On the Structure and Symmetry Properties of Almost S-manifolds

G. DILEO and A. LOTTA

Dipartimento di Matematica, Università di Bari, Via E. Orabona 4, 70125 Bari, Italy. e-mail: {dileo; lotta}@dm.uniba.it

(Received: October 30 2003; accepted in final form: 5 March 2004)

Abstract. We prove that any simply connected S-manifold of CR-codimension $s \ge 2$ is noncompact by showing that the complete, simply connected S-manifolds are all the CR products $N \times \mathbb{R}^{s-1}$ with N Sasakian, endowed with a suitable product metric. N is a Sasakian φ -symmetric space if and only if M is CR-symmetric. The locally CR-symmetric S-manifolds are characterized by $\tilde{\nabla}\tilde{R} = 0$ where $\tilde{\nabla}$ is the Tanaka–Webster connection. This characterization is showed to be nonvalid for nonnormal almost S-manifolds.

Mathematics Subject Classifications (2000). 53C25, 53C35, 32V05.

Key words. almost S-manifold, CR-symmetric space, Tanaka-Webster connection.

1. Introduction

In this paper, we investigate some geometric features of *almost S-manifolds*. These are the Hermitian *CR*-spaces (M, DM, J, g) such that DM^{\perp} is trivial, and a global orthonormal frame ξ_1, \ldots, ξ_s of DM^{\perp} can be chosen in such a way that the dual 1-forms η^i with respect to the metric g satisfy

 $d\eta^i = \Phi, \quad i = 1, \ldots, s,$

where Φ is the 2-form with $\operatorname{Ker}(\Phi) = DM^{\perp}$ determined by

 $\forall X, Y \in \Gamma DM, \quad \Phi(X, Y) = g(X, JY).$

Such a frame $\{\xi_i\}$ is called characteristic. An almost S-manifold is called an S-manifold if, in addition, the tensor field

 $N = [\varphi, \varphi] + 2d\eta^i \otimes \xi_i$

vanishes. Here, φ is the *f*-structure in the sense of Yano, which extends the partial complex structure *J* on the whole tangent bundle by the requirement that $\text{Ker}(\varphi) = DM^{\perp}$.

This notion was studied first by Blair in [3] where various kinds of $U(k) \times O(s)$ structures are considered. More recently, a systematic study of nonnormal almost

S-manifolds has been developed in [7]. We collect general information on (almost) S-manifolds in Section 2.

The main motivation in studying this class of manifolds comes from the fact that they provide a higher *CR*-codimensional version of Sasakian manifolds. Indeed, the *S*-manifolds having *CR*-codimension 1 are the Sasakian manifolds. Almost *CR*-manifolds (M, DM, J) whose analytic bundle *DM* admits a trivial complementary subbundle D'M in *TM* were also studied in a very general fashion by Mizner in [15]. In particular, Mizner showed that the choice of a nondegenerate frame for D'M gives rise to a linear connection on *M* which is well-adapted to the *CR*-structure. It turns out that, when specialized to almost *S*-manifolds, Mizner's theory leads to their characterization by means of the existence of special adapted linear connections. This was proved in [13] by a direct approach. The connection canonically associated to a characteristic frame of a *CR*-integrable almost *S*-manifold is called its *Tanaka–Webster connection* (cf. Theorem 2.3). See Section 2 for a review of this topic.

In [3], Blair obtained some interesting results about the Riemannian geometry of S-manifolds having higher CR-codimension, showing that the structure of these manifolds can be very different from Sasakian manifolds. For instance, he proved that there are no S-manifolds of constant curvature K > 0 and CR-codimension $s \ge 2$.

The aim of this paper is to develop further the understanding of the structure or S-manifolds whose *CR*-codimension is at least 2. Our first result is the following:

THEOREM 1.1. A simply connected S-manifold of CR-codimension $s \ge 2$ is noncompact.

Of course, the situation is different in the Sasakian category, since each odddimensional sphere carries a Sasakian structure.

We also remark that the above result is false without assuming the manifold is simply connected: indeed, each product $S^{2k+1} \times \mathbb{T}^s$, $k, s \ge 1$ can be endowed with an S-structure of *CR*-codimension s+1. See Proposition 4.1.

Actually, we prove that each S-manifold is locally a product $N \times \mathbb{R}^{s-1}$, where N is a Hermitian CR submanifold having CR-codimension 1 (Theorem 3.2). This leads to a complete classification of the simply connected *complete* S-manifolds: up to CR-isometry, they are all the products $M = N \times \mathbb{R}^{s-1}$, where $(N, \varphi, \xi, \eta, g)$ is a complete Sasakian space. M is endowed with the natural CR structure of CR-codimension s and with the product metric $h = g_1 \oplus g_2$, where g_2 is the standard metric of \mathbb{R}^{s-1} , while g_1 is the modified metric on N such that

$$\forall X, Y \in DN, g_1(X, Y) = g(X, Y), g_1(X, \xi) = 0, g_1(\xi, \xi) = s.$$
(1)

This is the content of Theorem 4.2.

In the last part of the paper we investigate symmetry properties of almost S-manifolds from the point of view of Hermitian *CR* geometry. Recently, W. Kaup and D. Zaitsev [10] introduced the concept of *symmetric CR-space*. This is a Hermitian *CR*-space (M, DM, J, g) each point x of which admits a *CR*-symmetry σ_x . Such a symmetry is an isometric *CR*-diffeomorphism having x as a fixed point and whose differential $d\sigma_x$ equals –Id on the subspace $D_x M \oplus (\mathcal{D}_{\infty}(x))^{\perp}$ of the tangent space $T_x M$, where \mathcal{D}_{∞} is the Lie algebra of smooth vector fields generated by the sections of the analytic subbundle $DM \subset TM$. See Section 5 for more details.

It is interesting to remark that, when applied to Sasakian manifolds, the definition of Kaup and Zaitsev coincides with Takahashi's notion of φ -symmetric space (cf. [17] or [9]). We verify this in Section 6.

With this terminology, the above classification specializes as follows:

THEOREM 1.2. Up to CR-isometry, the simply connected CR-symmetric S-manifolds of CR-codimension s > 1 are all the CR products $N \times \mathbb{R}^{s-1}$, where (N, DN, J, g) is a simply connected Sasakian φ -symmetric space, endowed with the product metric of the standard flat metric on \mathbb{R}^{s-1} and the metric g_1 on N defined by (1).

We conclude by proving that the *locally CR*-symmetric S-manifolds of any CRcodimension are characterized by the condition $\tilde{\nabla}\tilde{R} = 0$, where $\tilde{\nabla}$ is the Tanaka– Webster connection associated to some characteristic frame. The local version of the definition of Kaup and Zaitsev is introduced in Section 5.

Our characterization is a generalization of a theorem in [17] according to which the Sasakian locally φ -symmetric spaces are characterized by $\nabla' R' = 0$, where ∇' is the Okumura connection (cf. [16]). We think that, in the context of *CR* geometry, it is more convenient to have a characterization involving Tanaka–Webster connections.

It is worthwhile to remark that this result is false for *nonnormal* almost S-manifolds. Indeed in the last section we show by examples that, in the nonnormal case, the property $\tilde{\nabla}\tilde{R} = 0$ and the property to be locally *CR*-symmetric are independent.

