
Vol.:(0123456789)

Genetic Programming and Evolvable Machines (2023) 24:5
https://doi.org/10.1007/s10710-023-09452-4

1 3

A comparison of an evolvable hardware controller
with an artificial neural network used for evolving the gait
of a hexapod robot

Fraser Borrett1 · Mark Beckerleg1

Received: 27 September 2022 / Revised: 13 February 2023 / Accepted: 3 March 2023 /
Published online: 28 March 2023
© The Author(s) 2023

Abstract
This paper investigates the implementation of a novel evolvable hardware control-
ler used in evolutionary robotics. The evolvable hardware consists of a Cartesian
based array of logic blocks comprised of multiplexers and logic elements. The logic
blocks are configured by a bit stream which is evolved using a genetic algorithm.
A comparison is performed between an evolvable hardware and an artificial neural
network controller evolved using the same genetic algorithm to produce the gait of a
hexapod robot. To compare the two controllers, differences in their evolutionary effi-
ciency and robot performance are investigated. The evolutionary efficiency is meas-
ured by the required number of generations to achieve an optimal fitness. An optimal
hexapod controller allows the robot to walk forward in a straight line maintaining a
constant heading and body attitude. It was found that the evolutionary efficiency and
performance of the evolvable hardware and artificial neural network were similar,
however the EHW was the most evolutionary efficient requiring less generations on
average to evolve. Both evolved controllers were evaluated in simulation, and on
a physical robot using a softcore processor and custom hardware implemented on
a FPGA. The implementation showed that the controllers performed equally well
when deployed, allowing the hexapod to meet the optimal gait criteria. These find-
ings have shown that the evolvable hardware controller is a valid option for robotic
control of a multilegged robot such as a hexapod as its evolutionary efficiency and
deployed performance on a real robot is comparable to that of an artificial neural
network. One future application of these evolvable controllers is in fault tolerance
where the robot can dynamically adapt to a fault by evolving the controller to adjust
to the fault conditions.

Keywords  Evolutionary robots · Artificial neural network · Evolvable hardware ·
Hexapod robotic · Robot gait · Genetic algorithms

 *	 Fraser Borrett
	 fraser.borrett@aut.ac.nz

Extended author information available on the last page of the article

http://crossmark.crossref.org/dialog/?doi=10.1007/s10710-023-09452-4&domain=pdf

	 Genetic Programming and Evolvable Machines (2023) 24:5

1 3

5  Page 2 of 30

1  Introduction

This paper investigates the implementation of an evolvable hardware (EHW) con-
troller for evolutionary robotic applications. The EHW controller is a “virtual”
field programmable gate array (FPGA) that is specifically designed for evolution
incorporating the features of: (1) non-destructive architecture to prevent damage
during the evolutionary process; (2) course-grained structure for an improved
evolutionary rate; (3) partial reconfigurability to allow the EHW to change within
the FPGA; and (4) scalability allowing successful evolution as the complexity of
the problem increases. This EHW architecture is based on the Cartesian genetic
programming EHW approach originally introduced by Miller et al. [1, 2]. The
EHW controller is evolved to produce the walking gait of a hexapod robot. To
study the abilities of the EHW controller a comparison is made between the EHW
and an artificial neural network (ANN) controller in two areas: (1) the evolution-
ary efficiency, determined by how quickly the controllers can evolve to a satis-
factory performance; and (2) the evolved controller performance, determined by
both the maximum fitness achieved and observation of the gait in the physical
robot.

The genetic algorithm (GA) is an optimization tool that can be used to evolve
robotic controllers using a process based on biological evolution. The biological
chromosome is replaced by a chromosome that determines the operation of the
robot. The GA operates on a population of these chromosomes with three itera-
tive processes: (1) fitness evaluation, where the performance of each chromosome
is evaluated; (2) selection, where the chromosomes to be kept are determined;
and (3) reproduction, where the selected chromosomes are combined and mutated
to produce new chromosomes. The three processes are repeated until a satisfac-
tory solution is found.

The EHW GA was executed on the Terasic DE10-Nano board which incorpo-
rates a Cyclone V FPGA with an onboard hardcore processor (Dual-Core ARM
Cortex-A9 MPCore Processor, 925 MHz). The implementation of an EHW con-
troller for evolution (Fig. 1) shows the EHW and the System-on-Chip ARM pro-
cessor residing in the FPGA. The Arm processor contains the programs for: (a)
the genetic algorithm; (b) the robot simulation; and (c) a serial link for data log-
ging of the evolutionary process on a PC.

The ANN GA was performed in MATLAB which ran the GA, robot simulation
and the ANN (Fig. 2). A standard 3-layer feed-forward ANN was evolved.

The simulation model of the robot was based on a commercially bought robot
chassis (Fig. 3). The electronics of this robot were specifically designed to com-
pare both the evolved EWH and the evolved ANN. The electronics incorpo-
rated a RN4677-V Bluetooth module for remote control, and the Terasic DE0-
Nano board to interface to the eighteen leg motors. Note the DE0-Nano board
used in the robot is different from the DE10-Nano board used to evolve the EHW
controller.

A future practical application of EHW is fault tolerant robotic controllers.
FPGA devices can incorporate powerful, hardcore ARM processors, allowing

1 3

Genetic Programming and Evolvable Machines (2023) 24:5	 Page 3 of 30  5

Fig. 1   Overview of the EHW system

Fig. 2   Overview of the ANN
system

Fig. 3   The physical hexapod robot that was designed at the Auckland University of Technology for eval-
uation of EHW in real world applications (a) The hexapod controller board with DE0-Nano FPGA and
Bluetooth Module (b) Hexapod walking

	 Genetic Programming and Evolvable Machines (2023) 24:5

1 3

5  Page 4 of 30

the evolutionary process to occur in the same silicon fabrication as the EHW.
The fault tolerant EHW combined with a hardcore processor would use continu-
ous evolution, with the best evolved solution updating the active controller. Sen-
sors showing changes or faults in the real world are used to update the simulation
model allowing the evolving controller to be updated, to replace the active con-
troller when a change in the real-world system occurs (Fig. 4).

2 � Related work

A comparison of evolvable robotic controller types has been performed by a small
number of authors. Pinter-Bartha et al. [3] compared an ANN with an evolvable
Mealy machine whose task was to move towards a light source. It was found that
the ANN performed better than the Mealy machine. Beckerleg et al [4]. investigated
three robotic controllers, an EHW, an ANN and a lookup table (LUT). The three
controllers were evolved for both light following and obstacle avoidance. It was
found that the ANN and EWH had a similar evolutionary performance, however the
LUT’s evolutionary efficiency was much lower for both tasks.

