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Abstract. We present a view of log-concave measures, which enables one to build an iso-
morphic theory for high dimensional log-concave measures, analogous to the corresponding
theory for convex bodies. Concepts such as duality and the Minkowski sum are described
for log-concave functions. In this context, we interpret the Brunn–Minkowski and the
Blaschke–Santaló inequalities and prove the two corresponding reverse inequalities. We also
prove an analog of Milman’s quotient of subspace theorem, and present a functional ver-
sion of the Urysohn inequality.
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1. Introduction

A measure µ on R
n is log-concave if for any measurable A,B ⊂R

n and 0<λ<1,

µ(λA+ (1−λ)B) �µ(A)λµ(B)1−λ

whenever λA+ (1−λ)B is measurable, where A+B ={a +b;a ∈A,b∈B} and λA=
{λa;a ∈A}. Such measures naturally appear in convex geometry, since the Brunn–
Minkowski inequality states that uniform measures on convex sets are log-concave
measures (including the Lebesgue measure on R

n). The Brunn–Minkowski inequal-
ity also implies that lower-dimensional marginals of uniform measures on convex
bodies are log-concave. In fact, marginals of uniform measures on convex bodies
are essentially the only source for log-concave measures, as these marginals form
a dense subset in the class of log-concave measures. A function f : Rn → [0,∞) is
log-concave if log f is concave. As was shown in [7], a measure µ on R

n whose
support is not contained in any affine hyperplane is a log-concave measure if and
only if it is absolutely continuous with respect to the Lebesgue measure, and its
density is a log-concave function.

As log-concave measures retain some features of uniform measures on convex
bodies, many results on uniform measures on convex bodies may be generalized
to log-concave measures (two samples among many are [5] and [6]). However, it
has recently become clear to the authors that such a generalization may shed new
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light on uniform measures on convex bodies, and may help clarify the difficult
open problems regarding these measures. Such an approach is demonstrated in [9],
and has led there to some progress regarding the slicing problem. Therefore we
believe that a systematic study of the geometry of log-concave measures is essential
in order to understand uniform measures on convex bodies.

In this paper we present some steps in this direction, and we recover most of
the isomorphic results for convex bodies in the context of log-concave functions.
When trying to generalize the geometry of convex bodies to log-concave mea-
sures, the first problem we encounter is that of duality. For a convex body K ⊂
R

n which is centrally-symmetric (i.e., K = −K), its polar is defined by K◦ = {x ∈
R

n; ∀y ∈ K, 〈x, y〉�1}. The polar body is a fundamental tool in convex geome-
try. We show that a suitable variation of the Legendre transform may constitute
a proper replacement in the context of functions. Given a function f : R

n →R, its
Legendre transform is defined by

Lf (x)= sup
y∈Rn

[〈x, y〉−f (y)] .

The function L(f ) is convex. If f is convex as well as continuous, then L(L(f ))=
f . The Legendre transform is a classical operation, which was used, for example,
in the derivation of Hamilton equations in classical mechanics (e.g., [1]). Since the
most natural domain for the Legendre transform is convex functions, we define the
dual of a log-concave function f : R

n → [0,∞) by

f ◦ = e−L(− log f ).

This definition is closely related to the duality of convex bodies. Let ‖ · ‖,‖ · ‖∗ be
the norms that K,K◦ are their unit balls, correspondingly. Then the dual functions
to 1K, e−‖x‖, e− 1

2 ‖x‖2
are exactly the functions e‖x‖∗ ,1K◦ , and e− 1

2 ‖x‖2∗ , respectively.
Let us demonstrate the usefulness of this definition with the Blaschke–Santaló
inequality and its converse. These inequalities state that there exists a numerical
constant c>0 such that for any centrally symmetric convex body K ⊂R

n,

c<

(
Vol(K)

Vol(D)

Vol(K◦)
Vol(D)

) 1
n

�1 (1)

where D is the standard Euclidean unit ball in R
n. The right-most inequality is due

to Santaló (see, e.g., [11] for a clear presentation), and the left-most one was proved
by Bourgain and Milman [8]. Log-concave functions satisfy corresponding inequal-
ities, which are functional analogs of Santaló and reverse Santaló inequalities:

