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I would like to thank Leonardo Vanneschi and Leonardo Trujillo for the opportunity 
to lead their peer commentary on the thirtieth anniversary of John R. Koza’s book 
“Genetic Programming: On the programming of computers by means of natural 
selection” [1] and the colleagues who took the time to read my initial article [2] and 
kindly comment upon it. They raise important points which I should like to reply to.

In their wittily titled “Veni, Vidi, Evolvi” (I came, I saw, I evolved)1Giovanni 
Squillero and Alberto Tonda [3] point to the success of GP at producing better than 
human results and give pointers to a number of GP tools. Although they suggest 
GP could be used to a greater extent in the real world, particularly in future highly 
automated industry, they list many areas where GP is competitive. For example, 
the design of ensembles of other artificial intelligence (AI) generated models   [4], 
such as deep neural networks [5], and recent successes in our own software indus-
try. Indeed search based software engineering [6] is often GP based and has lead 
to successes such as automatic bug fixing  [7, 8] and genetic improvement of soft-
ware   [9–11], including industrial use   [12–14]. Interestingly Squillero and Tonda 
include areas where they feel that current large language models (using deep neu-
ral networks) will never be able to compete with GP [15]. Indeed their reasoning 
for this, based on the availability of training data, may apply to many other special 
circumstances. They also suggest sometimes GP will hybridise well with other AI 
approaches.

Mauro Castelli [16] looks forward 30 years and stresses GP’s ability to sup-
port multidisciplinary research, particularly with Biology. Although there is some 
theoretical underpinning for genetic programming [17], he points out both GP and 
other forms of AI, such as artificial neural networks, are largely empirical, with 
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considerable progress being made by skilled researchers following what works in 
practice. Castelli also makes a plea for more thoughtful consideration about what 
makes a solution human-interpretable, i.e. meaningful to GP’s customers. If com-
puter based systems are understood perhaps this can help companies convince their 
employees and users that they are fair [18]. There is considerable interest in ways 
to measure and improve how comprehensible software is   [19, 20]. Possibly GP 
researchers can find insight in software engineering’s readability metrics. Indeed in 
future, perhaps genetic improvement could use automatic comprehensibility meas-
ures to make software easier to maintain: after all, if you can measure  it, you can 
evolve it. Also could I add to Castelli’s plea, and suggest where possible, especially 
in presentations, we put the (simplified) evolved model on a slide using the custom-
er’s language, e.g. “glucose” rather than “D1” Fig. 1 .2

Malcolm Heywood [22] follows up two points made by John Koza on his own 
work at his GECCO 2022 lecture: parallel GP and co-evolution. As Koza predicted, 
the thirty plus years since the first GP book [1] have been dominated by the expo-
nential increase in available compute power [23]. It looks likely that this will con-
tinue into the near future. However CPU clock speeds may not rise much above the 
3.6 GHz common today, instead silicon chip designers will spend the extra transis-
tors available on more CPU cores and on more on chip RAM memory (e.g. for cache 
memory). Thus continuing today’s trend for increasing parallelism and to architec-
tures where compute power is plentiful but distributed and the true costs lie in get-
ting data to each CPU fast enough to keep them all busy [24]. As Heywood points 
out GP is “embarrassingly parallel” as the algorithm can be readily split into inde-
pendent work units which can proceed on independent processing units with only 
limited need for communication or synchronisation between them [25, 26].3 In the 
case of GP we can imagine the traditional workload as being divided into a computa-
tional cube (Fig. 2) with 3 dimensions: across individuals in the population × across 
the test cases and × across the opcodes that form each GP program. The computa-
tional cube metaphor stresses that the work can be split up in many ways on parallel 
hardware. Even with a modest GP experiment with a population of 1000, 10 fitness 
cases, and programs of 10 instructions, that gives us 100 000 items to compute per 
generation, which in five years time (2028) might map well onto a field program-
mable gate array (FPGA) or graphics card with 100 000 processing units. (Fig.  2 
shows a much more modest population of 4, with 5 test cases and programs contain-
ing up to 12 instructions.) Fukunaga et al. [27] showed GP could be run without an 
interpreter. Whereas Juille showed an imaginative way of running a GP interpreter 

If glucose exceeds 155 then diabetes

Fig. 1   Interpretation of evolved 3 node GP tree which performs approximately as well as sophisticated 
machine learning techniques [21, Fig. 1]