2.1 � Evolvable hardware robotic controllers

EHW uses evolutionary algorithms to evolve hardware. Primarily this is performed
on FPGAs as their architecture allows the application of reconfigurable digital cir-
cuits designed using a hardware description language (HDL) such as Verilog. The
FPGA is a two-dimensional array of logic array blocks (LABs) with interconnec-
tions between LABs. Normally an integrated development environment (IDE) such
as Intel’s “Quartus” is used to convert the digital circuit design into a configuration
bit stream (CBS) which is then downloaded into the FPGA to configure the LABs

Fig. 4   EHW used in an adaptive fault tolerant system

1 3

Genetic Programming and Evolvable Machines (2023) 24:5	 Page 5 of 30  5

and interconnections. When used in EHW, the CBS can be seen as a chromosome
and directly evolved using an evolutionary algorithm to evolve robotic controllers.

The major difficulties of evolving a CBS are: (a) the creation of destructive hard-
ware where outputs are connected to outputs; (b) fine grained architecture where
complex circuits are difficult to evolve; and (c) difficulties with scalability. Under
normal conditions the IDE would not allow a destructive CBS to be produced,
instead producing error messages to the designer. However, evolving the CBS
directly allows destructive architectures to be produced. In earlier research the
Xilinx XC6216 FPGA was used as its internal architecture did not allow output to
output connections [5, 6].

However, this chip is no longer in production and modern FPGAs are capable of
destructive architectures, relying on the IDE to prevent this from occurring. Alter-
native approaches to avoid destructive architectures include: (a) evolutionary algo-
rithms that only manipulate the sections of the CBS corresponding to the LAB’s
function and not the interconnections [7, 8]; (b) the evolution of the hardware
description language itself relying on the compiler to prevent destructive architec-
tures [9]; and (c) virtual FPGAs (VFPGAs) designed in HDL and implemented on
FPGAs.

The VFPGA (Fig. 5) consists of a two-dimensional array of LABs. Each LAB
contains a multiplexer which selects inputs determining the interconnections
between LABs, and logic elements (LEs) which are a LUT of logic functions. These
LABs are configured by the CBS. The output of one column of LABs connects to
the input of the following column of LABs, preventing destructive output to output
connections allowing the hardware to be evolved safely. The LE is comprised of
complex logic functions giving the VFPGA a course-grained architecture which is
more suitable for evolution.

Fig. 5   Virtual-FPGA showing LABs placed in Cartesian array with internal multiplexer and logic ele-
ments configured by the CBS

	 Genetic Programming and Evolvable Machines (2023) 24:5

1 3

5  Page 6 of 30

VFPGA have been evolved for a variety of tasks including image processing
using [10–12], fault tolerant systems [13, 14], pattern recognition [15–17] and char-
acter recognition [18]. Investigation into the use of VFPGAs as robotic controllers
has also been conducted looking at a ball-beam system [19, 20] and for object detec-
tion/avoidance [4] as previously mentioned.

2.2 � Evolvable artificial neural network robotic controllers

ANNs mimic biological neural networks using a layered architecture of intercon-
nected neurons. In the synthetic software form, each input to a neuron has a weight-
ing factor and the sum of these weighted inputs plus a bias is fed into an activation
function such as the sigmoid or rectified linear functions. The activation function
will determine the output of the neuron. These networks of neurons are then trained
using such strategies as supervised, unsupervised or reinforcement learning strate-
gies. A familiar example of ANNs can be seen in modern smart phones where it is
used in facial recognition to unlock the phone [21, 22].

Alternatively, to the traditional training methods, evolutionary algorithms can be
used to adapt the weights, bias, activation function and even the architecture of the
network to develop an optimal ANN for a given task. ANNs have been success-
fully evolved for light following and obstacle avoidance robots [23–28], solving the
inverse kinematics of robotic manipulators [29], hexapod locomotion control [30,
31], and fault recovery of a quadruped where the ANN was implemented in Field
Programmable Analog Arrays (FPAA) and evolved using a GA [32].

2.3 � Evolved robotic controllers for hexapod locomotion

Currie and Beckerleg [33] evolved a walking gait for the hexapod, where the chromo-
some was a lookup table containing the angles of the servos at each interval in the gait.
The fitness was based on the stability and efficiency of the gait of the robot walking in
a straight line. Li et al. [34] evolved an ANN to develop a walking gait for a hexapod
robot with 2 degrees of freedom for each leg. The ANN was a six neuron fully recurrent
neural network. The ANN was implemented for a single leg, using two inputs that fired
when the extremes of the servo positions where reached. The ANN had two outputs to
generate the mark value for the servo PWM signal. The fitness was a combination of
the forward movement, the number of times the leg was raised, and the drag generated
during the gait. It was found that an optimal gait could be generated in approximately
300 generations. Juang et al. [35] evolved fully connected recurrent neural networks
(FCRNN) to produce the walking gait of a hexapod with 2DOF legs. The EA used
was symbiotic species-based particle swarm optimization (SSPSO). The SSPSO algo-
rithm was successfully used to evolve the controllers to produce a gait where the hexa-
pod walked forward in a straight line. In the paper, SSPSO was compared to different
PSO algorithms, and a standard GA. It was shown in the same number of evaluations,
SSPSO evolved a better walking gait allowing the robot to walk further compared to
the other evolutionary algorithms. Heijnen et al. [36] developed a testbed to evolve the
feed forward controllers of a hexapod for a specific mission environment. The paper’s

1 3

Genetic Programming and Evolvable Machines (2023) 24:5	 Page 7 of 30  5

primary objective was to investigate the testbed and how it could be used to evolve the
controllers in real time on the real robot. The evolution was done in a two-stage pro-
cess: (1) using Nondominated Sorting Differential Evolution (NSDE) on a population
of possible solution; and (2) selecting a single parent from the stage 1 population based
on the mission criteria and using the 1 + 1-Evolution Strategy (ES) to reach the final
solution. Heijnen was able to show the feed forward controllers that produce the desired
foot positions could be evolved using the testbed for fitness requirements based on the
smoothness, stability, and efficiency of the hexapod’s gait.

The authors have not found any references for evolving EWH for hexapod
controllers.

3 � Robot kinematics

The following inverse kinematic Eqs. (1–9) are developed from geometric analysis of
the leg (Fig. 6). Where H, K, F and O are position vectors defining; the hip, knee, foot
and leg origin respectively relative to the robot body. The robot dimensions are shown
as the length of the pelvis lpelvis , the length of the femur lfemur , and the length of the tibia
ltibia . The three angles � , � and � are the joint angles for the servos positioned at O, H
and K respectively.

(1)Hx = Ox + lpelvis ∗ cos (�)

(2)Hy = Oy + lpelvis ∗ sin (�)

(3)Hz = Oz

(4)Kx = Hx + lfemur ∗ cos (�) ∗ cos (�)

Fig. 6   Hexapod robot leg model

	 Genetic Programming and Evolvable Machines (2023) 24:5

1 3

5  Page 8 of 30

For both controllers the angular position of the joints is stored in a matrix to be
used to form a set of xyz data using the above inverse kinematic equations; the two
data sets are used to determine the fitness of the individual’s gait.