2. Almost S-manifolds

An almost *CR*-manifold *M* is a real smooth manifold with an almost *CR*-structure. This structure consists of a smooth real subbundle *DM* of the tangent bundle *TM* together with a smooth bundle isomorphism $J: DM \to DM$, such that $J^2 = -Id$. The linear subspace $D_x M \subset T_x M$, endowed with the complex structure J_x , is called the holomorphic tangent space to *M* at *x*. The complex dimension *k* of $D_x M$ is called the *CR*-dimension of *M*, while the real dimension *s* of the quotient vector space $T_x M/D_x M$ is the *CR*-codimension of *M*. The pair of integers (k, s) is called the *type* of the almost *CR*-manifold *M*. We shall denote by $\mathcal{D} \subset \mathfrak{X}(M)$ the module of differentiable sections of *DM*. An almost *CR*-structure is said to be integrable if

 $[X, Y] - [JX, JY] \in \mathcal{D} \quad \forall X, Y \in \mathcal{D}$

and the Nijenhuis torsion of J vanishes on DM, that is

$$[J, J](X, Y) = [JX, JY] - [X, Y] - J([JX, Y] + [X, JY]) = 0$$

for any $X, Y \in \mathcal{D}$. In this case we say that *M* is a *CR*-manifold. Define inductively

$$\mathcal{D}^{1} = \mathcal{D},$$

$$\mathcal{D}^{k} = \mathcal{D}^{k-1} + [\mathcal{D}^{1}, \mathcal{D}^{k-1}], \quad k > 1,$$

$$\mathcal{D}^{j} = 0, \quad j \leq 0.$$
(2)

Thus we have an increasing sequence

 $\mathcal{D}^1 \subset \mathcal{D}^2 \subset \cdots \subset \mathcal{X}(M),$

such that $[\mathcal{D}^r, \mathcal{D}^s] \subset \mathcal{D}^{r+s}$ for all integers r, s and $\mathcal{D}_{\infty} := \bigcup_k \mathcal{D}^k$ is the Lie subalgebra of $\mathfrak{X}(M)$ generated by \mathcal{D} . An almost CR manifold is called contact regular in the sense of Tanaka if, for each $j \ge 1$, $D^j := \{\mathcal{D}^j(x) \mid x \in M\}$ is a distribution of constant rank. Here by definition $\mathcal{D}^j(x) = \{X_x \in T_x M \mid X \in \mathcal{D}^j\}$. In this case, the smallest integer $\mu \ge 1$ such that $D^{\mu} = D^j$ for all $j \ge \mu$ is called the *kind* of M. We remark that in this case, D^{μ} is the smallest Frobenius integrable distribution containing DM (cf. [14]).

A Hermitian CR-space is an almost CR-manifold M with a Riemannian metric g compatible with the CR-structure in the sense that

$$g(Jv, Jw) = g(v, w)$$

for any $x \in M$, $v, w \in D_x M$. If the almost *CR*-structure is integrable we say that *M* is a Hermitian *CR*-manifold.

A smooth map $\varphi: M \to N$ between almost *CR* manifolds is called a *CR*-map if, for every $x \in M$, the differential $d_x \varphi: T_x M \to T_{\varphi(x)} N$ maps $D_x M$ into $D_{\varphi(x)} N$ and interchanges the partial complex structures. Two Hermitian *CR*-spaces are called *isomorphic* if there exists a diffeomorphism between them which is both a *CR*-map and an isometry.

Let (M, DM, J, g) be a Hermitian *CR*-space. We shall denote by $T_x^k \subset T_x M$ be the orthogonal complement of \mathcal{D}_x^{k-1} in \mathcal{D}_x^k . Then $T_x^0 = 0$ and $T_x^1 = D_x M$. Let T_x^{-1} denote the orthogonal complement of $\mathcal{D}_{\infty}(x)$ in $T_x M$. We obtain the following orthogonal decomposition

$$T_x M = \bigoplus_{k \ge -1} T_x^k.$$
⁽³⁾

The partial complex structure J extends canonically to a tensor field φ of type (1, 1) such that $\text{Ker}(\varphi) = DM^{\perp}$. This is an f-structure of rank 2k in the sense of Yano. The 2-form Φ defined by

$$\forall X, Y \in \mathfrak{X}(M) \quad \Phi(X, Y) := g(X, \varphi Y)$$

will be called the fundamental 2-form of the Hermitian *CR*-space *M*. In all that follows, when we consider a Hermitian *CR*-space (M, DM, J, g), the symbols φ and Φ denote these two tensors canonically associated to the triple (DM, J, g).

DEFINITION 2.1. A Hermitian *CR*-space (M, DM, J, g) is called an almost *S*-manifold if the bundle DM^{\perp} is trivial, and there exists a global orthonormal frame $\{\xi_1, \ldots, \xi_s\}$ for DM^{\perp} , whose dual frame $\{\eta^1, \ldots, \eta^s\}$ with respect to g satisfies

$$d\eta^{i} = \Phi \quad i = 1, \dots, s. \tag{4}$$

Such a frame $\{\xi_1, \ldots, \xi_s\}$ is called characteristic.

If, moreover, the tensor field N defined by

$$N = [\varphi, \varphi] + 2d\eta^{l} \otimes \xi_{i}, \ [\varphi, \varphi] =$$
Nijenhuis torsion of φ (5)

vanishes, (M, DM, J, g) is called an S-manifold.

The term S-manifold was introduced by D.E. Blair in [3] where more emphasis is given on the associated f-structure rather than to the underlying almost *CR*-structure. Since in this paper we are interested in these manifolds as a particular class of Hermitian *CR*-spaces, we prefer to adopt the above definition. Almost S-structures were studied in [7]. If (M, DM, J, g) is an (almost) S-manifold and a characteristic frame $\{\xi_i\}$ for DM^{\perp} is chosen, then we refer to $(\varphi, \xi_i, \eta^i, g)$ as an associated (almost) S-structure. It is proved in [7] that a necessary and sufficient condition for *M* to be *CR*-integrable is that N(X, Y) = 0 for all $X, Y \in D$, where *N* is the tensor field in (5). The condition N = 0 which characterizes the S-manifolds will be referred to as the *normality* condition.

Note that an almost S-manifold with CR-codimension s = 1 and a fixed associated structure (φ, ξ, η, g) is a contact metric manifold according to [1]. An S-manifold with CR-codimension s = 1 is a Sasakian manifold.

Let (M, DM, J, g) and (M', DM', J', g') be almost S-manifolds of the same type (k, s). Choose a characteristic frame $\{\xi_1, \ldots, \xi_s\}$ for DM^{\perp} and a characteristic fame $\{\xi'_1, \ldots, \xi'_s\}$ for DM'^{\perp} . We explicitly remark that an isomorphism $f: M \to M'$ of Hermitian *CR*-spaces does not need to map these characteristic frames one onto the other. By a result of S.Ianus and A.M. Pastore, this is true if s = 1, i.e. M and M' are contact metric manifolds [8]. In the general case the following result holds ([7]):

THEOREM 2.2. Let (M, DM, J, g) and (M', DM', J', g') be almost S- manifolds of type (k, s), with characteristic frames $\{\xi_1, \ldots, \xi_s\}$ and $\{\xi'_1, \ldots, \xi'_s\}$. Let $f: M \to M'$ be an isomorphism. Then we have $f_*(\bar{\xi}) = \bar{\xi}'$ where $\bar{\xi} = \sum_{i=1}^s \xi_i, \ \bar{\xi}' = \sum_{i=1}^s \xi'_i$.

We now recall some useful properties of almost S-structures (for a proof, see [7]). Let M be an almost S-manifold with structure $(\varphi, \xi_i, \eta^i, g)$. Define $h_i = \frac{1}{2}\mathcal{L}_{\xi_i}\varphi$ for any i = 1, ..., s, where \mathcal{L} denotes a Lie derivative. Then each operator h_i is self-adjoint and anticommutes with φ ; it vanishes on $Ker(\varphi)$, takes values in \mathcal{D} and satisfies

$$\varphi(h_i X) = -\frac{1}{2}N(X,\xi_i)$$

for any $X \in \mathcal{X}(M)$. We also have

$$[\xi_i, \mathcal{D}] \subset \mathcal{D}, N(X, Y) \in \mathcal{D}$$
 for any $X, Y \in \mathcal{D}$.

