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Abstract. We prove that any simply connected S-manifold of CR-codimension s > 2 is
noncompact by showing that the complete, simply connected S-manifolds are all the CR
products N x R*~! with N Sasakian, endowed with a suitable product metric. N is a
Sasakian ¢-symmetric space if and only if M is CR-symmetric. The locally C R-symmet-
ric S-manifolds are characterized by VR=0 where V is the Tanaka—Webster connection.
This characterization is showed to be nonvalid for nonnormal almost S-manifolds.
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1. Introduction

In this paper, we investigate some geometric features of almost S-manifolds. These
are the Hermitian C R-spaces (M, DM, J, g) such that DM is trivial, and a global
orthonormal frame £, ..., & of DM can be chosen in such a way that the dual
1-forms 5’ with respect to the metric g satisfy

dr)i=CI>, i=1,...,s,
where @ is the 2-form with Ker(®)= DM determined by
VX, YeI'DM, ®X.,Y)=g(X,JY).

Such a frame {&} is called characteristic. An almost S-manifold is called an
S-manifold if, in addition, the tensor field

N =[p, ¢]+2dn' ®¢;

vanishes. Here, ¢ is the f-structure in the sense of Yano, which extends the partial
complex structure J on the whole tangent bundle by the requirement that Ker(¢)=
DM*.

This notion was studied first by Blair in [3] where various kinds of U(k) x O(s)
structures are considered. More recently, a systematic study of nonnormal almost
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S-manifolds has been developed in [7]. We collect general information on (almost)
S-manifolds in Section 2.

The main motivation in studying this class of manifolds comes from the fact
that they provide a higher CR-codimensional version of Sasakian manifolds.
Indeed, the S-manifolds having CR-codimension 1 are the Sasakian manifolds.
Almost CR-manifolds (M, DM, J) whose analytic bundle DM admits a triv-
ial complementary subbundle D'M in TM were also studied in a very general
fashion by Mizner in [15]. In particular, Mizner showed that the choice of a
nondegenerate frame for D'M gives rise to a linear connection on M which is
well-adapted to the CR-structure. It turns out that, when specialized to almost
S-manifolds, Mizner’s theory leads to their characterization by means of the exis-
tence of special adapted linear connections. This was proved in [13] by a direct
approach. The connection canonically associated to a characteristic frame of a
C R-integrable almost S-manifold is called its 7anaka—Webster connection (cf. The-
orem 2.3). See Section 2 for a review of this topic.

In [3], Blair obtained some interesting results about the Riemannian geometry
of S-manifolds having higher C R-codimension, showing that the structure of these
manifolds can be very different from Sasakian manifolds. For instance, he proved
that there are no S-manifolds of constant curvature K >0 and CR-codimension
s = 2.

The aim of this paper is to develop further the understanding of the structure or
S-manifolds whose C R-codimension is at least 2. Our first result is the following:

THEOREM 1.1. A simply connected S-manifold of C R-codimension s > 2 is
noncompact.

Of course, the situation is different in the Sasakian category, since each odd-
dimensional sphere carries a Sasakian structure.

We also remark that the above result is false without assuming the manifold is
simply connected: indeed, each product S**! x T*, k,s > 1 can be endowed with
an S-structure of C R-codimension s+ 1. See Proposition 4.1.

Actually, we prove that each S-manifold is locally a product N x R*~!, where
N is a Hermitian CR submanifold having C R-codimension 1 (Theorem 3.2). This
leads to a complete classification of the simply connected complete S-manifolds: up
to CR-isometry, they are all the products M =N x RS~!, where (N, ¢,£,1,¢) is a
complete Sasakian space. M is endowed with the natural CR structure of C R-codi-
mension s and with the product metric h =g ® g», where g, is the standard metric
of R°*~!, while g; is the modified metric on N such that

VX, Y€DN, gi(X,Y)=g(X,Y), gi(X,§)=0, gi(§,§)=s. (D

This is the content of Theorem 4.2.
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In the last part of the paper we investigate symmetry properties of almost
S-manifolds from the point of view of Hermitian CR geometry. Recently, W. Kaup
and D. Zaitsev [10] introduced the concept of symmetric C R-space. This is a Her-
mitian CR-space (M, DM, J, g) each point x of which admits a C R-symmetry oy.
Such a symmetry is an isometric CR-diffeomorphism having x as a fixed point
and whose differential do, equals —Id on the subspace DM @& (Dso(x)) of the
tangent space Ty M, where Dy, is the Lie algebra of smooth vector fields gener-
ated by the sections of the analytic subbundle DM C TM. See Section 5 for more
details.

It is interesting to remark that, when applied to Sasakian manifolds, the defini-
tion of Kaup and Zaitsev coincides with Takahashi’s notion of ¢-symmetric space
(cf. [17] or [9]). We verify this in Section 6.

With this terminology, the above classification specializes as follows:

THEOREM 1.2. Up to CR-isometry, the simply connected C R-symmetric S-mani-
folds of CR-codimension s > 1 are all the CR products N X RS~ where (N, DN,
J,g) is a simply connected Sasakian @-symmetric space, endowed with the product
metric of the standard flat metric on R*~" and the metric g on N defined by (1).

We conclude by proving that the locally C R-symmetric S-manifolds of any CR-
codimension are characterized by the condition VR =0, where V is the Tanaka—
Webster connection associated to some characteristic frame. The local version of
the definition of Kaup and Zaitsev is introduced in Section 5.

Our characterization is a generalization of a theorem in [17] according to which
the Sasakian locally g-symmetric spaces are characterized by V'R’ =0, where V' is
the Okumura connection (cf. [16]). We think that, in the context of CR geometry,
it is more convenient to have a characterization involving Tanaka—Webster connec-
tions.

