
Vol.:(0123456789)

Genetic Programming and Evolvable Machines (2023) 24:26
https://doi.org/10.1007/s10710-023-09474-y

1 3

REPLY

Response to comments on “Jaws 30”

W. B. Langdon1

Published online: 22 November 2023
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature
2023

I would like to thank Leonardo Vanneschi and Leonardo Trujillo for the opportunity
to lead their peer commentary on the thirtieth anniversary of John R. Koza’s book
“Genetic Programming: On the programming of computers by means of natural
selection” [1] and the colleagues who took the time to read my initial article [2] and
kindly comment upon it. They raise important points which I should like to reply to.

In their wittily titled “Veni, Vidi, Evolvi” (I came, I saw, I evolved)1Giovanni
Squillero and Alberto Tonda [3] point to the success of GP at producing better than
human results and give pointers to a number of GP tools. Although they suggest
GP could be used to a greater extent in the real world, particularly in future highly
automated industry, they list many areas where GP is competitive. For example,
the design of ensembles of other artificial intelligence (AI) generated models [4],
such as deep neural networks [5], and recent successes in our own software indus-
try. Indeed search based software engineering [6] is often GP based and has lead
to successes such as automatic bug fixing [7, 8] and genetic improvement of soft-
ware [9–11], including industrial use [12–14]. Interestingly Squillero and Tonda
include areas where they feel that current large language models (using deep neu-
ral networks) will never be able to compete with GP [15]. Indeed their reasoning
for this, based on the availability of training data, may apply to many other special
circumstances. They also suggest sometimes GP will hybridise well with other AI
approaches.

Mauro Castelli [16] looks forward 30 years and stresses GP’s ability to sup-
port multidisciplinary research, particularly with Biology. Although there is some
theoretical underpinning for genetic programming [17], he points out both GP and
other forms of AI, such as artificial neural networks, are largely empirical, with

This reply refers to the articles available online at https://​doi.​org/​10.​1007/​s10710-​023-​09467-x;
https://​doi.​org/​10.​1007/​s10710-​023-​09468-w; https://​doi.​org/​10.​1007/​s10710-​023-​09469-9; https://​
doi.​org/​10.​1007/​s10710-​023-​09470-2; https://​doi.​org/​10.​1007/​s10710-​023-​09471-1; https://​doi.​org/​
10.​1007/​s10710-​023-​09472-0; https://​doi.​org/​10.​1007/​s10710-​023-​09473-z.

 *	 W. B. Langdon
	 w.langdon@cs.ucl.ac.uk

1	 University College London, London, UK

1  Cf. Veni, vidi, vici (I came; I saw; I conquered) Julius Caesar, 47 BC.

http://crossmark.crossref.org/dialog/?doi=10.1007/s10710-023-09474-y&domain=pdf
https://doi.org/10.1007/s10710-023-09467-x
https://doi.org/10.1007/s10710-023-09468-w
https://doi.org/10.1007/s10710-023-09469-9
https://doi.org/10.1007/s10710-023-09470-2
https://doi.org/10.1007/s10710-023-09470-2
https://doi.org/10.1007/s10710-023-09471-1
https://doi.org/10.1007/s10710-023-09472-0
https://doi.org/10.1007/s10710-023-09472-0
https://doi.org/10.1007/s10710-023-09473-z

	 Genetic Programming and Evolvable Machines (2023) 24:26

1 3

26  Page 2 of 11

considerable progress being made by skilled researchers following what works in
practice. Castelli also makes a plea for more thoughtful consideration about what
makes a solution human-interpretable, i.e. meaningful to GP’s customers. If com-
puter based systems are understood perhaps this can help companies convince their
employees and users that they are fair [18]. There is considerable interest in ways
to measure and improve how comprehensible software is [19, 20]. Possibly GP
researchers can find insight in software engineering’s readability metrics. Indeed in
future, perhaps genetic improvement could use automatic comprehensibility meas-
ures to make software easier to maintain: after all, if you can measure it, you can
evolve it. Also could I add to Castelli’s plea, and suggest where possible, especially
in presentations, we put the (simplified) evolved model on a slide using the custom-
er’s language, e.g. “glucose” rather than “D1” Fig. 1 .2

Malcolm Heywood [22] follows up two points made by John Koza on his own
work at his GECCO 2022 lecture: parallel GP and co-evolution. As Koza predicted,
the thirty plus years since the first GP book [1] have been dominated by the expo-
nential increase in available compute power [23]. It looks likely that this will con-
tinue into the near future. However CPU clock speeds may not rise much above the
3.6 GHz common today, instead silicon chip designers will spend the extra transis-
tors available on more CPU cores and on more on chip RAM memory (e.g. for cache
memory). Thus continuing today’s trend for increasing parallelism and to architec-
tures where compute power is plentiful but distributed and the true costs lie in get-
ting data to each CPU fast enough to keep them all busy [24]. As Heywood points
out GP is “embarrassingly parallel” as the algorithm can be readily split into inde-
pendent work units which can proceed on independent processing units with only
limited need for communication or synchronisation between them [25, 26].3 In the
case of GP we can imagine the traditional workload as being divided into a computa-
tional cube (Fig. 2) with 3 dimensions: across individuals in the population × across
the test cases and × across the opcodes that form each GP program. The computa-
tional cube metaphor stresses that the work can be split up in many ways on parallel
hardware. Even with a modest GP experiment with a population of 1000, 10 fitness
cases, and programs of 10 instructions, that gives us 100 000 items to compute per
generation, which in five years time (2028) might map well onto a field program-
mable gate array (FPGA) or graphics card with 100 000 processing units. (Fig. 2
shows a much more modest population of 4, with 5 test cases and programs contain-
ing up to 12 instructions.) Fukunaga et al. [27] showed GP could be run without an
interpreter. Whereas Juille showed an imaginative way of running a GP interpreter

If glucose exceeds 155 then diabetes

Fig. 1   Interpretation of evolved 3 node GP tree which performs approximately as well as sophisticated
machine learning techniques [21, Fig. 1]

2  At EuroGP 2000 I did not follow today’s advice and the information about glucose went into the fig-
ure’s caption rather than in the figure itself.
3  At his GECCO 2023 invited keynote Kenneth De Jong said we should be careful to avoid designing
our evolutionary computation algorithms with more synchronisation points than necessary.

1 3

Genetic Programming and Evolvable Machines (2023) 24:26	 Page 3 of 11  26

on a highly parallel computer [28], which inspired more recent work on running GP
on computer gaming or graphics cards (GPUs) [29] (see also iCUBE’s EASEA plat-
form which supports GPU computing [30]). Heywood also mentions exploiting par-
allel hardware in the form of FPGA [31, 32]. Another area, which every one hopes
will become available soon, is Quantum Computing [33]. Although Quantum Com-
puting is at present limited in terms of number of Q-bits, evolution has already been
shown to be able to help improve the reliability of existing quantum algorithms [34].