4 � System structures and chromosomes

4.1 � Evolvable hardware

The EHW units are digital circuits that are programmed into a FPGA using the
Verilog hardware description language. The top-level view of the EHW for one leg
(Fig. 7) has three EHW units, one for each servo. There are four inputs which are
paralleled to each EHW unit, and the output from each unit is used to drive the leg’s

(5)Ky = Hy + lfemur ∗ cos (�) ∗ sin (�)

(6)Kz = Hz + lfemur ∗ sin (�)

(7)Fx = Kx + ltibia ∗ cos (�) ∗ cos (�)

(8)Fy = Ky + ltibia ∗ cos (�) ∗ sin (�)

(9)Fz = Kz + ltibia ∗ sin (�)

Fig. 7   The EHW structure for one leg showing the inputs and outputs

1 3

Genetic Programming and Evolvable Machines (2023) 24:5	 Page 9 of 30  5

three servos: hip, knee, and foot. The inputs are broken into: (a) an 8-bit signal to
show if the leg is on the ground (ground phase 8’b00001111) or in the air (air phase
8’b11110000); (b) a 6-bit gait counter showing the ten steps of each phase, with
the numbers moving up in steps of 6, (6, 12 …. 60); and (c) logic zero and one
inputs. The two outputs from each EHW unit are: (a) a signed 5-bit value giving the
angular change of the servo motor; and (b) a 4-bit prescaler that scales the angular
change. The 4-bit prescaler allows the resolution of the change in servo angle to
vary between − 15° to + 15° down to − 0.9° to 0.9°. The inputs and outputs of the
EHW are interfaced to a hardcore ARM processor using standard parallel input out-
put ports (PIO). The ARM processor which is running the GA and robot simulation
sends the appropriate ground/air phase of the robot and gait counter to the EHW,
and then converts the outputs of the EHW into a PWM signal used to drive the sim-
ulated hexapod servo motors.

The EHW architecture (Fig. 8) is made up of five layers of interconnected LABs
in a Cartesian based architecture, where the data is passed from left to right in a
feedforward process until the final output is reached. Each LAB incorporates mul-
tiplexers to select inputs, and logic elements in the form of LUTs to provide logic
functions. The inputs to the EHW are 16 bits of data made up of the air/ground
phase signal, the step counter and logic 0 and 1, while the output is the change in
servo motor angle and a prescaler. The EHW are configured using a CBS.

Layer 1 (Fig. 9) consists of a column of 8 LABs with each LAB containing 4
multiplexers and a logic element (LE) which can perform one of 32 selectable logic
operations. Each multiplexer is configured by the CBS to select 1 of the 16 input bits
to be processed by the LE. Each of the 4 multiplexer outputs are feed into the LE.
The CBS fed into the LE determines which of the 32 logic operations will be used
on the four inputs by means of a Verilog case statement (Fig. 10). For example, if the
LE configuration bit stream is 5’b01000 the logic function for case 8 (A&B&C&D)

Fig. 8   One of the EHW units used to drive a servo motor, showing the five-layer Cartesian architecture

	 Genetic Programming and Evolvable Machines (2023) 24:5

1 3

5  Page 10 of 30

Fig. 9   LAB for layer 1 with 16 inputs, 1 output, and the configuration bit stream required for each com-
ponent

Fig. 10   Verilog case statement for selectable logic operations

1 3

Genetic Programming and Evolvable Machines (2023) 24:5	 Page 11 of 30  5

is used. The outputs from each of the eight LABs are combined to produce a parallel
8-bit output which feeds into the following layer.

Layer 2–4 consists of 8 LABs similar to layer 1 apart from the multiplexers which
selects from 8-bits as opposed to 16 (Fig. 11). The outputs from each LAB are com-
bined to produce an 8-bit output for each of the layers 2–4.

Layer 5 is the output layer which has 5 LABs that are identical to those used in
layers 2–4. The outputs from each of the 5 LABs are combined to produce a 5-bit
signed output that is used to determine the servo motor angular change in degrees
for a servo in the hexapod leg.

To calculate the angle change, the 5 bits are separated. Bit 4 the MSB is the sign
of the angle change and bits 3-0 are the magnitude. The EHW also has a prescaler
output which is used by the ARM processor to scale the magnitude of the servo
motor angular change from 1/16th to 1, Eq. (10). This results in a floating-point
value used to control the angle of the servo.

(10)Δposition =
sgn(out[4]) ∗ out[3 ∶ 0]

prescaler

Fig. 11   LAB for layers 2–4 with 8 inputs and 1 output

	 Genetic Programming and Evolvable Machines (2023) 24:5

1 3

5  Page 12 of 30

4.1.1 � Chromosome

The chromosome for the EHW is its configuration bit stream. The chromosome is
stored in the ARM processor as an array of bytes. The bytes are used to config-
ure the virtual FPGA from the ARM processor through addressed PIO ports on the
FPGA fabric using the AXI lightweight bridge, which is the interface between the
hard processor and the FPGA fabric within the Cyclone V FPGA chip. Each bit of
the PIO port is connected to a wire in the multiplexer or LUT within the LABs. The
byte arrays are grouped into five arrays, layer 1 has 21 bytes, layer 2–4 has 17 bytes
each, and layer 5 has 11 bytes (Fig. 12). Each bit does not define a specific pheno-
type but contributes to a section of the LAB that will determine a particular output
as shown in (Fig. 13).

The genotype–phenotype mapping for the EHW chromosome is shown in
Figs. 13 and 14. The genotype is represented by the bits that make up the configu-
ration bit stream, the phenotype is the combined configured operation of the logic
array blocks i.e. the selected interconnections between the LABs and the respective
logic function the LABs will carry out. The combination of these configured LABs
results in a controller that has the necessary characteristics to optimally drive the
hexapod.

The Fig. 14 example is a spreadsheet that shows an actual evolved solution. The
inputs are the ground/air phase, gait counter and logic 1/0. The five layers are shown
as columns, the LABs within the column are shown as rows. The first row of the

Fig. 12   The five arrays which represent the Chromosome of one EHW unit

1 3

Genetic Programming and Evolvable Machines (2023) 24:5	 Page 13 of 30  5

LAB shows the multiplexer selection and logic function, the second row shows the
CBS for the multiplexers A-D and the LE. The adjacent column shows the logic out-
put of the LAB. The progression from genotype to phenotype is shown as the signal
progresses through the EHW until the servo motor angle change is produced at the
output.

The crossover and mutation of the EHW chromosome during the reproduction
phase of the GA is as follows. The chromosome is divided into layers, with sin-
gle point crossover performed between the two parents of that layer (Fig. 15). This
crossover can be considered to be multipoint when applied to the complete chromo-
some. One of the bytes in the complete 83-byte chromosome is randomly selected
and mutated, giving a mutation rate of approximately 1%. For the prescaler value,
the child chromosome will get either parent one or parent two prescaler value at

Fig. 13   Visualization of genotype/phenotype map of a LAB, showing the relationship between the indi-
vidual configuration bits and the programmed operation of a LAB. Example with random input and con-
figuration

	 Genetic Programming and Evolvable Machines (2023) 24:5

1 3

5  Page 14 of 30

Fi
g.