THEOREM 1.1. There exist universal constants c,C > 0 such that for any dimen-
sion n and for any f : R

n → [0,∞), an even log-concave function with 0<
∫

f <∞,
we have

c<

(∫
Rn

f

∫
Rn

f ◦
) 1

n

�C.
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The optimal value of the constant C from Theorem 1.1 is known to be 2π (see
[2] and [3]). Regarding the equality case in the right-most inequality in Theorem
1.1; in the case of convex bodies, it is known that

Vol(K)

Vol(D)

Vol(K◦)
Vol(D)

=1

if and only if K is an ellipsoid. In the functional version of the Santaló inequal-
ity, the role of ellipsoids is replaced by Gaussian functions (functions of the form
ce−〈Ax,x〉 for a positive-definite matrix A and a positive c>0). Note that the stan-

dard Gaussian e− |x|2
2 is the only function which is dual to itself. As is proved in

[3] (the equality case appears in [2]):

THEOREM 1.2. Let f : R
n → [0,∞) be an even function such that 0 <

∫
f < ∞.

Then,∫
Rn

f

∫
Rn

f ◦ � (2π)n

where equality holds exactly for Gaussians.

An operation related to Legendre transform is the Asplund sum. In a completely
analogous way to the definition of the Asplund sum, we define the Asplund prod-
uct of two functions f, g : R

n → [0,∞) as

f �g(x)= sup
x1+x2=x

f (x1)f (x2).

The Asplund product preserves log-concavity. Also, (f � g)◦ = f ◦g◦, i.e., the dual
to the Asplund product is simply the usual product of the dual functions. The
Asplund product of log-concave functions is analogous to the Minkowski sum of
convex bodies. Indeed, 1A �1B =1A+B for any A,B ⊂R

n. A central inequality con-
nected with the Minkowski sum of two bodies A,B ⊂R

n and a parameter 0�λ�1
is the Brunn–Minkowski inequality:

Vol(λA+ (1−λ)B)�Vol(A)λVol(B)1−λ.

The Brunn–Minkowski inequality is also known in the following equivalent formu-
lation,

Vol(A+B)
1
n �Vol(A)

1
n +Vol(B)

1
n

for any A,B ⊂ R
n. Define λ · f = f λ (x/λ). Note that f � f = 2 · f for a log-con-

cave f , and that (λ ·f )◦ = (f ◦)λ. The function λ ·f is the analog of a λ-homoth-
ety of a convex body. The functional analog of the Brunn–Minkowski inequality is
the Prekopa–Leindler inequality (e.g., [15]). In our terminology, it states that given
f, g : R

n → [0,∞) and 0�λ�1,∫
[λ ·f ]� [(1−λ) ·g]�

(∫
f

)λ(∫
g

)1−λ

. (2)
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Therefore, the Prekopa–Leindler inequality constitutes a complete analog to the
Brunn–Minkowski inequality for bodies, where the Minkowski sum of bodies is
replaced by the Asplund product of functions (see also [2]). Here we prove the ana-
log of the inverse Brunn–Minkowski inequality (see [13] or the book [15]), as fol-
lows. We denote (f ◦T )(x)=f (T x).

THEOREM 1.3. Let f, g : R
n → [0,∞) be even log-concave functions with f (0) =

g(0)=1. Then there exist Tf , Tg ∈SL(n) such that f̃ =f ◦Tf and g̃ =g ◦Tg satisfy

(∫
f̃ � g̃

) 1
n

<C

[(∫
f̃

) 1
n

+
(∫

g̃

) 1
n

]

where C > 0 is a universal constant, Tf depends solely on f , and Tg depends solely
on g.

Further inequalities which are the analogs to the quotient of subspace theorem
and related results are formulated and proved in Section 2. In Section 2 we also
prove Theorem 1.1 and Theorem 1.3. The main tool in the proofs of these isomor-
phic results is a method of attaching a convex body to any log-concave function,
which is due to Ball [4].

In Section 3, a functional analog of the mean width is introduced. We show that
an analog of the Urysohn inequality holds in this setting. Throughout this paper,
the letters c,C, c1, c

′, etc., denote positive universal constants whose value is not
necessarily the same in various appearances. A ≈ B means that cA < B < CA for
some universal constants c and C. A convex body is a convex set with a non-
empty interior in R

n.