Heywood [22] also talks of the many cases, since Koza’s first book [1], where
GP has contributed to the exciting area of co-evolution. Including both competitive
”red queen” coevolution [36], and co-operative coevolution (such as the evolution
of multiple tree individuals [37] and ADFs [38]). He gives competitive coevolution
”arms race” [39] examples, such as simultaneously evolving a program and its test
suite [40], where programs are evolved to pass tests but the tests are being evolved
to find bugs in the evolving programs. Heywood also describes co-operative coevo-
lution. Cooperative evolution covers many approaches, such as: evolving separate

Fig. 2   Evaluating a GP population of four individuals each on the same five fitness cases. There are upto
4 × 5 × 12 GP operations to be performed by, in principle, 240 GPU threads. Each cube needs the opcode
to be interpreted, the fitness test case (program inputs) and the previous state of the program (i.e. the
stack). Taken from [35, Fig. 19]

	 Genetic Programming and Evolvable Machines (2023) 24:26

1 3

26  Page 4 of 11

programs so that they work as an ensemble [41, 42], as a team [43], part of a com-
plete solution [44] or as a member of a multi-agent simulation [45, 46].4 He also
points out that compared to current large language models created by deep learning
artificial neural networks, GP is not slow.

Alberto Bartoli, Luca Manzoni and Eric Medvet [50] caution us against accepting
too rosy a picture of GP. They are right to point to the diffuse evidence of indus-
trial GP take up and lack of a dominant GP package5. Whilst a few GP tools are
now firmly in the industrial domain: Eureqa [51–53] and HeuristicLab [54], they are
right to point to the diversity of available GP tools. It is unfair to pick out examples
from the many available, nevertheless a few come to mind: DEAP [55] EASEA [30,
56] ECJ [57] GeneticEngine [58] GenProg [59] Gin [60, 61] GPLAB [62] gplearn,
GPTIPS [63] Inspyred [64] Magpie [65] Pony GE2 [66] PushGP [67] and TensorGP
[68]. I have already pointed to a few examples of GP take up in the software indus-
try, more can be found in the water industry [69] and civil engineering [70], indeed
they celebrate the success of TPOT [71, 72] in Bioinformatics. Generally Bioinfor-
matics and medical research has embraced open science and is more than happy to
cite GP tools, such as TPOT, or tools enhanced by evolution [11] when they use
them [73]. However, as David Andre at his invited keynote at GPTP-2021 [74]
pointed out, generally companies in competitive industries (particularly in finance)
are very wary about talking openly about any tool or technique that gives them an
edge. Bartoli et al. point to GP’s continued success in symbolic regression, citing
Bill La Cava and team’s work, which was published at the top neural networks con-
ference [75] and their tool, SRBench, which is available on GitHub. Bartoli et al.
make important points and suggest ways the GP community should do better. They
point to the recent success of deep neural networks, but in some ways perhaps we
should take heart from this. In the popular press deep networks are “AI” and yet
they, like GP, are empirical rather than theory driven, and both are firmly based on
learning. The idea that AI requires someone to patiently code all human knowledge
into a rule base is nowhere to be seen. Deep neural networks demand huge compute
resources, that is, they are not efficient, and they are far from error free. Perhaps we
should be happy to let our GP systems consume resources and tolerate some errors.
As Stephanie Forrest said [76] what could we do if we allowed our evolutionary sys-
tem the same resources that the mega corporations have spent.

Jason Moore [77] points to the impact of Koza’s first GP book [1] in artificial
intelligence (AI), artificial life, machine learning, art, biology, economics and engi-
neering but questions if Darwin’s fitness driven evolution is helpful. (You may
remember the full title is “Genetic Programming: On the programming of comput-
ers by means of natural selection”, which was inspired by that of Charles Darwin’s
1859 revolutionary book “On the Origin of Species by Means of Natural Selection”

4  Since it is known that disruptions caused by mutation or crossover often fail to propagate up deeply
nesting programs to impact fitness [47–49], another argument for splitting up programs is to ensure each
member of the team or ensemble is exposed to the fitness testing environment, whilst each remains rela-
tively shallow.
5  A miscellaneous collection of GP tools can be found at http://​www.​cs.​ucl.​ac.​uk/​staff/W.​Langd​on/​
homep​ages.​html#6.

http://www.cs.ucl.ac.uk/staff/W.Langdon/homepages.html
http://www.cs.ucl.ac.uk/staff/W.Langdon/homepages.html

1 3

Genetic Programming and Evolvable Machines (2023) 24:26	 Page 5 of 11  26

[78].) Instead Moore focuses on the importance of the representation used to define
the programs, the variation operators used to modify them and suggests perhaps GP
needs a name change. Certainly the last 30+ years have seen an expansion in GP rep-
resentations from interpretable Lisp trees (including ADFs [38]) to linear GP [79],
grammatical evolution [80], and graph based GP, such as cartesian genetic program-
ming [81]. Also genetic improvement [82, 83] has reinforced the idea that existing
computer programs are not fragile [84] and can also be evolved, with genetic rep-
resentations as diverse as: lines of C++ code [85], Java [86], XML based abstract
syntax trees [65],6 SQL [88, 89], Java byte code [90–92], assembler [93], Clang
intermediate code [94] and even binary machine code [95]. Moore is correct in say-
ing that not only are trees not the only representation but also genetic search is not
the only game in town. Already people have (in addition to genetic algorithms [1])
been successful with: hill climbing [96], simulated annealing [97], novelty search
[98] and Monte-Carlo Tree Search [99]. As he points out we need to be cautious
about re-naming, for example, often people do not like “random” but the equivalent
“stochastic” sounds more scientific. But in the end he points out whatever we call
GP our goal must be to continue to help people and help society.

Colin Johnson [100] points to the “unreasonable effectiveness” of GP fitness
functions but nevertheless suggests several ways to improve them including infor-
mation theory [101], and suggests the possibility of a universal fitness function,
perhaps derived from existing examples, e.g. using his Learned Guidance Func-
tion LGF [102]. Similarly we can regard GP as providing a universal representation
[103]. He also mentions current work on using deep neural network based large lan-
guage models (LLMs) in natural language processing (NLP) text generation applica-
tions. Perhaps LGFs with LLMs could act as surrogate fitness functions [104] and
may be give multitudes of fitness test points? He also suggests we abandon static
fitness functions, and instead use dynamic fitness functions, whose role and target
change during the run as the GP population evolves. (In some ways dynamic fitness
functions might emulate the often hoped for role of co-evolution of continuously
stretching the populations, by adapting the direction of fitness selection. Thus pre-
venting any species in the ecosystem from stagnating near a local optimum. See also
Heywood [22], page 3 above.) Johnson highlights work by Krzysztof Krawiec [105],
which perhaps has already taken a step in the direction advocated by Jason Moore
[77] (see previous paragraph), where instead of fitness being applied blindly, “black
box”, to the whole organism (i.e. the whole program) “search drivers” consider
components within the program [106] and try to improve the whole by improving
its parts. This is very much in the mode of recent “white box, blind no more” work
by Darrell Whitely [107], where Whitely uses variable interaction graphs (VIGs) to
find the natural components of combinatorial problems and uses them with cross-
over to effectively search vast spaces. See also Zaidi’s Value State Flow Graphs
(VSFGs) for describing data flows inside programs [108]. Perhaps VIGs or VSFGs

6  Abstract syntax trees are often used by high level language compilers during syntax analysis. ASTs
written in XML typically contain many diverse types and strongly typed genetic programming, STGP
[87], crossover and mutation are readily implemented with XML [65].

