem 2.3). See Section 2 for a review of this topic.

In [3], Blair obtained some interesting results about the Riemannian geometry
of S-manifolds having higher CR-codimension, showing that the structure of these
manifolds can be very different from Sasakian manifolds. For instance, he proved
that there are no S-manifolds of constant curvature K > 0 and CR-codimension
s � 2.

The aim of this paper is to develop further the understanding of the structure or
S-manifolds whose CR-codimension is at least 2. Our first result is the following:

THEOREM 1.1. A simply connected S-manifold of CR-codimension s � 2 is
noncompact.

Of course, the situation is different in the Sasakian category, since each odd-
dimensional sphere carries a Sasakian structure.

We also remark that the above result is false without assuming the manifold is
simply connected: indeed, each product S2k+1 ×T

s , k, s � 1 can be endowed with
an S-structure of CR-codimension s+1. See Proposition 4.1.

Actually, we prove that each S-manifold is locally a product N × R
s−1, where

N is a Hermitian CR submanifold having CR-codimension 1 (Theorem 3.2). This
leads to a complete classification of the simply connected complete S-manifolds: up
to CR-isometry, they are all the products M=N ×R

s−1, where (N,ϕ, ξ, η, g) is a
complete Sasakian space. M is endowed with the natural CR structure of CR-codi-
mension s and with the product metric h=g1 ⊕g2, where g2 is the standard metric
of R

s−1, while g1 is the modified metric on N such that

∀X,Y ∈DN, g1(X,Y )=g(X,Y ), g1(X, ξ)=0, g1(ξ, ξ)= s. (1)

This is the content of Theorem 4.2.
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In the last part of the paper we investigate symmetry properties of almost
S-manifolds from the point of view of Hermitian CR geometry. Recently, W. Kaup
and D. Zaitsev [10] introduced the concept of symmetric CR-space. This is a Her-
mitian CR-space (M,DM,J, g) each point x of which admits a CR-symmetry σx .
Such a symmetry is an isometric CR-diffeomorphism having x as a fixed point
and whose differential dσx equals –Id on the subspace DxM ⊕ (D∞(x))⊥ of the
tangent space TxM, where D∞ is the Lie algebra of smooth vector fields gener-
ated by the sections of the analytic subbundle DM⊂TM. See Section 5 for more
details.

It is interesting to remark that, when applied to Sasakian manifolds, the defini-
tion of Kaup and Zaitsev coincides with Takahashi’s notion of ϕ-symmetric space
(cf. [17] or [9]). We verify this in Section 6.

With this terminology, the above classification specializes as follows:

THEOREM 1.2. Up to CR-isometry, the simply connected CR-symmetric S-mani-
folds of CR-codimension s > 1 are all the CR products N × R

s−1, where (N,DN,
J, g) is a simply connected Sasakian ϕ-symmetric space, endowed with the product
metric of the standard flat metric on R

s−1 and the metric g1 on N defined by (1).

We conclude by proving that the locally CR-symmetric S-manifolds of any CR-
codimension are characterized by the condition ∇̃R̃= 0, where ∇̃ is the Tanaka–
Webster connection associated to some characteristic frame. The local version of
the definition of Kaup and Zaitsev is introduced in Section 5.

Our characterization is a generalization of a theorem in [17] according to which
the Sasakian locally ϕ-symmetric spaces are characterized by ∇′R′ =0, where ∇′ is
the Okumura connection (cf. [16]). We think that, in the context of CR geometry,
it is more convenient to have a characterization involving Tanaka–Webster connec-
tions.

It is worthwhile to remark that this result is false for nonnormal almost
S-manifolds. Indeed in the last section we show by examples that, in the nonnor-
mal case, the property ∇̃R̃= 0 and the property to be locally CR-symmetric are
independent.

2. Almost S-manifolds

An almost CR-manifold M is a real smooth manifold with an almost CR-struc-
ture. This structure consists of a smooth real subbundle DM of the tangent bun-
dle TM together with a smooth bundle isomorphism J :DM →DM, such that
J 2 =−Id. The linear subspace DxM ⊂TxM, endowed with the complex structure
Jx , is called the holomorphic tangent space to M at x. The complex dimension
k of DxM is called the CR-dimension of M, while the real dimension s of the
quotient vector space TxM/DxM is the CR-codimension of M. The pair of inte-
gers (k, s) is called the type of the almost CR-manifold M.
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We shall denote by D ⊂ X(M) the module of differentiable sections of DM. An
almost CR-structure is said to be integrable if

[X,Y ]− [JX,JY ]∈D ∀X,Y ∈D

and the Nijenhuis torsion of J vanishes on DM, that is

[J, J ](X,Y )= [JX,JY ]− [X,Y ]−J ([JX,Y ]+ [X,JY ])=0

for any X,Y ∈D. In this case we say that M is a CR-manifold.
Define inductively

D1 =D,
Dk =Dk−1 + [D1,Dk−1], k >1, (2)

Dj =0, j � 0.

Thus we have an increasing sequence

D1 ⊂D2 ⊂· · ·⊂X (M),

such that [Dr ,Ds ] ⊂ Dr+s for all integers r, s and D∞ := ⋃
k Dk is the Lie subal-

gebra of X(M) generated by D. An almost CR manifold is called contact regular
in the sense of Tanaka if, for each j � 1, Dj := {Dj (x) | x ∈M} is a distribution
of constant rank. Here by definition Dj (x)={Xx ∈TxM |X∈Dj }. In this case, the
smallest integer µ � 1 such that Dµ =Dj for all j � µ is called the kind of M.
We remark that in this case, Dµ is the smallest Frobenius integrable distribution
containing DM (cf. [14]).

A Hermitian CR-space is an almost CR-manifold M with a Riemannian metric
g compatible with the CR-structure in the sense that

g(Jv, Jw)=g(v,w)

for any x∈M, v,w∈DxM. If the almost CR-structure is integrable we say that M
is a Hermitian CR-manifold.