Denoting by ∇ the Levi-Civita connection of the metric g, we have

$$\nabla_X \xi_i = -\varphi X - \varphi(h_i X) \tag{6}$$

for any $X \in \mathcal{X}(M)$. If the almost S-structure is CR-integrable, then

$$(\nabla_X \varphi)Y = -\Phi(X, \varphi Y)\overline{\xi} + \overline{\eta}(Y)\varphi^2(X) + \sum_j g(h_j(X), Y)\xi_j - \eta^j(Y)h_j(X)$$
(7)

where $\bar{\xi} = \sum_j \xi_j$ and $\bar{\eta} = \sum_j \eta^j$.

If *M* is an *S*-manifold, then each operator h_i vanishes. Thus, (6) and (7) simplify as follows:

$$\nabla_X \xi_i = -\varphi X,$$

$$(\nabla_X \varphi) Y = g(X, Y) \overline{\xi} - \overline{\eta}(Y) X - \sum_j \eta^j(X) \eta^j(Y) \overline{\xi} + \overline{\eta}(Y) \eta^j(X) \xi_j$$

for any $X, Y \in \mathcal{X}(M)$. Furthermore, in this case each ξ_i is a Killing vector field.

The following result [13] provides a geometric characterization of the CR-integrable almost S-manifolds.

THEOREM 2.3. Let (M, DM, J, g) be a Hermitian CR-space. Assume that the bundle DM^{\perp} is trivial and fix an orthonormal frame $\{\xi_1, \ldots, \xi_s\}$ of DM^{\perp} . Set $\overline{\xi} := \sum_i \xi_i$. Then M is a CR-integrable almost S-manifold with characteristic frame $\{\xi_1, \ldots, \xi_s\}$ if and only if there exists a linear connection $\overline{\nabla}$ with the following properties:

- (1) $\tilde{\nabla}\varphi = 0$, $\tilde{\nabla}\xi_i = 0$, $\tilde{\nabla}g = 0$;
- (2) the torsion \tilde{T} of $\tilde{\nabla}$ satisfies

 $\tilde{T}(X,Y) = 2\Phi(X,Y)\bar{\xi} \quad for \ any \ X, \ Y \in \mathcal{D},$ (8)

$$\tilde{T}(\xi_i, \varphi X) = -\varphi \tilde{T}(\xi_i, X) \quad \text{for any } X \in \mathcal{X}(M),$$
(9)

$$\tilde{T}(\xi_i,\xi_j) = 0. \tag{10}$$

Such a linear connection $\tilde{\nabla}$ is uniquely determined and it is given by $\tilde{\nabla} = \nabla + H$, where

$$H(X, Y) = \Phi(X, Y)\bar{\xi} + \bar{\eta}(Y)\varphi(X) + \bar{\eta}(X)\varphi(Y) + \Phi(h_j X, Y)\xi_j \eta^j(Y)\varphi h_j(X)$$
(11)

for any $X, Y \in \mathcal{X}(M)$.

Remark 2.4. The linear connection $\tilde{\nabla}$ is called in [13] the Tanaka–Webster connection of M. This terminology is justified by the fact that in the case where the *CR*-codimension is 1, the contact form η is a pseudo Hermitian structure and $\tilde{\nabla}$ is the corresponding Tanaka–Webster connection (see, e.g., [18]).

In the general case, if *M* is a *CR*-integrable almost *S*-manifold with a fixed characteristic frame $\{\xi_1, \ldots, \xi_s\}$, then the dual forms $\{\eta^1, \ldots, \eta^s\}$ make up a nondegenerate frame of type $\{1, \ldots, s\}$ according to the terminology of Mizner ([15], p. 1341). This means that at each point $p \in M$, and for each $j \in \{1, \ldots, s\}$, $\eta^j \circ \mathcal{L}_p$ is a nondegenerate Hermitian form on $\mathcal{H}_p = \{X - iJX \mid X \in D_pM\} \subset T_p^{\mathbb{C}}M$, where

 $\mathcal{L}_p: \mathcal{H}_p \times \mathcal{H}_p \to T_p M^{\mathbb{C}} / \mathcal{H}_p^{\mathbb{C}}$

is the Levi form (cf. e.g. [15], p. 1340). Then $\tilde{\nabla}$ coincides with the connection canonically associated with $\{\eta^1, \ldots, \eta^s\}$ according to Theorem 1, p. 1355 in [15]. For a proof of this, see [13].

PROPOSITION 2.5 ([13]). Let M be a CR-integrable almost S-manifold with structure $(\varphi, \xi_i, \eta^i, g)$. Let $\tilde{\nabla}$ be its Tanaka–Webster connection. Then we have:

- (1) $\tilde{\nabla}_Z X \in \mathcal{D}$ for any $X \in \mathcal{D}$, $Z \in \mathcal{X}(M)$;
- (2) $\tilde{T}(\xi_i, X) = -\varphi(h_i X)$ for any $X \in \mathcal{X}(M)$.

Moreover, the almost S-structure is normal if and only if $\tilde{T}(\xi_i, X) = 0$ for each $X \in \mathcal{D}$ and i = 1, ..., s.

PROPOSITION 2.6. Let M and M' be S-manifolds. Choose characteristic frames for M and M' and let $\tilde{\nabla}$ and $\tilde{\nabla}'$ be the corresponding Tanaka–Webster connections. Then every CR-isomorphism $\sigma: M \to M'$ is an affine map with respect to $\tilde{\nabla}$ and $\tilde{\nabla}'$

Proof. Since the S-structure of M is normal, according to (11) we have $\tilde{\nabla} = \nabla + H$ with

 $H(X, Y) = \Phi(X, Y)\overline{\xi} + \overline{\eta}(Y)\varphi(X) + \overline{\eta}(X)\varphi(Y).$

An analogous formula holds for $\tilde{\nabla}'$. Hence, the assertion follows from the fact that $\sigma_* \bar{\xi} = \bar{\xi}'$ (cf. Theorem 2.2).

PROPOSITION 2.7. Let *M* be an *S*-manifold with structure $(\varphi, \xi_i, \eta^i, g)$ and *CR* codimension $s \ge 1$. Let *R* be the curvature tensor of the Levi-Civita connection ∇ ; then

$$R(X,\xi_i)Y = -(\nabla_X \varphi)Y \tag{12}$$

for any $X, Y \in \mathcal{X}(M)$ and $i = 1, \ldots, s$.

Proof. Since each ξ_i is a Killing vector field, according to Proposition 2.6 of Chapter VI in [11], we obtain:

$$R(X,\xi_i)Y = \nabla_X \nabla_Y \xi_i - \nabla_{\nabla_X Y} \xi_i,$$

and, hence,

$$R(X,\xi_i)Y = -\nabla_X \varphi Y + \varphi(\nabla_X Y) = -(\nabla_X \varphi)Y.$$

PROPOSITION 2.8. Let M be an S-manifold with structure $(\varphi, \xi_i, \eta^i, g)$, $i = 1, \ldots, s$. Let ∇ be the Levi-Civita connection and $\tilde{\nabla}$ the Tanaka–Webster connection of M. Let R and \tilde{R} denote the curvature tensor fields of ∇ and $\tilde{\nabla}$ respectively. Then, we have

$$R(X,Y)Z = R(X,Y)Z + B(X,Y)Z,$$
(13)

where

~

$$B(X, Y)Z = 2s\Phi(X, Y)\varphi(Z) + s\Phi(X, Z)\varphi(Y) - s\Phi(Y, Z)\varphi(X) - -\bar{\eta}(X)\bar{\eta}(Z)\varphi^{2}(Y) + \bar{\eta}(Y)\bar{\eta}(Z)\varphi^{2}(X) + + \{\bar{\eta}(X)\Phi(Y, \varphi Z) - \bar{\eta}(Y)\Phi(X, \varphi Z)\}\bar{\xi}$$
(14)

for any $X, Y, Z \in \mathcal{X}(M)$. Consequently, we get

$$\hat{R}(X,\xi_i)Y = 0 \tag{15}$$

for any $X, Y \in \mathcal{X}(M)$ and i = 1, ..., s. *Proof.* Straightforward computation.