	 Genetic Programming and Evolvable Machines (2023) 24:26

1 3

26  Page 6 of 11

could be used in GP? Perhaps with a degree of fuzziness to eliminate potential weak
connections between program components? Perhaps approximate VIGs could form
part of the inherited genotype? Perhaps they could themselves be subject to muta-
tion or other genetic operations, with new programs (epigenomes) being stochasti-
cally generated from VIGs?

I would like again to thank the contributors to this peer commentary and espe-
cially the two editorial “Lions” for assembling such a diverse set of skilled peer
commentators with such good ideas about how to pull GP forward for the next 30
years.

References

	 1.	 J.R. Koza, Genetic programming: on the programming of computers by means of natural selection.
MIT Press, Cambridge, MA, USA (1992), http://​mitpr​ess.​mit.​edu/​books/​genet​ic-​progr​amming

	 2.	 W.B. Langdon, Jaws 30. Genetic programming and evolvable machines peer commentary on the
thirtieth anniversary of genetic programming: on the programming of computers by means of natu-
ral selection

	 3.	 G. Squillero, A. Tonda, Veni, vidi, evolvi. Genetic Programming and Evolvable Machines Peer
Commentary on the Thirtieth Anniversary of Genetic Programming: On the Programming of Com-
puters by Means of Natural Selection

	 4.	 W.B. Langdon et al., Comparison of AdaBoost and genetic programming for combining neural
networks for drug discovery. In: Raidl, G.R., et al. (eds.) Applications of Evolutionary Computing,
EvoWorkshops2003: EvoBIO, EvoCOP, EvoIASP, EvoMUSART, EvoROB, EvoSTIM. LNCS,
vol. 2611, pp. 87–98. Springer-Verlag, University of Essex, UK (14-16 Apr 2003), https://​doi.​org/​
10.​1007/3-​540-​36605-9_9

	 5.	 F. Assuncao et al., DENSER: deep evolutionary network structured representation. Genet. Pro-
gram. Evol. Mach. 20(1), 5–35 (2019). https://​doi.​org/​10.​1007/​s10710-​018-​9339-y

	 6.	 M. Harman, B.F. Jones, Search based software engineering. Inf. Softw. Technol. 43(14), 833–839
(2001). https://​doi.​org/​10.​1016/​S0950-​5849(01)​00189-6

	 7.	 S. Forrest et al., A genetic programming approach to automated software repair. In: Raidl, G., et al.
(eds.) GECCO ’09: Proceedings of the 11th Annual conference on Genetic and evolutionary com-
putation. pp. 947–954. ACM, Montreal (8-12 Jul 2009), https://​doi.​org/​10.​1145/​15699​01.​15700​31,
gECCO 2019 10-Year Most Influential Paper Award, Best paper

	 8.	 C. Le Goues et al., Automated program repair. Commun. ACM 62(12), 56–65 (2019). https://​doi.​
org/​10.​1145/​33181​62

	 9.	 W.B. Langdon, Genetic improvement of programs. In: Matousek, R. (ed.) 18th International Con-
ference on Soft Computing, MENDEL 2012. Brno University of Technology, Brno, Czech Repub-
lic (27-29 Jun 2012), http://​www.​cs.​ucl.​ac.​uk/​staff/W.​Langd​on/​ftp/​papers/​Langd​on_​2012_​mendel.​
pdf, invited keynote

	 10.	 W.B. Langdon et al., Genetic improvement of GPU software. Genet. Program. Evol. Mach. 18(1),
5–44 (2017). https://​doi.​org/​10.​1007/​s10710-​016-​9273-9

	 11.	 W.B. Langdon, R. Lorenz, Improving SSE parallel code with grow and graft genetic programming.
In: Petke, J., et al. (eds.) GI-2017. pp. 1537–1538. ACM, Berlin (15-19 Jul 2017), https://​doi.​org/​
10.​1145/​30676​95.​30825​24

	 12.	 S.O. Haraldsson et al., Fixing bugs in your sleep: How genetic improvement became an overnight
success, in Petke, J., et al. (eds.) GI-2017. pp. 1513–1520. ACM, Berlin (15-19 Jul 2017), https://​
doi.​org/​10.​1145/​30676​95.​30825​17, best paper

	 13.	 N. Alshahwan, Industrial experience of genetic improvement in Facebook, in Petke, J., et al. (eds.)
GI-2019, ICSE workshops proceedings. p. 1. IEEE, Montreal (28 May 2019), https://​doi.​org/​10.​
1109/​GI.​2019.​00010, invited Keynote

http://mitpress.mit.edu/books/genetic-programming
https://doi.org/10.1007/3-540-36605-9_9
https://doi.org/10.1007/3-540-36605-9_9
https://doi.org/10.1007/s10710-018-9339-y
https://doi.org/10.1016/S0950-5849(01)00189-6
https://doi.org/10.1145/1569901.1570031
https://doi.org/10.1145/3318162
https://doi.org/10.1145/3318162
http://www.cs.ucl.ac.uk/staff/W.Langdon/ftp/papers/Langdon_2012_mendel.pdf
http://www.cs.ucl.ac.uk/staff/W.Langdon/ftp/papers/Langdon_2012_mendel.pdf
https://doi.org/10.1007/s10710-016-9273-9
https://doi.org/10.1145/3067695.3082524
https://doi.org/10.1145/3067695.3082524
https://doi.org/10.1145/3067695.3082517
https://doi.org/10.1145/3067695.3082517
https://doi.org/10.1109/GI.2019.00010
https://doi.org/10.1109/GI.2019.00010

1 3

Genetic Programming and Evolvable Machines (2023) 24:26	 Page 7 of 11  26

	 14.	 S. Kirbas et al., On the introduction of automatic program repair in Bloomberg. IEEE Softw. 38(4),
43–51 (2021). https://​doi.​org/​10.​1109/​MS.​2021.​30710​86

	 15.	 G. Squillero, Artificial evolution in computer aided design: from the optimization of parameters
to the creation of assembly programs. Computing 93(2–4), 103–120 (2011). https://​doi.​org/​10.​
1007/​s00607-​011-​0157-9

	 16.	 M. Castelli, Commentary for the GPEM peer commentary special section on W. B. Langdon’s
“Jaws 30”. Genetic Programming and Evolvable Machines Peer Commentary on the Thirtieth
Anniversary of Genetic Programming: On the Programming of Computers by Means of Natural
Selection

	 17.	 W.B. Langdon, R. Poli, Foundations of genetic programming. Springer-Verlag (2002). https://​
doi.​org/​10.​1007/​978-3-​662-​04726-2

	 18.	 M. Hort et al., Multi-objective search for gender-fair and semantically correct word embed-
dings. Appl. Soft Comput. 133, 109916 (2023). https://​doi.​org/​10.​1016/j.​asoc.​2022.​109916

	 19.	 E. Daka et al., Modeling readability to improve unit tests. In: Nitto, E.D., et al. (eds.) Proceed-
ings of the 2015 10th Joint Meeting on Foundations of Software Engineering, ESEC/FSE 2015,
Bergamo, Italy, August 30 - September 4, 2015. pp. 107–118. ACM (2015), https://​doi.​org/​10.​
1145/​27868​05.​27868​38