A smooth map ϕ:M→N between almost CR manifolds is called a CR-map if,
for every x ∈M, the differential dxϕ: TxM→ Tϕ(x)N maps DxM into Dϕ(x)N and
interchanges the partial complex structures. Two Hermitian CR-spaces are called
isomorphic if there exists a diffeomorphism between them which is both a CR-map
and an isometry.

Let (M,DM,J, g) be a Hermitian CR-space. We shall denote by T kx ⊂ TxM be
the orthogonal complement of Dk−1

x in Dk
x . Then T 0

x =0 and T 1
x =DxM. Let T −1

x

denote the orthogonal complement of D∞(x) in TxM. We obtain the following
orthogonal decomposition

TxM=
⊕

k�−1

T kx . (3)
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The partial complex structure J extends canonically to a tensor field ϕ of type
(1,1) such that Ker(ϕ)=DM⊥. This is an f -structure of rank 2k in the sense of
Yano. The 2-form � defined by

∀X,Y ∈X(M) �(X,Y ) :=g(X,ϕY )

will be called the fundamental 2-form of the Hermitian CR-space M. In all that
follows, when we consider a Hermitian CR-space (M,DM,J, g), the symbols ϕ
and � denote these two tensors canonically associated to the triple (DM,J, g).

DEFINITION 2.1. A Hermitian CR-space (M,DM,J, g) is called an almost
S-manifold if the bundle DM⊥ is trivial, and there exists a global orthonormal
frame {ξ1, . . . , ξs} for DM⊥, whose dual frame {η1, . . . , ηs} with respect to g sat-
isfies

dηi =� i=1, . . . , s. (4)

Such a frame {ξ1, . . . , ξs} is called characteristic.
If, moreover, the tensor field N defined by

N = [ϕ,ϕ]+2dηi ⊗ ξi, [ϕ,ϕ]= Nijenhuis torsion of ϕ (5)

vanishes, (M,DM,J, g) is called an S-manifold.

The term S-manifold was introduced by D.E. Blair in [3] where more empha-
sis is given on the associated f -structure rather than to the underlying almost
CR-structure. Since in this paper we are interested in these manifolds as a particu-
lar class of Hermitian CR-spaces, we prefer to adopt the above definition. Almost
S-structures were studied in [7]. If (M,DM,J, g) is an (almost) S-manifold and a
characteristic frame {ξi} for DM⊥ is chosen, then we refer to (ϕ, ξi, η

i, g) as an
associated (almost) S-structure. It is proved in [7] that a necessary and sufficient
condition for M to be CR-integrable is that N(X,Y ) = 0 for all X,Y ∈ D, where
N is the tensor field in (5). The condition N = 0 which characterizes the S-mani-
folds will be referred to as the normality condition.

Note that an almost S-manifold with CR-codimension s = 1 and a fixed asso-
ciated structure (ϕ, ξ, η, g) is a contact metric manifold according to [1]. An
S-manifold with CR-codimension s=1 is a Sasakian manifold.

Let (M,DM,J, g) and (M ′,DM ′, J ′, g′) be almost S-manifolds of the same type
(k, s). Choose a characteristic frame {ξ1, . . . , ξs} for DM⊥ and a characteristic
fame {ξ ′

1, . . . , ξ
′
s} for DM ′⊥. We explicitly remark that an isomorphism f :M→M ′

of Hermitian CR-spaces does not need to map these characteristic frames one onto
the other. By a result of S.Ianus and A.M. Pastore, this is true if s=1, i.e. M and
M ′ are contact metric manifolds [8]. In the general case the following result holds
([7]):
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THEOREM 2.2. Let (M,DM,J, g) and (M ′,DM ′, J ′, g′) be almost S- manifolds
of type (k, s), with characteristic frames {ξ1, . . . , ξs} and {ξ ′

1, . . . , ξ
′
s}. Let f :M→M ′

be an isomorphism. Then we have f∗(ξ̄ )= ξ̄ ′ where ξ̄ =∑s
i=1 ξi, ξ̄

′ =∑s
i=1 ξ

′
i .

We now recall some useful properties of almost S-structures (for a proof, see
[7]). Let M be an almost S-manifold with structure (ϕ, ξi, ηi, g). Define hi = 1

2Lξi ϕ
for any i=1, . . . , s, where L denotes a Lie derivative. Then each operator hi is self-
adjoint and anticommutes with ϕ; it vanishes on Ker(ϕ), takes values in D and
satisfies

ϕ(hiX)=− 1
2N(X, ξi)

for any X∈X (M). We also have

[ξi,D]⊂D, N(X,Y )∈D for any X,Y ∈D.

Denoting by ∇ the Levi-Civita connection of the metric g, we have

∇Xξi =−ϕX−ϕ(hiX) (6)

for any X∈X (M). If the almost S-structure is CR-integrable, then

(∇Xϕ)Y =−�(X,ϕY )ξ̄ + η̄(Y )ϕ2(X)+
∑

j

g(hj (X), Y )ξj −ηj (Y )hj (X) (7)

where ξ̄ =∑
j ξj and η̄=∑

j η
j .

If M is an S-manifold, then each operator hi vanishes. Thus, (6) and (7) sim-
plify as follows:

∇Xξi =−ϕX,
(∇Xϕ)Y =g(X,Y )ξ̄ − η̄(Y )X−

∑

j

ηj (X)ηj (Y )ξ̄ + η̄(Y )ηj (X)ξj

for any X,Y ∈X (M). Furthermore, in this case each ξi is a Killing vector field.
The following result [13] provides a geometric characterization of the CR-inte-

grable almost S-manifolds.