2. Convex Bodies

Let f : R
n →R be an even log-concave function. For x ∈R

n define

‖x‖f =
(∫ ∞

0
f (rx)rn−1 dr

)− 1
n

.

In [4] it is proven that ‖ ·‖f is a norm on R
n. Denote its unit ball by Kf , the con-

vex body that is associated with f . Then Kf is convex, centrally symmetric, and

Vol(Kf )= 1
n

∫
Sn−1

∫ ∞

0
f (rx)rn−1 dr dx = 1

n

∫
Rn

f

where Sn−1 =∂D. Next, we shall elaborate on some connections between the body
Kf and the log-concave function f . We start with a one-dimensional lemma, in
the spirit of the Laplace method. Recall (e.g., [16]) that if g :R→ [0,∞] is convex,
then its left and right derivatives, denoted here as gL and gR, exist whenever g is
finite. The function ϕ(t)=g(t)−n log t is convex in (0,∞), and if g ≡ Const then
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ϕ(t)
t→0,∞−−−→∞. By strict convexity, there exists a unique critical point t0 of ϕ such

that g(t)−n log t is nonincreasing for t < t0 and nondecreasing for t > t0. Note that
it is possible that g(t)=∞ for t � t0, however, in that case,

lim
t→t−0

[g(t)−n log t ]= inf
t∈R

[g(t)−n log t ] .

LEMMA 2.1. Let g : [0,∞)→ [0,∞] be a nondecreasing convex function such that
g(0) = 0 and g ≡ 0. Denote M = supt>0 e−g(t)tn, and let t0 be the corresponding
(unique) critical point. Then,

M
t0

n+1
�
∫ ∞

0
e−g(t)tn dt <cM

t0√
n
, g(t0)�n, g(2t0)�n

and g(ln)� (l −1)n for any l >1. In addition,∫ ∞

5t0

e−g(t)tn dt < e−2n

∫ ∞

0
e−g(t)tn dt.

Proof. The left-most inequality is straightforward: since g(t) is nondecreasing,∫ ∞

0
e−g(t)tn dt � e

− lim
t→t

−
0

g(t)
∫ t0

0
tn dt =M

t0

n+1
.

To prove the right-most inequality, recall that t0 is a critical point of the con-
vex function ϕ(t) = g(t) − n log t . Hence ϕL(t0)�0�ϕR(t0). We conclude that
gL(t0)�n/t0 �gR(t0) and g(t0)+n/t0(t − t0) is a supporting line to g at t0. Since g

is convex, g(t)�g(t0)+n/t0(t − t0) for every t , and
∫ ∞

0
tne−g(t) dt � en−g(t0)

∫ ∞

0
tne

− nt
t0 dt = en−g(t0)

(
t0

n

)n+1 ∫ ∞

0
tne−t dt

= e−g(t0)tn0
enn!
nn

t0

n
≈M

t0√
n
.

Additionally, for t < t0, we have gR(t)�n/t0 and, hence, g(t0)�g(0)+ ∫ t0
0 n/t0 =n.

Also, g(2t0)�g(t0) + n/t0(2t0 − t0)�n. The estimate for g(lt0) follows the same
argument. The last assertion follows from∫ ∞

5t0

e−g(t)tn dt � en−g(t0)

∫ ∞

5t0

tne
− tn

t0 dt << e−2nMt0. �

A convex function is differentiable almost everywhere (e.g., [17]). Yet, we still
need a notion of a gradient for the relatively few nonsmooth points. For a convex
function g we define its gradient in a nonsmooth point x (see, e.g., [17]) as ∇g(x)=
{y ∈ R

n; for all z, g(z)�g(x0) + 〈y, z − x〉}. For an even log-concave function f

define

K̄f ={x ∈R
n; 〈∇(− log f )(x), x〉�n−1},
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where for a nonsmooth point x, the condition 〈∇(− log f )(x), x〉�n−1 should be
understood as ∃y ∈∇(− log f )(x), 〈y, x〉�n−1. Define also

¯̄Kf ={x ∈R
n;f (x)> e−n}.

