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Abstract
The present study aimed to use artificial intelligence to obtain a mathematical model 
to approximate the exact solution for linear and nonlinear ordinary differential equa-
tions with initial conditions arising in physics and engineering. To this end, genetic 
programming has been implemented, along with its combination with the Runge–
Kutta fourth order method (RK4). Regarding formulation, the produced mathemati-
cal models by this new hybrid method (GPN) are flexible (in terms of functions used 
in the model structure and the number of them) and have acceptable accuracy com-
pared to other existing traditional powerful methods now in use. Numerical experi-
ments have been adequately conducted to indicate the sufficient accuracy and pro-
ductive power of GPN to generate human-competitive results.
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1  Introduction

Ordinary differential equations (ODEs) arise in many problems related to phys-
ics and engineering (particularly complex problems arising from vibrations and 
dynamic systems). Generally, numerical, analytical, and approximate methods 
are used to solve complex linear and nonlinear ODEs [15]. Exact solutions to 
these equations play an essential role in adequately understanding qualitative 
features of many phenomena and processes. However, even if a solution exists, 
only for a few special ODEs, it is possible to determine this exact solution in 
closed form by analytical methods. It means that there is not a general analytical 
approach to evaluate analytical solutions [20]. Therefore, numerical and approxi-
mate solutions are used. In most numerical methods, the rule of solution func-
tion is not specified, but a numerical sequence (data pairs) of approximate val-
ues is produced. Methods such as Euler, RK4, Adams-Bashforth, Etc. are in this 
category [4]. One of the strongest and most practical approximation methods for 
solving nonlinear ODEs is perturbation-based methods [25]. These methods are 
used to solve ODEs arising from vibrations and dynamics. Since these ODEs are 
abundantly observed in various branches of science and have also recently been 
focused on solving them, they can be used to evaluate the effectiveness of new 
methods. Methods such as Homotopy Perturbation Method (HPM) [13, 16, 19], 
Optimal Homotopy asymptotic method (OHAM) [35, 38], Variational Iteration 
Method (VIM) [17], Energy Balance Method (EBM) [10, 18, 26], Differential 
transform method (DTM) [41], Najjar-Ismail perturbation technique (NIPT) [12], 
are in perturbation-based category. Each method is used for a specific type of 
ODEs; the mentioned studies have shown that they offer an acceptable approxi-
mation of the ODE’s solution. On the other hand, with the impressive advent of 
the virtual world and the expansion of powerful processors, mathematicians are 
trying to use these hardware technologies and artificial intelligence (especially 
evolutionary algorithms) as automated computing systems to manage complex 
and time-consuming problems. A process of mathematical modeling with evo-
lutionary algorithms involves the model generation, interpretation of numeri-
cal results, and development and control of numerical algorithms by computers. 
These activities are not entirely independent, and researchers must provide some 
preliminaries as inputs. Also, they are not purely user-centric. Genetic Program-
ming (GP) is widely regarded as one of the most useful evolutionary algorithms. 
It is a branch of artificial intelligence research that involves the evolution of com-
puter codes, with the term "evolution" referring to Darwin’s concept of natural 
evolution [2, 7]. Despite the fact that there is a vast amount of literature on both 
GP and numerical methods for solving ODEs, the majority of research uses both 
techniques separately [43]. Additionally, studies have demonstrated that GP can 
solve some ODEs when combined with automatic differentiation and least mean 
square [21, 36]. However, no combination of a numerical method with GP has 
been reported to solve ODEs. Numerical methods have a strong mathematical 
foundation, whereas GP has characteristics like educability, processing power, 
and relative independence from the user. Thus, the fundamental objective of this 
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study is to introduce a new hybrid method (GPN) and determine the potential of 
evolutionary algorithms constructed by combining GP and a numerical method 
for getting a good approximation of analytical solutions to ODEs such that GPN 
can compete with existing powerful methods in terms of flexibility and accu-
racy. GPN does not depend on the numerical method used for the combination. 
It requires a numerical method that produces very accurate input data. The RK4 
technique is a more often used numerical method for solving ODEs than other 
similar methods [5]. RK4 is quite flexible. Recent studies have demonstrated that 
it is capable of generating high-precision data pairs from the solutions of compli-
cated differential equations, including chaotic equations, delayed equations, frac-
tional order equations, stochastic equations, and nonlinear equations [3, 6, 27, 49, 
52]. Therefore, we use the RK4 method for combination operations and develop 
algorithms to solve various problems caused by vibrations and dynamic systems 
problems using the Matlab programming environment. Among these efforts, we 
emphasize [10, 12, 18, 26, 37, 45] which provided a benchmark for comparing 
our algorithms’ performance. In general, our findings are positive because we 
could obtain a good approximation of exact solutions to the problems, indicating 
that the proposed method could be a viable alternative for solving ODEs. In the 
following sections, we establish the methodology, and structure of GPN, error 
function and accuracy of GPN, test problems (the method’s good performance 
through various practical examples), discussion and conclusion respectively.