THEOREM 2.3. Let (M,DM,J, g) be a Hermitian CR-space. Assume that the
bundle DM⊥ is trivial and fix an orthonormal frame {ξ1, . . . , ξs} of DM⊥. Set
ξ̄ :=∑

i ξi . Then M is a CR-integrable almost S-manifold with characteristic frame
{ξ1, . . . , ξs} if and only if there exists a linear connection ∇̃ with the following
properties:

(1) ∇̃ϕ=0, ∇̃ξi =0, ∇̃g=0;

(2) the torsion T̃ of ∇̃ satisfies
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T̃ (X,Y )=2�(X,Y )ξ̄ for anyX,Y ∈D, (8)

T̃ (ξi , ϕX)=−ϕT̃ (ξi,X) for anyX∈X (M), (9)

T̃ (ξi , ξj )=0. (10)

Such a linear connection ∇̃ is uniquely determined and it is given by ∇̃ = ∇ +H,

where

H(X,Y )=�(X,Y )ξ̄ + η̄(Y )ϕ(X)+ η̄(X)ϕ(Y )+
+�(hjX,Y )ξjηj (Y )ϕhj (X) (11)

for any X,Y ∈X (M).

Remark 2.4. The linear connection ∇̃ is called in [13] the Tanaka–Webster con-
nection of M. This terminology is justified by the fact that in the case where the
CR-codimension is 1, the contact form η is a pseudo Hermitian structure and ∇̃
is the corresponding Tanaka–Webster connection (see, e.g., [18]).

In the general case, if M is a CR-integrable almost S-manifold with a fixed
characteristic frame {ξ1, . . . , ξs}, then the dual forms {η1, . . . , ηs} make up a
nondegenerate frame of type {1, . . . , s} according to the terminology of Mizner
([15], p. 1341). This means that at each point p ∈M, and for each j ∈ {1, . . . , s},
ηj ◦Lp is a nondegenerate Hermitian form on Hp={X− iJX | X∈DpM}⊂T C

p M,
where

Lp :Hp×Hp→TpM
C/HC

p

is the Levi form (cf. e.g. [15], p. 1340). Then ∇̃ coincides with the connection
canonically associated with {η1, . . . , ηs} according to Theorem 1, p. 1355 in [15].
For a proof of this, see [13].

PROPOSITION 2.5 ([13]). Let M be a CR-integrable almost S-manifold with struc-
ture (ϕ, ξi, ηi, g). Let ∇̃ be its Tanaka–Webster connection. Then we have:

(1) ∇̃ZX∈D for any X∈D, Z∈X (M);
(2) T̃ (ξi ,X)=−ϕ(hiX) for any X∈X (M).

Moreover, the almost S-structure is normal if and only if T̃ (ξi ,X)=0 for each X∈
D and i=1, . . . , s.

PROPOSITION 2.6. Let M and M ′ be S-manifolds. Choose characteristic frames
for M and M ′ and let ∇̃ and ∇̃′ be the corresponding Tanaka–Webster connections.
Then every CR-isomorphism σ :M→M ′ is an affine map with respect to ∇̃ and ∇̃′

Proof. Since the S-structure of M is normal, according to (11) we have
∇̃ =∇ +H with

H(X,Y )=�(X,Y )ξ̄ + η̄(Y )ϕ(X)+ η̄(X)ϕ(Y ).
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An analogous formula holds for ∇̃′. Hence, the assertion follows from the fact that
σ∗ξ̄ = ξ̄ ′ (cf. Theorem 2.2).

PROPOSITION 2.7. Let M be an S-manifold with structure (ϕ, ξi, ηi, g) and CR

codimension s � 1. Let R be the curvature tensor of the Levi-Civita connection ∇;
then

R(X, ξi)Y =−(∇Xϕ)Y (12)

for any X,Y ∈X (M) and i=1, . . . , s.
Proof. Since each ξi is a Killing vector field, according to Proposition 2.6 of

Chapter VI in [11], we obtain:

R(X, ξi)Y =∇X∇Y ξi −∇∇XY ξi,

and, hence,

R(X, ξi)Y =−∇XϕY +ϕ(∇XY)=−(∇Xϕ)Y.

PROPOSITION 2.8. Let M be an S-manifold with structure (ϕ, ξi, η
i, g), i =

1, . . . , s. Let ∇ be the Levi-Civita connection and ∇̃ the Tanaka–Webster connection
of M. Let R and R̃ denote the curvature tensor fields of ∇ and ∇̃ respectively. Then,
we have

R̃(X,Y )Z = R(X,Y )Z+B(X,Y )Z, (13)

where

B(X,Y )Z = 2s�(X,Y )ϕ(Z)+ s�(X,Z)ϕ(Y )− s�(Y,Z)ϕ(X)−
− η̄(X)η̄(Z)ϕ2(Y )+ η̄(Y )η̄(Z)ϕ2(X)+
+{η̄(X)�(Y,ϕZ)− η̄(Y )�(X,ϕZ)}ξ̄ (14)

for any X,Y,Z∈X (M). Consequently, we get

R̃(X, ξi)Y =0 (15)

for any X,Y ∈X (M) and i=1, . . . , s.
Proof. Straightforward computation.

3. On the Structure of S-manifolds

PROPOSITION 3.1. Let (M,DM,J, g) be an almost S-manifold of type (k, s),
with associated structure (ϕ, ξi, ηi, g). Then M is contact regular of kind 2. The dis-
tribution D∞ has constant rank 2k+ 1 and is given by DM⊕ [ξ̄ ]. It is the smallest
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Frobenius integrable distribution containing DM. The orthogonal decomposition (3)
becomes

TxM=T −1
x ⊕T 1

x ⊕T 2
x

where

T 1
x =DxM, T 2

x = [ξ̄x ], T −1
x ={Xx |X=

∑

i

ηi(X)ξi, η̄(X)=0}.

Here as usual ξ̄ =∑
i ξi and η̄=∑

i η
i .

Proof. We consider the submodules Dk, k � 1, of X(M) defined by (2). For every
X,Y ∈D =D1, we can write [X,Y ]=Z+ηk([X,Y ])ξk, with Z∈D; hence

[X,Y ]=Z−2dηk(X,Y )ξk =Z−2�(X,Y )ξ̄ . (16)

From this it follows that

D2 ⊂ D̄ +D1

where D̄ denotes the module on C∞(M) generated by ξ̄ . On the other hand, choos-
ing a unit vector field X∈D and setting Y =JX in (16), we obtain

[X,JX]−2ξ̄ ∈D

which implies that ξ̄ ∈D2. Hence,

D2 = D̄ +D1. (17)

On the other hand, we know that [ξ̄ ,D]⊂D. Applying this property and (17), we
conclude that [D2,D2] ⊂ D2. This implies that Dk = D2 for every k > 2, so that
D∞ =D2. For each point x ∈M

D2
x =DxM⊕ [ξ̄x ].