It is worthwhile to remark that this result is false for nonnormal almost
S-manifolds. Indeed in the last section we show by examples that, in the nonnor-
mal case, the property VR =0 and the property to be locally CR-symmetric are
independent.

2. Almost S-manifolds

An almost CR-manifold M is a real smooth manifold with an almost CR-struc-
ture. This structure consists of a smooth real subbundle DM of the tangent bun-
dle TM together with a smooth bundle isomorphism J: DM — DM, such that
J2=—1Id. The linear subspace DyM C TyM, endowed with the complex structure
Jy, is called the holomorphic tangent space to M at x. The complex dimension
k of DM is called the CR-dimension of M, while the real dimension s of the
quotient vector space TyM/D,M is the CR-codimension of M. The pair of inte-
gers (k,s) is called the type of the almost C R-manifold M.
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We shall denote by D C X(M) the module of differentiable sections of DM. An
almost CR-structure is said to be integrable if

[X,Y]-[JX,JY]eD VX,YeD
and the Nijenhuis torsion of J vanishes on DM, that is
[, JIX, Y)=[JX,JY]-[X,Y]-J(JX,Y]+[X,JY])=0

for any X,Y €D. In this case we say that M is a C R-manifold.
Define inductively

D'=D,
Dh=D"'4+[D, D), k>1, 2)
D/=0, j<O.

Thus we have an increasing sequence
D'cD’c...cx (M),

such that [D", D’]C D"** for all integers r, s and Do := |J, D* is the Lie subal-
gebra of X(M) generated by D. An almost C R manifold is called contact regular
in the sense of Tanaka if, for each j > 1, D/ :={D/(x)| x € M} is a distribution
of constant rank. Here by definition D/ (x)={X, € TxM | X € D/}. In this case, the
smallest integer v > 1 such that D* =D/ for all j > p is called the kind of M.
We remark that in this case, D* is the smallest Frobenius integrable distribution
containing DM (cf. [14]).

A Hermitian C R-space is an almost C R-manifold M with a Riemannian metric
g compatible with the CR-structure in the sense that

g(Jv, Jw)=g(, w)

for any x e M, v, we D, M. If the almost C R-structure is integrable we say that M
is a Hermitian C R-manifold.

A smooth map ¢: M — N between almost C R manifolds is called a C R-map if],
for every x € M, the differential dy¢:TxM — TyyN maps DM into Dy yN and
interchanges the partial complex structures. Two Hermitian C R-spaces are called
isomorphic if there exists a diffeomorphism between them which is both a C R-map
and an isometry.

Let (M, DM, J,g) be a Hermitian C R-space. We shall denote by Tf CcTM be
the orthogonal complement of D=1 in DX, Then T°=0 and T!=D,M. Let T
denote the orthogonal complement of Dy (x) in T, M. We obtain the following
orthogonal decomposition

M= P 1} 3)

k>-1
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The partial complex structure J extends canonically to a tensor field ¢ of type
(1,1) such that Ker(¢p) =DM~ This is an f-structure of rank 2k in the sense of
Yano. The 2-form @ defined by

VX, Y eX(M) ®(X,Y):=g(X,qY)

will be called the fundamental 2-form of the Hermitian CR-space M. In all that
follows, when we consider a Hermitian CR-space (M, DM, J, g), the symbols ¢
and @ denote these two tensors canonically associated to the triple (DM, J, g).

DEFINITION 2.1. A Hermitian CR-space (M,DM, J,g) is called an almost
S-manifold if the bundle DM~ is trivial, and there exists a global orthonormal

frame {&1,...,&) for DM*, whose dual frame {n',...,»*} with respect to g sat-
isfies

dpi=® i=1,...,s. 4
Such a frame {1, ..., &} is called characteristic.

If, moreover, the tensor field N defined by
N =[p, ¢]+2dn' ®&;, [¢, ¢]= Nijenhuis torsion of ¢ (5)

vanishes, (M, DM, J, g) is called an S-manifold.

The term S-manifold was introduced by D.E. Blair in [3] where more empha-
sis is given on the associated f-structure rather than to the underlying almost
C R-structure. Since in this paper we are interested in these manifolds as a particu-
lar class of Hermitian C R-spaces, we prefer to adopt the above definition. Almost
S-structures were studied in [7]. If (M, DM, J, g) is an (almost) S-manifold and a
characteristic frame {&} for DM' is chosen, then we refer to (¢,&,n',g) as an
associated (almost) S-structure. It is proved in [7] that a necessary and sufficient
condition for M to be CR-integrable is that N(X,Y) = 0 for all X,Y €D, where
N is the tensor field in (5). The condition N =0 which characterizes the S-mani-
folds will be referred to as the normality condition.

Note that an almost S-manifold with C R-codimension s =1 and a fixed asso-
ciated structure (¢,&,n,g) is a contact metric manifold according to [1]. An
S-manifold with CR-codimension s=1 is a Sasakian manifold.

Let (M,DM, J,g) and (M', DM’, J’, g’') be almost S-manifolds of the same type
(k,s). Choose a characteristic frame {£;,...,&} for DM and a characteristic
fame {&[,..., &} for DM "L, We explicitly remark that an isomorphism f: M — M’
of Hermitian C R-spaces does not need to map these characteristic frames one onto
the other. By a result of S.Ianus and A.M. Pastore, this is true if s=1, i.e. M and
M’ are contact metric manifolds [8]. In the general case the following result holds

([7D):



196 G. DILEO AND A. LOTTA

THEOREM 2.2. Let (M,DM, J,g) and (M',DM’,J’, g") be almost S- manifolds
of type (k,s), with characteristic frames {1, ..., &)} and {§{,...,&}. Let f:M— M’

be an isomorphism. Then we have f.(§)=§&" where € =Y7_&, &=>"1_&/.