3. On the Structure of *S*-manifolds

PROPOSITION 3.1. Let (M, DM, J, g) be an almost S-manifold of type (k, s), with associated structure $(\varphi, \xi_i, \eta^i, g)$. Then M is contact regular of kind 2. The distribution D_{∞} has constant rank 2k + 1 and is given by $DM \oplus [\bar{\xi}]$. It is the smallest

Frobenius integrable distribution containing DM. The orthogonal decomposition (3) becomes

$$T_x M = T_x^{-1} \oplus T_x^1 \oplus T_x^2$$

where

$$T_x^1 = D_x M, \quad T_x^2 = [\bar{\xi}_x], \quad T_x^{-1} = \{X_x \mid X = \sum_i \eta^i(X)\xi_i, \ \bar{\eta}(X) = 0\}.$$

Here as usual $\bar{\xi} = \sum_i \xi_i$ and $\bar{\eta} = \sum_i \eta^i$.

Proof. We consider the submodules \mathcal{D}^k , $k \ge 1$, of $\mathfrak{X}(M)$ defined by (2). For every $X, Y \in \mathcal{D} = \mathcal{D}^1$, we can write $[X, Y] = Z + \eta^k ([X, Y])\xi_k$, with $Z \in \mathcal{D}$; hence

$$[X, Y] = Z - 2d\eta^{k}(X, Y)\xi_{k} = Z - 2\Phi(X, Y)\overline{\xi}.$$
(16)

From this it follows that

 $\mathcal{D}^2 \!\subset\! \bar{\mathcal{D}} \!+\! \mathcal{D}^1$

where $\overline{\mathcal{D}}$ denotes the module on $\mathcal{C}^{\infty}(M)$ generated by $\overline{\xi}$. On the other hand, choosing a unit vector field $X \in \mathcal{D}$ and setting Y = JX in (16), we obtain

 $[X, JX] - 2\bar{\xi} \in \mathcal{D}$

which implies that $\bar{\xi} \in \mathcal{D}^2$. Hence,

$$\mathcal{D}^2 = \bar{\mathcal{D}} + \mathcal{D}^1. \tag{17}$$

On the other hand, we know that $[\bar{\xi}, D] \subset D$. Applying this property and (17), we conclude that $[D^2, D^2] \subset D^2$. This implies that $D^k = D^2$ for every k > 2, so that $D_{\infty} = D^2$. For each point $x \in M$

 $\mathcal{D}_x^2 = D_x M \oplus [\bar{\xi}_x].$

This yields the conclusion.

THEOREM 3.2. Let (M, DM, J, g) be a CR-integrable almost S-manifold of CRcodimension $s \ge 2$ with characteristic frame $\{\xi_i\}$. Denote by $\tilde{\nabla}$ the Tanaka–Webster connection associated with $\{\xi_i\}$. Set $\bar{\xi} = \sum_i \xi_i$.

(1) The distributions $T' := D_{\infty} = DM \oplus [\bar{\xi}]$ and $T'' := D_{\infty}^{\perp}$ are both involutive and $\tilde{\nabla}$ parallel. Each integral manifold N of T' is a CR-integrable almost S-manifold
with respect to the induced CR-structure of CR-codimension 1 and the Hermitian metric g' such that

$$\forall X, Y \in DN \ g'(X, Y) = g(X, Y), \ g'(X, \bar{\xi}) = 0, \ g'(\bar{\xi}, \bar{\xi}) = 1.$$
 (18)

The restriction to N of the vector field $\bar{\xi}$ yields a characteristic frame and the corresponding Tanaka–Webster connection is the connection canonically induced on N by $\bar{\nabla}$. If M is normal, also N is, i.e. N is a Sasakian manifold with respect to the metric g'.

(2) Assume that all the operators $h_i = \frac{1}{2} \mathcal{L}_{\xi_i} \varphi$ coincide. Then T' and T" are both parallel for the Levi-Civita connection. If furthermore M is normal, then each integral manifold P of T" is a flat Riemannian submanifold.

Proof. (1) We remark that D_{∞}^{\perp} is spanned by $\zeta_1, \ldots, \zeta_{s-1}$ where $\zeta_j := \xi_j - \xi_s$, $j = 1, \ldots, s - 1$. Hence it is involutive because $[\zeta_i, \zeta_j] = 0$. The fact that T' and T'' are $\tilde{\nabla}$ -parallel is clear. Consider an integral manifold N of T', endowed with the almost CR structure induced by M and the Hermitian metric g' defined by (18). We remark that the connection $\tilde{\nabla}^N$ induced on N by $\tilde{\nabla}$ is metric with respect to g'. It is immediate to verify that $\tilde{\nabla}^N$ satisfies (1 and 2) in Theorem 2.3, so that N is an almost S-manifold with characteristic frame $\{\bar{\xi}\}$ whose Tanaka–Webster connection is $\tilde{\nabla}^N$. If M is normal, also N is according to Prop. 2.5.

(2) To show that T' and T'' are parallel with respect to the Levi-Civita connection observe that, assuming $h_1 = \cdots = h_s$, the formula for the covariant derivative of φ simplifies as follows:

$$(\nabla_X \varphi)Y = -\Phi(X, \varphi Y)\bar{\xi} + \bar{\eta}(Y)\varphi^2 X + g(h(X), Y)\bar{\xi} - \bar{\eta}(Y)h(X)$$

for all $X, Y \in \mathcal{X}(M)$, where we have set $h = h_1 = \cdots = h_s$. It follows that

 $\nabla_X \mathcal{D} \subset T'.$

Moreover, since $\nabla_X \xi_i = -\varphi X - \varphi h_i(X) = -\varphi X - \varphi h(X)$ for all $i \in \{1, \dots, s\}$, we get

$$\nabla_X \bar{\xi} = -s\varphi(X + hX) \in \mathcal{D}, \text{ and } \nabla_X \zeta_i = 0$$

and this proves the first assertion. If M is normal, since P is a totally geodesic submanifold in M, its flatness follows from (12) and the Gauss equation.

4. Classification of Simply Connected S-manifolds

The following proposition gives a simple way to construct examples of S-manifolds starting from Sasakian manifolds.

PROPOSITION 4.1. Let (N, DN, J, g) be a Sasakian manifold. Denote by g_1 the Hermitian metric on N such that

$$\forall X, Y \in DN \quad g_1(X, Y) = g(X, Y), \quad g_1(X, \xi) = 0, \quad g_1(\xi, \xi) = s,$$

where ξ is the characteristic vector field on N.

Let G be an Abelian real Lie group of dimension s - 1, $s \ge 2$. Then the CR manifold $M = N \times G$ of CR-codimension s is an S-manifold with respect to any product metric $h = g_1 \oplus g_2$, where g_2 is a left-invariant metric on G. The maximal integral manifolds of the distribution $D_{\infty}(M)$ are $N \times \{a\}$, $a \in G$.

Proof. We fix a global g_2 -orthonormal frame $\zeta_1, \ldots, \zeta_{s-1}$ of *G* consisting of leftinvariant vector fields. Let $V \subset \mathfrak{X}(M)$ be the *s*-dimensional Abelian Lie subalgebra of $\mathfrak{X}(M)$ generated by $\{\xi, \zeta_i\}$. Then, since $h(\xi, \xi) = s$, there exist $\xi_1, \ldots, \xi_s \in V$ such that

$$\xi = \sum_{i=1}^{s} \xi_i, \ h(\xi_i, \xi_j) = \delta_j^i.$$

Hence, it is straightforward to verify that M is an S-manifold with characteristic frame $\{\xi_1, \ldots, \xi_s\}$.

The main result of this section states that the simply connected, complete S-manifolds of CR-codimension $s \ge 2$ are exactly the ones constructed with the above procedure by choosing as G an Euclidean space. More precisely,

THEOREM 4.2. For a given Sasakian manifold N denote by N_s the S-manifold $N \times \mathbb{R}^{s-1}$ of CR-codimension $s \ge 2$ obtained according to Proposition 4.1 choosing $G = \mathbb{R}^{s-1}$ and g_2 = standard flat metric.