2 � Methodology and structure of GPN

This section discusses the methodology used to construct the GPN algorithm to 
solve ODEs. GPN has the following overview structure: A set of models (individu-
als) is produced using a random combination of mathematical equations and rela-
tions, consisting of operators, mathematical functions, random numbers, and design 
variables as an initial population. Each individual in the population is assessed 
using a fit criterion established by the type of problem and given a fitness index 
depending on how well it fits into the desired aim or objectives. A new population 
of models is generated using GP operators (selection, crossover, mutation, repro-
duction and alteration operators) [24, 51]. The next generation is created based on 
more appropriate with higher quality models. Individuals with better quality have an 
increased possibility of being picked as the parents to produce offspring. This pro-
cess is continued until a specified number of generations is reached or the objective 
is achieved. In the last generation, a genetic algorithm-based procedure [9] among 
the created models delivers an optimal solution in terms of the number of nodes 
and the fit criterion which enters the error analysis step. The details of GPN are dis-
cussed below. GPN is designed in the Matlab programming environment and uses 
two parallel algorithms: The first is in charge of GP, whereas the latter is in charge 
of producing RK4 data pairs (xi, yi) . RK4 has three primary roles. First, a duplicate 
of all the data is used to examine the approximate behavior of the solution function, 
leading to an initial guess for determining the set of GP functions and terminals. 
Second, 90% of data pairs are selected randomly and used to train models across all 
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generations. Third, 10% of the data pairs are utilized to validate the final model. The 
testing data pairs determine the precision of the final model’s match with RK4 data 
pairs that did not participate in the generations training process. GP is recognized 
by its tree structure, where each tree is a combination of some leafs (nodes) and 
branches, and these nodes involve some functions and terminals [30, 33]. For exam-
ple, if F = {×,÷,+,−, sin, cos} and T = {x1, x2, 1} one simple arithmetic expression 
can be generated as cos(x1 × x2) + (x1 − x2) . Equivalently, Fig. 1 displays this type 
of tree structure. Generally, based on the problem quiddity, these functions (F) and 
terminals (T) should be selected. By considering the special problem, a function set 
may be a set of arithmetic operations, boolean operations, or mathematical func-
tions. The terminal set could be constant values or design variables. Additionally, if 
the problem is an ODE, then RK4 is an appropriate algorithm for determining the 
function and terminal set. The fundamental principle of GPN is that an initial popu-
lation (trees) is generated randomly from a set of initial solutions to an ODE prob-
lem. Due to the vast search space, the effectiveness of GPN is heavily dependent on 
the diversity and structure of the initial population. The ODE’s solution function’s 
linear, nonlinear, oscillating, and exponential states can be determined by conceptu-
ally examining the ODE structure [36] and analyzing the behavior of RK4 data pairs 
(in graph state). This is a good way to guess the initial population’s base set (func-
tions, mathematical operators, number of variables, and terminals) and determine 
the initial GP configurations. This process starts with a set of base elements and 
adds or changes them, and it is repeated until the desired result is achieved.

After determining the training and testing data, it is necessary to create the initial 
population. In the implementation of GP, the user can control the program execu-
tion process by changing various parameters. John Koza et al. have classified popula-
tion size and the number of generations as main parameters and others as secondary 
parameters [32]. As a general rule, the population size should be as large as possible 
in order for the computer system to do computations effectively and in a reasonable 
amount of time [32]. This parameter’s minimum value is 1000 [51]. In addition, the 
optional range for the number of generations is between 10 and 150. Also, the maxi-
mum depth of trees is usually considered to be 8 [32, 51]. Koza proposed three meth-
ods for creating the initial population. The full method, the grow method, and the 
ramped half-and-half (RHH) combines the aforementioned methods. RHH results in 
a more uniform and diverse range of tree sizes and shapes. RHH generates half of the 