We now recall some useful properties of almost S-structures (for a proof, see
[7]). Let M be an almost S-manifold with structure (¢, &, n', g). Define h; = %Lgigo
for any i=1,...,s, where £ denotes a Lie derivative. Then each operator A; is self-
adjoint and anticommutes with ¢; it vanishes on Ker(¢), takes values in D and
satisfies

o(hiX)=—3N(X. &)
for any X e X(M). We also have

[£,D]CD, N(X,Y)eD for any X,Y eD.
Denoting by V the Levi-Civita connection of the metric g, we have

Vxéi=—¢pX —@(hiX) (6)
for any X € X(M). If the almost S-structure is C R-integrable, then

(V@)Y =—0(X. pV)E+7(V)?(X) + D g(hj(X). Vg — ! Dhy(X) (D)

_ . J
where E:Zjéj and ﬁ:Zj n’.

If M is an S-manifold, then each operator h; vanishes. Thus, (6) and (7) sim-
plify as follows:

Vxé&i=—¢X,

(Vxp)Y =g(X, ")E—i(V)X =Y 0/ OO’ (NE+i(V)n! (X)E;
J

for any X, Y € X(M). Furthermore, in this case each §&; is a Killing vector field.
The following result [13] provides a geometric characterization of the C R-inte-
grable almost S-manifolds.

THEOREM 2.3. Let (M,DM, J,g) be a Hermitian CR-space. Assume that the
bundle DM* is trivial and fix an orthonormal frame {&1,...,&} of DM™* . Set
£:= > i&. Then M is a CR-integrable almost S-manifold with characteristic frame
{€1,...,&) if and only if there exists a linear connection NV with the following
properties:

(1) V=0, V& =0, Vg=0;
(2) the torsion T of V satisfies
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T(X,Y)=2®(X,Y)E for anyX,Y €D, ®)
T, X)=—¢T (&, X) for any X e X(M), )
T(&,&)=0. (10)

Such a linear connection V is uniquely determined and it is given by V=V + H,
where

H(X,Y)=®(X, Y)E+7(Y)p(X)+7(X)p(¥)+
+®(h; X, V)&’ (Y)ph(X) (11)

for any X,Y e X(M).

Remark 2.4. The linear connection V is called in [13] the Tanaka—Webster con-
nection of M. This terminology is justified by the fact that in the case where the
C R-codimension is 1, the contact form 7 is a pseudo Hermitian structure and V
is the corresponding Tanaka—Webster connection (see, e.g., [18]).

In the general case, if M is a CR-integrable almost S-manifold with a fixed
characteristic frame {£,...,&}, then the dual forms {n',...,n°} make up a
nondegenerate frame of type {l,...,s} according to the terminology of Mizner
([15], p. 1341). This means that at each point p € M, and for each je{l,...,s},
n/ oL, is a nondegenerate Hermitian form on H,={X—iJX| XeD,M}C T,SCM,
where

Ly:HpxHy—T,MC/HS

is the Levi form (cf. e.g. [15], p. 1340). Then V coincides with the connection
canonically associated with {n!,..., 7’} according to Theorem 1, p. 1355 in [15].
For a proof of this, see [13].

PROPOSITION 2.5 ([13]). Let M be a C R-integrable almost S-manifold with struc-
ture (p,&,1',8). Let V be its Tanaka—Webster connection. Then we have:

(1) %ZXGDfor any X€D, Ze X(M),
) T, X)=—ph:X) for any X e X(M).

Moreover, the almost S-structure is normal if and only if T (&, X)=0 for each X €
Dandi=1,...,s.

PROPOSITION 2.6. Let M and M’ be S-manifolds. Choose characteristic frames
for M and M’ and let V and V' be the corresponding Tanaka—Webster connections.
Then every CR-isomorphism o:M — M’ is an affine map with respect to NV and V'

Proof. Since the S-structure of M is normal, according to (11) we have
V=V+H with

H(X,Y) =@ (X, V)E +7(Y)p(X) +7(X)e(Y).
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An analogous formula holds for V'. Hence, the assertion follows from the fact that
o4& = &' (cf. Theorem 2.2). O

PROPOSITION 2.7. Let M be an S-manifold with structure (p,&,n',g) and CR
codimension s > 1. Let R be the curvature tensor of the Levi-Civita connection V;

then
R(X,§)Y =—(Vxp)Y (12)

for any X, YeX(M) and i=1,...,s.
Proof. Since each §&; is a Killing vector field, according to Proposition 2.6 of
Chapter VI in [11], we obtain:
R(X,§)Y =VxVy& — Vv, véi,

and, hence,

R(X, &)Y =—VxoY +¢(VxY)=—(Vx@)Y. O

PROPOSITION 2.8. Let M be an S-manifold with structure ((p,&,r/i,g), i =
1,....s. Let V be the Levi-Civita connection and V the Tanaka—Webster connection

of M. Let R and R denote the curvature tensor fields of V and V respectively. Then,
we have

R(X,Y)Z=R(X,Y)Z+B(X.,Y)Z, (13)
where

B(X,Y)Z =2s®(X,V)(Z) +sD(X, Z)p(¥) —s®(Y, Z)p(X) —
—A(X)I(Z)e*(¥) + (V) Z2)p*(X) +
XD, 9Z) — (V)P (X, pZ)}E (14)
for any X,Y,Z e X(M). Consequently, we get
R(X, &)Y =0 (15)

for any X, YeX(M) and i=1,...,s.
Proof. Straightforward computation. O

3. On the Structure of S-manifolds

PROPOSITION 3.1. Let (M,DM, J,g) be an almost S-manifold of type (k,s),
with associated structure (¢, &, 1", g). Then M is contact regular of kind 2. The dis-
tribution Do, has constant rank 2k +1 and is given by DM ®[E). It is the smallest
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Frobenius integrable distribution containing DM. The orthogonal decomposition (3)
becomes

M=T'eT!er?
where

T'=DM, T}=[E] T;'=(X:IX=) n(0& i(X)=0}.