For each $s \ge 2$, the mapping $\Phi: N \mapsto N_s$ induces a bijection between the isomorphism classes of simply connected complete Sasakian manifolds and the isomorphism classes of simply connected complete S-manifolds of CR-codimension s.

Proof. We remark that, if (N, DN, J, g) and (N', DN', J', g') are *CR*-isometric Sasakian manifolds, then every *CR*-isometry $f: N \to N'$ satisfies $f_*\xi = \xi'$. This implies that f is also an isometry between the Riemannian manifolds (N, g_1) and (N', g'_1) where g_1 and g'_1 are defined according to Proposition 4.1. If follows that $f \times id$ is a *CR*-isometry between $N \times \mathbb{R}^{s-1}$ and $N' \times \mathbb{R}^{s-1}$. Hence, Φ actually determines a map

 $[N] \to [N \times \mathbb{R}^{s-1}]$

where the symbol [] denotes a *CR*-isometry class. To show that this map is a bijection, we observe that, according to Theorem 3.2, a simply connected, complete *S*-manifold *M* is *CR*-isometric to a product $N \times \mathbb{R}^{s-1}$ where *N* is a maximal integral manifold of the distribution D_{∞} , considered as an Hermitian *CR*-submanifold of *M*. We also know that with respect to the metric g' in (18), *N* is a Sasakian manifold. Denote by *N'* this Sasakian manifold. Then the *S*-manifold $\Phi(N')$ coincides with $N \times \mathbb{R}^{s-1}$ and, hence, it coincides with *M* up to *CR*-isometry. This proves that Φ is surjective. On the other hand, it follows from (1) in Theorem 3.2 that if N'' is any Sasakian manifold such that $[\Phi(N'')] = [M]$, then N'' embeds in *M* as an integral manifold of D_{∞} . Thus [N'] = [N'']. This completes the proof. \Box

As a consequence, we get

COROLLARY 4.3. A simply connected S-manifold of CR-codimension s > 1 is noncompact.

In the following (see Corollary 6.4) we shall also verify that the above correspondence Φ preserves the property of being *CR*-symmetric in the sense of [10]. The next session is devoted to a preliminary discussion of the notion of *CR*-symmetry for general Hermitian *CR*-spaces. We come back to the context of almost *S*-manifolds in Section 6.

5. Symmetric *CR*-manifolds and φ -symmetric Spaces

In literature there are two definitions of symmetries on almost *CR*-manifolds: the *CR*-symmetries on *Hermitian CR-spaces*, introduced by W. Kaup and D. Zaitsev [10], and the φ -geodesic symmetries on *Sasakian manifolds*, according to T. Takah-ashi [17]. It turns out that a Sasakian manifold is (locally) φ -symmetric if and only if it is (locally) *CR*-symmetric (cf. Corollary 6.1 below). In this section we recall the two definitions.

We keep the notation in Section 2.

DEFINITION 5.1 ([10]). Let M be a Hermitian CR-space and let $\sigma: M \to M$ be an isometric CR-diffeomorphism. Then σ is called a *symmetry* at the point $x \in M$ if x is a fixed point of σ and the differential of σ at x coincides with the negative identity on the subspace $T_x^{-1} \oplus T_x^1$ of $T_x M$. A connected Hermitian CR-space M is called a (globally) CR-symmetric space if for each point $x \in M$ there exists a symmetry σ_x at x.

We remark that a symmetric CR manifold of CR-codimension 0 is a Hermitian symmetric space, while a symmetric CR space of CR-dimension 0 is a Riemannian symmetric space.

It is proved in [10] that a CR-symmetric space M is *CR-homogeneous*: the group of isometric CR automorphisms of M acts transitively. In particular, M is a complete Riemannian manifold.

THEOREM 5.2 ([10]). Let φ , ψ be isometric CR-diffeomorphisms of a Hermitian CR-space M. Assume that $\varphi(x) = \psi(x)$ for some $x \in M$. If the differentials $(d\varphi)_x$ and $(d\psi)_x$ coincide on the subspace $T_x^{-1} \oplus T_x^1$ of T_xM , then $\varphi = \psi$. Hence, if M is a CR-symmetric space, the symmetry σ_x at x is unique; its differential is given by

$$(d\sigma_x)_x = \sum_{k \ge -1} (-1)^k \pi_x^k, \tag{19}$$

where $\pi_x^k: T_x M \to T_x^k$ is the orthogonal projection.

This result allows us to give the following definition:

DEFINITION 5.3. A Hermitian almost *CR* manifold *M* will be called *locally CR*symmetric if for every point $x \in M$ the mapping

$$s_x = \exp_x \circ L_x \circ \exp_x^{-1}, \quad L_x := \sum_{k \ge -1} (-1)^k \pi_x^k$$
(20)

defined on a normal neighborhood of x, is a local isometric *CR*-diffeomorphism.

As a consequence of Theorem 5.2, Definitions 5.1 and 5.3 are well-related.

PROPOSITION 5.4. A connected Hermitian almost CR-manifold M is globally CR-symmetric if and only if each s_x extends to a global symmetry in the sense of Definition 5.1.

We end this section by recalling the definition of a φ -symmetric space (cf. [17] and [6]). Let M be a contact metric manifold with associated structure (φ, ξ, η, g) . A geodesic $\gamma = \gamma(s)$ in M is said to be φ -geodesic if its tangent vectors are horizontal, that is $\eta(\dot{\gamma}(s)) = 0$ for each s. Let σ_x be a local diffeomorphism defined in a neighborhood U of $x \in M$. Then σ_x is called a (local) φ -geodesic symmetry if for each point $y \in U$ which lies on the integral curve of ξ through x, and for each φ -geodesic γ of M such that $\gamma(0) = y$, we have $\sigma_x(\gamma(s)) = \gamma(-s)$, for all s with $\gamma(\pm s) \in U$.

A contact metric manifold M with associated structure (φ, ξ, η, g) is called a *locally* φ -symmetric space if it admits at every point $x \in M$ a φ -geodesic symmetry, which is a local automorphism, i.e. a local diffeomorphism leaving all structure tensor fields invariant. A Sasakian φ -symmetric space is a complete Sasakian manifold all of which φ -geodesic symmetries extend to global automorphisms of the Sasakian structure.

6. CR-symmetries on Almost S-manifolds

In this section, we establish some general properties of *CR*-symmetric almost S-manifolds, and we prove that for Sasakian manifolds the concepts of *CR*-symmetry and φ -symmetry coincide. We keep the notations of the above sections.

PROPOSITION 6.1. A Sasakian manifold is a (locally) φ -symmetric space if and only if it is (locally) CR-symmetric in the sense of Definition 5.3.

Proof. Let *M* be a Sasakian manifold with associated structure (φ, ξ, η, g) . Hence, *M* is an *S*-manifold of *CR*-codimension 1 and characteristic frame $\{\xi\}$. For each $x \in M$ the φ -geodesic symmetry σ_x on a normal neighborhood is given by

 $\sigma_x = \exp_x \circ S_x \circ \exp_x^{-1},$

where $S_x := -I + 2\eta \otimes \xi$ (cf. [5]). On the other hand, specializing Proposition 3.1 to the case where the *CR*-codimension s = 1, we get $S_x = L_x$ where L_x is defined in (20). Thus, keeping the notation of Definition 5.3, we have $\sigma_x = s_x$ and the assertion follows.

PROPOSITION 6.2. Assume that M is a locally CR-symmetric almost S-manifold of type (k, s) with associated structure $(\varphi, \xi_i, \eta^i, g)$. Then M is CR-integrable and the operators $h_i = \frac{1}{2}\mathcal{L}_{\xi_i}\varphi$, $i = 1, \ldots s$, coincide.