Then ¯̄Kf is clearly convex, but K̄f is not necessarily convex. Nevertheless, we show
that Kf , K̄f and ¯̄Kf are close to each other. The radial function of a convex body
K in direction θ is

r(K, θ)= sup{r >0; rθ ∈K}.

LEMMA 2.2. Assume that f : R
n → [0,∞) is an even log-concave function with

f (0)=1. Then, Kf ⊂ K̄f ⊂ ¯̄Kf ⊂ cKf for some universal constant c>0.
Proof. Fix θ ∈Sn−1 and let g(r)=− log f (rθ). If g≡0 then r(Kf , θ)=r(K̄f , θ)=

r( ¯̄Kf , θ) = ∞. Otherwise, denote M = supt>0 e−g(t)tn−1, and let t0 be the corre-
sponding critical point. By Lemma 2.1,

r(Kf , θ)≈ (Mt0)
1/n =

(
e−g(t0)tn0

)1/n ≈ t0

and actually, r(Kf , θ)< t0. On the other hand, since gL(t0)t0 �n−1�gR(t0)t0, we
have r(K̄f , θ)= t0, and since t0 �g−1(n)�2t0, then also t0 � r( ¯̄Kf , θ)�2t0.

COROLLARY 2.3. Let f :Rn → [0,∞) be an even log-concave function with f (0)=
1. Let E ⊂R

n be a λn-dimensional subspace, for some 0<λ<1. Then

c1λKf ∩E ⊂Kf |E ⊂ c2Kf ∩E

where f |E is the restriction of f to the subspace E and c1, c2 >0 are universal con-
stants.

Proof. By the log-concavity of f ,

¯̄Kf ∩E ={x ∈E;f (x)> e−n}⊂ c

λ
{x ∈E;f (x)> e−λn}= c

λ

¯̄Kf |E .

According to Lemma 2.2,

Kf |E ∩E ⊂ c ¯̄Kf |E ⊂ c ¯̄Kf ∩E ⊂ c′

λ

¯̄Kf |E ⊂ c′′

λ
Kf |E

and since ¯̄Kf ⊂Kf ⊂ ¯̄Kf , the corollary follows.

By a polar integration of the last inequality in Lemma 2.1, we obtain the
following:
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COROLLARY 2.4. Let f : R
n → [0,∞) be an even log-concave function with f (0)=

1 and a finite integral. Then
∫

cKf

f �
(

1− e−2n
)∫

Rn

f,

where c>0 is a universal constant.
Next, we should exhibit a connection between Kf ◦ and K◦

f .

PROPOSITION 2.5. Assume that f : Rn →R is even and log-concave. Then,

c1nK◦
f ⊂Kf ◦ ⊂ c2nK◦

f

where c1, c2 >0 are universal constants.
Proof. Since (cf )◦ = (1/c)f ◦ and Kcf = c1/nKf , multiplying f by a scalar if

needed, we may assume that f (0) = 1. Denote g = − log f . Assume first that g

is smooth and strictly convex. A crucial simple observation is that ∇L(g)(x) =
(∇g)−1(x) (e.g., [16]). Hence,

(∇g)K̄f ={(∇g)x; 〈x, (∇g)x〉�n−1}={x; 〈(∇g)−1x, x〉�n−1}= K̄f ◦ .

Let x0 ∈∂K̄f . Then, 〈x0,∇g(x0)〉=n−1. Denote by ‖y‖= supx∈K̄f
〈x, y〉, the norm

that
(
K̄f

)◦
is its unit ball. Then,

x0 ∈ ∂K̄f ⇒ ‖∇g(x0)‖�n−1

and, hence, (n−1)
(
K̄f

)◦ ⊂ (∇g)K̄f = K̄f ◦ . By Lemma 2.2,

cnK◦
f ⊂ (n−1)

(
K̄f

)◦ ⊂ K̄f ◦ ⊂ c′Kf ◦ .

Regarding the opposite inclusion, since g is convex, for any y ∈R
n,

g(y)�g(x0)+〈∇g(x0), y −x0〉=〈∇g(x0), y〉+g(x0)+1−n.