Fig. 1   Tree of the equation 
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starting population using the full procedure and the other half via the growth method 
[30, 33]. RHH is usually used to improve the diversity of the initial population (struc-
tural diversity) [51]. Jackson proposes modifying the RHH algorithm in which struc-
tural or behavioral duplicates are removed from the population to promote population 
diversity [23]. Furthermore, due to the reduction of computing costs, this process is 
only suggested for use in the first generation [22, 42]. Therefore, by using the modi-
fied RHH method only in the first generation (MRHH), it has been tried to achieve 
maximum population diversity by removing duplicate individuals. On the other hand, 
it has been demonstrated that recombination operators (using sub-tree crossover) have 
no significant effect on regression problems during the remainder of the evolutionary 
process (from the second generation onward) [23]. For more effectiveness, a real-value 
alternation operator is used in this study, which adds new structures to the population 
by slightly perturbing the terminals, leading to an increase in semantic diversity [24]. 
The performance of this operator will be described in detail in the rest of this section. 
Following the initial population’s creation, it is the RK4 reliable input–output data’s 
time to play a critical part in training them. A regression multi-fit program (RMF) is 
a user-friendly, adaptable nonlinear regression application that can fit data to various 
functions [48]. Using the RK4 training data pairs, the RMF assigns each member of 
the initial population a numeric value called the fitness criteria. Those who are more 
data-compatible or trainable are tested and coded. After establishing the initial popula-
tion and analyzing the equivalent fitness values, the initial population is subjected to 
evolutionary processes (by GP operators) such as selection, reproduction, crossover 
(sexual recombination), mutation, and alteration. This process continues for a specific 
number of generations. As with other evolutionary algorithms, operators are applied 
to units in GP that are selected based on probability and fitness. The tournament selec-
tion is the most often used selection method [40]. The tournament determines which 
unit is superior to the other without specifying how much. Hence, the chances of being 
elected remain constant for the entire population automatically and effectively. One of 
the tournament’s significant advantages is that units that behave inappropriately in ini-
tial generations are not immediately removed since they may represent proper attrib-
utes in future generations where this pattern is derived from nature [29, 30]. To choose 
individuals for genetic operations, tournament selection is employed with a max size of 
seven [31]. After the selection stage, other genetic operations are applied to the selected 
individuals. The crossover operation used in GP introduces variety into the population 
by generating new offspring composed of components from both parents. The crosso-
ver process begins with two parental expressions and terminates with the generation 
of two offspring expressions. The operation starts by selecting a random point within 
each parent as the parent’s crossover point. After that, the crossover operator swaps the 
copies of two sub-trees rooted at these points, resulting in the formation of two new 
individuals, and they will be put into the new population. Copies are used to preserve 
the original trees. Repeating this process can lead to multiple offspring [24, 30]. The 
mutation operation introduces random changes in structures in the population. Muta-
tion can be beneficial in reintroducing diversity in a population that may be tending to 
converge prematurely. Mutation begins by selecting a point at random within the tree. 
This mutation point can be an internal (i.e., function) point or an external (i.e., termi-
nal) point of the tree. The mutation operation then removes whatever is currently at the 
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selected position and below the selected point. It uses the grow method to insert a ran-
domly-generated sub-tree at that point. This operation is controlled by a parameter that 
determines the newly generated sub-tree’s maximum size (measured by depth). This 
parameter also controls the crossover operator. The reproduction operator creates off-
spring by directly copying the selected individuals into the next generation. The selec-
tion procedure will be used to select an individual, who will then be directly copied into 
the new population. This operator ensures that the best individuals are not lost when 
new populations are generated [31]. Moreover, we apply a real-value alteration operator 
to promote local ability by randomly (using normal distribution) changing the values of 
real numbers (terminals) in tree structures. This operator could be considered a special 
case of the mutation operation, as it inserts a single terminal at a randomly selected ter-
minal point of the tree. Similarly, this could be a special case of the crossover operation 
as exchanging two randomly selected sub-trees, which here are two selected terminals. 
This operator changes the selected terminals according to the Eq.(1) where numpop is 
the number of the initial population, Ts,i and Te,i are selected and exchange terminals 
( 1 ≤ i ≤ numpop ), � ∈ span[0, 1], and UBr, LBr are upper and lower bounds of the 
interval in which the new terminal value is going to be produced, and rand[0,1] is a ran-
dom number selected from normal distribution in the range 0–1 [24].