Here as usual € =Y, & and j=);n'.
Proof. We consider the submodules D*, k > 1, of X(M) defined by (2). For every
X,Y eD=D', we can write [X, Y]=Z+n*([X, Y])&, with Z € D; hence

[X,Y]=Z—2dn" (X, V)& =Z —2®(X, Y)E. (16)
From this it follows that
D*cD+D!

where D denotes the module on C*°(M) generated by €. On the other hand, choos-
ing a unit vector field X € D and setting Y =JX in (16), we obtain

[X,JX]-26€eD
which implies that £ € D?. Hence,
D*=D+D!. (17)

On the other hand, we know that [, D]CD. Applying this property and (17), we
conclude that [D?, D3] c D2. This implies that D¥ = D? for every k > 2, so that
Do =D?. For each point x e M

Di =DM &®[E].
This yields the conclusion. O
THEOREM 3.2. Let (M, DM, J,g) be a CR-integrable almost S-manifold of CR-

codimension s > 2 with characteristic frame {£;}. Denote by V the Tanaka—Webster
connection associated with {£;}. Set €=, &;.

(1) The distributions T':= Doo =DM ®[€] and T" := DL are both involutive and V-
parallel. Each integral manifold N of T’ is a CR-integrable almost S-manifold
with respect to the induced C R-structure of C R-codimension 1 and the Hermi-
tian metric g such that

VX,YeDN ¢ (X,Y)=g(X.,Y), §X,6&)=0, g'¢ &=L (18)
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The restriction to N of the vector field & yields a characteristic frame and the
corresponding Tanaka—Webster connection is the connection canonically induced
on N by V. If M is normal, also N is, i.e. N is a Sasakian manifold with respect
to the metric g'.

(2) Assume that all the operators h; = %Eg(p coincide. Then T' and T" are both par-
allel for the Levi-Civita connection. If furthermore M is normal, then each inte-
gral manifold P of T" is a flat Riemannian submanifold.

Proof. (1) We remark that DCJ;o is spanned by ¢p,...,{—1 where ¢;:=§&; —&,
j=1,...,s—1. Hence it is involutive because [¢;, {;]=0. The fact that 7/ and T”
are V-parallel is clear. Consider an integral manifold N of 7', endowed with the
almost CR structure induced by M and the Hermitian metric g’ defined by (18).
We remark that the connection V¥ induced on N by V is metric with respect to
g It is immediate to verify that V¥ satisfies (I and 2) in Theorem 2.3, so that N
is an almost S-manifold with characteristic frame {£} whose Tanaka—Webster con-
nection is VV. If M is normal, also N is according to Prop. 2.5.

(2) To show that T’ and T” are parallel with respect to the Levi-Civita connec-
tion observe that, assuming hy =---=hy, the formula for the covariant derivative
of ¢ simplifies as follows:

(Vxp)Y =—0(X, pV)E +7(Y)p* X + g (h(X), Y)E —7(Y)h(X)

for all X,Y e X(M), where we have set h=h|=---=h,. It follows that
VxDcCT.

Moreover, since Vx& =—¢X —oh;(X)=—¢pX —ph(X) for all i e{1,...,s}, we get
VxéE=—so(X+hX)eD, and Vx; =0

and this proves the first assertion. If M is normal, since P is a totally geodesic sub-

manifold in M, its flatness follows from (12) and the Gauss equation. O

4. Classification of Simply Connected S-manifolds

The following proposition gives a simple way to construct examples of S-manifolds
starting from Sasakian manifolds.

PROPOSITION 4.1. Let (N,DN, J,g) be a Sasakian manifold. Denote by g| the
Hermitian metric on N such that

VX, YeDN gi(X,.V)=g(X.Y), g1(X,§)=0, g1(.§)=s,

where & is the characteristic vector field on N.
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Let G be an Abelian real Lie group of dimension s —1, s > 2. Then the CR man-
ifold M =N x G of CR-codimension s is an S-manifold with respect to any product
metric h=g| ® gy, where g is a left-invariant metric on G. The maximal integral
manifolds of the distribution Doo(M) are N x {a}, a €G.

Proof. We fix a global gy-orthonormal frame ¢1, ..., ¢;_1 of G consisting of left-
invariant vector fields. Let V C X(M) be the s-dimensional Abelian Lie subalgebra
of X(M) generated by {&, ¢;}. Then, since h(§, &) =s, there exist &1, ...,& €V such
that

N
E=) &, hE.&)="5.
i=1
Hence, it is straightforward to verify that M is an & -manifold with characteristic
frame {&1,...&}. O

The main result of this section states that the simply connected, complete S-
manifolds of CR-codimension s > 2 are exactly the ones constructed with the
above procedure by choosing as G an Euclidean space. More precisely,

THEOREM 4.2. For a given Sasakian manifold N denote by N, the S-manifold
N x RS~ of CR-codimension s > 2 obtained according to Proposition 4.1 choosing
G=R*" and g, = standard flat metric.