If, furthermore, y ∈ ¯̄Kf then g(y)�n and

〈∇g(x0), y〉�g(y)+n−1−g(x0)<2n−1.

Hence ∇g(x0)∈2n
( ¯̄Kf

)◦
and K̄f ◦ ⊂2n

( ¯̄Kf

)◦
. An application of Lemma 2.2 con-

cludes the proof under the assumption that g is smooth and strictly convex. For
an arbitrary function, an approximation argument is needed. For instance, we may
define fε =

(
f � e−ε|x|2

)
e−ε|x|2 . Then fε is smooth and strictly log-concave for any

ε>0. If ε is small enough, the bodies Kfε ,Kf ◦
ε

are close to Kf ,Kf ◦ , and the prop-
osition follows.
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Proof of Theorem 1.1. By Proposition 2.5,
(∫

Rn

f

∫
Rn

f ◦
) 1

n

=
(
n2Vol(Kf )Vol(Kf ◦)

) 1
n ≈

(
Vol(Kf )Vol(cnK◦

f )
) 1

n

and by Santaló’s inequality and its converse (e.g., [8] and [11]),
(∫

f

∫
f ◦
) 1

n

≈nVol(D)
2
n ≈ c. �

The reverse Brunn–Minkowski inequality for convex bodies (see [13]) is the fol-
lowing theorem:

THEOREM 2.6. Let K,P ⊂ R
n be centrally symmetric convex bodies. Then there

exist invertible linear transformations TK,TP of determinant one, such that K̃ =
TK(K), P̃ =TP (P ) satisfy

Vol(K̃ + P̃ )
1
n <C

[
Vol(K̃)

1
n +Vol(P̃ )

1
n

]

where C >0 is a numerical constant, TK depends solely on K and TP depends solely
on P .

LEMMA 2.7. Let f, g be even log-concave functions with f (0)=g(0)=1. Then,

c1Kf �g ⊂Kf +Kg ⊂ c2Kf �g

where c1, c2 >0 are numerical constants.
Proof. x ∈ ¯̄Kf �g implies that there exists x1 +x2 =x with f (x1)g(x2)� e−n. Since

the functions are not larger than one, necessarily x1 ∈ ¯̄Kf and x2 ∈ ¯̄Kg, hence ¯̄Kf �g ⊂
¯̄Kf + ¯̄Kg. Combining this with Lemma 2.2 we conclude the left-most inclusion.
The other inclusion follows from the fact that for any x ∈ ¯̄Kf + ¯̄Kg we have that
(f �g)(x)� e−2n. From Lemma 2.1 it follows that ¯̄Kf + ¯̄Kg ⊂ ¯̄Kf �g.

Proof of Theorem 1.3. Note that for any T , a linear transformation, Kf ◦T =
T −1(Kf ). By Theorem 1.3 we may choose Tf , Tg, linear transformations of deter-
minant one, such that K

f̃
and Kg̃ satisfy

Vol
(
K

f̃
+Kg̃

) 1
n
<C

[
Vol

(
K

f̃

) 1
n +Vol

(
Kg̃

) 1
n

]
.

According to Lemma 2.7,
(∫

f̃ � g̃

) 1
n

=n
1
n Vol

(
K

f̃ �g̃

) 1
n ≈Vol

(
K

f̃
+Kg̃

) 1
n

<C

[
Vol

(
K

f̃

) 1
n +Vol

(
Kg̃

) 1
n

]
�C

[(∫
f̃

) 1
n

+
(∫

g̃

) 1
n

]
.
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Given two functions f, g : R
n → [0,∞) with finite mass, we say that f ≺α g if

there exists a set A⊂R
n such that for any x ∈A,

f
1
n (x)� eg

1
n

(x

α

)

and
∫
A

f >
(
1− e−2n

) ∫
f . We say that f ∼α g if f ≺α g and g ≺α f . If f ∼α g for

α being a numerical constant, we say that f and g are ‘roughly isomorphic’.

LEMMA 2.8. Let f, g : R
n → [0,∞) be even log-concave functions with f (0) =

g(0)=1 and finite, positive integrals. Then for any α >1,

Kf ⊂ c1αKg �⇒ f ≺α g �⇒ Kf ⊂ c2αKg

where c1, c2 >0 are universal constants.
Proof. Assume that Kf ⊂ cαKg. By Corollary 2.4,

∫
Rn\c′ ¯̄Kf

f < e−2n

∫
Rn

f.