The objective of these GP operators is to generate a new population by passing on 
valuable materials from the parent population. Crossover, mutation, reproduction, 
and alternation operators are used at rates of 85%, 10%, 4%, and 1%, respectively 
[51]. When a termination criterion is met (last generation), the NSGA-II optimi-
zation algorithm (by using a non-dominated sorting procedure) [9] determines the 
optimal model in terms of the expressional complexity and the fit criterion, where 
the sum of the complexities of the tree structure and all its subtrees is the complex-
ity metric, and the complexity is defined as the number of nodes (branch points plus 
leaves) [44]. This form of metric has the advantage of placing simpler solutions on 
the Pareto front when two different genotypes lead to the expression of the same 
phenotype. The obtained model enters the evaluation and error analysis step. The 
proposed GPN’s schematic design is depicted in Fig. 2.

Now assume that the ODE with the used initial conditions is as follows:

A mathematical model u
GPN

(t) is determined for Eq.(2) as an appropriate approxima-
tion of the solution function y = u(t) by using GPN, where u(t) ≈ u

GPN
(t) . Regard-

ing the GPN mechanism, u
GPN

(t) is the output of the "apply NSGA-II & set optimal 
model" block; therefore, it undergoes testing and error analysis. u

GPN
(t) is tested by 

RK4 testing data pairs and replaced in the ODE. The �(t) function and other cri-
teria outlined in the next section determine the model’s accuracy. The mathemati-
cal model that can provide the best precision for ODE is considered an appropriate 

(1)
Te,i = (1 − �) × � + � × Ts,i,

� = rand[0, 1] × (UBr − LBr) + LBr

(2)
u(n) = f (t, u, u�, u��, ..., u(n−1)), t ∈ [a, b]

u(a) = �0, u
�(a) = �1, ..., u

(n−1)(a) = �n−1
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approximation of the solution function u(t). Since GPN is a stochastic method, its 
average behavior must be considered (experiments should be run at least ten times 
independently). The number of the initial population and the depth of the trees ( d_t ) 
are two key parameters in controlling the computational times and the simplicity 
of the output models. we consider numpop = 5000 and max(d_t) = 6 . In Section 4, 
GPN will be tested on different ODEs.

Fig. 2   Diagram of the proposed method
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3 � Error function and accuracy

Two criteria � , and � represent the model’s accuracy in initial conditions, and 
the model’s total accuracy in Eq. (2), respectively. The continuous function of 
�

GPN
(t) indicates the error function. �

GPN
(t) is obtained by inserting the model and 

its derivatives into Eq. (2) at all continuous points along the interval in which the 
ODE is defined. Further, The accuracy of predicting or fitting the obtained model 
( u

GPN
(t) ) with RK4 testing data pairs is assessed using ( Terror ) and Pearson’s cor-

relation coefficient (PCC) [47]. These criteria are defined to assess the accuracy 
of the model obtained by GPN as an appropriate approximation of the solution 
function of Eq. (2).

Where, N, yi and ŷi are the number of RK4 testing data pairs, the value of RK4 
testing data in time ti and the value of u

GPN
(t) in time ti respectively. If PCC → 1 , 

�
GPN

(t) ≅ zerofunction , and other criteria are small enough, then u
GPN

(t) can be con-
sidered a reasonable approximation to the exact solution of Eq. (2).

4 � Test problems

In this section, the GPN is implemented for five selected Problems of ODEs aris-
ing in physics and engineering. According to [10, 12, 18, 26, 37, 45], to achieve 
the desired result, problems 2–5 can only be solved in a specific method; in other 
words, a unique approximation method can not solve all the expressed prob-
lems. Problem 1 contains a linear ODE whose exact solution can be calculated 
by an analytical method. Problems 2–5 involve complex nonlinear ODEs with 
approximate solutions derived from the aforementioned semi-analytical methods. 

(3)�
GPN

(t) =u(n)
GPN

− f (t, u�
GPN

, u��
GPN

, ..., u(n−1)
GPN

)

(4)� =

∑n−1

k=0

���u(k)GPN
(a) − �k

���
n − 1

(5)� =∫
b

a

|||�GPN
(t)
||| dt

(6)Terror =
1

N

N∑
i=1

(
yi − ŷi

)2
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Since these methods rely heavily on pure mathematics, it typically takes months 
(or years) to discover a formula that can solve a particular set of ODEs. There-
fore, these methods cannot be compared to algorithmic methods such as GPN in 
execution time. However, the flexibility (in terms of functions used in the model 
structure and the number of them) and, more importantly, the accuracy of the 
obtained models are significant and comparable. GPN performance is acceptable 
when it achieves an approximation similar to or better than the results obtained 
by existing powerful methods.