For each s > 2, the mapping ®: N — N; induces a bijection between the isomor-
phism classes of simply connected complete Sasakian manifolds and the isomorphism
classes of simply connected complete S-manifolds of C R-codimension s.

Proof. We remark that, if (N, DN,J,g) and (N',DN’,J’, g’) are CR-isomet-
ric Sasakian manifolds, then every CR-isometry f: N — N’ satisfies f,& =&'. This
implies that f is also an isometry between the Riemannian manifolds (N, g;) and
(N’, g}) where g and g are defined according to Proposition 4.1. If follows that
f xid is a C R-isometry between N x R*~! and N’ x R*~!. Hence, ® actually deter-
mines a map

[N]— [N xR 1

where the symbol [ ] denotes a CR-isometry class. To show that this map is a
bijection, we observe that, according to Theorem 3.2, a simply connected, com-
plete S-manifold M is CR-isometric to a product N x R*~! where N is a maximal
integral manifold of the distribution Dy, considered as an Hermitian C R-subman-
ifold of M. We also know that with respect to the metric g’ in (18), N is a Sasa-
kian manifold. Denote by N’ this Sasakian manifold. Then the S-manifold ®(N')
coincides with N x R*~! and, hence, it coincides with M up to CR-isometry. This
proves that @ is surjective. On the other hand, it follows from (1) in Theorem 3.2
that if N” is any Sasakian manifold such that [®(N”)]=[M], then N” embeds in
M as an integral manifold of De,. Thus [N']=[N"]. This completes the proof. O
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As a consequence, we get

COROLLARY 4.3. 4 simply connected S-manifold of CR-codimension s > 1 is
noncompact.

In the following (see Corollary 6.4) we shall also verify that the above corre-
spondence ¢ preserves the property of being C R-symmetric in the sense of [10].
The next session is devoted to a preliminary discussion of the notion of C R-sym-
metry for general Hermitian C R-spaces. We come back to the context of almost
S-manifolds in Section 6.

5. Symmetric CR-manifolds and ¢-symmetric Spaces

In literature there are two definitions of symmetries on almost C R-manifolds: the
C R-symmetries on Hermitian CR-spaces, introduced by W. Kaup and D. Zaitsev
[10], and the g-geodesic symmetries on Sasakian manifolds, according to T. Takah-
ashi [17]. It turns out that a Sasakian manifold is (locally) ¢-symmetric if and only
if it is (locally) C R-symmetric (cf. Corollary 6.1 below). In this section we recall
the two definitions.

We keep the notation in Section 2.

DEFINITION 5.1 ([10]). Let M be a Hermitian CR-space and let o: M — M be
an isometric C R-diffeomorphism. Then o is called a symmetry at the point x e M
if x is a fixed point of o and the differential of o at x coincides with the nega-
tive identity on the subspace T;l &) Tx1 of T,M. A connected Hermitian C R-space
M is called a (globally) CR-symmetric space if for each point x € M there exists a
symmetry o, at x.

We remark that a symmetric CR manifold of C R-codimension 0 is a Hermitian
symmetric space, while a symmetric CR space of C R-dimension 0 is a Riemannian
symmetric space.

It is proved in [10] that a CR-symmetric space M is C R-homogeneous: the group
of isometric CR automorphisms of M acts transitively. In particular, M is a com-
plete Riemannian manifold.

THEOREM 5.2 ([10]). Let ¢, ¢ be isometric C R-diffeomorphisms of a Hermitian
CR-space M. Assume that ¢(x) = (x) for some x € M. If the differentials (de)y
and (dyr), coincide on the subspace T;l EBTX1 of TyM, then ¢ =+. Hence, if M is
a CR-symmetric space, the symmetry oy at x is unique, its differential is given by

(do)e= Y (=Dfxf, (19)

k>-1

where 71)’6‘ TeM — Txk is the orthogonal projection.
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This result allows us to give the following definition:

DEFINITION 5.3. A Hermitian almost CR manifold M will be called locally CR-
symmetric if for every point x € M the mapping

sy=exp, oL,oexp; !, Ly:= Z (=¥t (20)
k> -1

defined on a normal neighborhood of x, is a local isometric C R-diffeomorphism.
As a consequence of Theorem 5.2, Definitions 5.1 and 5.3 are well-related.

PROPOSITION 5.4. A connected Hermitian almost CR-manifold M is globally
C R-symmetric if and only if each s extends to a global symmetry in the sense of
Definition 5.1.

We end this section by recalling the definition of a ¢-symmetric space (cf. [17]
and [6]). Let M be a contact metric manifold with associated structure (¢, &, , g).
A geodesic y =y (s) in M is said to be ¢-geodesic if its tangent vectors are hor-
izontal, that is n(y(s)) =0 for each s. Let o, be a local diffecomorphism defined
in a neighborhood U of x € M. Then o, is called a (local) ¢-geodesic symmetry if
for each point y € U which lies on the integral curve of & through x, and for each
@p-geodesic y of M such that y(0) =y, we have o,(y(s)) =y (—s), for all s with
y(E£s)eU.

A contact metric manifold M with associated structure (¢, &,7,g) is called a
locally @-symmetric space if it admits at every point x € M a ¢-geodesic symme-
try, which is a local automorphism, i.e. a local diffeomorphism leaving all struc-
ture tensor fields invariant. A Sasakian @-symmetric space is a complete Sasakian
manifold all of which ¢-geodesic symmetries extend to global automorphisms of
the Sasakian structure.