This yields the conclusion.

THEOREM 3.2. Let (M,DM,J, g) be a CR-integrable almost S-manifold of CR-
codimension s � 2 with characteristic frame {ξi}. Denote by ∇̃ the Tanaka–Webster
connection associated with {ξi}. Set ξ̄ =∑

i ξi .

(1) The distributions T ′ :=D∞ =DM⊕ [ξ̄ ] and T ′′ :=D⊥∞ are both involutive and ∇̃-
parallel. Each integral manifold N of T ′ is a CR-integrable almost S-manifold
with respect to the induced CR-structure of CR-codimension 1 and the Hermi-
tian metric g′ such that

∀X,Y ∈DN g′(X,Y )=g(X,Y ), g′(X, ξ̄ )=0, g′(ξ̄ , ξ̄ )=1. (18)
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The restriction to N of the vector field ξ̄ yields a characteristic frame and the
corresponding Tanaka–Webster connection is the connection canonically induced
on N by ∇̃. If M is normal, also N is, i.e. N is a Sasakian manifold with respect
to the metric g′.

(2) Assume that all the operators hi= 1
2Lξi ϕ coincide. Then T ′ and T ′′ are both par-

allel for the Levi-Civita connection. If furthermore M is normal, then each inte-
gral manifold P of T ′′ is a flat Riemannian submanifold.

Proof. (1) We remark that D⊥∞ is spanned by ζ1, . . . , ζs−1 where ζj := ξj − ξs ,
j =1, . . . , s−1. Hence it is involutive because [ζi, ζj ]=0. The fact that T ′ and T ′′

are ∇̃-parallel is clear. Consider an integral manifold N of T ′, endowed with the
almost CR structure induced by M and the Hermitian metric g′ defined by (18).
We remark that the connection ∇̃N induced on N by ∇̃ is metric with respect to
g′. It is immediate to verify that ∇̃N satisfies (1 and 2) in Theorem 2.3, so that N
is an almost S-manifold with characteristic frame {ξ̄} whose Tanaka–Webster con-
nection is ∇̃N . If M is normal, also N is according to Prop. 2.5.

(2) To show that T ′ and T ′′ are parallel with respect to the Levi-Civita connec-
tion observe that, assuming h1 =· · ·=hs , the formula for the covariant derivative
of ϕ simplifies as follows:

(∇Xϕ)Y =−�(X,ϕY )ξ̄ + η̄(Y )ϕ2X+g(h(X),Y )ξ̄ − η̄(Y )h(X)

for all X,Y ∈X (M), where we have set h=h1 =· · ·=hs . It follows that

∇XD ⊂T ′.

Moreover, since ∇Xξi =−ϕX−ϕhi(X)=−ϕX−ϕh(X) for all i ∈{1, . . . , s}, we get

∇Xξ̄ =−sϕ(X+hX)∈D, and ∇Xζi =0

and this proves the first assertion. If M is normal, since P is a totally geodesic sub-
manifold in M, its flatness follows from (12) and the Gauss equation.

4. Classification of Simply Connected S-manifolds

The following proposition gives a simple way to construct examples of S-manifolds
starting from Sasakian manifolds.

PROPOSITION 4.1. Let (N,DN,J, g) be a Sasakian manifold. Denote by g1 the
Hermitian metric on N such that

∀X,Y ∈DN g1(X,Y )=g(X,Y ), g1(X, ξ)=0, g1(ξ, ξ)= s,

where ξ is the characteristic vector field on N .
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Let G be an Abelian real Lie group of dimension s−1, s � 2. Then the CR man-
ifold M=N ×G of CR-codimension s is an S-manifold with respect to any product
metric h= g1 ⊕ g2, where g2 is a left-invariant metric on G. The maximal integral
manifolds of the distribution D∞(M) are N ×{a}, a∈G.

Proof. We fix a global g2-orthonormal frame ζ1, . . . , ζs−1 of G consisting of left-
invariant vector fields. Let V ⊂X(M) be the s-dimensional Abelian Lie subalgebra
of X(M) generated by {ξ, ζi}. Then, since h(ξ, ξ)= s, there exist ξ1, . . . , ξs ∈V such
that

ξ =
s∑

i=1

ξi, h(ξi, ξj )= δij .

Hence, it is straightforward to verify that M is an S -manifold with characteristic
frame {ξ1, . . . ξs}.

The main result of this section states that the simply connected, complete S-
manifolds of CR-codimension s � 2 are exactly the ones constructed with the
above procedure by choosing as G an Euclidean space. More precisely,

THEOREM 4.2. For a given Sasakian manifold N denote by Ns the S-manifold
N × R

s−1 of CR-codimension s � 2 obtained according to Proposition 4.1 choosing
G=R

s−1 and g2 = standard flat metric.
For each s � 2, the mapping �:N 
→Ns induces a bijection between the isomor-

phism classes of simply connected complete Sasakian manifolds and the isomorphism
classes of simply connected complete S-manifolds of CR-codimension s.