Denote A = c′ ¯̄Kf . If c, c′ > 0 are chosen properly, for any x ∈ A we have that

x/α ∈ ¯̄Kg, and hence g
(

x
α

) 1
n �1/e� (1/e)f (x)

1
n . Therefore f ≺α g. Regarding the

other statement, assume that f ≺α g and let A be the corresponding witness set. If
x ∈ 1

α

[ ¯̄Kf ∩A
]

then g(x)
1
n � (1/e)f (αx)1n �1/e2, and by Lemma 2.1 we get that

x ∈ 2 ¯̄Kg. Since ¯̄Kg is a convex set, we conclude that conv
( ¯̄Kf ∩A

)
⊂ 2α ¯̄Kg. It

remains to show that c′ ¯̄Kf ⊂ conv
( ¯̄Kf ∩A

)
. This would follow if we prove that

Vol
( ¯̄Kf ∩A

)
>
(

1− e− n
2

)
Vol

( ¯̄Kf

)
(e.g., Lemma 2.2 in [10]). Finally, note that∫

A
f >

(
1− e−2n

) ∫
f and that f (x)> e−n for any x ∈ ¯̄Kf . We conclude that

e−nVol
( ¯̄Kf \A

)
<

∫
Rn\A

f < e−2n

∫
Rn

f

and hence

Vol
( ¯̄Kf \A

)
< e−n

∫
f =ne−nVol(Kf )< e− n

2 Vol
( ¯̄Kf

)
.

Lemma 2.8 implies that if Kf =Kg, then f ∼c g for some universal c>0. In par-
ticular, if Kf is a Euclidean ball, then f is roughly isomorphic to a Gaussian. We
may now formulate more analogs of isomorphic results from the asymptotic the-
ory of convex bodies. It is known (see [14]) that given a centrally symmetric convex
body K ⊂R

n, there exists K̃, a linear image of K, and two rotations U1,U2 ∈O(n)

such that if we define T =U1(K̃)+ K̃ and P =U2(T )∩T , then c1D ⊂P ⊂ c2D for
some universal c1, c2 >0. The functional analog is presented below.
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PROPOSITION 2.9. Let f : R
n → [0,∞) be an even log-concave function with

f (0) = 1. Then there exists f̃ (= f ◦ Tf ) a linear image of f and two rotations

U1,U2 ∈ O(n) such that if g =
(
f̃ ◦U1

)
� f̃ and h = (g ◦U2) · g, then h ∼C G where

G(x)= e− |x|2
2 is the standard Gaussian, and C >0 is a numerical constant.

Proof. By Lemma 2.7, Kf �g is close to Kf +Kg. It is equally easy to realize that
Kfg is close to Kf ∩Kg in the same sense. Using the corresponding result for con-
vex bodies, we conclude that c1D ⊂Kh ⊂c2D for some universal constants c1, c2 >

0. The proposition follows by Lemma 2.8.

Milman’s quotient of subspace theorem [12] is the following statement.

THEOREM 2.10. Let K ⊂ R
n be a convex, centrally symmetric body. Then there

exist subspaces E ⊂F ⊂R
n with dim(E)>n/2 and an ellipsoid E ⊂E such that

c1E ⊂ProjE(K ∩F)⊂ c2E
where c1, c2 >0 are universal constants.

Let E ⊂ R
n be a subspace. Since (f |E)◦ (x) = supy∈E⊥ f ◦(x + y), we naturally

define ProjE(f )= supy∈E⊥ f (x +y). Assume that dim(E)=�n
2 �. Note that accord-

ing to Corollary 2.3, c1Kf |E ⊂ Kf ∩ E ⊂ c2Kf |E for some universal constants
c1, c2 >0. We can now formulate the functional analog of the Quotient of subspace
theorem. The proof is omitted, as it follows from Theorem 2.10 in a similar way
to the previous proofs.

PROPOSITION 2.11. Let f :Rn → [0,∞) be an even log-concave function with 0<∫
f <∞. Then there exist two subspaces E ⊂F ⊂R

n such that dim(E)>n/2 and

ProjE(f |F )∼c G

where G is some Gaussian measure, and c>0 is a numerical constant.