6. CR-symmetries on Almost S-manifolds

In this section, we establish some general properties of CR-symmetric almost
S-manifolds, and we prove that for Sasakian manifolds the concepts of CR-sym-
metry and ¢-symmetry coincide. We keep the notations of the above sections.

PROPOSITION 6.1. 4 Sasakian manifold is a (locally) g-symmetric space if and
only if it is (locally) CR-symmetric in the sense of Definition 5.3.

Proof. Let M be a Sasakian manifold with associated structure (¢, £&,n, g).
Hence, M is an S-manifold of C R-codimension 1 and characteristic frame {£}. For
each x € M the ¢-geodesic symmetry o, on a normal neighborhood is given by

oy =€xp, oSy oexp;l,
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where Sy:=—14+2n®§& (cf. [5]). On the other hand, specializing Proposition 3.1 to
the case where the C R-codimension s =1, we get S, =L, where L, is defined in
(20). Thus, keeping the notation of Definition 5.3, we have o, =s, and the asser-
tion follows. O

PROPOSITION 6.2. Assume that M is a locally CR-symmetric almost S-manifold
of type (k,s) with associated structure (¢,&,n',g). Then M is CR-integrable and
the operators h; = %E&.(p, i=1,...s, coincide.

Proof. Fix a point x € M. Since

N=[p, 9] +20QE

we have that N is preserved by o, since ¢, g and & are preserved. Now, assume
s>1 and set ¢;:=&; — & for each j=1,...,5 — 1. For each X € D we have
N(X, ¢)eD. 1t follows that

—Nx (X, §i) = (00)« Nx (X, §i) = Na (=X, =i)

whence N, (X, ;) =0. We have thus proved that N(X, ) =0 for all X €D and
this implies that hy =hg for all k=1,...,s — 1. Turning to the general case s > 1,
observe that, since N(X,Y) e D for all X,Y €D, the same argument applies to
show that N(X,Y)=0 for X,Y €D which means that M is C R-integrable. O

PROPOSITION 6.3. Let (M,DM, J,g) be a CR-integrable almost S-manifold of
CR-codimension s > 2 with characteristic frame {&}. Denote by V the Tanaka—
Webster connection associated with {&;} and set € =3 '_& and {;=&; — &, j=
1,...,s = 1. If M is (locally) CR-symmetric, then each maximal integral manifold
N of T'=Dw is (locally) CR-symmetric with respect to the metric (18), while each
maximal integral manifold P of T" = D% is a Riemannian (locally) symmetric space
for the metric induced by g.

Proof. To prove that N and P are locally C R-symmetric, we show that the CR-
symmetry o, at each point x € M leaves the maximal integral submanifolds N and
P through x invariant. Indeed, observe that T’ and T” are o.-invariant because
they are V-parallel and (oy)«T} C T, (0x)«T, CT;. Let ye N and take a piecewise
smooth curve y in N joining x and y. Then T’ being (o,)-invariant, we have that
the tangent vectors of o, oy are tangent to N. According to a general property
of involutive distributions (cf. [11], p. 86) it follows that o, oy lies in N. Hence
ox(y) € N. An analogous argument applies to P. Since, according to Theorem 2.2,
(04).&E =&, o, restricts to an isometry of (N, g’), which is a local C R-symmetry at
x. It follows that N is locally C R-symmetric as claimed. Moreover, o, restricts to
a geodesic reflection of P, so that P is Riemannian locally symmetric. O
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COROLLARY 6.4. Fix an integer s > 2. The mapping ® in Theorem 4.2 induces a
bijection between the isomorphism classes of simply connected Sasakian ¢-symmetric
spaces and the isomorphism classes of simply connected C R-symmetric S-manifolds.

In particular, any simply connected C R-symmetric S-manifold of C R-codimension
s = 2 is noncompact.

Proof. We recall that C R-symmetric spaces are always complete since they are
Riemannian homogeneous.

Let N be a Sasakian ¢-symmetric space with characteristic vector field &. If o,
is the CR-symmetry at the point x € N, then 0. =§, so that o is an isometry for
the metric g defined in 1) of Theorem 4.2. Hence, o, x (—Id) is a CR-isometry
on ®(N)=M x R*~! which is clearly a CR-symmetry at (x, p) for each p e RS~
It follows that ®(N) is C R-symmetric.

Assume now that M is a CR-symmetric space; let N € ®~!([M]). Then, by con-
struction, N is CR-isometric to a maximal integral manifold of the distribution
Do on M, endowed with the Sasakian structure induced on it according to The-
orem 3.2. Hence, N is Sasakian g-symmetric according to Prop. 6.3. O

7. A Characterization of Locally CR-symmetric S-manifolds

Takahashi ([17]) proved that a necessary and sufficient condition for a Sasakian
manifold to be a locally g-symmetric space is that VR =0, where V is a special
linear connection, called the Okumura’s linear connection, and R is its curvature
tensor field. If M is a Sasakian manifold with structure (¢, &, 1, g), the Okumura’s
connection V is given by

VxY=VxY+T(X,Y),
where
T(X,Y)=dn(X,Y)§ —n(X)p(¥)+n¥)e(X). (21)

The tensors ¢, &,n, T are parallel with respect to V. This connection was consid-
ered first in [16].

Taking into account Theorem 2.3 and the subsequent Remark, it is natural to
ask for a similar characterization involving the Tanaka—Webster connection. We
shall prove the following theorem:

THEOREM 7.1. Let (M,DM,J,g) be an S-manifold with characteristic frame
{€1,...,&), s = 1, and corresponding Tanaka—Webster connection V. A necessary
and sufficient condition for M to be locally CR-symmetric is that VR =0.