Proof. We remark that, if (N,DN,J, g) and (N ′,DN ′, J ′, g′) are CR-isomet-
ric Sasakian manifolds, then every CR-isometry f :N→N ′ satisfies f∗ξ = ξ ′. This
implies that f is also an isometry between the Riemannian manifolds (N,g1) and
(N ′, g′

1) where g1 and g′
1 are defined according to Proposition 4.1. If follows that

f × id is a CR-isometry between N×R
s−1 and N ′ ×R

s−1. Hence, � actually deter-
mines a map

[N ]→ [N ×R
s−1]

where the symbol [ ] denotes a CR-isometry class. To show that this map is a
bijection, we observe that, according to Theorem 3.2, a simply connected, com-
plete S-manifold M is CR-isometric to a product N×R

s−1 where N is a maximal
integral manifold of the distribution D∞, considered as an Hermitian CR-subman-
ifold of M. We also know that with respect to the metric g′ in (18), N is a Sasa-
kian manifold. Denote by N ′ this Sasakian manifold. Then the S-manifold �(N ′)
coincides with N ×R

s−1 and, hence, it coincides with M up to CR-isometry. This
proves that � is surjective. On the other hand, it follows from (1) in Theorem 3.2
that if N ′′ is any Sasakian manifold such that [�(N ′′)] = [M], then N ′′ embeds in
M as an integral manifold of D∞. Thus [N ′]= [N ′′]. This completes the proof.
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As a consequence, we get

COROLLARY 4.3. A simply connected S-manifold of CR-codimension s > 1 is
noncompact.

In the following (see Corollary 6.4) we shall also verify that the above corre-
spondence � preserves the property of being CR-symmetric in the sense of [10].
The next session is devoted to a preliminary discussion of the notion of CR-sym-
metry for general Hermitian CR-spaces. We come back to the context of almost
S-manifolds in Section 6.

5. Symmetric CR-manifolds and ϕ-symmetric Spaces

In literature there are two definitions of symmetries on almost CR-manifolds: the
CR-symmetries on Hermitian CR-spaces, introduced by W. Kaup and D. Zaitsev
[10], and the ϕ-geodesic symmetries on Sasakian manifolds, according to T. Takah-
ashi [17]. It turns out that a Sasakian manifold is (locally) ϕ-symmetric if and only
if it is (locally) CR-symmetric (cf. Corollary 6.1 below). In this section we recall
the two definitions.

We keep the notation in Section 2.

DEFINITION 5.1 ([10]). Let M be a Hermitian CR-space and let σ :M→M be
an isometric CR-diffeomorphism. Then σ is called a symmetry at the point x ∈M
if x is a fixed point of σ and the differential of σ at x coincides with the nega-
tive identity on the subspace T −1

x ⊕T 1
x of TxM. A connected Hermitian CR-space

M is called a (globally) CR-symmetric space if for each point x ∈M there exists a
symmetry σx at x.

We remark that a symmetric CR manifold of CR-codimension 0 is a Hermitian
symmetric space, while a symmetric CR space of CR-dimension 0 is a Riemannian
symmetric space.

It is proved in [10] that a CR-symmetric space M is CR-homogeneous: the group
of isometric CR automorphisms of M acts transitively. In particular, M is a com-
plete Riemannian manifold.

THEOREM 5.2 ([10]). Let ϕ, ψ be isometric CR-diffeomorphisms of a Hermitian
CR-space M. Assume that ϕ(x)=ψ(x) for some x ∈M. If the differentials (dϕ)x
and (dψ)x coincide on the subspace T −1

x ⊕T 1
x of TxM, then ϕ=ψ . Hence, if M is

a CR-symmetric space, the symmetry σx at x is unique; its differential is given by

(dσx)x =
∑

k�−1

(−1)kπkx , (19)

where πkx :TxM→T kx is the orthogonal projection.
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This result allows us to give the following definition:

DEFINITION 5.3. A Hermitian almost CR manifold M will be called locally CR-
symmetric if for every point x ∈M the mapping

sx = expx ◦Lx ◦ exp−1
x , Lx :=

∑

k�−1

(−1)kπkx (20)

defined on a normal neighborhood of x, is a local isometric CR-diffeomorphism.

As a consequence of Theorem 5.2, Definitions 5.1 and 5.3 are well-related.

PROPOSITION 5.4. A connected Hermitian almost CR-manifold M is globally
CR-symmetric if and only if each sx extends to a global symmetry in the sense of
Definition 5.1.

We end this section by recalling the definition of a ϕ-symmetric space (cf. [17]
and [6]). Let M be a contact metric manifold with associated structure (ϕ, ξ, η, g).
A geodesic γ = γ (s) in M is said to be ϕ-geodesic if its tangent vectors are hor-
izontal, that is η(γ̇ (s))= 0 for each s. Let σx be a local diffeomorphism defined
in a neighborhood U of x ∈M. Then σx is called a (local) ϕ-geodesic symmetry if
for each point y ∈U which lies on the integral curve of ξ through x, and for each
ϕ-geodesic γ of M such that γ (0)= y, we have σx(γ (s))= γ (−s), for all s with
γ (±s)∈U .

A contact metric manifold M with associated structure (ϕ, ξ, η, g) is called a
locally ϕ-symmetric space if it admits at every point x ∈M a ϕ-geodesic symme-
try, which is a local automorphism, i.e. a local diffeomorphism leaving all struc-
ture tensor fields invariant. A Sasakian ϕ-symmetric space is a complete Sasakian
manifold all of which ϕ-geodesic symmetries extend to global automorphisms of
the Sasakian structure.

6. CR-symmetries on Almost S-manifolds

In this section, we establish some general properties of CR-symmetric almost
S-manifolds, and we prove that for Sasakian manifolds the concepts of CR-sym-
metry and ϕ-symmetry coincide. We keep the notations of the above sections.

PROPOSITION 6.1. A Sasakian manifold is a (locally) ϕ-symmetric space if and
only if it is (locally) CR-symmetric in the sense of Definition 5.3.

Proof. Let M be a Sasakian manifold with associated structure (ϕ, ξ, η, g).
Hence, M is an S-manifold of CR-codimension 1 and characteristic frame {ξ}. For
each x ∈M the ϕ-geodesic symmetry σx on a normal neighborhood is given by

σx = expx ◦Sx ◦ exp−1
x ,
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where Sx:=−I +2η⊗ξ (cf. [5]). On the other hand, specializing Proposition 3.1 to
the case where the CR-codimension s= 1, we get Sx =Lx where Lx is defined in
(20). Thus, keeping the notation of Definition 5.3, we have σx = sx and the asser-
tion follows.