 1
4  

E
vo

lv
ed

 c
on

fig
ur

at
io

n
hi

p
EH

W
 u

ni
t f

or
 g

ro
un

d
ph

as
e.

 E
xa

m
pl

e
in

pu
t a

nd
 o

ut
pu

t,
sh

ow
in

g
ho

w
 th

e
da

ta
 is

 m
an

ip
ul

at
ed

 p
as

si
ng

 b
et

w
ee

n
ea

ch
 la

ye
r

1 3

Genetic Programming and Evolvable Machines (2023) 24:5	 Page 15 of 30  5

an equal probability. The prescaler also has a mutation rate 1 percent. This crosso-
ver and mutation process is carried out separately for each of the 3 EHW units that
make up an individual leg controller.

4.2 � Artificial neural network

The ANN architecture (Fig. 16) is a three-layer feed forward neural network with
an input layer, a single hidden layer, and an output layer. The inputs are: (a) air-
ground phase (− 4.5 when on the ground and + 4.5 when in the air); and (b) the step
count ranging from 1 to 10. The output is the servo angular change using an adapted
hyperbolic tan activation function ranging from − 15° to + 15°.

4.2.1 � Hidden layer

The weights and bias for the hidden layer neurons (Fig. 17) ranged from − 1 to 1
in steps of 0.1 giving an input range from − 15.5 to + 15.5. The activation func-
tion is an adapted hyperbolic tangent which is normalized to give an output rang-
ing from − 1 to + 1. The hidden layer neuron is described by Eqs. (11 and 12);
where Wi is the weight corresponding to input Ii from the input layer; and B is the
bias of the neuron.

Fig. 15   Representation of the EHW chromosome crossover and mutation operation

	 Genetic Programming and Evolvable Machines (2023) 24:5

1 3

5  Page 16 of 30

4.2.2 � Output layer

The weights and bias for the output layer neurons (Fig. 18) ranged from − 1 to 1
in steps of 0.1 giving an input range from − 5 to + 5. The activation function is an

(11)x =

[
n∑
i=1

Wi ∗ Ii

]
+ B

(12)f (x) =
1 − e

−x

3

1 + e
−x

3

Fig. 16   Three-layer ANN used for each leg

Fig. 17   Hidden layer neurons (P1–P4)

1 3

Genetic Programming and Evolvable Machines (2023) 24:5	 Page 17 of 30  5

adapted hyperbolic tangent with a multiplication factor giving an output range from
− 15 to + 15.

The neuron function is shown in Eq. (13); where Wi is the weight correspond-
ing to input Pi from the hidden layer neurons. The activation function is shown in
Eq. (14) The activation function used is a variation on the commonly used hyper-
bolic tangent function.

4.2.3 � Chromosome

The chromosome for the ANN is a table with the neuron’s associated weights and
bias, with a step size of 0.1 (Table 1).

The crossover and mutation of the ANN chromosome during the reproduction
phase of the GA is as follows. The chromosome contains the weights of the 7 neu-
rons, which has been divided into the hidden layer neurons 1–4 and output layers

(13)x =

[
n∑
i=1

Wi ∗ Pi

]
+ B

(14)g(x) = 22 ∗

(
1 − e

−x

3

1 + e
−x

3

)

Fig. 18   Output layer neurons (P5–P7)

Table 1   The ANN chromosome
Neuron P1 W11 W12 N/A N/A B1

Neuron P2 W21 W22 N/A N/A B2

Neuron P3 W31 W32 N/A N/A B3

Neuron P4 W41 W42 N/A N/A B4

Neuron P5 W51 W52 W53 W54 B5

Neuron P6 W61 W62 W63 W64 B6

Neuron P7 W71 W72 W73 W74 B7

	 Genetic Programming and Evolvable Machines (2023) 24:5

1 3

5  Page 18 of 30

neurons 5–7, The chromosome is split into these two layers, with single point cross-
over performed between the two parents of that layer, this can be considered to be
multipoint when applied to the complete chromosome (Fig. 19). A mutation rate of
1% is applied to the chromosome.

5 � Genetic algorithm

A GA is used to evolve a walking gait for a hexapod robot which allows the robot to
walk one meter in a straight line in a stable manner. The gait is comprised of twenty
steps, ten for the ground phase where the leg is on the ground pushing the robot
forward, and ten for the air phase where the leg is in the air returning to its ground

Fig. 19   Representation of the ANN chromosome crossover and mutation operation

1 3

Genetic Programming and Evolvable Machines (2023) 24:5	 Page 19 of 30  5

starting position. The ground and air phases of the gait are evolved separately using
the same GA. The same GA with a population of 100 was applied to both the ANN
and the EHW controllers.

Initially all six legs were evolved to develop the gait and performance was deter-
mined based on the movement of the robot with each leg. However, it was realized
the movement of only a single leg needed to be evolved to develop a suitable walk-
ing gait, because the motion for all legs is fundamentally the same. The only dif-
ference between the motion of the leg, is the phase of each leg during the walking
gait. So, fitness is determined on the motion of a leg rather than all six legs of the
hexapod.

5.1 � Reproduction and selection

Reproduction uses multi-point crossover with a 1% mutation rate. The selection pro-
cess uses two stage binary tournament (Fig. 20). In this method, the population is
randomly shuffled, then put into the first tournament to compete individual versus
individual. The fifty winners of the competition have two outcomes: (1) they are
used to reproduce fifty children that compete in the second tournament; and (2) they
are directly carried on to the next generation. The losers of the first tournament and
new children then compete in a second tournament to select the remaining individu-
als that will survive for the next generation.

Tournament-based selection was chosen as it is a well-known selection method
used in GAs, it is highly effective requiring fewer generations to evolve solutions
than other methods such as roulette [37], binary tournament selection is the most
common implementation of this strategy, because (a) the simplicity of its implemen-
tation and (b) having a larger tournament size increases the chances of loss of diver-
sity [38]. The mutation rate of 1% is chosen at a level that aids the search for an opti-
mal solution but is not overly destructive of the chromosome, this is important as a
higher mutation rate will make reaching the optimal solution difficult if useful genes
past from parents are being lost due to excessive mutation. The population size of
100 is chosen to ensure a more diverse population particularly early in the evolution

Fig. 20   Two stage binary tournament selection

	 Genetic Programming and Evolvable Machines (2023) 24:5

1 3

5  Page 20 of 30

process. Reduced population size may improve the computation time of the program
per generation but can reduce the evolutionary rate.