	 20.	 A. Panichella et al., Revisiting test smells in automatically generated tests: Limitations, pit-
falls, and opportunities. In: 2020 IEEE International Conference on Software Maintenance and
Evolution (ICSME). pp. 523–533. Adelaide (2020), https://​doi.​org/​10.​1109/​ICSME​46990.​2020.​
00056

	 21.	 W.B. Langdon, J.P. Nordin, Seeding GP populations, in Poli, R., et al. (eds.) Genetic Program-
ming, Proceedings of EuroGP’2000. LNCS, vol. 1802, pp. 304–315. Springer-Verlag, Edin-
burgh (15-16 Apr 2000), https://​doi.​org/​10.​1007/​978-3-​540-​46239-2_​23

	 22.	 M.I. Heywood, W. B. Langdon “JAWS 30”. Genetic Programming and Evolvable Machines
Peer Commentary on the Thirtieth Anniversary of Genetic Programming: On the Programming
of Computers by Means of Natural Selection

	 23.	 G.E. Moore, Cramming more components onto integrated circuits. Electronics 38(8), 114–117
(1965)

	 24.	 W.B. Langdon et al., Genetically improved software with fewer data caches misses. In: Proceed-
ings of the 2023 Genetic and Evolutionary Computation Conference. GECCO ’23, Association
for Computing Machinery, Lisbon, Portugal (15-19 Jul 2023), https://​doi.​org/​10.​1145/​35831​33.​
35905​42, forthcoming

	 25.	 D. Andre, J.R. Koza, Parallel genetic programming on a network of transputers. In: Rosca,
J.P. (ed.) Proceedings of the Workshop on Genetic Programming: From Theory to Real-World
Applications. pp. 111–120. Tahoe City, California, USA (9 Jul 1995), http://​www.​cs.​ucl.​ac.​uk/​
staff/W.​Langd​on/​ftp/​papers/​andre_​1995_​paral​lel.​pdf

	 26.	 D. Andre, J.R. Koza, A parallel implementation of genetic programming that achieves super-lin-
ear performance. Inf. Sci. 106(3–4), 201–218 (1998). https://​doi.​org/​10.​1016/​S0020-​0255(97)​
10011-1

	 27.	 A. Fukunaga, et al., A genome compiler for high performance genetic programming. In: Koza,
J.R., et al. (eds.) Genetic Programming 1998: Proceedings of the Third Annual Conference. pp.
86–94. Morgan Kaufmann, University of Wisconsin, Madison, Wisconsin, USA (22-25 Jul 1998),
http://​metah​ack.​org/​gp98-​compi​ler.​pdf

	 28.	 H. Juille, J.B. Pollack, Massively parallel genetic programming. In: Angeline, P.J., Kinnear, Jr.,
K.E. (eds.) Advances in Genetic Programming 2, chap. 17, pp. 339–357. MIT Press, Cambridge,
MA, USA (1996), https://​doi.​org/​10.​7551/​mitpr​ess/​1109.​003.​0023

	 29.	 W.B. Langdon, W. Banzhaf, A SIMD interpreter for genetic programming on GPU graphics cards.
In: O’Neill, M., et al. (eds.) Proceedings of the 11th European Conference on Genetic Program-
ming, EuroGP 2008. Lecture Notes in Computer Science, vol. 4971, pp. 73–85. Springer, Naples
(26-28 Mar 2008), https://​doi.​org/​10.​1007/​978-3-​540-​78671-9_7

	 30.	 O. Maitre, Genetic programming on GPGPU cards using EASEA. In: Tsutsui, S., Collet, P. (eds.)
Massively Parallel Evolutionary Computation on GPGPUs, chap. 11, pp. 227–248. Natural Com-
puting Series, Springer (2013), https://​doi.​org/​10.​1007/​978-3-​642-​37959-8_​11

	 31.	 C. Ortega-Sanchez et al., Embryonics: a bio-inspired cellular architecture with fault-tolerant prop-
erties. Genet. Program. Evol. Mach. 1(3), 187–215 (2000). https://​doi.​org/​10.​1023/A:​10100​80629​
099

https://doi.org/10.1109/MS.2021.3071086
https://doi.org/10.1007/s00607-011-0157-9
https://doi.org/10.1007/s00607-011-0157-9
https://doi.org/10.1007/978-3-662-04726-2
https://doi.org/10.1007/978-3-662-04726-2
https://doi.org/10.1016/j.asoc.2022.109916
https://doi.org/10.1145/2786805.2786838
https://doi.org/10.1145/2786805.2786838
https://doi.org/10.1109/ICSME46990.2020.00056
https://doi.org/10.1109/ICSME46990.2020.00056
https://doi.org/10.1007/978-3-540-46239-2_23
https://doi.org/10.1145/3583133.3590542
https://doi.org/10.1145/3583133.3590542
http://www.cs.ucl.ac.uk/staff/W.Langdon/ftp/papers/andre_1995_parallel.pdf
http://www.cs.ucl.ac.uk/staff/W.Langdon/ftp/papers/andre_1995_parallel.pdf
https://doi.org/10.1016/S0020-0255(97)10011-1
https://doi.org/10.1016/S0020-0255(97)10011-1
http://metahack.org/gp98-compiler.pdf
https://doi.org/10.7551/mitpress/1109.003.0023
https://doi.org/10.1007/978-3-540-78671-9_7
https://doi.org/10.1007/978-3-642-37959-8_11
https://doi.org/10.1023/A:1010080629099
https://doi.org/10.1023/A:1010080629099

	 Genetic Programming and Evolvable Machines (2023) 24:26

1 3

26  Page 8 of 11

	 32.	 C. Pedraza et al., Genetic algorithm for Boolean minimization in an FPGA cluster. The Journal of
Supercomputing 58(2), 244–252 (2011), https://​doi.​org/​10.​1007/​s11227-​010-​0401-7, special issue
on HPC in computational Science and Engineering. Part I

	 33.	 L. Spector, Automatic Quantum Computer Programming: A Genetic Programming Approach,
Genetic Programming, vol. 7. Kluwer Academic Publishers, Boston/Dordrecht/New York/London
(Jun 2004), https://​doi.​org/​10.​1007/​978-0-​387-​36791-0

	 34.	 G. O’Brien, J. Clark, Using genetic improvement to retarget quantum software on differing hard-
ware. In: Petke, J., et al. (eds.) GI @ ICSE 2021. pp. 31–38. IEEE, internet (30 May 2021), https://​
doi.​org/​10.​1109/​GI525​43.​2021.​00015, winner Best Presentation

	 35.	 W.B. Langdon, Large scale bioinformatics data mining with parallel genetic programming on
graphics processing units. In: Fernandez de Vega, F., Cantu-Paz, E. (eds.) Parallel and Distributed
Computational Intelligence, Studies in Computational Intelligence, vol. 269, chap. 5, pp. 113–141.
Springer (Jan 2010), https://​doi.​org/​10.​1007/​978-3-​642-​10675-0_6

	 36.	 M. Ridley, The Red Queen, Sex and the Evolution of Human Nature. Penquin (1993), https://​en.​
wikip​edia.​org/​wiki/​The_​Red_​Queen:_​Sex_​and_​the_​Evolu​tion_​of_​Human_​Nature