4.1 � Problem 1

The following equation is applied to analyze the vibration of a single-degree-of-
freedom system [45, 50]:

General solution of the problem 1: For m = 4 , b = 16 , k = 16 and A = 1,B = 0 the 
general solution of Eq. (7) is obtained by Eq.(8) [45].

Solving the problem 1 by the GPN method: The configuration and parameters used 
in GPN are summarized in Table 1. Here, RK4 with time steps h = 0.001 in the dis-
tance of [0 , 10] is considered to train and test in GPN and the mathematical model 
derived from GPN and its accuracy are shown by Eq. (9) and in Fig. 3.

The accuracy criteria of GPN and the comparison between GPN and other meth-
ods are demonstrated in Tables 2, 3 respectively.

4.2 � Problem 2

The motion of a particle on a rotating parabola is governed by the following 
equation:

with the conditions u(0) = A , u�(0) = 0 where q and Λ are known constants and 
need not to be small [39]. For q=1, Λ = 1 and A=1 the results of the OHAM and 
GPN method are shown below.

(7)mu�� + bu� + ku = 0 , u(0) = A , u�(0) = B

(8)u
GS
(t) = e−2t + 2te−2t

(9)u
GPN

(t) = e−2t + 2te−2t + 4.28 × 10−15 ≃ e−2t + 2te−2t

(10)
(
1 + 4q2u2

)d2u
dt2

+ Λu + 4q
(
du

dt

)2

u = 0
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Solving the problem 2 by the OHAM: The approximate solution of Eq. (10) is 
obtained using the OHAM method [38] by Eq. (11).

Fig. 3   The results and accuracy of methods in Problem 1
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Fig. 4   The results and accuracy of methods in Problem 2
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where Ω = 0.596087918.
Solving the problem 2 by the GPN method: The configuration and parameters 

used in GPN are summarized in Table 1. Here, RK4 with time steps h = 0.001 in 
the distance of [0 , 10] is considered to train and test in GPN. The mathematical 
model derived from GPN and its accuracy are shown by Eq. (12) and in Fig. 4.

4.3 � Problem 3

A Duffing equation can describe various nonlinear physical phenomena such as a system 
consisting of the pendulum and nonlinear stiffness, Snap-through mechanism, nonlinear 
isolator, large deflection of a beam with nonlinear stiffness, nonlinear cable vibrations and 
nonlinear electrical circuit [28]. A Duffing oscillator with nonlinearity of fifth-order in the 
case of forced term is considered as in the following equation:

where � indicates the nonlinear arbitrary constants in the restoring force, which is 
not required to be very small in the present study. In addition, Ω is the angular fre-
quency of the periodic driving force and p represents the amplitude of the external 
periodic force. hereafter, Eq. (13) is referred to briefly as the Duffing equation [12]. 
For � = 100 , P = 1 , Ω = 5 , � = 1.00137 and A = 0.01 the results of the NIPT and 
GPN method are shown below.

Solving the problem  3 by the NIPT: The approximate solution of Eq. (13) is 
obtained using NIPT by Eq. (14)

Where � , u0 , u1 and other parameters are determined by Naggar and Ismail by Eqs. 
(15)–(20) in [12].

Where � is the angular frequency, which is unknown to be future determined by Eq. 
(20).

(11)

u
OHAM

(t) = 1.08140204 cosΩt − 0.100837908 cos 3Ωt + 0.025163334 cos 5Ωt

− 0.008262879 cos 7Ωt + 0.006681164 cos 9Ωt − 0.004145751 cos 11Ωt

(12)

u
GPN

(t) = 0.009481 sin (9.641�) − 0.003499 sin (7.856 sin (cos (0.6039t)))−

17.65 sin (�) + 12.65 sin (sin (�)) − 0.1475 sin (sin (sin (cos (0.6068t))))

+ 6.739� + 7.828 × 10−6. where ∶ � = sin (cos (0.5971t))