5.2 � Fitness function

To reduce the “reality gap” between the robot simulation and the real robot the fit-
ness functions were linked to the physical robot’s observed behavior including back-
lash, accuracy, and “play” in the servos. Firstly, it was observed that the robot would
sag when a leg was lifted off the ground, therefore a minimum height is required
when the leg was lifted, and secondly the robot heading was affected by the trajec-
tory of the leg, with a symmetrical motion giving an improved heading. The follow-
ing equations are used to determine the fitness with a lower value showing a better
fitness.

5.2.1 � Ground phase fitness

The factors used to determine the ground phase fitness are: (1) symmetry of the gait;
(2) the height is kept constant (smoothness); (3) is the leg contributing to forward
motion; and (4) physical limitations, Eq. (15).

Symmetry fitness is quantified by checking if the selected start position of
the leg is the same as the end position except for the hip angle γ is the oppo-
site sign, implemented using an error squared function. Ideally for example if,
Start Position, � = [−80, 25, 20] the End Position, � = [−80, 25,−20] , Eq. (16).

Forward motion fitness is quantified by three formulae: (1) Applying an error
squared function based on the start height, the average height, and the height at
each step in the gait of the foot. The foot must be pushing against the ground to
contribute to moving the robot forward (z = height). (2) Applying an error squared
function based on the start x position, the average x position, and the x position
at each step in the gait. The foot must maintain the same straight heading while
pushing against the ground to contribute to moving the robot forward. (3) Penal-
ties are applied if the distance the robot is pushed forward is below a set limit
based on experimentation with the hexapod, Eqs. (17–20).

(15)
fitness = fitnesssymmetry + fitnessforward motion + fitnesssmoothnesss + fitnessphysical limits

(16)fitnesssymmetry =
(|��|−|��|

)2
+

(|||��|−|��
|||
)2

+

(|||��
||| − |�� |

)2

(17)fitnessfm1 = |z0 − zavg|2 + |z0 − z10|2 +
step10∑
i=step1

|||zi − zavg
|||
2

1 3

Genetic Programming and Evolvable Machines (2023) 24:5	 Page 21 of 30  5

Smoothness fitness is quantified by applying fixed penalties for uneven jumps
between foot positions. In particular when the foot is not moved during a step,
this prevents large changes in position occurring to complete the gait (21). Fi is
the vector that describes the foot position at a step in the gate i.

Penalties are applied when a step in the gait contains angular positions that
are not physically possible as defined by Eq. (22). To improve the evolutionary
efficiency the maximum and minimum angles are set to values less than the true
physical limits. The specific limits of the joint angles are shown in (Table 2).

5.2.2 � Air phase fitness

The factors used to determine the air phase fitness are: (1) symmetry of the gait; (2) is
the foot lifted and put down smoothly; (3) the amount the leg is lifted; and (4) physical
limitations.

Symmetry fitness is quantified by: (1) checking if the end position of the leg is the
same as the ground phase starting position, implemented using an error squared func-
tion like the ground phase; and (2) ensuring the foot is at its highest position approxi-
mately at the halfway point of the gait step n (n can be step 5, 6 or 7), Eqs. (24–26).

(18)fitnessfm2 = |x0 − xavg|2 + |x0 − x10|2 +
step10∑
i=step1

|xi − xavg|2

(19)fitnessfm3 = fixed penalty, for distance < LL

(20)fitnessforward motion = fitnessfm1 + fitnessfm2 + fitnessfm3

(21)fitnesssmoothness =

step10∑
i=step1

fixed penalty, for Fi = Fi−1

(22)fitnessPhysicallimits =

⎧
⎪⎨⎪⎩

fixed penalty, for 𝛾 > max or 𝛾 < min

fixed penalty, for 𝛼 > max or 𝛼 < min

fixed penalty, for 𝛽 > max or 𝛽 < min

(23)fitness = fitnesssymmetry + fitnesslift + fitnesssmoothnesss + fitnessphysical limits

Table 2   Maximum and
minimum joint angle limits

Min � Max � Min � Max � Min � Max �

−abs
(
�0
)

abs
(
�0
)

−
�

4

�

4
−

3�

4
−

�

4

	 Genetic Programming and Evolvable Machines (2023) 24:5

1 3

5  Page 22 of 30

Lift fitness is quantified by: (1) applying a fixed penalty if the middle step in the gait
n is below the start height of the foot; and (2) by checking the height of the middle of
the gait step n as this should be the highest point so will influence the height of the foot
across the gait. A fixed penalty is applied if the highest point of the gait is below a cer-
tain limit. The lower limit (LL) was found from experimenting with models that were
implemented on the hexapod. The lower limit helps to prevent drag in the real hexapod,
Eqs. (27–29).

Smoothness fitness is quantified by applying fixed penalties for erratic jumps
between foot positions. When the leg is lifted Fi must be lower than Fi+1 and when
the leg is being lowered foot Fi must be higher than Fi+1.

Physical limits fitness is quantified by servo angles which are possible. Fixed pen-
alties are applied when a step in the gait contains angular positions that are not pos-
sible Eq. (22).

6 � Results

The EHW and ANN controllers were evolved to create a hexapod walking gait
allowing the robot to move forward in a straight line using the same GA. The two
phases of the leg motion, (leg on the ground, and leg in the air) were evolved sepa-
rately with each phase broken into ten stages. One hundred solutions for each con-
troller were evolved, with the maximum number of generations limited to 1000
(500 generations for each phase). Both controllers use the same input data and are

(24)fitnesssym1 =
(
�� − ��

)2
+
(
�� − ��

)2
+
(
�� − ��

)2

(25)fitnesssym2 = fixed penalty, for step n not 5, 6 or 7

(26)fitnesssymmetry = fitnesssym1 + fitnesssym2

(27)fitnesslift1 = fixed penality, for zn < z0

(28)fitnesslift2 = fixed penalty, for zn < LL

(29)fitnesslift = fitnesslift 1 + fitnesslift 2

(30)

fitnesssmoothness =

stepn∑
i=step0

fixed penality, for 0 > |zi − zi−1|

+

step10∑
i=stepn+1

fixed penality, for 0 < |zi − zi−1|

1 3

Genetic Programming and Evolvable Machines (2023) 24:5	 Page 23 of 30  5

evolved to output a change in position of three servos in the leg for each stage of the
hexapod’s gait.

6.1 � Simulation

6.1.1 � Evolutionary efficiency

Evolutionary efficiency is determined by how many generations are required to cre-
ate an optimum walking gait, an optimum walking gait allows the robot to walk for-
ward in a straight line, maintaining a constant heading and body attitude. The EHW
has a better evolutionary efficiency, however both controllers can reach a suitable
fitness within 100 generations per phase (Fig. 21).