	 37.	 W.B. Langdon, Genetic programming and data structures: genetic programming + data structures
= automatic programming! Genet. Program. (1998). https://​doi.​org/​10.​1007/​978-1-​4615-​5731-9

	 38.	 J.R. Koza, Genetic Programming II: Automatic Discovery of Reusable Programs. MIT Press, Cam-
bridge Massachusetts (May 1994), http://​www.​genet​ic-​progr​amming.​org/​gpboo​k2toc.​html

	 39.	 M. Ebner, Coevolution and the red queen effect shape virtual plants. Genet. Program. Evol. Mach.
7(1), 103–123 (2006). https://​doi.​org/​10.​1007/​s10710-​006-​7013-2

	 40.	 A. Arcuri, X. Yao, Coevolving programs and unit tests from their specification, in IEEE Interna-
tional Conference on Automated Software Engineering (ASE). Atlanta, Georgia, USA (Nov 5-9
2007), https://​doi.​org/​10.​1145/​13216​31.​13216​93

	 41.	 W.B. Langdon, B.F. Buxton, Genetic programming for combining classifiers, in Spector, L., et al.
(eds.) Proceedings of the Genetic and Evolutionary Computation Conference (GECCO-2001). pp.
66–73. Morgan Kaufmann, San Francisco, California, USA (7-11 Jul 2001), http://​www.​cs.​ucl.​ac.​
uk/​staff/W.​Langd​on/​ftp/​papers/​WBL_​gecco​2001_​roc.​pdf

	 42.	 M. Virgolin, Genetic programming is naturally suited to evolve bagging ensembles. In: Chicano,
F., et al. (eds.) Proceedings of the 2021 Genetic and Evolutionary Computation Conference. pp.
830–839. GECCO ’21, Association for Computing Machinery, internet (Jul 10-14 2021), https://​
doi.​org/​10.​1145/​34496​39.​34592​78

	 43.	 M. Brameier, W. Banzhaf, Evolving teams of predictors with linear genetic programming. Genet.
Program. Evol. Mach. 2(4), 381–407 (2001). https://​doi.​org/​10.​1023/A:​10129​78805​372

	 44.	 J. Louchet, Using an individual evolution strategy for stereovision. Genet. Program. Evol. Mach.
2(2), 101–109 (2001). https://​doi.​org/​10.​1023/A:​10115​44128​842

	 45.	 F.H. Bennett III, Emergence of a multi-agent architecture and new tactics for the ant colony forag-
ing problem using genetic programming, in: Maes, P., et al. (eds.) Proceedings of the Fourth Inter-
national Conference on Simulation of Adaptive Behavior: From animals to animats 4. pp. 430–439.
MIT Press, Cape Code, USA (9-13 Sep 1996), https://​doi.​org/​10.​7551/​mitpr​ess/​3118.​003.​0044

	 46.	 M. Georgiev et al., Performance analysis and comparison on heterogeneous and homogeneous
multi-agent societies in correlation to their average capabilities, in 2018 57th Annual Conference
of the Society of Instrument and Control Engineers of Japan (SICE). pp. 674–679. Nara, Japan (11-
14 Sep 2018), https://​doi.​org/​10.​23919/​SICE.​2018.​84927​13

	 47.	 J. Petke et al., Software robustness: A survey, a theory, and some prospects, in Avgeriou, P., Zhang,
D. (eds.) ESEC/FSE 2021, Ideas, Visions and Reflections. pp. 1475–1478. ACM, Athens, Greece
(23-28 Aug 2021), https://​doi.​org/​10.​1145/​34682​64.​34731​33

	 48.	 W.B. Langdon, Genetic programming convergence. Genet. Program. Evol. Mach. 23(1), 71–104
(2022). https://​doi.​org/​10.​1007/​s10710-​021-​09405-9

	 49.	 W.B. Langdon, A trillion genetic programming instructions per second. ArXiv (6 May 2022),
https://​arxiv.​org/​abs/​2205.​03251

	 50.	 A. Bartoli et al., Commentary on “Jaws 30”, by W. B. Langdon. Genetic Programming and Evolv-
able Machines Peer Commentary on the Thirtieth Anniversary of Genetic Programming: On the
Programming of Computers by Means of Natural Selection

	 51.	 M. Schmidt, H. Lipson, Distilling free-form natural laws from experimental data. Science
324(5923), 81–85 (2009). https://​doi.​org/​10.​1126/​scien​ce.​11658​93

	 52.	 N. Savage, Automating scientific discovery. Commun. ACM 55(5), 9–11 (2012). https://​doi.​org/​10.​
1145/​21607​18.​21607​23

https://doi.org/10.1007/s11227-010-0401-7
https://doi.org/10.1007/978-0-387-36791-0
https://doi.org/10.1109/GI52543.2021.00015
https://doi.org/10.1109/GI52543.2021.00015
https://doi.org/10.1007/978-3-642-10675-0_6
https://en.wikipedia.org/wiki/The_Red_Queen:_Sex_and_the_Evolution_of_Human_Nature
https://en.wikipedia.org/wiki/The_Red_Queen:_Sex_and_the_Evolution_of_Human_Nature
https://doi.org/10.1007/978-1-4615-5731-9
http://www.genetic-programming.org/gpbook2toc.html
https://doi.org/10.1007/s10710-006-7013-2
https://doi.org/10.1145/1321631.1321693
http://www.cs.ucl.ac.uk/staff/W.Langdon/ftp/papers/WBL_gecco2001_roc.pdf
http://www.cs.ucl.ac.uk/staff/W.Langdon/ftp/papers/WBL_gecco2001_roc.pdf
https://doi.org/10.1145/3449639.3459278
https://doi.org/10.1145/3449639.3459278
https://doi.org/10.1023/A:1012978805372
https://doi.org/10.1023/A:1011544128842
https://doi.org/10.7551/mitpress/3118.003.0044
https://doi.org/10.23919/SICE.2018.8492713
https://doi.org/10.1145/3468264.3473133
https://doi.org/10.1007/s10710-021-09405-9
https://arxiv.org/abs/2205.03251
https://doi.org/10.1126/science.1165893
https://doi.org/10.1145/2160718.2160723
https://doi.org/10.1145/2160718.2160723

1 3

Genetic Programming and Evolvable Machines (2023) 24:26	 Page 9 of 11  26

	 53.	 R. Dubcakova, Eureqa: software review. Genet. Program. Evol. Mach. 12(2), 173–178 (2011).
https://​doi.​org/​10.​1007/​s10710-​010-​9124-z

	 54.	 A. Elyasaf, M. Sipper, Software review: the heuristiclab framework. Genet. Program. Evol. Mach.
15(2), 215–218 (2014). https://​doi.​org/​10.​1007/​s10710-​014-​9214-4

	 55.	 J. Kim, S. Yoo, Software review: DEAP (distributed evolutionary algorithm in python) library.
Genet. Program. Evol. Mach. 20(1), 139–142 (2019). https://​doi.​org/​10.​1007/​s10710-​018-​9341-4

	 56.	 U. Abdulkarimova et al., The PARSEC machine: a non-Newtonian supra-linear super-computer.
Azerbaijan J. High Perf. Comput. 2(2), 122–140 (2019). https://​doi.​org/​10.​32010/​26166​127.​
2019.2.​2.​122.​140