PROPOSITION 6.2. Assume that M is a locally CR-symmetric almost S-manifold
of type (k, s) with associated structure (ϕ, ξi, ηi, g). Then M is CR-integrable and
the operators hi = 1

2Lξi ϕ, i=1, . . . s, coincide.
Proof. Fix a point x ∈M. Since

N = [ϕ,ϕ]+2�⊗ ξ̄

we have that N is preserved by σx since ϕ,g and ξ̄ are preserved. Now, assume
s >1 and set ζj := ξj − ξs for each j = 1, . . . , s − 1. For each X ∈ D we have
N(X, ζi)∈D. It follows that

−Nx(X, ζi)= (σx)∗Nx(X, ζi)=Nx(−X,−ζi)

whence Nx(X, ζi)= 0. We have thus proved that N(X, ζi)= 0 for all X ∈ D and
this implies that hk =hs for all k=1, . . . , s−1. Turning to the general case s � 1,
observe that, since N(X,Y ) ∈ D for all X,Y ∈ D, the same argument applies to
show that N(X,Y )=0 for X,Y ∈D which means that M is CR-integrable.

PROPOSITION 6.3. Let (M,DM,J, g) be a CR-integrable almost S-manifold of
CR-codimension s � 2 with characteristic frame {ξi}. Denote by ∇̃ the Tanaka–
Webster connection associated with {ξi} and set ξ̄ = ∑s

i=1 ξi and ζj = ξj − ξs , j =
1, . . . , s− 1. If M is (locally) CR-symmetric, then each maximal integral manifold
N of T ′ =D∞ is (locally) CR-symmetric with respect to the metric (18), while each
maximal integral manifold P of T ′′ =D⊥∞ is a Riemannian (locally) symmetric space
for the metric induced by g.

Proof. To prove that N and P are locally CR-symmetric, we show that the CR-
symmetry σx at each point x ∈M leaves the maximal integral submanifolds N and
P through x invariant. Indeed, observe that T ′ and T ′′ are σx-invariant because
they are ∇-parallel and (σx)∗T ′

x ⊂ T ′
x , (σx)∗T ′′

x ⊂T ′′
x . Let y∈N and take a piecewise

smooth curve γ in N joining x and y. Then T ′ being (σx)-invariant, we have that
the tangent vectors of σx ◦ γ are tangent to N . According to a general property
of involutive distributions (cf. [11], p. 86) it follows that σx ◦ γ lies in N . Hence
σx(y)∈N . An analogous argument applies to P. Since, according to Theorem 2.2,
(σx)∗ξ̄ = ξ̄ , σx restricts to an isometry of (N,g′), which is a local CR-symmetry at
x. It follows that N is locally CR-symmetric as claimed. Moreover, σx restricts to
a geodesic reflection of P, so that P is Riemannian locally symmetric.
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COROLLARY 6.4. Fix an integer s � 2. The mapping � in Theorem 4.2 induces a
bijection between the isomorphism classes of simply connected Sasakian ϕ-symmetric
spaces and the isomorphism classes of simply connected CR-symmetric S-manifolds.

In particular, any simply connected CR-symmetric S-manifold of CR-codimension
s � 2 is noncompact.

Proof. We recall that CR-symmetric spaces are always complete since they are
Riemannian homogeneous.

Let N be a Sasakian ϕ-symmetric space with characteristic vector field ξ . If σx
is the CR-symmetry at the point x ∈N , then σ∗ξ = ξ , so that σ is an isometry for
the metric g1 defined in 1) of Theorem 4.2. Hence, σx × (−Id) is a CR-isometry
on �(N)=M×R

s−1 which is clearly a CR-symmetry at (x,p) for each p∈R
s−1.

It follows that �(N) is CR-symmetric.
Assume now that M is a CR-symmetric space; let N ∈�−1([M]). Then, by con-

struction, N is CR-isometric to a maximal integral manifold of the distribution
D∞ on M, endowed with the Sasakian structure induced on it according to The-
orem 3.2. Hence, N is Sasakian ϕ-symmetric according to Prop. 6.3.

7. A Characterization of Locally CR-symmetric S-manifolds

Takahashi ([17]) proved that a necessary and sufficient condition for a Sasakian
manifold to be a locally ϕ-symmetric space is that ∇̄R̄= 0, where ∇̄ is a special
linear connection, called the Okumura’s linear connection, and R̄ is its curvature
tensor field. If M is a Sasakian manifold with structure (ϕ, ξ, η, g), the Okumura’s
connection ∇̄ is given by

∇̄XY =∇XY +T (X,Y ),
where

T (X,Y )=dη(X,Y )ξ −η(X)ϕ(Y )+η(Y )ϕ(X). (21)

The tensors ϕ, ξ, η, T are parallel with respect to ∇̄. This connection was consid-
ered first in [16].

Taking into account Theorem 2.3 and the subsequent Remark, it is natural to
ask for a similar characterization involving the Tanaka–Webster connection. We
shall prove the following theorem:

THEOREM 7.1. Let (M,DM,J, g) be an S-manifold with characteristic frame
{ξ1, . . . , ξs}, s � 1, and corresponding Tanaka–Webster connection ∇̃. A necessary
and sufficient condition for M to be locally CR-symmetric is that ∇̃R̃=0.