Proof. We shall consider first the case where s =1. Hence, M is a Sasakian man-
ifold. We shall reduce to the Theorem of Takahashi by showing that VR = VR.
Indeed, the two connections are defined by

V=V+T, V=V+H,
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where T and H are given by (21) and (11), respectively. Now we set

QX Y)=(H-T)(X,Y)=2n(X)e()
for any X, Y e X(M). By computation we get

(VvRYX,Y)Z=(VyR)YX,Y)Z+T(V,R(X,Y)Z)— R(T(V,X),Y)Z —
—RX, T(V,Y)Z—R(X,Y)T(V,Z)

and similarly,

(VvR)(X,Y)Z=(VyR)(X,Y)Z+H(V,R(X,Y)Z)—R(H(V,X),Y)Z —
—R(X,H(V,Y)Z—R(X,Y)H(V,Z)

for any X,Y,Z,V e X(M). Hence,

(VvR)(X,Y)Z—(VyR)(X,Y)Z
=Q(V,R(X,Y)Z)—R(Q(V,X),Y)Z—R(X,Q(V,Y)Z—-R(X,Y)Q(V, Z)
=2n(V)[go(R(X, Y)Z)—R(pX,Y)Z—R(X,9Y)Z —R(X,Y)pZ]

:0’

where the last equality follows applying Lemmas 2.8 and 5.1 in [17].

Now let M be an S-manifold with CR-codimension s > 2. Fix a point p € M;
according to Theorem 3.2, we can choose a cubic coordinate system (xl, v, x2KED
y!',...y*~1) defined on an open neighborhood V of p, such that V' ={ge V|
yi(g)=0} and V"={q eV | x/(q)=0} are open neighborhoods of p in the maximal
integral manifolds N and P of the distributions 7’ = Doy =DM @[£] and T"=DZ
respectively. We know that the CR-submanifold N is a Sasakian manifold with
respect to the Hermitian metric g’ defined by (18). Moreover, P is a flat Riemann-
ian submanifold of M. Since the statement to be proved is of local nature, we are
reduced to show that V is locally CR-symmetric if and only if VR vanishes on
V. We remark that the natural diffeomorphism V=V’ x V” is a CR-map and an
isometry, provided we put on V' and V” the product metric of the metrics induced
by V.

We first prove that a necessary and sufficient for V to be locally C R-symmet-
ric is that (V/, DV’, J, g’) be locally C R-symmetric. Indeed, the necessity follows
from Prop. 6.3. For the sufficiency, let p=(x,z)e V=V’ x V" and let ¢’ be a local
CR-symmetry of V' at x; denote also by ¢” be the geodesic reflection of V" at
z, which is a local isometry of V” because V" is flat. We remark that, according
to the definition of g/, since (0/)+& =&, then o is also an isometry with respect
to the metric g restricted to V’, so that o :=0¢’ x¢” is a local isometry of V=
V/x V" It is clear that o is a local CR transformation of V. Since (o), ,=—1d
on D,M® (DL) p We have that o is a local CR-symmetry at p. This implies that
V is locally C R-symmetric proving our claim.
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Now, we know that, N being Sasakian, (V’, DV’, J, g") is locally C R-symmetric
if and only if on V' it holds VNRN =0, where V" is the Tanaka—Webster con-
nection of N. On the other hand, VV coincides with the connection induced by
V on N (Theorem 3.2, 1). Moreover, according to (15), we have that R=0 on
V”. To conclude the proof, we observe that according to Proposition 2.5 we have
T(X,Y)=0 for any X €T’,Y €T”. This implies that

whence, being R=0 on V", we conclude that VN RN =0 on V' if and only if VR
0 on V. This completes the proof of Theorem 7.1.

|

COROLLARY 7.2. A complete and simply connected locally CR-symmetric
S-manifold is globally CR-symmetric.

Proof. This can be proved by a standard argument using Corollary 7.9 in [11],
Ch. VI, page 265. Indeed, we remark that V, being a metric connection, is com-
plete by assumption. Since VR =VT =0, for each x € M the linear transforma-
tion L,:TxM — Ty M in (20) extends to a global affine transformation f: M — M,
such that df, = L,. This transformation is actually an isometric C R-diffeomor-
phism because g and ¢ are V-parallel. Thus f is a CR-symmetry at x. O

8. Failure of Theorem 7.1 in the Nonnormal Case

In this section we provide explicit examples to show that Theorem 7.1 is false with-
out the assumption of normality.

First, we consider a class of CR-integrable almost S-manifolds which are locally
C R-symmetric but VR 0.

Let M be a contact metric manifold with structure (¢, &, n, g). We suppose that
the characteristic vector field & belongs to the (k, u)-nullity distribution for some
real numbers k£ and w. This means that the curvature tensor R satisfies

R(X, V) =k(n(Y)X —n(X)Y) +u(n(¥)hX —n(X)hY) (22)

for any X,Y e X(M), where h= %E;g&. In [4] it is proved that, for such manifolds,
k<1.If k=1, then h=0 and M is Sasakian. If k <1, then the contact metric
structure is not Sasakian and M admits three mutually orthogonal integrable dis-
tributions: D(0)=Ré, D(A) and D(—A) defined by the eigenspaces of h, where A=
VI=k.

Note that
(Vx@)Y =g(X+hX,Y)E —n(Y)(X +hX)

for any X,Y € X(M). This is a necessary and sufficient condition for M to be CR-
integrable [18], and this allows us to consider the Tanaka—Webster connection.