	 57.	 D.R. White, Software review: the ECJ toolkit. Genet. Program. Evol. Mach. 13(1), 65–67 (2012).
https://​doi.​org/​10.​1007/​s10710-​011-​9148-z

	 58.	 G. Espada et al., Data types as a more ergonomic frontend for grammar-guided genetic program-
ming, in Scholz, B., Kameyama, Y. (eds.) 21st ACM SIGPLAN International Conference on Gen-
erative Programming: Concepts and Experiences (GPCE 2022). pp. 86–94. ACM, Auckland, New
Zealand (Dec 6-7 2022), https://​doi.​org/​10.​1145/​35647​19.​35686​97

	 59.	 C. Le Goues et al., GenProg: a generic method for automatic software repair. IEEE Trans. Softw.
Eng. 38(1), 54–72 (2012). https://​doi.​org/​10.​1109/​TSE.​2011.​104

	 60.	 D.R. White, GI in no time, in Petke, J., et al. (eds.) GI-2017. pp. 1549–1550. ACM, Berlin (15-19
Jul 2017), https://​doi.​org/​10.​1145/​30676​95.​30825​15

	 61.	 M. Watkinson, A. Brownlee, Updating Gin’s profiler for current java, in Nowack, V., et al. (eds.)
12th International Workshop on Genetic Improvement @ICSE 2023. pp. 23–28. IEEE, Melbourne,
Australia (20 May 2023), https://​doi.​org/​10.​1109/​GI593​20.​2023.​00015

	 62.	 I. Atmosukarto, GPLAB: software review. Genet. Program. Evol. Mach. 12(4), 457–459 (2012).
https://​doi.​org/​10.​1007/​s10710-​011-​9142-5

	 63.	 A.H. Gandomi, E. Atefi, Software review: the GPTIPS platform. Genet. Program. Evol. Mach.
21(1–2), 273–280 (2020). https://​doi.​org/​10.​1007/​s10710-​019-​09366-0

	 64.	 A. Tonda, Inspyred: bio-inspired algorithms in python. Genet. Program. Evol. Mach. 21(1–2),
269–272 (2020). https://​doi.​org/​10.​1007/​s10710-​019-​09367-z

	 65.	 A. Blot, J. Petke, MAGPIE: Machine automated general performance improvement via evolution
of software. arXiv (4 Aug 2022), https://​doi.​org/​10.​48550/​arxiv.​2208.​02811

	 66.	 T.M. Vu, Software review: Pony GE2. Genet. Program. Evol. Mach. 22(3), 383–385 (2021).
https://​doi.​org/​10.​1007/​s10710-​021-​09409-5

	 67.	 L. Spector, A. Robinson, Genetic programming and autoconstructive evolution with the push pro-
gramming language. Genet. Program. Evol. Mach. 3(1), 7–40 (2002). https://​doi.​org/​10.​1023/A:​
10145​38503​543

	 68.	 F. Baeta et al., TensorGP - genetic programming engine in TensorFlow, in Castillo, P., Jimenez-
Laredo, J. (eds.) 24th International Conference, EvoApplications 2021. LNCS, vol. 12694, pp.
763–778. Springer Verlag, virtual event (7-9 Apr 2021), https://​doi.​org/​10.​1007/​978-3-​030-​72699-
7_​48

	 69.	 A. Danandeh Mehr et al., Genetic programming in water resources engineering: a state-of-the-art
review. J. Hydrol. 566, 643–667 (2018). https://​doi.​org/​10.​1016/j.​jhydr​ol.​2018.​09.​043

	 70.	 Q. Zhang et al., Genetic programming in civil engineering: advent, applications and future trends.
Artif. Intell. Rev. 54, 1863–1885 (2021). https://​doi.​org/​10.​1007/​s10462-​020-​09894-7

	 71.	 R.S. Olson et al., Automating biomedical data science through tree-based pipeline optimization.
In: Squillero, G., Burelli, P. (eds.) Proceedings of the 19th European Conference on Applica-
tions of Evolutionary Computation, EvoApplications 2016, Part I. LNCS, vol. 9597, pp. 123–137.
Springer, Porto, Portugal (Mar 30 - Apr 1 2016), https://​doi.​org/​10.​1007/​978-3-​319-​31204-0_9,
best paper, EvoBio track

	 72.	 R.S. Olson et al., A system for accessible artificial intelligence. In: Banzhaf, W., et al. (eds.)
Genetic Programming Theory and Practice XV. pp. 121–134. Genetic and Evolutionary Computa-
tion, Springer, University of Michigan in Ann Arbor, USA (May 18–20 2017), https://​doi.​org/​10.​
1007/​978-3-​319-​90512-9_8

	 73.	 R.J. Andrews et al., A map of the SARS-CoV-2 RNA structurome. NAR Genom. Bioinf. 3(2),
lqab043 (2021). https://​doi.​org/​10.​1093/​nargab/​lqab0​43

	 74.	 W. Banzhaf et al., (eds.): Genetic Programming Theory and Practice XVIII. Genetic and Evolu-
tionary Computation, Springer, East Lansing, USA (19-21 May 2021), https://​doi.​org/​10.​1007/​
978-​981-​16-​8113-4

https://doi.org/10.1007/s10710-010-9124-z
https://doi.org/10.1007/s10710-014-9214-4
https://doi.org/10.1007/s10710-018-9341-4
https://doi.org/10.32010/26166127.2019.2.2.122.140
https://doi.org/10.32010/26166127.2019.2.2.122.140
https://doi.org/10.1007/s10710-011-9148-z
https://doi.org/10.1145/3564719.3568697
https://doi.org/10.1109/TSE.2011.104
https://doi.org/10.1145/3067695.3082515
https://doi.org/10.1109/GI59320.2023.00015
https://doi.org/10.1007/s10710-011-9142-5
https://doi.org/10.1007/s10710-019-09366-0
https://doi.org/10.1007/s10710-019-09367-z
https://doi.org/10.48550/arxiv.2208.02811
https://doi.org/10.1007/s10710-021-09409-5
https://doi.org/10.1023/A:1014538503543
https://doi.org/10.1023/A:1014538503543
https://doi.org/10.1007/978-3-030-72699-7_48
https://doi.org/10.1007/978-3-030-72699-7_48
https://doi.org/10.1016/j.jhydrol.2018.09.043
https://doi.org/10.1007/s10462-020-09894-7
https://doi.org/10.1007/978-3-319-31204-0_9
https://doi.org/10.1007/978-3-319-90512-9_8
https://doi.org/10.1007/978-3-319-90512-9_8
https://doi.org/10.1093/nargab/lqab043
https://doi.org/10.1007/978-981-16-8113-4
https://doi.org/10.1007/978-981-16-8113-4

	 Genetic Programming and Evolvable Machines (2023) 24:26

1 3

26  Page 10 of 11

	 75.	 W. La Cava et al., Contemporary symbolic regression methods and their relative performance. In:
Vanschoren, J., Yeung, S. (eds.) Proceedings of the Neural Information Processing Systems Track
on Datasets and Benchmarks. vol. 1. Curran (2021), https://​datas​ets-​bench​marks-​proce​edings.​neuri​
ps.​cc/​paper/​2021/​hash/​c0c7c​76d30​bd3dc​aefc9​6f402​75bdc​0a-​Abstr​act-​round1.​html