An analysis of the combined ground and air phase results (Fig. 22 and Table 3)
shows the EWH median is approximately 45% faster than the ANN with 95% of the
ANN results taking longer than the median EHW result. The ANN also had more
than double the number of failed evolution attempts, where the desired fitness was
not achieved within the max generation limit of 1000 generations. Even though the
majority of the EHW results are significantly faster than the ANN results, the EHW
does have a small number of outliers (Fig. 22) where the GA gets stuck at a local
optima taking a significant number of generations to reach the target fitness, this can
be seen in Fig. 21 with the EHW lower part of the range of results. These findings
are summarized by Table 3.

Fig. 21   ANN versus EHW Evolutionary Efficiency

	 Genetic Programming and Evolvable Machines (2023) 24:5

1 3

5  Page 24 of 30

6.1.2 � Controller performance

The final evolved solutions of both controllers were implemented in a PyBullet
[39] simulation of the hexapod (Fig. 23) with an 80 ms control interval, mean-
ing a step in the gait is executed every 80 ms. The controller performance was
measured by: (a) the ability to walk a straight line; (b) the ability to maintain a
constant height and orientation of the body; and (c) the distance traveled.

The trajectory of the hexapod was observed (Online Resource 1) and plotted
(Fig. 24). The plot shows that both evolved controllers had an excellent gait allowing
the hexapod to walk in a straight line. It is noted that both controllers had a minor
oscillation in their trajectories, but this is negligible and does not affect the heading
of the robot.

The motion of the leg gait (Fig. 25) shows that both controllers evolved a sta-
ble gait. During the ground phase for each controller the foot of the leg tracks an

Fig. 22   Box and Whisker analysis of the combined ground and air phase results

Table 3   The combined Air and Ground phase evolutionary efficiency of both controllers; it shows the
EHW is faster to evolve than the ANN requiring fewer generations on average to evolve and has fewer
failed evolutions where the target fitness was not achieved

Controller Mean
genera-
tions

Median
genera-
tions

95th percentile Minimum gen-
erations to reach
desired fitness

Maximum gen-
erations to Reach
desired fitness

No. of
failed
evolu-
tions

EHW 116 87  < 25 19 800 3
ANN 166 160  < 95 70 334 10

1 3

Genetic Programming and Evolvable Machines (2023) 24:5	 Page 25 of 30  5

Fig. 23   Hexapod simulation using PyBullet

Fig. 24   Trajectory comparison of the ANN and EHW

	 Genetic Programming and Evolvable Machines (2023) 24:5

1 3

5  Page 26 of 30

approximate straight-line path taking even steps which correlates to the hexapod
moving forward smoothly in a straight line. This was observed in the PyBullet simu-
lation. During the air phase both controllers lift the foot of the leg high enough to
prevent dragging the hexapod’s feet on the real robot due to the backlash in the servo
motors and general play in the legs. The EHW results tend to lift the leg more ver-
tically whereas the ANN results tend to combine lifting and swinging the leg out
more to get enough separation between the foot and the floor.

6.2 � Real robot

After successfully implementing both controllers in simulation, the evolved control-
lers were implemented on AUT’s physical hexapod robot (Fig. 3). The robot was spe-
cifically designed for experimentation, with the servo motors interfacing to a Terasic

Fig. 25   Evolved ground and air phase leg motion comparison

Table 4   ANN & EHW
implementation resource usage

System component EHW logic
elements

ANN
logic ele-
ments

Configured NIOS II 13,469 6126
PWM servo controllers 395 395
EHW VFPGA 7027 n/a
NIOS II JTAG interface controller 317 315
Total 21,208 6836

1 3

Genetic Programming and Evolvable Machines (2023) 24:5	 Page 27 of 30  5

DE0-Nano FPGA development board. The development board contains a 50 MHz
clock source, and 32 Mbytes of SRAM. The 50 MHz clock was stabilized using a
phase-locked-loop to drive the clock on the SRAM. Both the ANN and EHW produced
a 20-bit variable per servo that defined the PWM mark, this was connected to a PWM
generator (coded in Verilog), which was used to drive the servo motor PWM inputs.
The FPGA was programmed with a NIOS II softcore processor allowing both the ANN
and EHW to be implemented and observed. The total amount of logic elements used in
the FPGA, was approximately 7000 for the ANN and 21,000 for the EHW (Table 4).
The EHW FPGA configuration required more resources for (a) the NIOS processor due
to the PIO required to drive the CBS and EHW I/O; and (b) the EHW IP itself.

The board has a Bluetooth interface allowing the robot to be sent commands to
walk forward and backward as well as rotating left and right. Walking backwards
was achieved by decrementing the step counter input rather than incrementing it.
The hexapod could turn left and right by incrementing the step counter for one side
of the hexapod and decrementing the opposite. After observation of the hexapod
(Online Resource 2), it could be seen that both controllers performed equally well in
the real robot, indicating that the simulation was an accurate reflection of the robot.

7 � Conclusions

It has been shown that the EHW controller can be implemented as an evolvable robot
controller. The EHW matches an equivalent ANN controller in performance, with
slightly better evolutionary efficiency. The model-based evolution produces efficient
stable gaits for both the ANN and EHW controllers, which was displayed in the results
taken from PyBullet simulation of the hexapod robot. Both evolved controllers can be
implemented in a real hexapod robot to verify their performance. The ANN and EHW
implemented effectively controlled the real robot, allowing it to walk forward, back-
wards and rotate left or right. In the field of evolutionary robotics EHW could be inves-
tigated further looking at its ability to be evolved quickly. In the results of this work, it
is shown the EHW could be, in some cases evolved very quickly to produce an effective
walking gait. The ability to evolve controllers quickly would be a desirable trait of mod-
ern robots allowing them to adapt to changes in their environment. Future work could
investigate developing EHW to adapt so the robot can overcome faults in the system or
changes in terrain, allowing the robot to traverse a variety of environments.

Supplementary Information  The online version contains supplementary material available at https://​doi.​
org/​10.​1007/​s10710-​023-​09452-4.

Author contributions  Both authors contributed to the initial study conception and design. FB carried out
the final design and development of the Evolvable Hardware and Artificial Neural Network Controllers.
FB carried out the software development of the tools used for analysis and comparison of the evolvable
robotic controllers in simulation and on the physical robot. FB carried out the evolution and testing of the
controllers in simulation and on the physical robot. FB and MB wrote the manuscript text and prepared
the figures. Both authors have reviewed the manuscript.

Funding  Open Access funding enabled and organized by CAUL and its Member Institutions. No funding
was received for conducting this study.

https://doi.org/10.1007/s10710-023-09452-4
https://doi.org/10.1007/s10710-023-09452-4

	 Genetic Programming and Evolvable Machines (2023) 24:5

1 3

5  Page 28 of 30

Declarations 

Conflict of interest  All authors have no financial or non-financial interest to declare relevant to the subject
matter or materials discussed in the article. The authors confirm that all affiliated organizations or enti-
ties have no financial or non-financial interest relevant to the subject matter or materials discussed in the
article.