Remark. There is nothing special about the dimension 1
2n. For any 0 < λ < 1

one may find subspaces E ⊂F ⊂R
n such that dim(E)>λn and the conclusion of

Proposition 2.11 holds with a constant c(λ) that depends solely on λ. This follows
from a corresponding sharpening of Theorem 2.10 (see [12]).

3. Urysohn Inequality

Let K,T ⊂R
n be two convex, centrally symmetric bodies. A classical theorem due

to Minkowski (e.g., [17]) states that Vol(K +λT ) is a polynomial in λ. In particu-
lar,

Vol(K + εT )=Vol(K)+ εnV (T ,1;K,n−1)+O(ε2)
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where V (T ,1;K,n−1) is the corresponding mixed volume (e.g., [17]). Let us define
an analogous quantity for the log-concave case. If f,H :Rn → [0,∞) are even log-
concave functions of finite positive masses, we define

VH (f )= lim
ε→0+

∫
H � [ε ·f ]− ∫ H

ε
.

This limit always exists, because by the Prekopa–Leindler inequality
∫

H � [ε ·f ] is

a log-concave function of ε. Denote G(x)=e− |x|2
2 , the standard Gaussian, and con-

sider the case of VG(f ), which may be viewed as the ‘mean width’ of a log-concave
function, up to some normalization. We denote

M∗(f )=2
VG(f )

n
∫

G
= VG(f )

n
2 (2π)

n
2
.

For a centrally symmetric convex body K ⊂ R
n, the usual definition is M∗(K) =∫

Sn−1 supy∈K 〈x, y〉dσ(x) where σ is the unique rotation invariant probability mea-
sure on Sn−1. In the case f =1K , a straightforward calculation yields

VG(1K)= lim
ε→0+

∫
Rn e− d(x,εK)2

2 − ∫
Rn e− |x|2

2

ε
= (2π)

n−1
2 nκn

κn−1
M∗(K),

where d(x,K)= infy∈K |x −y| and κm is the volume of the unit ball in R
m. We con-

clude that M∗(K)= cnM
∗(1K) for some normalization constant cn ≈√

n. Next we
present an analytic formula for the mean width of a smooth log-concave function.

LEMMA 3.1. Let f : R
n → [0,∞) be a log-concave function, strictly log-concave on

its support, with continuous second derivatives, such that 0<
∫

f <∞, and that satis-
fies Hess(L(− log f ))(x)�K exp(K|x|)Id in the sense of positive matrices for some
K =K(f ). Then,

M∗(f )= 2
n(2π)n/2

∫
Rn

e− |y|2
2

[
�(− log f ◦)+|y|2Dr

log f ◦(y)

|y|
]

dy.

Proof. Denote g =− log f . Then g is strictly convex and smooth on its support,
hence (e.g., [16]) g(x)=〈x,∇g(x)〉−Lg(∇g(x)) and∫

Rn

f (x)dx =
∫

Rn

e−〈x,∇g(x)〉+Lg(∇g(x)) dx.

Substituting y = (∇g)x and recalling that ∇Lg = (∇g)−1, we get∫
Rn

f (x)dx =
∫

Rn

e−〈y,(∇Lg)y〉+Lg(y)det(Hess(Lg))dy.

Denote the radial derivative by Dr (i.e., Dr(g)(x)=〈∇g(x), x/|x|〉). Since

Dr

Lg(y)

|y| =
〈∇Lg(y),

y
|y| 〉|y|−Lg(y)

|y|2 ,
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we obtain∫
Rn

f (x)dx =
∫

Rn

e
−
(
|y|2Dr

Lg(y)
|y|

)
det(Hess(Lg))dy. (3)

This is true for any smooth and strictly log-concave function f . The function G�

[ε ·f ] is also smooth and strictly log-concave, and by Equation (3),

∫
G� [ε ·f ]=

∫
Rn

e
−
(

|y|2Dr

1
2 |y|2+εLg(y)

|y|

)

det(Id + εHess(Lg))dy. (4)

We would like to find an expression for M∗(f ). Since

det(Id + εHess(Lg))=1+ εTr(Hess(Lg))+O(ε2)=1+ ε�Lg +O(ε2),

e
−
(

|y|2Dr

1
2 |y|2+εLg(y)

|y|

)

= e− |y|2
2

(
1− ε|y|2Dr

Lg(y)

|y| +O(ε2)

)
,

the integrand in Equation (4) is

e− |y|2
2 + εe− |y|2

2

[
�Lg −|y|2Dr

Lg(y)

|y|
]

+O(ε2).