	 76.	 J. Petke et al., (eds.): 10th Genetic Improvement Workshop (GI 2021 @ ICSE) Chairs’ Welcome.
IEEE, virtual event (30 May 2021), http://​www.​cs.​ucl.​ac.​uk/​staff/W.​Langd​on/​icse2​021/​gi2021_​
messa​ge_​from_​the_​chairs.​pdf

	 77.	 J.H. Moore, Is the evolution metaphor still necessary or even useful for genetic programming?
Genetic Programming and Evolvable Machines Peer Commentary on the Thirtieth Anniversary of
Genetic Programming: On the Programming of Computers by Means of Natural Selection

	 78.	 C. Darwin, On the Origin of Species by Means of Natural Selection. John Murray, penguin clas-
sics, 1985 edn. (1859)

	 79.	 W. Banzhaf et al., Genetic Programming – An Introduction; On the Automatic Evolution of Com-
puter Programs and its Applications. Morgan Kaufmann, San Francisco, CA, USA (Jan 1998),
https://​www.​amazon.​co.​uk/​Genet​ic-​Progr​amming-​Intro​ducti​on-​Artif​icial-​Intel​ligen​ce/​dp/​15586​
0510X

	 80.	 M. O’Neill, C. Ryan, Grammatical Evolution: Evolutionary Automatic Programming in a Arbitrary
Language, Genetic programming, vol. 4. Kluwer Academic Publishers (2003), https://​doi.​org/​10.​
1007/​978-1-​4615-​0447-4

	 81.	 J.F. Miller, (ed.): Cartesian Genetic Programming. Natural Computing Series, Springer (2011),
https://​doi.​org/​10.​1007/​978-3-​642-​17310-3

	 82.	 J. Petke et al., Genetic improvement of software: a comprehensive survey. IEEE Trans. Evolut.
Comput. 22(3), 415–432 (2018). https://​doi.​org/​10.​1109/​TEVC.​2017.​26932​19

	 83.	 J. Petke et al., A survey of genetic improvement search spaces. In: Alexander, B., et al. (eds.) 7th
edition of GI @ GECCO 2019. pp. 1715–1721. ACM, Prague, Czech Republic (Jul 13-17 2019),
https://​doi.​org/​10.​1145/​33196​19.​33268​70

	 84.	 W.B. Langdon, J. Petke, Software is not fragile. In: Parrend, P., et al. (eds.) Complex Systems
Digital Campus E-conference, CS-DC’15. pp. 203–211. Proceedings in Complexity, Springer (Sep
30-Oct 1 2015), https://​doi.​org/​10.​1007/​978-3-​319-​45901-1_​24, invited talk

	 85.	 W.B. Langdon, M. Harman, Optimising existing software with genetic programming. IEEE Trans.
Evolut. Comput. 19(1), 118–135 (2015). https://​doi.​org/​10.​1109/​TEVC.​2013.​22815​44

	 86.	 J. Petke, A. Brownlee, Software improvement with Gin: a case study. In: Nejati, S., Gay, G. (eds.)
SSBSE 2019. LNCS, vol. 11664, pp. 183–189. Springer, Tallinn, Estonia (31 Aug - 1 Sep 2019),
https://​doi.​org/​10.​1007/​978-3-​030-​27455-9_​14

	 87.	 D.J. Montana, Strongly typed genetic programming. Evolut. Comput. 3(2), 199–230 (1995).
https://​doi.​org/​10.​1162/​evco.​1995.3.​2.​199

	 88.	 C.Y. Ishida, A.T.R. Pozo, GPSQL miner: SQL-grammar genetic programming in data min-
ing. In: Fogel, D.B., et al. (eds.) Proceedings of the 2002 Congress on Evolutionary Computa-
tion CEC2002. pp. 1226–1231. IEEE Press (12-17 May 2002), https://​doi.​org/​10.​1109/​CEC.​2002.​
10044​18

	 89.	 J. Callan, J. Petke, Optimising SQL queries using genetic improvement. In: Petke, J., et al. (eds.)
GI @ ICSE 2021. pp. 9–10. IEEE, internet (30 May 2021), https://​doi.​org/​10.​1109/​GI525​43.​2021.​
00010

	 90.	 E. Lukschandl et al., Automatic evolution of Java bytecode: First experience with the Java vir-
tual machine. In: Poli, R., et al. (eds.) Late Breaking Papers at EuroGP’98: the First European
Workshop on Genetic Programming. pp. 14–16. CSRP-98-10, The University of Birmingham, UK,
Paris, France (14-15 Apr 1998), http://​www.​cs.​ucl.​ac.​uk/​staff/W.​Langd​on/​ftp/​papers/​csrp-​98-​10.​
pdf

	 91.	 M. Orlov, M. Sipper, FINCH: A system for evolving Java (bytecode). In: Riolo, R., et al. (eds.)
Genetic Programming Theory and Practice VIII, Genetic and Evolutionary Computation,
vol. 8, chap. 1, pp. 1–16. Springer, Ann Arbor, USA (20-22 May 2010), https://​doi.​org/​10.​1007/​
978-1-​4419-​7747-2_1

	 92.	 K. Yeboah-Antwi, B. Baudry, Embedding adaptivity in software systems using the ECSELR
framework. In: Langdon, W.B., et al. (eds.) Genetic Improvement 2015 Workshop. pp. 839–844.
ACM, Madrid (11-15 Jul 2015), https://​doi.​org/​10.​1145/​27394​82.​27684​25

	 93.	 E. Schulte, et al., Automated program repair through the evolution of assembly code. In: Proceed-
ings of the IEEE/ACM International Conference on Automated Software Engineering. pp. 313–
316. ACM, Antwerp (20-24 Sep 2010), https://​doi.​org/​10.​1145/​18589​96.​18590​59

https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/hash/c0c7c76d30bd3dcaefc96f40275bdc0a-Abstract-round1.html
https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/hash/c0c7c76d30bd3dcaefc96f40275bdc0a-Abstract-round1.html
http://www.cs.ucl.ac.uk/staff/W.Langdon/icse2021/gi2021_message_from_the_chairs.pdf
http://www.cs.ucl.ac.uk/staff/W.Langdon/icse2021/gi2021_message_from_the_chairs.pdf
https://www.amazon.co.uk/Genetic-Programming-Introduction-Artificial-Intelligence/dp/155860510X
https://www.amazon.co.uk/Genetic-Programming-Introduction-Artificial-Intelligence/dp/155860510X
https://doi.org/10.1007/978-1-4615-0447-4
https://doi.org/10.1007/978-1-4615-0447-4
https://doi.org/10.1007/978-3-642-17310-3
https://doi.org/10.1109/TEVC.2017.2693219
https://doi.org/10.1145/3319619.3326870
https://doi.org/10.1007/978-3-319-45901-1_24
https://doi.org/10.1109/TEVC.2013.2281544
https://doi.org/10.1007/978-3-030-27455-9_14
https://doi.org/10.1162/evco.1995.3.2.199
https://doi.org/10.1109/CEC.2002.1004418
https://doi.org/10.1109/CEC.2002.1004418
https://doi.org/10.1109/GI52543.2021.00010
https://doi.org/10.1109/GI52543.2021.00010
http://www.cs.ucl.ac.uk/staff/W.Langdon/ftp/papers/csrp-98-10.pdf
http://www.cs.ucl.ac.uk/staff/W.Langdon/ftp/papers/csrp-98-10.pdf
https://doi.org/10.1007/978-1-4419-7747-2_1
https://doi.org/10.1007/978-1-4419-7747-2_1
https://doi.org/10.1145/2739482.2768425
https://doi.org/10.1145/1858996.1859059