Proof. Fix a point $x \in M$. Since

 $N = [\varphi, \varphi] + 2\Phi \otimes \overline{\xi}$

we have that N is preserved by σ_x since φ, g and $\overline{\xi}$ are preserved. Now, assume s > 1 and set $\zeta_j := \xi_j - \xi_s$ for each j = 1, ..., s - 1. For each $X \in \mathcal{D}$ we have $N(X, \zeta_i) \in \mathcal{D}$. It follows that

 $-N_x(X,\zeta_i) = (\sigma_x)_* N_x(X,\zeta_i) = N_x(-X,-\zeta_i)$

whence $N_x(X, \zeta_i) = 0$. We have thus proved that $N(X, \zeta_i) = 0$ for all $X \in \mathcal{D}$ and this implies that $h_k = h_s$ for all k = 1, ..., s - 1. Turning to the general case $s \ge 1$, observe that, since $N(X, Y) \in \mathcal{D}$ for all $X, Y \in \mathcal{D}$, the same argument applies to show that N(X, Y) = 0 for $X, Y \in \mathcal{D}$ which means that M is CR-integrable.

PROPOSITION 6.3. Let (M, DM, J, g) be a CR-integrable almost S-manifold of CR-codimension $s \ge 2$ with characteristic frame $\{\xi_i\}$. Denote by $\tilde{\nabla}$ the Tanaka–Webster connection associated with $\{\xi_i\}$ and set $\bar{\xi} = \sum_{i=1}^{s} \xi_i$ and $\zeta_j = \xi_j - \xi_s$, $j = 1, \ldots, s - 1$. If M is (locally) CR-symmetric, then each maximal integral manifold N of $T' = D_{\infty}$ is (locally) CR-symmetric with respect to the metric (18), while each maximal integral manifold P of $T'' = D_{\infty}^{\perp}$ is a Riemannian (locally) symmetric space for the metric induced by g.

Proof. To prove that N and P are locally CR-symmetric, we show that the CR-symmetry σ_x at each point $x \in M$ leaves the maximal integral submanifolds N and P through x invariant. Indeed, observe that T' and T" are σ_x -invariant because they are ∇ -parallel and $(\sigma_x)_*T'_x \subset T'_x, (\sigma_x)_*T''_x \subset T''_x$. Let $y \in N$ and take a piecewise smooth curve γ in N joining x and y. Then T' being (σ_x) -invariant, we have that the tangent vectors of $\sigma_x \circ \gamma$ are tangent to N. According to a general property of involutive distributions (cf. [11], p. 86) it follows that $\sigma_x \circ \gamma$ lies in N. Hence $\sigma_x(y) \in N$. An analogous argument applies to P. Since, according to Theorem 2.2, $(\sigma_x)_*\bar{\xi}=\bar{\xi}, \sigma_x$ restricts to an isometry of (N, g'), which is a local CR-symmetry at x. It follows that N is locally CR-symmetric as claimed. Moreover, σ_x restricts to a geodesic reflection of P, so that P is Riemannian locally symmetric.

COROLLARY 6.4. Fix an integer $s \ge 2$. The mapping Φ in Theorem 4.2 induces a bijection between the isomorphism classes of simply connected Sasakian φ -symmetric spaces and the isomorphism classes of simply connected CR-symmetric S-manifolds.

In particular, any simply connected CR-symmetric S-manifold of CR-codimension $s \ge 2$ is noncompact.

Proof. We recall that *CR*-symmetric spaces are always complete since they are Riemannian homogeneous.

Let N be a Sasakian φ -symmetric space with characteristic vector field ξ . If σ_x is the CR-symmetry at the point $x \in N$, then $\sigma_* \xi = \xi$, so that σ is an isometry for the metric g_1 defined in 1) of Theorem 4.2. Hence, $\sigma_x \times (-\text{Id})$ is a CR-isometry on $\Phi(N) = M \times \mathbb{R}^{s-1}$ which is clearly a CR-symmetry at (x, p) for each $p \in \mathbb{R}^{s-1}$. It follows that $\Phi(N)$ is CR-symmetric.

Assume now that M is a CR-symmetric space; let $N \in \Phi^{-1}([M])$. Then, by construction, N is CR-isometric to a maximal integral manifold of the distribution D_{∞} on M, endowed with the Sasakian structure induced on it according to Theorem 3.2. Hence, N is Sasakian φ -symmetric according to Prop. 6.3.

7. A Characterization of Locally CR-symmetric S-manifolds

Takahashi ([17]) proved that a necessary and sufficient condition for a Sasakian manifold to be a locally φ -symmetric space is that $\overline{\nabla}\overline{R} = 0$, where $\overline{\nabla}$ is a special linear connection, called the Okumura's linear connection, and \overline{R} is its curvature tensor field. If M is a Sasakian manifold with structure (φ, ξ, η, g), the Okumura's connection $\overline{\nabla}$ is given by

$$\bar{\nabla}_X Y = \nabla_X Y + T(X, Y),$$

where

$$T(X,Y) = d\eta(X,Y)\xi - \eta(X)\varphi(Y) + \eta(Y)\varphi(X).$$
(21)

The tensors φ, ξ, η, T are parallel with respect to $\overline{\nabla}$. This connection was considered first in [16].

Taking into account Theorem 2.3 and the subsequent Remark, it is natural to ask for a similar characterization involving the Tanaka–Webster connection. We shall prove the following theorem:

THEOREM 7.1. Let (M, DM, J, g) be an S-manifold with characteristic frame $\{\xi_1, \ldots, \xi_s\}$, $s \ge 1$, and corresponding Tanaka–Webster connection $\tilde{\nabla}$. A necessary and sufficient condition for M to be locally CR-symmetric is that $\tilde{\nabla}\tilde{R} = 0$.

Proof. We shall consider first the case where s = 1. Hence, M is a Sasakian manifold. We shall reduce to the Theorem of Takahashi by showing that $\overline{\nabla}\overline{R} = \overline{\nabla}\widetilde{R}$. Indeed, the two connections are defined by

$$\nabla = \nabla + T, \quad \nabla = \nabla + H,$$

where T and H are given by (21) and (11), respectively. Now we set

$$Q(X, Y) = (H - T)(X, Y) = 2\eta(X)\varphi(Y)$$

for any $X, Y \in \mathcal{X}(M)$. By computation we get

$$(\nabla_V R)(X, Y)Z = (\nabla_V R)(X, Y)Z + T(V, R(X, Y)Z) - R(T(V, X), Y)Z - R(X, T(V, Y))Z - R(X, Y)T(V, Z)$$

and similarly,

$$(\tilde{\nabla}_V \tilde{R})(X, Y)Z = (\nabla_V R)(X, Y)Z + H(V, R(X, Y)Z) - R(H(V, X), Y)Z - R(X, H(V, Y))Z - R(X, Y)H(V, Z)$$

for any $X, Y, Z, V \in \mathcal{X}(M)$. Hence,

$$\begin{split} &(\tilde{\nabla}_{V}\tilde{R})(X,Y)Z - (\bar{\nabla}_{V}\bar{R})(X,Y)Z \\ &= Q(V,R(X,Y)Z) - R(Q(V,X),Y)Z - R(X,Q(V,Y))Z - R(X,Y)Q(V,Z) \\ &= 2\eta(V)[\varphi(R(X,Y)Z) - R(\varphi X,Y)Z - R(X,\varphi Y)Z - R(X,Y)\varphi Z] \\ &= 0, \end{split}$$

where the last equality follows applying Lemmas 2.8 and 5.1 in [17].