Ethical approval  No ethical approval was required for this study.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other third party material in this article
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

References

	 1.	 J.F. Miller, An empirical study of the efficiency of learning boolean functions using a cartesian
genetic programming approach, in Proceedings of the Genetic and Evolutionary Computation Con-
ference vol. 2 (1999), pp. 1135–1142

	 2.	 J.F. Miller, D. Job, V.K. Vassilev, Principles in the evolutionary design of digital circuits: part I.
Genet. Program Evol. Mach. 1(1), 7–35 (2000)

	 3.	 Á. Pintér-Bartha, A. Sobe, W. Elmenreich, Towards the light: comparing evolved neural network
controllers and finite state machine controllers. in Presented at the 10th International Workshop on
Intelligent Solutions in Embedded Systems, (Klagenfurt, Carinthia, 2012), pp. 5–6

	 4.	 M. Beckerleg, J. Matulich, P. Wong, A comparison of three evolved controllers used for robotic
navigation. AIMS Electron. Electr. Eng. 4(3), 259–286 (2020). https://​doi.​org/​10.​3934/​Elect​rEng.​
2020.3.​259

	 5.	 M. Okura, H. Matsumoto, A. Ikeda, K. Murase, Artifical evolution of FPGA that controls a minia-
ture mobile robot Khepera. in SICE Annual Conference in Fukui, (Fukui University, Japan, 2003)

	 6.	 K.C. Tan, C.M. Chew, K.K. Tan, L.F. Wang, Y.J. Chen, Autonomous robot navigation via intrinsic
evolution. in Evolutionary Computation,CEC ’02. Proceedings of the 2002 Congress, vol. 2 (2002),
pp. 1272–1277

	 7.	 A.M. Tyrrell, R.A. Krohling, Y. Zhou, Evolutionary algorithm for the promotion of evolvable hard-
ware. Comput. Digit. Tech. IEE Proc. 151(4), 267–275 (2004)

	 8.	 R. Krohling, Y. Zhou, A. Tyrrell, Evolving FPGA-based robot controllers using an evolutionary
algorithm. in 1st International Conference on Artificial Immune Systems, Canterbury (2002)

	 9.	 H. Seok, K. Lee, J. Joung, B. Zhang, An on-line learning method for object-locating robots using
genetic programming on evolvable hardware. in International Symposium on Artificial Life and
Robotics (2000), pp. 321–324, citeseer.ist.psu.edu/456254.html

	10.	 Y. Rui, S. Yanmei, H. Kun, Y. Yang, Online evolution of image filters based on dynamic partial
reconfiguration of FPGA. in 2015 11th International Conference on Natural Computation (ICNC)
(2015), pp. 999–1005, https://​doi.​org/​10.​1109/​ICNC.​2015.​73781​28

	11.	 R. Dobai, L. Sekanina, Image filter evolution on the Xilinx Zynq Platform. in 2013 NASA/ESA Con-
ference on Adaptive Hardware and Systems (AHS-2013) (2013), pp. 164–171, https://​doi.​org/​10.​
1109/​AHS.​2013.​66042​41

	12.	 R. Dobai, L. Sekanina, Towards evolvable systems based on the Xilinx Zynq platform. in 2013
IEEE International Conference on Evolvable Systems (ICES) (2013), pp. 89–95, https://​doi.​org/​10.​
1109/​ICES.​2013.​66132​87

	13.	 A.K. Srivastava, A. Gupta, S. Chaturvedi, V. Rastogi, Design and simulation of virtual reconfigurable
circuit for a Fault Tolerant System. in International Conference on Recent Advances and Innovations
in Engineering (ICRAIE-2014) (2014), pp. 1–4, https://​doi.​org/​10.​1109/​ICRAIE.​2014.​69092​77

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3934/ElectrEng.2020.3.259
https://doi.org/10.3934/ElectrEng.2020.3.259
https://doi.org/10.1109/ICNC.2015.7378128
https://doi.org/10.1109/AHS.2013.6604241
https://doi.org/10.1109/AHS.2013.6604241
https://doi.org/10.1109/ICES.2013.6613287
https://doi.org/10.1109/ICES.2013.6613287
https://doi.org/10.1109/ICRAIE.2014.6909277

1 3

Genetic Programming and Evolvable Machines (2023) 24:5	 Page 29 of 30  5

	14.	 P.N. Kumar, S. Anandhi, J.R.P. Perinbam, Evolving virtual reconfigurable circuit for a fault tolerant
system. in 2007 IEEE Congress on Evolutionary Computation (2007), pp. 1555–1561, https://​doi.​
org/​10.​1109/​CEC.​2007.​44246​58

	15.	 K. Glette, J. Torresen, M. Hovin, Intermediate Level FPGA Reconfiguration for an Online EHW
Pattern Recognition System. in 2009 NASA/ESA Conference on Adaptive Hardware and Systems
(2009), pp. 19–26, https://​doi.​org/​10.​1109/​AHS.​2009.​46

	16.	 K. Glette, P. Kaufmann, Lookup table partial reconfiguration for an evolvable hardware classi-
fier system. in 2014 IEEE Congress on Evolutionary Computation (CEC) (2014), pp. 1706–1713,
https://​doi.​org/​10.​1109/​CEC.​2014.​69005​03

	17.	 O. Garnica, K. Glette, J. Torresen, Comparing three online evolvable hardware implementations of a
classification system. Genet. Program. Evol. Mach. 19(1), 211–234 (2018). https://​doi.​org/​10.​1007/​
s10710-​017-​9312-1

	18.	 J. Wang, C.H. Piao, C.H. Lee, FPGA Implementation of evolvable characters recognizer with self-
adaptive mutation rates. in Adaptive and Natural Computing Algorithms, ed. by, B. Beliczynski, A.
Dzielinski, M. Iwanowski, B. Ribeiro, (Springer, Berlin, Heidelberg, 2007), pp. 286–295

	19.	 M. Beckerleg, J. Collins, Evolving electronic circuits for robotic control. In Presented at the 15th
International Conference on Mechatronics and Machine Vision in Practice (Auckland, New Zea-
land, 2008)

	20.	 M. Beckerleg, J. Collins, Using a hardware simulation within a genetic algorithm to evolve robotic
controllers. in Presented at the International Conference on Intelligent Automation and Robotics
(ICIAR’11) (San Francisco, USA, 2011)

	21.	 S. Lawrence, C.L. Giles, T. Ah Chung, A.D. Back, Face recognition: a convolutional neural-network
approach. IEEE Trans. Neural Netw. 8(1), 98–113 (1997). https://​doi.​org/​10.​1109/​72.​554195

	22.	 M. Coşkun, A. Uçar, Y. Ö, Y. Demir, Face recognition based on convolutional neural network. in
2017 International Conference on Modern Electrical and Energy Systems (MEES) (2017), pp. 376–
379, https://​doi.​org/​10.​1109/​MEES.​2017.​82489​37