(13)u�� + u + 𝜀u5 = p cosΩt, u(0) = A, u�(0) = 0, 0 < 𝜖 < ∞

(14)u
NIPT

(t) = u0 + �u1

(15)� =
�

1 + �

(16)u0 =m cos �t + n cosΩt
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(17)

u1 =

(
8�n + 5n5 + 30m2n3 + 15m4n

)

8
(
�2 − Ω2

) (cos �t − cosΩt) −

(
5m5 + 20m3n2

)
128�2

(cos �t − cos 3�t) +

(
5n5 + 20m2n3

)

16
(
�2 − 9Ω2

) (cos �t − cos 3Ωt) −
m4

384�2

(cos �t − cos 5�t) +
n5

16
(
�2 − 25Ω2

) (cos �t − cos 5Ωt)+

5m5n

16
[
�2 −

(
4� + Ω2

)] (cos �t − cos (4� + Ω)t) +
20m4n

16
[
�2 − (2� + Ω)

2
]

(cos �t − cos (2� + Ω)t) +
20m4n

16
[
�2 − (2� + Ω)

2
] (cos �t − cos (2� − Ω)t)+

5m4n

16
[
�2 − (4� − Ω)

2
] (cos �t − cos (4� − Ω)t) +

5m3n2

8
[
�2 − (5m3� + 2Ω)

2
]

(cos �t − cos (3� + 2Ω)t) +
15m3n2

8
[
�2 − (� + 2Ω)

2
] (cos �t − cos (� + 2Ω)t)+

15m3n2

8
[
�2 − (� − 2Ω)

2
] (cos �t − cos (� − 2Ω)t) +

5m3n2

8
[
�2 − (3� − 2Ω)

2
]

(cos �t − cos (3� − 2Ω)t) +
5m2n3

8
[
�2 − (2� + 3Ω)

2
] (cos �t − cos (2� + 3Ω)t)+

15m2n3

8
[
�2 − (2� + Ω)

2
] (cos �t − cos (2� + Ω)t) +

15m2n3

8
[
�2 − (2� − Ω)

2
]

(cos �t − cos (2� − Ω)t) +
5m2n3

8
[
�2 − (2� − Ω)

2
] (cos �t − cos (2� − 3Ω)t)+

5mn4

16
[
�2 − (� + 4Ω)

2
] (cos �t − cos (� + 4Ω)t) +

20mn4

16
[
�2 − (� + 2Ω)

2
]

(cos �t − cos (� + 2Ω)t) +
20mn4

16
[
�2 − (� − 2Ω)

2
] (cos �t − cos (� − 2Ω)t)+

5mn4

16
[
�2 − (� − 4Ω)

2
] (cos �t − cos (� − 4Ω)t).

(18)m =
p

�2 − Ω2
, n = A −

p

�2 − Ω2
, � =

�

1 + �

(19)� = −

(
5

8
m4 +

30

8
m2n2 +

15

8
n4
)

(20)𝛽2 + 𝜀𝜂 = 1, 𝜀𝜂 < 1
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Solving the problem 3 by the GPN method: The configuration and parameters used 
in GPN are summarized in Table 1. Here, RK4 with time steps h = 0.0015 in the dis-
tance of [0 , 15] is considered to train and test in GPN and the mathematical model 
derived from GPN and its accuracy are shown by Eq. (21) and in Fig. 5.

(21)

u
GPN

(t) = 0.156 sin (cos (t)) − 0.5212 sin (sin (cos (t))) + 0.157 sin
2 (2t) cos (t)+

0.299 cos (sin (cos (cos (t)))) cos (t) − 6.63 × 10−5t sin (t) − 5.79 × 10−8

t cos (t)(t + sin (2t)) + 5.59 × 10−9

Fig. 5   The results and accuracy of methods in Problem 3
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4.4 � Problem 4

The Van der Pol oscillator is an example of self-oscillatory systems. Recently, it 
has been proposed as fundamental tools for control and reduction of friction [37, 
46]. The Van der Pol oscillator for every nonnegative value of the parameter � is 
described by the following equation:

For � = 0.1 , and A = 1 the results of the VIM and GPN method are shown below.
Solving the problem  4 by the VIM: The approximate solution of Eq. (22) is 

obtained using VIM by Eq. (23) [26].

Solving the problem 4 by the GPN method: The configuration and parameters used 
in GPN are summarized in Table 1. Here, RK4 with time steps h = 0.001 in the dis-
tance of [0 , 15] is considered to train and test in GPN and the mathematical model 
derived from GPN and its accuracy are shown by Eq. (24) and in Fig. 6.