Now let *M* be an *S*-manifold with *CR*-codimension $s \ge 2$. Fix a point $p \in M$; according to Theorem 3.2, we can choose a cubic coordinate system $(x^1, \ldots, x^{2k+1}, y^1, \ldots, y^{s-1})$ defined on an open neighborhood *V* of *p*, such that $V' = \{q \in V \mid y^i(q)=0\}$ and $V'' = \{q \in V \mid x^j(q)=0\}$ are open neighborhoods of *p* in the maximal integral manifolds *N* and P of the distributions $T' = D_{\infty} = DM \oplus [\bar{\xi}]$ and $T'' = D_{\infty}^{\perp}$ respectively. We know that the *CR*-submanifold *N* is a Sasakian manifold with respect to the Hermitian metric g' defined by (18). Moreover, P is a flat Riemannian submanifold of *M*. Since the statement to be proved is of local nature, we are reduced to show that *V* is locally *CR*-symmetric if and only if $\tilde{\nabla}\tilde{R}$ vanishes on *V*. We remark that the natural diffeomorphism $V \cong V' \times V''$ is a *CR*-map and an isometry, provided we put on *V'* and *V''* the product metric of the metrics induced by *V*.

We first prove that a necessary and sufficient for V to be locally CR-symmetric is that (V', DV', J, g') be locally CR-symmetric. Indeed, the necessity follows from Prop. 6.3. For the sufficiency, let $p = (x, z) \in V \cong V' \times V''$ and let σ' be a local CR-symmetry of V' at x; denote also by σ'' be the geodesic reflection of V'' at z, which is a local isometry of V'' because V'' is flat. We remark that, according to the definition of g', since $(\sigma')_*\bar{\xi} = \bar{\xi}$, then σ is also an isometry with respect to the metric g restricted to V', so that $\sigma := \sigma' \times \sigma''$ is a local isometry of $V \cong$ $V' \times V''$. It is clear that σ is a local CR transformation of V. Since $(\sigma)_{*p} = -Id$ on $D_p M \oplus (D_{\infty}^{\perp})_p$ we have that σ is a local CR-symmetry at p. This implies that V is locally CR-symmetric proving our claim.

Now, we know that, N being Sasakian, (V', DV', J, g') is locally CR-symmetric if and only if on V' it holds $\tilde{\nabla}^N \tilde{R}^N = 0$, where $\tilde{\nabla}^N$ is the Tanaka–Webster connection of N. On the other hand, $\tilde{\nabla}^N$ coincides with the connection induced by $\tilde{\nabla}$ on N (Theorem 3.2, 1). Moreover, according to (15), we have that $\tilde{R} = 0$ on V". To conclude the proof, we observe that according to Proposition 2.5 we have $\tilde{T}(X, Y) = 0$ for any $X \in T', Y \in T''$. This implies that

207

$$\tilde{\nabla}_{\frac{\partial}{\partial x^{i}}}\frac{\partial}{\partial y^{j}}=\tilde{\nabla}_{\frac{\partial}{\partial y^{j}}}\frac{\partial}{\partial x^{i}}=0,$$

whence, being $\tilde{R} = 0$ on V'', we conclude that $\tilde{\nabla}^N \tilde{R}^N = 0$ on V' if and only if $\tilde{\nabla} \tilde{R} = 0$ on V. This completes the proof of Theorem 7.1.

COROLLARY 7.2. A complete and simply connected locally CR–symmetric S-manifold is globally CR-symmetric.

Proof. This can be proved by a standard argument using Corollary 7.9 in [11], Ch. VI, page 265. Indeed, we remark that $\tilde{\nabla}$, being a metric connection, is complete by assumption. Since $\tilde{\nabla}\tilde{R} = \tilde{\nabla}\tilde{T} = 0$, for each $x \in M$ the linear transformation $L_x: T_x M \to T_x M$ in (20) extends to a global affine transformation $f: M \to M$, such that $df_x = L_x$. This transformation is actually an isometric *CR*-diffeomorphism because g and φ are $\tilde{\nabla}$ -parallel. Thus f is a *CR*-symmetry at x.

8. Failure of Theorem 7.1 in the Nonnormal Case

In this section we provide explicit examples to show that Theorem 7.1 is false without the assumption of normality.

First, we consider a class of *CR*-integrable almost *S*-manifolds which are locally *CR*-symmetric but $\tilde{\nabla}\tilde{R} \neq 0$.

Let *M* be a contact metric manifold with structure (φ, ξ, η, g) . We suppose that the characteristic vector field ξ belongs to the (k, μ) -nullity distribution for some real numbers *k* and μ . This means that the curvature tensor *R* satisfies

$$R(X,Y)\xi = k(\eta(Y)X - \eta(X)Y) + \mu(\eta(Y)hX - \eta(X)hY)$$
(22)

for any $X, Y \in \mathcal{X}(M)$, where $h = \frac{1}{2}\mathcal{L}_{\xi}\varphi$. In [4] it is proved that, for such manifolds, $k \leq 1$. If k = 1, then h = 0 and M is Sasakian. If k < 1, then the contact metric structure is not Sasakian and M admits three mutually orthogonal integrable distributions: $D(0) = \mathbb{R}\xi$, $D(\lambda)$ and $D(-\lambda)$ defined by the eigenspaces of h, where $\lambda = \sqrt{1-k}$.

Note that

$$(\nabla_X \varphi) Y = g(X + hX, Y)\xi - \eta(Y)(X + hX)$$

for any $X, Y \in \mathcal{X}(M)$. This is a necessary and sufficient condition for M to be CR-integrable [18], and this allows us to consider the Tanaka–Webster connection.

In the following we consider the non-Sasakian case. In [6] it is proved that the contact metric manifolds satisfying (22), with k < 1, are all locally φ -symmetric. We shall prove the following:

PROPOSITION 8.1. Let M be a contact metric manifold whose characteristic vector field ξ belongs to the (k, 0)-nullity distribution, k < 1. Suppose that dim_R M > 3. Let $\tilde{\nabla}$ be the Tanaka–Webster connection and \tilde{R} its curvature tensor field. Then $\tilde{\nabla}\tilde{R} \neq 0$.

For instance, the tangent sphere bundle T_1M of a flat Riemannian manifold satisfies the above conditions with k=0.

For the proof, we shall make use of the following proposition:

PROPOSITION 8.2 ([6]). Let M be a contact metric manifold with structure (φ, ξ, η, g) , such that ξ belongs to the (k, μ) -nullity distribution. Then, there exists a homogeneous structure on M, that is a tensor field T of type (1,2) satisfying

 $\nabla' g = 0, \quad \nabla' R = 0, \quad \nabla' T = 0,$

where $\nabla' = \nabla - T$. T is given by

$$T(X,Y) = g(\varphi X + \varphi(hX), Y)\xi - \eta(Y)(\varphi X + \varphi(hX)) - \frac{\mu}{2}\eta(X)\varphi(Y)$$
(23)

for any $X, Y \in \mathcal{X}(M)$. Moreover, the tensor fields ξ , R, φ , h are all parallel with respect to ∇' .

Proof of 8.1 The Tanaka–Webster connection of M is given by $\tilde{\nabla} = \nabla + H$, where

 $H(X, Y) = -g(\varphi X + \varphi(hX), Y)\xi + \eta(Y)(\varphi X + \varphi(hX)) + \eta(X)\varphi(Y).$

Now we consider the tensor T in (23) and we put

 $Q(X, Y) = (T + H)(X, Y) = \eta(X)\varphi(Y)$

for any $X, Y \in \mathcal{X}(M)$. Then $\tilde{\nabla} = \nabla' + Q$. By a direct calculation we see that the curvature tensor \tilde{R} is given by

 $\tilde{R}(X, Y)Z = R(X, Y)Z + B(X, Y)Z,$

where

$$B(X, Y)Z = k[g(X, Z)\eta(Y)\xi - g(Y, Z)\eta(X)\xi - - -\eta(Y)\eta(Z)X + \eta(X)\eta(Z)Y] - - \Phi(Y + hY, Z)(\varphi X + \varphi hX) + + \Phi(X + hX, Z)(\varphi Y + \varphi hY) + 2\Phi(X, Y)\varphi Z.$$
(24)