Proof. We shall consider first the case where s=1. Hence, M is a Sasakian man-
ifold. We shall reduce to the Theorem of Takahashi by showing that ∇̄R̄= ∇̃R̃.
Indeed, the two connections are defined by

∇̄ =∇ +T , ∇̃ =∇ +H,
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where T and H are given by (21) and (11), respectively. Now we set

Q(X,Y )= (H −T )(X,Y )=2η(X)ϕ(Y )

for any X,Y ∈X (M). By computation we get

(∇̄V R̄)(X,Y )Z= (∇V R)(X,Y )Z+T (V,R(X,Y )Z)−R(T (V,X),Y )Z−
−R(X,T (V,Y ))Z−R(X,Y )T (V,Z)

and similarly,

(∇̃V R̃)(X,Y )Z= (∇V R)(X,Y )Z+H(V,R(X,Y )Z)−R(H(V,X),Y )Z−
−R(X,H(V,Y ))Z−R(X,Y )H(V,Z)

for any X,Y,Z,V ∈X (M). Hence,

(∇̃V R̃)(X,Y )Z− (∇̄V R̄)(X,Y )Z
=Q(V,R(X,Y )Z)−R(Q(V,X),Y )Z−R(X,Q(V,Y ))Z−R(X,Y )Q(V,Z)
=2η(V )[ϕ(R(X,Y )Z)−R(ϕX,Y )Z−R(X,ϕY )Z−R(X,Y )ϕZ]

=0,

where the last equality follows applying Lemmas 2.8 and 5.1 in [17].
Now let M be an S-manifold with CR-codimension s � 2. Fix a point p ∈M;

according to Theorem 3.2, we can choose a cubic coordinate system (x1, . . . , x2k+1,

y1, . . . ys−1) defined on an open neighborhood V of p, such that V ′ = {q ∈ V |
yi(q)=0} and V ′′ ={q∈V | xj (q)=0} are open neighborhoods of p in the maximal
integral manifolds N and P of the distributions T ′ =D∞ =DM⊕ [ξ̄ ] and T ′′ =D⊥∞
respectively. We know that the CR-submanifold N is a Sasakian manifold with
respect to the Hermitian metric g′ defined by (18). Moreover, P is a flat Riemann-
ian submanifold of M. Since the statement to be proved is of local nature, we are
reduced to show that V is locally CR-symmetric if and only if ∇̃R̃ vanishes on
V . We remark that the natural diffeomorphism V ∼=V ′ ×V ′′ is a CR-map and an
isometry, provided we put on V ′ and V ′′ the product metric of the metrics induced
by V .

We first prove that a necessary and sufficient for V to be locally CR-symmet-
ric is that (V ′,DV ′, J, g′) be locally CR-symmetric. Indeed, the necessity follows
from Prop. 6.3. For the sufficiency, let p= (x, z)∈V ∼=V ′ ×V ′′ and let σ ′ be a local
CR-symmetry of V ′ at x; denote also by σ ′′ be the geodesic reflection of V ′′ at
z, which is a local isometry of V ′′ because V ′′ is flat. We remark that, according
to the definition of g′, since (σ ′)∗ξ̄ = ξ̄ , then σ is also an isometry with respect
to the metric g restricted to V ′, so that σ := σ ′ × σ ′′ is a local isometry of V ∼=
V ′ ×V ′′. It is clear that σ is a local CR transformation of V . Since (σ )∗p =−Id
on DpM⊕ (D⊥∞)p we have that σ is a local CR-symmetry at p. This implies that
V is locally CR-symmetric proving our claim.
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Now, we know that, N being Sasakian, (V ′,DV ′, J, g′) is locally CR-symmetric
if and only if on V ′ it holds ∇̃NR̃N = 0, where ∇̃N is the Tanaka–Webster con-
nection of N . On the other hand, ∇̃N coincides with the connection induced by
∇̃ on N (Theorem 3.2, 1). Moreover, according to (15), we have that R̃ = 0 on
V ′′. To conclude the proof, we observe that according to Proposition 2.5 we have
T̃ (X,Y )=0 for any X∈T ′, Y ∈T ′′. This implies that

∇̃ �

�xi

�
�yj

=∇̃ �

�yj

�
�xi

=0,

whence, being R̃=0 on V ′′, we conclude that ∇̃NR̃N =0 on V ′ if and only if ∇̃R̃=
0 on V . This completes the proof of Theorem 7.1.

COROLLARY 7.2. A complete and simply connected locally CR–symmetric
S-manifold is globally CR-symmetric.

Proof. This can be proved by a standard argument using Corollary 7.9 in [11],
Ch. VI, page 265. Indeed, we remark that ∇̃, being a metric connection, is com-
plete by assumption. Since ∇̃R̃ = ∇̃T̃ = 0, for each x ∈M the linear transforma-
tion Lx :TxM→TxM in (20) extends to a global affine transformation f :M→M,
such that dfx = Lx . This transformation is actually an isometric CR-diffeomor-
phism because g and ϕ are ∇̃-parallel. Thus f is a CR-symmetry at x.

8. Failure of Theorem 7.1 in the Nonnormal Case

In this section we provide explicit examples to show that Theorem 7.1 is false with-
out the assumption of normality.

First, we consider a class of CR-integrable almost S-manifolds which are locally
CR-symmetric but ∇̃R̃ �=0.

Let M be a contact metric manifold with structure (ϕ, ξ, η, g). We suppose that
the characteristic vector field ξ belongs to the (k,µ)-nullity distribution for some
real numbers k and µ. This means that the curvature tensor R satisfies

R(X,Y )ξ =k(η(Y )X−η(X)Y )+µ(η(Y )hX−η(X)hY ) (22)

for any X,Y ∈X (M), where h= 1
2Lξ ϕ. In [4] it is proved that, for such manifolds,

k � 1. If k= 1, then h= 0 and M is Sasakian. If k < 1, then the contact metric
structure is not Sasakian and M admits three mutually orthogonal integrable dis-
tributions: D(0)=Rξ , D(λ) and D(−λ) defined by the eigenspaces of h, where λ=√

1−k.
Note that

(∇Xϕ)Y =g(X+hX,Y )ξ −η(Y )(X+hX)

for any X,Y ∈X (M). This is a necessary and sufficient condition for M to be CR-
integrable [18], and this allows us to consider the Tanaka–Webster connection.
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In the following we consider the non-Sasakian case. In [6] it is proved that the
contact metric manifolds satisfying (22), with k<1, are all locally ϕ-symmetric. We
shall prove the following:

PROPOSITION 8.1. Let M be a contact metric manifold whose characteristic vec-
tor field ξ belongs to the (k,0)-nullity distribution, k<1. Suppose that dimRM>3.
Let ∇̃ be the Tanaka–Webster connection and R̃ its curvature tensor field. Then
∇̃R̃ �=0.