2  At EuroGP 2000 I did not follow today’s advice and the information about glucose went into the fig-
ure’s caption rather than in the figure itself.
3  At his GECCO 2023 invited keynote Kenneth De Jong said we should be careful to avoid designing 
our evolutionary computation algorithms with more synchronisation points than necessary.
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on a highly parallel computer [28], which inspired more recent work on running GP 
on computer gaming or graphics cards (GPUs) [29] (see also iCUBE’s EASEA plat-
form which supports GPU computing [30]). Heywood also mentions exploiting par-
allel hardware in the form of FPGA [31, 32]. Another area, which every one hopes 
will become available soon, is Quantum Computing [33]. Although Quantum Com-
puting is at present limited in terms of number of Q-bits, evolution has already been 
shown to be able to help improve the reliability of existing quantum algorithms [34].

Heywood [22] also talks of the many cases, since Koza’s first book [1], where 
GP has contributed to the exciting area of co-evolution. Including both competitive 
”red queen” coevolution [36], and co-operative coevolution (such as the evolution 
of multiple tree individuals [37] and ADFs [38]). He gives competitive coevolution 
”arms race” [39] examples, such as simultaneously evolving a program and its test 
suite [40], where programs are evolved to pass tests but the tests are being evolved 
to find bugs in the evolving programs. Heywood also describes co-operative coevo-
lution. Cooperative evolution covers many approaches, such as: evolving separate 

Fig. 2   Evaluating a GP population of four individuals each on the same five fitness cases. There are upto 
4 × 5 × 12 GP operations to be performed by, in principle, 240 GPU threads. Each cube needs the opcode 
to be interpreted, the fitness test case (program inputs) and the previous state of the program (i.e. the 
stack). Taken from [35, Fig. 19]
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programs so that they work as an ensemble [41, 42], as a team [43], part of a com-
plete solution [44] or as a member of a multi-agent simulation   [45, 46].4 He also 
points out that compared to current large language models created by deep learning 
artificial neural networks, GP is not slow.

Alberto Bartoli, Luca Manzoni and Eric Medvet [50] caution us against accepting 
too rosy a picture of GP. They are right to point to the diffuse evidence of indus-
trial GP take up and lack of a dominant GP package5. Whilst a few GP tools are 
now firmly in the industrial domain: Eureqa [51–53] and HeuristicLab [54], they are 
right to point to the diversity of available GP tools. It is unfair to pick out examples 
from the many available, nevertheless a few come to mind: DEAP [55] EASEA [30, 
56] ECJ [57] GeneticEngine [58] GenProg [59] Gin [60, 61] GPLAB [62] gplearn, 
GPTIPS [63] Inspyred [64] Magpie [65] Pony GE2 [66] PushGP [67] and TensorGP 
[68]. I have already pointed to a few examples of GP take up in the software indus-
try, more can be found in the water industry [69] and civil engineering [70], indeed 
they celebrate the success of TPOT [71, 72] in Bioinformatics. Generally Bioinfor-
matics and medical research has embraced open science and is more than happy to 
cite GP tools, such as TPOT, or tools enhanced by evolution [11] when they use 
them [73]. However, as David Andre at his invited keynote at GPTP-2021 [74] 
pointed out, generally companies in competitive industries (particularly in finance) 
are very wary about talking openly about any tool or technique that gives them an 
edge. Bartoli et al. point to GP’s continued success in symbolic regression, citing 
Bill La Cava and team’s work, which was published at the top neural networks con-
ference [75] and their tool, SRBench, which is available on GitHub. Bartoli et  al. 
make important points and suggest ways the GP community should do better. They 
point to the recent success of deep neural networks, but in some ways perhaps we 
should take heart from this. In the popular press deep networks are “AI” and yet 
they, like GP, are empirical rather than theory driven, and both are firmly based on 
learning. The idea that AI requires someone to patiently code all human knowledge 
into a rule base is nowhere to be seen. Deep neural networks demand huge compute 
resources, that is, they are not efficient, and they are far from error free. Perhaps we 
should be happy to let our GP systems consume resources and tolerate some errors. 
As Stephanie Forrest said [76] what could we do if we allowed our evolutionary sys-
tem the same resources that the mega corporations have spent.