Now we compute $(\tilde{\nabla}_{\xi}\tilde{R})(X, Y)Y$, choosing $X \in D(\lambda)$ and $Y \in D(-\lambda)$, such that g(Y, Y) = 1 and $g(\varphi X, Y) = 0$; this is possible since we assumed dim_{**R**} M > 3. We know that $\nabla' R = 0$. Moreover, *B* is built from the tensors g, φ, h, η, ξ , which are ∇' -parallel; hence, $\nabla' B = 0$ and this implies $\nabla' \tilde{R} = 0$. Making use of Theorem 1 in [4], we get

$$Q(\xi, R(X, Y)Y) - R(Q(\xi, X), Y)Y - R(X, Q(\xi, Y))Y - R(X, Y)Q(\xi, Y)$$

= $\varphi(R(X, Y)Y) - R(\varphi X, Y)Y - R(X, \varphi Y)Y - R(X, Y)\varphi Y$
= $2(\lambda - 1 + k)\varphi X.$

Applying (24), we obtain

$$Q(\xi, B(X, Y)Y) - B(Q(\xi, X), Y)Y - B(X, Q(\xi, Y))Y - B(X, Y)Q(\xi, Y)$$

= $\varphi(B(X, Y)Y) - B(\varphi X, Y)Y - B(X, \varphi Y)Y - B(X, Y)\varphi Y$
= $2\lambda(1 + \lambda)\varphi X$.

Hence,

$$(\tilde{\nabla}_{\xi}\tilde{R})(X,Y)Y = 2(\lambda - 1 + k + \lambda + \lambda^2)\varphi X = 4\lambda\varphi X \neq 0.$$

Next we exhibit an example of a nonnormal almost S-manifold which has vanishing Tanaka–Webster curvature without being locally CR-symmetric.

Set

 $\mathfrak{m} = \mathbb{R}^{2k} \oplus \mathbb{R}^s = V_1 \oplus V_2, \ s \ge 2$

and denote by $\{X_1, \ldots, X_k, JX_1, \ldots, JX_k\}$ the standard basis of \mathbb{R}^{2k} endowed with the complex structure J associated with the matrix $\begin{pmatrix} 0 & -I_k \\ I_k & 0 \end{pmatrix}$.

Moreover let $\{\xi_1, \ldots, \xi_s\}$ denote the natural basis of V_2 and let g be the inner product on m obtained by declaring the basis $\{X_i, JX_i, \xi_j\}$ to be orthonormal. Let $\varphi: \mathfrak{m} \to \mathfrak{m}$ be the natural f-structure on \mathfrak{m} , i.e. φ is the endomorphism which coincides with J on V_1 and vanishes on V_2 .

We also denote by U the endomorphism of \mathfrak{m} which is associated to the matrix

$$\begin{pmatrix} I_k & 0 & 0 \\ 0 & -I_k & 0 \\ 0 & 0 & 0 \end{pmatrix}.$$

Notice that $U\varphi = -\varphi U$.

We denote by \mathfrak{h} the Lie subalgebra of End(\mathfrak{m}) consisting of all endomorphisms which vanish on V_2 and annihilate the tensors φ , g and U when extended to the tensor algebra of \mathfrak{m} as derivations. We remark that

$$A \in \mathfrak{so}(k) \mapsto \begin{pmatrix} A & 0 & 0 \\ 0 & A & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

provides a Lie-algebra isomorphism $\mathfrak{so}(k) \cong \mathfrak{h}$. In particular, \mathfrak{h} is compact semisimple provided $k \ge 3$.

Now we define a Lie algebra structure on $g := \mathfrak{h} \oplus \mathfrak{m}$ as follows:

 $[X, Y] := -2g(X, JY)e, \quad [v, X] := a(v)UX = -[X, v],$ $[A, X] = A \cdot X - [X, A], \quad [A, v] := 0, \quad [v, w] := 0, \quad [A, B] := AB - BA$

for each $X, Y \in V_1, v, w \in V_2, A \in \mathfrak{h}$. Here $e := \sum_i \xi_i \in V_2$, and $a: V_2 \to \mathbb{R}$ is a fixed nonnull linear functional such that a(e) = 0.

Let *G* be the simply connected Lie group with Lie algebra \mathfrak{g} and let *H* denote the analytic subgroup corresponding to the subalgebra \mathfrak{h} . Assuming $k \ge 3$, we have that *H* is compact, so that M = G/H is a reductive homogeneous space. In [13] it is verified that G/H carries a *G*-invariant *CR*-integrable almost *S*-structure which is *not* normal; moreover, the vectors ξ_i extend in a *G*-invariant fashion to a characteristic frame and the associated Tanaka–Webster connection is the canonical *G*-invariant linear connection. It follows that $\tilde{R} = 0$. On the other hand, *M* is not *CR*-symmetric provided $a(\xi_i) \neq a(\xi_j)$ for some $i, j \in \{1, \ldots, s\}$. Indeed, under the natural identification $T_o M \equiv \mathfrak{m}$, o = H, we have $(h_i)_o = a(\xi_i) \varphi U$. Hence, $h_i \neq h_j$ while a necessary condition for *M* to be *CR*-symmetric is that the operators h_i are all equal (cf. Prop. 6.2).

References

- 1. Blair D. E.: Contact Manifolds in Riemannian Geometry, Lecture Notes in Math. 509, Springer-Verlag, Berlin, 1976.
- 2. Blair D. E.: *Riemannian Geometry of Contact and Symplectic Manifolds*, Progr. in Math. 203, Birkhäuser, Boston, 2002.
- 3. Blair D. E.: Geometry of manifolds with structural group $U(n) \times O(s)$, J. Differential Geom. 4 (1976), 155–167.
- 4. Blair D. E., Koufogiorgos T. and Papantoniou B. J.: Contact metric manifolds satisfying a nullity condition, *Israel J. Math.* **91** (1995), 189–214.
- Blair D. E. and Vanhecke L.: Symmetries and φ-symmetric spaces, *Tohoku Math.* Journ. 39 (1987), 373–383.
- 6. Boeckx E. : Locally φ -symmetric contact metric spaces, *Arch. Math.* **72** (1999), 466–472.
- Duggal K. L., Ianus S. and Pastore A. M.: Maps interchanging *f*-structures and their harmonicity, *Acta Appl. Math.* 67 (2001), 91–115.
- 8. Ianus S. and Pastore A. M.: Harmonic maps on contact metric manifolds, *Ann. Math. Blaise Pascal* 2 (1995), 43–53.
- Jiménez J. A. and Kowalski O.: The classification of φ-symmetric Sasakian manifolds, Mh. Math. 115 (1993), 83–98.
- Kaup W. and Zaitsev D.: On symmetric Cauchy–Riemann manifolds, Adv. Math. 149 (2000), 145–181.
- Kobayashi S. and Nomizu K.: Foundations of Differential Geometry, Vol. I, Interscience Publishers, New York, 1963.
- 12. Kowalski O.: Generalized Symmetric Spaces, Lecture. Notes in Math. 805, Springer-Verlag, Berlin, 1980.

- 13. Lotta A. and Pastore A. M.: The Tanaka–Webster connection for almost S-manifolds and Cartan geometry, to appear on Arch. Math. (Brno).
- 14. Medori C. and Nacinovich M.: Levi-Tanaka algebras and homogeneous CR manifolds, Compositio Math. 109 (1997), 195–250.
- 15. Mizner R. I.: Almost CR structures, *f*-structures, almost product structures and associated connections, *Rocky Mount. J. Math.* **23** (1993), 1337–1359.
- 16. Okumura M.: Some remarks on spaces with a certain contact structure, *Tohoku Math. J.* **14** (1962), 135–145.
- 17. Takahashi T.: Sasakian φ-symmetric spaces, Tohoku Math. J. 29 (1977), 91-113.
- 18. Tanno S.: Variational problems on contact Riemannian manifolds, *Trans. Amer. Math. Soc.* **314** (1989), 349–379.