	23.	 J. Matulich, A Comparison of Three Robotic Controllers for Navigation, School of Engineering,
AUT, 2017.

	24.	 V. Abhishek, A. Mukerjee, H. Karnick, Artificial ontogenesis of controllers for robotic behavior
using VLG GA. in Systems, Man and Cybernetics, IEEE International Conference vol. 4 (2003), pp.
3376–3383

	25.	 D. Harter, Evolving neurodynamic controllers for autonomous robots. in Neural Networks, 2005.
IJCNN ’05. Proceedings. 2005 IEEE International Joint Conference on vol. 1 (2005), pp. 137–142.
https://​doi.​org/​10.​1109/​ijcnn.​2005.​15558​19

	26.	 W. Elmenreich, G. Klingler, Genetic evolution of a neural network for the autonomous control of a
four-wheeled robot. in Artificial Intelligence: Special Session, 2007. MICAI 2007. Sixth Mexican Inter-
national Conference on, 4–10 Nov. 2007 (2007), pp. 396–406, https://​doi.​org/​10.​1109/​micai.​2007.​13

	27.	 W. Wahab, Autonomous mobile robot navigation using a dual artificial neural network. in TENCON
2009–2009 IEEE Region 10 Conference (2009), pp. 1–6. https://​doi.​org/​10.​1109/​tencon.​2009.​53958​92

	28.	 P.K. Mohanty, D.R. Parhi, A.K. Jha, A. Pandey, Path planning of an autonomous mobile robot using
adaptive network based fuzzy controller. in Advance Computing Conference (IACC), 2013 IEEE 3rd
International (2013), pp. 651–656, https://​doi.​org/​10.​1109/​IAdCC.​2013.​65143​03

	29.	 P. Karlra, N.R. Prakash, A neuro-genetic algorithm approach for solving the inverse kinematics
of robotic manipulators. in SMC’03 Conference Proceedings. 2003 IEEE International Confer-
ence on Systems, Man and Cybernetics. Conference Theme—System Security and Assurance (Cat.
No.03CH37483), vol. 2 (2003), pp. 1979–1984. https://​doi.​org/​10.​1109/​ICSMC.​2003.​12447​02

	30.	 G.B. Parker, Z. Lee, Evolving neural networks for hexapod leg controllers. in Proceedings 2003
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2003)(Cat. No.
03CH37453) vol. 2, (IEEE, 2003), pp. 1376–1381

	31.	 J.C. Gallagher, An evolvable hardware layer for global and local learning of motor control in a hexa-
pod robot. Int. J. Artif. Intell. Tools 14(06), 999–1017 (2005)

	32.	 D. Berenson, N. Estevez, H. Lipson, Hardware evolution of analog circuits for in-situ robotic fault-
recovery, in 2005 NASA/DoD Conference on Evolvable Hardware (EH’05), (2005), pp. 12–19,
https://​doi.​org/​10.​1109/​EH.​2005.​30

	33.	 J. Currie, M. Beckerleg, J. Collins, Software evolution of a hexapod robot walking gait. Int. J. Intell.
Syst. Technol. Appl. 8(1–4), 382–394 (2010)

	34.	 G.B. Parker, Z. Lee, Evolving neural networks for hexapod leg controllers, in Presented at the IEEE
International Workshop on Intelligent Robots and Systems (Las Vegas, 2003)

https://doi.org/10.1109/CEC.2007.4424658
https://doi.org/10.1109/CEC.2007.4424658
https://doi.org/10.1109/AHS.2009.46
https://doi.org/10.1109/CEC.2014.6900503
https://doi.org/10.1007/s10710-017-9312-1
https://doi.org/10.1007/s10710-017-9312-1
https://doi.org/10.1109/72.554195
https://doi.org/10.1109/MEES.2017.8248937
https://doi.org/10.1109/ijcnn.2005.1555819
https://doi.org/10.1109/micai.2007.13
https://doi.org/10.1109/tencon.2009.5395892
https://doi.org/10.1109/IAdCC.2013.6514303
https://doi.org/10.1109/ICSMC.2003.1244702
https://doi.org/10.1109/EH.2005.30

	 Genetic Programming and Evolvable Machines (2023) 24:5

1 3

5  Page 30 of 30

	35.	 C.F. Juang, Y.C. Chang, C.M. Hsiao, Evolving gaits of a hexapod robot by recurrent neural net-
works with symbiotic species-based particle swarm optimization. IEEE Trans. Industr. Electron.
58(7), 3110–3119 (2011). https://​doi.​org/​10.​1109/​TIE.​2010.​20728​92

	36.	 H. Heijnen, D. Howard, N. Kottege, A testbed that evolves hexapod controllers in hardware. in 2017
IEEE International Conference on Robotics and Automation (ICRA) (2017), pp. 1065–1071, https://​
doi.​org/​10.​1109/​ICRA.​2017.​79891​28

	37.	 J. Zhong, X. Hu, J. Zhang, M. Gu, Comparison of performance between different selection strate-
gies on simple genetic algorithms. In International conference on computational intelligence for
modelling, control and automation and international conference on intelligent agents, web technolo-
gies and internet commerce (CIMCA-IAWTIC’06), vol. 2 (IEEE, 2005), pp. 1115–1121

	38.	 N.M. Razali, J. Geraghty, Genetic algorithm performance with different selection strategies in solv-
ing TSP, in Proceedings of the world congress on engineering vol. 2(1) (International Association of
Engineers Hong Kong, China, 2011), pp. 1–6

	39.	 E. Coumans, Y. Bai, PyBullet, a Python module for physics simulation for games, robotics and
machine learning. (2016)

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Authors and Affiliations

Fraser Borrett1 · Mark Beckerleg1

1	 Department of Electrical and Electronic Engineering, Auckland University of Technology,
Private Bag 92006, Auckland, New Zealand

https://doi.org/10.1109/TIE.2010.2072892
https://doi.org/10.1109/ICRA.2017.7989128
https://doi.org/10.1109/ICRA.2017.7989128

	A comparison of an evolvable hardware controller with an artificial neural network used for evolving the gait of a hexapod robot
	Abstract
	1 Introduction
	2 Related work
	2.1 Evolvable hardware robotic controllers
	2.2 Evolvable artificial neural network robotic controllers
	2.3 Evolved robotic controllers for hexapod locomotion

	3 Robot kinematics
	4 System structures and chromosomes
	4.1 Evolvable hardware
	4.1.1 Chromosome

	4.2 Artificial neural network
	4.2.1 Hidden layer
	4.2.2 Output layer
	4.2.3 Chromosome

	5 Genetic algorithm
	5.1 Reproduction and selection
	5.2 Fitness function
	5.2.1 Ground phase fitness
	5.2.2 Air phase fitness

	6 Results
	6.1 Simulation
	6.1.1 Evolutionary efficiency
	6.1.2 Controller performance

	6.2 Real robot

	7 Conclusions
	Anchor 27
	References