Using our assumption on the growth of Hess(Lg), by the dominated convergence
theorem,

VG(f )=
∫

Rn

e− |y|2
2

(
�Lg −|y|2Dr

Lg(y)

|y|
)

dy. �

From Lemma 3.1 it follows that M∗(G) = 1. It also follows that M∗(f � g) =
M∗(f )+M∗(g) and M∗(λ ·f )=λM∗(f ) for λ>0 and f that satisfies the require-
ments of Lemma 3.1. However, glancing at Lemma 3.1, it is not obvious why
M∗(f ) should be positive. This follows from our next proposition, which is the
functional analog of Urysohn inequality.

PROPOSITION 3.2. Let f :Rn → [0,∞) be any even log-concave function such that∫
f = ∫ G. Then

M∗(f )�M∗(G).

Proof. By the Prekopa–Leindler inequality,
∫

G� [ε ·f ]�
(∫ [

1
1− ε

·G
])1−ε (∫

f

)ε

=
(∫

e− 1−ε
2 |x|2 dx

)1−ε (∫
f

)ε

and computing the gaussian integral we obtain

∫
G� [ε ·f ]�

(
2π

1− ε

) n(1−ε)
2
(∫

f

)ε

.
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Since
∫

f = (2π)
n
2 we conclude that

VG(f )� lim
ε→0+

(
2π

1−ε

) n(1−ε)
2

(2π)
nε
2 − (2π)

n
2

ε
= (2π)

n
2
n

2

and the proposition is proved.

Remarks. (1) Note that if f (0) = 1 and
∫

f = ∫ G, then M∗(f ) > cM∗(1Kf
) for

some universal constant c > 0. Indeed, if M∗(1Kf
) ≈ M∗(G) = 1 this follows from

Proposition 3.2. Otherwise M∗(1Kf
)>C, and since f � e−n1 ¯̄Kf

we conclude that

M∗(f )�M∗
(
e−n1 ¯̄Kf

)
=M∗(1 ¯̄Kf

)−2>cM∗(1Kf
).

(2) Formally, the results in this paper are formulated and proved for even func-
tions. Yet, the evenness is never essentially used, and in fact the results hold for
an arbitrary log-concave function, provided that the origin is suitably chosen. If
f : R

n → [0,∞) is log-concave and has a finite, positive mass, then it must be a
bounded function, and its supremum is attained at some point. All of our results
hold, with the same proofs, for log-concave functions that reach their maximum at
the origin (note that the dual function also reaches its maximum at the origin).
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3. Ball, K.: PhD dissertation, Cambridge.
4. Ball, K.: Logarithmically concave functions and sections of convex sets in R

n, Studia
Math. 88(1)(1988), 69–84.

5. Bobkov, S. G. and Nazarov, F. L.: On convex bodies and log-concave probability
measures with unconditional basis, In: V. D. Milman et al. (eds), Geometric Aspects
of Functional Analysis (Israel seminar 2001–2002), Lecture Notes in Math. 1807,
Springer, New York, 2003, pp. 53–69.

6. Borell, C.: Convex measures on locally convex spaces, Ark. Mat. 12 (1974), 239–252.
7. Borell, C.: Convex set functions in d-space, Period. Math. Hungar. 6(2)(1975), 111–136.
8. Bourgain, J. and Milman, V. D.: New volume ratio properties for convex symmetric

bodies in R
n, Invent. Math. 88(2)(1987), 319–340.

9. Klartag B.: An isomorphic version of the slicing problem, to appear in J. Funct. Anal.
10. Klartag, B.: A geometric inequality and a low M estimate, Proc. Amer. Math. Soc.

132(9)(2004), 2619–2628.
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