4.5 � Problem 5

This problem is aimed to investigate the dynamic response of a rocking rigid rod 
over a circular surface, considering a pure rolling, without slipping. The govern-
ing equation on the mentioned system is given below [11].

with the initial conditions u(0) = A , u�(0) = 0 where M = N =
12r2

l2
 , W =

6 gr2

l2
 and 

� =
12gr

l2
 and r, l, g are known constants. For l=1, r

l
=

√
6

6
 and A=0.1 the results of 

the EBM and GPN method are shown below.
Solving the problem  5 by the EBM: The approximate solution of Eq. (25) is 

obtained using the EBM [10, 18] by Eq. (26).

(22)u�� + �
(
u2 − 1

)
u� + u = 0 , u(0) = A , u�(0) = 0

(23)

u
VIM

(t) = cos (t) + �

(
3

8
t cos (t) −

1

8
sin tcos2t −

1

4
sin t

)
+ �2

(
−11

256
t sin t

)
+

�2
(

3

128
t2 cos t −

5

192
cos5t −

83

768
cos3t −

9

64
t sin tcos2t +

103

768
cos t

)

(24)

u
GPN

(t) = 7.64 × 10−5t − 0.3321 sin (sin (t)) − 0.001457 sin (3t) + 0.9936 cos (t)−

8.365 × 1015t

2.306 × 1018t + 1.582 × 1019
+ 9.16 × 10−4 sin (cos (t))(2t + 6.86)−

8.8 × 10−6t3 sin (sin (t)) + 0.0369t cos (t) − 6.98 × 10−7t4 cos (t + 6.86)−

0.00203t cos2 (t) sin (t) + 0.00121

(25)u�� +Mu��u2 + Nu
(
u�
)2

+ �u −Wu3 = 0
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Solving the problem 5 by the GPN method: The configuration and parameters used 
in GPN are summarized in Table 1. Here, RK4 with time steps h = 0.0001 in the 
distance of [0 , 2.3] is considered to train and test in GPN. The mathematical model 
derived from GPN and its accuracy are shown by Eq. (27) and in Fig. 7.

(26)u
EBM

(t) = A cos

⎛
⎜⎜⎜⎝
1

2

�
−
�
1 + A2

��
−4� + 3WA2

�

1 + A2
t

⎞⎟⎟⎟⎠

Fig. 6   The results and accuracy of methods in Problem 4
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5 � Discussion and conclusion

In this study, GP and its combination with the RK4 method have been employed 
to propose a new GPN method for solving linear and complicated nonlinear 
ODEs in physics and engineering. Since GPN is a stochastic method, the optimal 