Jason Moore [77] points to the impact of Koza’s first GP book [1] in artificial 
intelligence (AI), artificial life, machine learning, art, biology, economics and engi-
neering but questions if Darwin’s fitness driven evolution is helpful. (You may 
remember the full title is “Genetic Programming: On the programming of comput-
ers by means of natural selection”, which was inspired by that of Charles Darwin’s 
1859 revolutionary book “On the Origin of Species by Means of Natural Selection” 

4  Since it is known that disruptions caused by mutation or crossover often fail to propagate up deeply 
nesting programs to impact fitness [47–49], another argument for splitting up programs is to ensure each 
member of the team or ensemble is exposed to the fitness testing environment, whilst each remains rela-
tively shallow.
5  A miscellaneous collection of GP tools can be found at http://​www.​cs.​ucl.​ac.​uk/​staff/W.​Langd​on/​
homep​ages.​html#6.

http://www.cs.ucl.ac.uk/staff/W.Langdon/homepages.html
http://www.cs.ucl.ac.uk/staff/W.Langdon/homepages.html
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[78].) Instead Moore focuses on the importance of the representation used to define 
the programs, the variation operators used to modify them and suggests perhaps GP 
needs a name change. Certainly the last 30+ years have seen an expansion in GP rep-
resentations from interpretable Lisp trees (including ADFs [38]) to linear GP [79], 
grammatical evolution [80], and graph based GP, such as cartesian genetic program-
ming [81]. Also genetic improvement [82, 83] has reinforced the idea that existing 
computer programs are not fragile [84] and can also be evolved, with genetic rep-
resentations as diverse as: lines of C++ code [85], Java [86], XML based abstract 
syntax trees [65],6 SQL [88, 89], Java byte code   [90–92], assembler [93], Clang 
intermediate code [94] and even binary machine code [95]. Moore is correct in say-
ing that not only are trees not the only representation but also genetic search is not 
the only game in town. Already people have (in addition to genetic algorithms [1]) 
been successful with: hill climbing [96], simulated annealing [97], novelty search 
[98] and Monte-Carlo Tree Search [99]. As he points out we need to be cautious 
about re-naming, for example, often people do not like “random” but the equivalent 
“stochastic” sounds more scientific. But in the end he points out whatever we call 
GP our goal must be to continue to help people and help society.

Colin Johnson [100] points to the “unreasonable effectiveness” of GP fitness 
functions but nevertheless suggests several ways to improve them including infor-
mation theory [101], and suggests the possibility of a universal fitness function, 
perhaps derived from existing examples, e.g. using his Learned Guidance Func-
tion LGF [102]. Similarly we can regard GP as providing a universal representation 
[103]. He also mentions current work on using deep neural network based large lan-
guage models (LLMs) in natural language processing (NLP) text generation applica-
tions. Perhaps LGFs with LLMs could act as surrogate fitness functions [104] and 
may be give multitudes of fitness test points? He also suggests we abandon static 
fitness functions, and instead use dynamic fitness functions, whose role and target 
change during the run as the GP population evolves. (In some ways dynamic fitness 
functions might emulate the often hoped for role of co-evolution of continuously 
stretching the populations, by adapting the direction of fitness selection. Thus pre-
venting any species in the ecosystem from stagnating near a local optimum. See also 
Heywood [22], page 3 above.) Johnson highlights work by Krzysztof Krawiec [105], 
which perhaps has already taken a step in the direction advocated by Jason Moore 
[77] (see previous paragraph), where instead of fitness being applied blindly, “black 
box”, to the whole organism (i.e.  the whole program) “search drivers” consider 
components within the program [106] and try to improve the whole by improving 
its parts. This is very much in the mode of recent “white box, blind no more” work 
by Darrell Whitely [107], where Whitely uses variable interaction graphs (VIGs) to 
find the natural components of combinatorial problems and uses them with cross-
over to effectively search vast spaces. See also Zaidi’s Value State Flow Graphs 
(VSFGs) for describing data flows inside programs [108]. Perhaps VIGs or VSFGs 

6  Abstract syntax trees are often used by high level language compilers during syntax analysis. ASTs 
written in XML typically contain many diverse types and strongly typed genetic programming, STGP 
[87], crossover and mutation are readily implemented with XML [65].
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could be used in GP? Perhaps with a degree of fuzziness to eliminate potential weak 
connections between program components? Perhaps approximate VIGs could form 
part of the inherited genotype? Perhaps they could themselves be subject to muta-
tion or other genetic operations, with new programs (epigenomes) being stochasti-
cally generated from VIGs?

I would like again to thank the contributors to this peer commentary and espe-
cially the two editorial “Lions” for assembling such a diverse set of skilled peer 
commentators with such good ideas about how to pull GP forward for the next 30 
years.
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