208 G. DILEO AND A. LOTTA

In the following we consider the non-Sasakian case. In [6] it is proved that the
contact metric manifolds satisfying (22), with k <1, are all locally ¢-symmetric. We
shall prove the following:

PROPOSITION 8.1. Let M be a contact metric manifold whose characteristic vec-
tor field & belongs to the (k,0)-nullity distribution, k <1. Suppose that dimg M > 3.
Let V be the Tanaka—Webster connection and R its curvature tensor field. Then
VR #£0.

For instance, the tangent sphere bundle 71 M of a flat Riemannian manifold sat-
isfies the above conditions with k=0.
For the proof, we shall make use of the following proposition:

PROPOSITION 8.2 ([6]). Let M be a contact metric manifold with structure
(p,&,1m,8), such that & belongs to the (k, w)-nullity distribution. Then, there exists
a homogeneous structure on M, that is a tensor field T of type (1,2) satisfying

Vig=0, V'R=0, V'T=0,
where V' =V —T. T is given by

T'(X,Y)=g@X+¢hX),Y)§—n)(eX+ehX)) - %n(X)cp(Y) (23)
for any X,Y € X(M). Moreover, the tensor fields &, R, ¢, h are all parallel with

respect to V'

Proof of 8.1 The Tanaka—Webster connection of M is given by V=V + H,
where

H(X,Y)=—g@X+¢hX),Y)§ +n(¥) (X +¢hX))+n(X)p).
Now we consider the tensor 7 in (23) and we put
X, Y)=(T+H)X,Y)=n(X)p()

for any X,Y € X(M). Then V=V'+ Q. By a direct calculation we see that the cur-
vature tensor R is given by

R(X,Y)Z=R(X,Y)Z+B(X,Y)Z,
where
B(X,Y)Z=k[g(X, Z)n(Y)§ —g(Y, Z)n(X)§ —
-2 X +n(X)n(Z2)Y]—

— ®(Y +hY, Z) (X +ohX) +
+D(X +hX, Z) (@Y +9hY)+20(X, Y)pZ. (24)
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Now we compute (@gl@)(X, Y)Y, choosing X € D(A) and Y € D(—A), such that
g(¥,Y)=1 and g(pX,Y)=0; this is possible since we assumed dimg M > 3. We
know that V'R =0. Moreover, B is built from the tensors g, ¢, i, n, &, which are
V’-parallel; hence, V/B=0 and this implies V'R =0. Making use of Theorem 1 in
[4], we get

QE, RX,V)Y)—R(QE, X), V)Y —R(X,QE, Y)Y —R(X,Y)Q(,Y)
=¢(R(X,Y)Y)— R(¢X, Y)Y — R(X, pY)Y — R(X, Y)pY
=200 —1+k)pX.

Applying (24), we obtain

Q@, B(X,Y)Y)=B(Q(E,X), V)Y —B(X, Q(, Y)Y —B(X,Y)Q(,Y)
=¢(B(X,Y)Y)— B(¢X,Y)Y — B(X, Y)Y — B(X, Y)pY
=2x(1+1)pX.

Hence,
(VER)(X, Y)Y =200 — 1 +k+1+212)pX =4rpX #£0. O

Next we exhibit an example of a nonnormal almost S-manifold which has van-
ishing Tanaka—Webster curvature without being locally C R-symmetric.
Set

m=R2k®R‘Y=V1 DVy, s =2

and denote by {Xy,..., Xk, J X1, ..., J X} the standard basis of R2?* endowed with
the complex structure J associated with the matrix (2 70&)
Moreover let {&,..., &} denote the natural basis of V> and let g be the inner

product on m obtained by declaring the basis {X;, JX;,&;} to be orthonormal. Let
¢:m—m be the natural f-structure on m, i.e. ¢ is the endomorphism which coin-
cides with J on V| and vanishes on V5.

We also denote by U the endomorphism of m which is associated to the matrix

I0 O
0 -1+ 0
00 O

Notice that Up = —¢U.

We denote by h the Lie subalgebra of End(m) consisting of all endomorphisms
which vanish on V, and annihilate the tensors ¢, g and U when extended to the
tensor algebra of m as derivations. We remark that

A0 O
Aesok)— |0 A0
000
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provides a Lie-algebra isomorphism so(k) =h. In particular, b is compact semisim-
ple provided k£ > 3.
Now we define a Lie algebra structure on g:=h@m as follows:

[X,Y]:=—-2g¢(X,JY)e, [v,X]:=a(@)UX=—[X,v],
[A,X]=A-X—[X,A], [A,v]:=0, [v,w]:=0, [A,B]:=AB—BA

for each X,Y e Vi,v,we Vs, Aeh. Here e:=) ;& €V, and a: Vo — R is a fixed
nonnull linear functional such that a(e) =0.

Let G be the simply connected Lie group with Lie algebra g and let H denote
the analytic subgroup corresponding to the subalgebra h. Assuming k > 3, we
have that H is compact, so that M =G/H is a reductive homogeneous space. In
[13] it is verified that G/H carries a G-invariant C R-integrable almost S-structure
which is not normal; moreover, the vectors & extend in a G-invariant fashion to a
characteristic frame and the associated Tanaka—Webster connection is the canoni-
cal G-invariant linear connection. It follows that R =0. On the other hand, M is
not CR-symmetric provided a(§;) #a(§;) for some i, je{l,...,s}. Indeed, under
the natural identification T,M =m, o=H, we have (h;),=a(&)¢ U. Hence, h; #h;
while a necessary condition for M to be C R-symmetric is that the operators &; are
all equal (cf. Prop. 6.2).
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