For instance, the tangent sphere bundle T1M of a flat Riemannian manifold sat-
isfies the above conditions with k=0.

For the proof, we shall make use of the following proposition:

PROPOSITION 8.2 ([6]). Let M be a contact metric manifold with structure
(ϕ, ξ, η, g), such that ξ belongs to the (k,µ)-nullity distribution. Then, there exists
a homogeneous structure on M, that is a tensor field T of type (1,2) satisfying

∇′g=0, ∇′R=0, ∇′T =0,

where ∇′ =∇ −T . T is given by

T (X,Y )=g(ϕX+ϕ(hX),Y )ξ −η(Y )(ϕX+ϕ(hX))− µ

2
η(X)ϕ(Y ) (23)

for any X,Y ∈ X (M). Moreover, the tensor fields ξ , R, ϕ, h are all parallel with
respect to ∇′.

Proof of 8.1 The Tanaka–Webster connection of M is given by ∇̃ = ∇ + H,

where

H(X,Y )=−g(ϕX+ϕ(hX),Y )ξ +η(Y )(ϕX+ϕ(hX))+η(X)ϕ(Y ).
Now we consider the tensor T in (23) and we put

Q(X,Y )= (T +H)(X,Y )=η(X)ϕ(Y )
for any X,Y ∈X (M). Then ∇̃ =∇′ +Q. By a direct calculation we see that the cur-
vature tensor R̃ is given by

R̃(X,Y )Z=R(X,Y )Z+B(X,Y )Z,
where

B(X,Y )Z=k[g(X,Z)η(Y )ξ −g(Y,Z)η(X)ξ −
−η(Y )η(Z)X+η(X)η(Z)Y ]−
−�(Y +hY,Z)(ϕX+ϕhX)+
+�(X+hX,Z)(ϕY +ϕhY )+2�(X,Y )ϕZ. (24)
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Now we compute (∇̃ξ R̃)(X,Y )Y , choosing X ∈D(λ) and Y ∈D(−λ), such that
g(Y,Y )= 1 and g(ϕX,Y )= 0; this is possible since we assumed dimRM > 3. We
know that ∇′R= 0. Moreover, B is built from the tensors g,ϕ,h, η, ξ , which are
∇′-parallel; hence, ∇′B=0 and this implies ∇′R̃=0. Making use of Theorem 1 in
[4], we get

Q(ξ,R(X,Y )Y )−R(Q(ξ,X), Y )Y −R(X,Q(ξ, Y ))Y −R(X,Y )Q(ξ, Y )
=ϕ(R(X,Y )Y )−R(ϕX,Y )Y −R(X,ϕY )Y −R(X,Y )ϕY
=2(λ−1+k)ϕX.

Applying (24), we obtain

Q(ξ,B(X,Y )Y )−B(Q(ξ,X), Y )Y −B(X,Q(ξ, Y ))Y −B(X,Y )Q(ξ, Y )
=ϕ(B(X,Y )Y )−B(ϕX,Y )Y −B(X,ϕY )Y −B(X,Y )ϕY
=2λ(1+λ)ϕX.

Hence,

(∇̃ξ R̃)(X,Y )Y =2(λ−1+k+λ+λ2)ϕX=4λϕX �=0.

Next we exhibit an example of a nonnormal almost S-manifold which has van-
ishing Tanaka–Webster curvature without being locally CR-symmetric.

Set

m=R
2k ⊕R

s =V1 ⊕V2, s � 2

and denote by {X1, . . . ,Xk, JX1, . . . , JXk} the standard basis of R
2k endowed with

the complex structure J associated with the matrix
(

0 −Ik
Ik 0

)
.

Moreover let {ξ1, . . . , ξs} denote the natural basis of V2 and let g be the inner
product on m obtained by declaring the basis {Xi, JXi, ξj } to be orthonormal. Let
ϕ :m→m be the natural f -structure on m, i.e. ϕ is the endomorphism which coin-
cides with J on V1 and vanishes on V2.

We also denote by U the endomorphism of m which is associated to the matrix



Ik 0 0
0 −Ik 0
0 0 0



 .

Notice that Uϕ = −ϕU .
We denote by h the Lie subalgebra of End(m) consisting of all endomorphisms

which vanish on V2 and annihilate the tensors ϕ, g and U when extended to the
tensor algebra of m as derivations. We remark that

A∈ so(k) 
→



A 0 0
0 A 0
0 0 0




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provides a Lie-algebra isomorphism so(k)∼=h. In particular, h is compact semisim-
ple provided k � 3.

Now we define a Lie algebra structure on g :=h⊕m as follows:

[X,Y ] :=−2g(X,JY )e, [v,X] :=a(v)UX=−[X,v],

[A,X]=A ·X− [X,A], [A,v] :=0, [v,w] :=0, [A,B] :=AB−BA

for each X,Y ∈V1, v,w ∈V2, A∈ h. Here e := ∑
i ξi ∈V2, and a:V2 → R is a fixed

nonnull linear functional such that a(e)=0.
Let G be the simply connected Lie group with Lie algebra g and let H denote

the analytic subgroup corresponding to the subalgebra h. Assuming k � 3, we
have that H is compact, so that M =G/H is a reductive homogeneous space. In
[13] it is verified that G/H carries a G-invariant CR-integrable almost S-structure
which is not normal; moreover, the vectors ξi extend in a G-invariant fashion to a
characteristic frame and the associated Tanaka–Webster connection is the canoni-
cal G-invariant linear connection. It follows that R̃= 0. On the other hand, M is
not CR-symmetric provided a(ξi) �= a(ξj ) for some i, j ∈ {1, . . . , s}. Indeed, under
the natural identification ToM≡m, o=H , we have (hi)o=a(ξi) ϕ U. Hence, hi �=hj
while a necessary condition for M to be CR-symmetric is that the operators hi are
all equal (cf. Prop. 6.2).
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