(27)
u

GPN
(t) = 0.01552 cos (6.854t) − 6.46 × 10−6 cos (20.57t) − 8.05 × 10−7

sin (cos (7.033t)) + 0.08449 cos (6.856t) − 1.129 × 10−10

Fig. 7   The results and accuracy of methods in Problem 5
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determination of the initial parameters (especially the set of functions and termi-
nals) significantly impacts its performance and maintains the structural diversity 
of the initial population. Two factors are considered to determine the set of func-
tions and terminals in the GPN method. First, the study of the physical structure 
of the ODE and, more importantly, second, the behavior of RK4 data pairs. The 
graph obtained from Rk4 data pairs has helped to make an initial guess about 
the type of functions and terminals used in the structure of the ODEs solution. 
The graph of the RK4 data pairs in problem 1 (Fig. 3-a) clearly shows that the 
structure of the approximate solution consists of an exponential function, and in 
problems 2–5 (Figs. 4-a, 5-a, 6-a, and 7-a), there is a periodic and trigonometric 
structure. Additionally, the terminal set is determined based on the RK4 graph’s 
range. Other parameters, such as the number of generations, the size of the ini-
tial population, the depth of the trees, the method of selection (and its size), the 
rate of applying genetic operators, and the number of GPN executions, have been 
determined according to the criteria described in Sect. 3. After selecting the ini-
tial parameters, the MRHH method has been employed to create the initial popu-
lation, improving the diversity. On the other hand, 90% of the Rk4 data pairs have 
been considered for the training population in all generations. Genetic operators 
admit models that have shown more compatibility with these data before the evo-
lution process. In addition to the traditional GP operators, a real-valued alterna-
tion operator (described in Sect.  3) is added to the evolution process since the 
input problem of the GPN is an ODE, so the terminals (function coefficients) are 
sensitive. Sometimes, slight changes in the terminals can lead to an unexpected 
solution. That is, a model that does not have good compatibility with the train-
ing data in generation i may become a compatible solution in generation i + 1 just 
by changing some coefficients (terminals). After the completion of the evolution-
ary processes (the end of the final generation), the individuals (produced mod-
els) have been evaluated by the NSGA-II multi-objective optimization algorithm 
in terms of the expressional complexity (simplicity compared to other models) 
and fitness values. In multi-objective optimization problems, it is not possible 
to find points that simultaneously maximize (minimize) all objective functions; 
hence, non-dominated design points (Pareto points) have been presented as a can-
didate for the final solution (green points in Figs.  3-c-, 4-c, 5-c, 6-c, and 7-c). 
Each member of the set of Pareto points is superior to the other design points (at 
least from the perspective of an objective function). Among the Pareto points, the 
trade-off point of the objective functions (green point with a red border) has been 
selected, and its corresponding model has gone to the error analysis and testing 
step. The placement and arrangement of the all points in Figs. 3-c-, 4-c, 5-c, 6-c, 
and 7-c demonstrate the fitness (semantic) diversity. In other words, the strategy 
used in the GPN method has led to the production of models that tend to solve 
ODEs with an acceptable approximation. The method’s validity has been shown 
for five ODEs (one linear and four complex nonlinear equations). As mentioned 
in section  4, the amount of conformity of the model obtained with 10% of the 
RK4 testing data pairs for each problem has been measured by the Terror crite-
rion and Pearson’s correlation coefficient. The first and second rows of Table 2 
show that the final model of each problem is entirely compatible with these data, 
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despite the fact that the RK4 testing data pairs were not included in the training 
of the models. Moreover, the third row of Table 2 ( � criterion) shows the model’s 
behavior in the initial conditions of ODEs. For each of the five problems, two ini-
tial conditions are given. The calculated values have shown that the final models 
obtained by GPN are compatible with the initial conditions of the ODEs. Also, 
the � criterion can be considered a special case of the total accuracy of the model 
in initial conditions point(s). The total accuracy of the model ( � ) is a reliable cri-
terion in evaluating the performance of methods for solving ODEs because it is 
obtained by putting the solution produced by the methods and its derivatives into 
the equation. The values of this criterion for GPN and other comparative meth-
ods are listed in Table  3. According to the theory of ODEs, the exact solution 
of an ODE is unique if it exists (problem 1). If the exact solution is unavailable 
(especially in nonlinear equations), approximate solutions can be produced with 
different methods (problems 2–5). Powerful methods produce solutions with suf-
ficient accuracy and a different structure for a problem. The difference between 
the model errors can describe this structural difference. There is no difference 
in Fig. 1-d because GPN has converged to the exact solution. In addition, in Fig-
ure 6-d, this difference is more prominent in the interval [6 , 15] , while in Figs. 4-
d, 5-d, and 7-d, this difference is evident throughout the distance. It is possible 
to conclude that GPN has achieved an accuracy comparable to that of the power-
ful methods despite producing different structures compared to the existing solu-
tions. The results show that GPN accuracy is equivalent to or better than existing 
methods in all cases. GPN can be developed in future work to solve other ODEs, 
such as chaotic, delayed, fractional order, stochastic, and partial equations. Also, 
mathematical and physical systems based on input–output data can be modeled 
and described by developing the idea implemented in the GPN method.

Table 2   Accuracy criteria of GPN for each problem

Problems 1 2 3 4 5

Terror 1.66 × 10
−27 ≃ 0 2.41 × 10

−7
3.09 × 10

−14
9.27 × 10

−9
4.79 × 10

−17

PCC 1 1 1 1 1
� 4.36 × 10

−15 ≃ 0 5.01 × 10
−5 2.31 × 10

−8
5.04 × 10

−4
1.08 × 10

−9

GPN runs 10 10 10 10 10
Average run 

time (per run)
276 sec 541 sec 363 sec 426 sec 237 sec

Table 3   Comparison of � criterion between GPN and other methods

Problems 1 2 3 4 5

�GPN 1.642 × 10
−13 ≃ 0 0.355 2.86 × 10

−4 0.020 0.0914
�Other methods �GS = 0 �OHAM = 2.740 �NIPT = 0.0117 �VIM = 0.134 �EBM = 0.0939
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