1 3

Genetic Programming and Evolvable Machines (2023) 24:26	 Page 11 of 11  26

	 94.	 W.B. Langdon et al., Genetic improvement of LLVM intermediate representation. In: Pappa, G.,
et al. (eds.) EuroGP 2023: Proceedings of the 26th European Conference on Genetic Programming.
LNCS, vol. 13986, pp. 244–259. Springer Verlag, Brno, Czech Republic (12-14 Apr 2023), https://​
doi.​org/​10.​1007/​978-3-​031-​29573-7_​16

	 95.	 E. Schulte et al., Automated repair of binary and assembly programs for cooperating embedded
devices. In: Proceedings of the eighteenth international conference on Architectural support for
programming languages and operating systems. pp. 317–328. ASPLOS 2013, ACM, Houston,
Texas, USA (Mar 16-20 2013), https://​doi.​org/​10.​1145/​24511​16.​24511​51

	 96.	 H. Iba et al., Genetic programming with local hill-climbing. In: Davidor, Y., et al. (eds.) Parallel
Problem Solving from Nature III. LNCS, vol. 866, pp. 334–343. Springer-Verlag, Jerusalem (9-14
Oct 1994), https://​doi.​org/​10.​1007/3-​540-​58484-6_​274

	 97.	 A.I. Esparcia-Alcazar, Genetic Programming for Adaptive Signal Processing. Ph.D. thesis, Elec-
tronics and Electrical Engineering, University of Glasgow, UK (Jul 1998), http://​www.​cs.​ucl.​ac.​uk/​
staff/W.​Langd​on/​ftp/​papers/​espar​cia-​alcaz​ar/​thesis.​ps.​gz

	 98.	 J. Lehman, K.O. Stanley, Novelty search and the problem with objectives. In: Riolo, R., et al.
(eds.) Genetic Programming Theory and Practice IX, chap. 3, pp. 37–56. Genetic and Evolu-
tionary Computation, Springer, Ann Arbor, USA (12-14 May 2011), https://​doi.​org/​10.​1007/​
978-1-​4614-​1770-5_3

	 99.	 H. Rakotoarison, et al., Automated machine learning with Monte-Carlo Tree Search. In: Kraus, S.
(ed.) Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence,
IJCAI 2019. pp. 3296–3303. ijcai.org, Macao, China (Aug 10-16 2019), https://​doi.​org/​10.​24963/​
ijcai.​2019/​457

	100.	 C.G. Johnson, New directions in fitness evaluation: Commentary on Langdon’s JAWS30. Genetic
Programming and Evolvable Machines Peer Commentary on the Thirtieth Anniversary of Genetic
Programming: On the Programming of Computers by Means of Natural Selection

	101.	 S.W. Card, Towards an Information Theoretic Framework for Evolutionary Learning. Ph.D. thesis,
Electrical Engineering and Computer Science, Syracuse University, USA (Aug 2011), https://​surfa​
ce.​syr.​edu/​eecs_​etd/​307

	102.	 C.G. Johnson, Solving the Rubik’s cube with stepwise deep learning. Expert Syst. J. Knowl. Eng.
(2021). https://​doi.​org/​10.​1111/​exsy.​12665

	103.	 X. Yao, Universal approximation by genetic programming. In: Haynes, T., et al. (eds.) Foundations
of Genetic Programming. pp. 66–67. Orlando, Florida, USA (13 Jul 1999), http://​www.​cs.​ucl.​ac.​
uk/​staff/W.​Langd​on/​fogp/​yao.​ps.​gz

	104.	 V. Parque, T. Miyashita, On vehicle surrogate learning with genetic programming ensembles. In:
Cotta, C., et al. (eds.) GECCO ’18: Proceedings of the Genetic and Evolutionary Computation
Conference Companion. pp. 1704–1710. ACM, Kyoto, Japan (2018), https://​doi.​org/​10.​1145/​
32056​51.​32083​10

	105.	 K. Krawiec, Behavioral Program Synthesis with Genetic Programming, Studies in Computa-
tional Intelligence, vol. 618. Springer International Publishing (2015), https://​doi.​org/​10.​1007/​
978-3-​319-​27565-9

	106.	 W.B. Langdon, Directed crossover within genetic programming. Research Note RN/95/71, Univer-
sity College London, Gower Street, London WC1E 6BT, UK (Sep 1995), http://​www.​cs.​ucl.​ac.​uk/​
staff/W.​Langd​on/​ftp/​papers/​direc​ted_​cross​over.​pdf

	107.	 F. Chicano et al., Dynastic potential crossover operator. Evolutionary Computation 30(3) (Fall
2022), https://​doi.​org/​10.​1162/​evco_a_​00305

	108.	 A.M. Zaidi, Accelerating control-flow intensive code in spatial hardware. Ph.D. thesis, Computer
Laboratory, University of Cambridge (May 2015), https://​www.​cl.​cam.​ac.​uk/​techr​eports/​UCAM-​
CL-​TR-​870.​pdf, also available as Technical Report UCAM-CL-TR-870

https://doi.org/10.1007/978-3-031-29573-7_16
https://doi.org/10.1007/978-3-031-29573-7_16
https://doi.org/10.1145/2451116.2451151
https://doi.org/10.1007/3-540-58484-6_274
http://www.cs.ucl.ac.uk/staff/W.Langdon/ftp/papers/esparcia-alcazar/thesis.ps.gz
http://www.cs.ucl.ac.uk/staff/W.Langdon/ftp/papers/esparcia-alcazar/thesis.ps.gz
https://doi.org/10.1007/978-1-4614-1770-5_3
https://doi.org/10.1007/978-1-4614-1770-5_3
https://doi.org/10.24963/ijcai.2019/457
https://doi.org/10.24963/ijcai.2019/457
https://surface.syr.edu/eecs_etd/307
https://surface.syr.edu/eecs_etd/307
https://doi.org/10.1111/exsy.12665
http://www.cs.ucl.ac.uk/staff/W.Langdon/fogp/yao.ps.gz
http://www.cs.ucl.ac.uk/staff/W.Langdon/fogp/yao.ps.gz
https://doi.org/10.1145/3205651.3208310
https://doi.org/10.1145/3205651.3208310
https://doi.org/10.1007/978-3-319-27565-9
https://doi.org/10.1007/978-3-319-27565-9
http://www.cs.ucl.ac.uk/staff/W.Langdon/ftp/papers/directed_crossover.pdf
http://www.cs.ucl.ac.uk/staff/W.Langdon/ftp/papers/directed_crossover.pdf
https://doi.org/10.1162/evco_a_00305
https://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-870.pdf
https://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-870.pdf

	Response to comments on “Jaws 30”
	References

