
Vol.:(0123456789)

Genetic Programming and Evolvable Machines (2021) 22:463–493
https://doi.org/10.1007/s10710-021-09419-3

1 3

A semantic genetic programming framework based
on dynamic targets

Stefano Ruberto1,3 · Valerio Terragni2 · Jason H. Moore1

Published online: 5 October 2021
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature
2021

Abstract
Semantic GP is a promising branch of GP that introduces semantic awareness
during genetic evolution to improve various aspects of GP. This paper presents a
new Semantic GP approach based on Dynamic Target (SGP-DT) that divides the
search problem into multiple GP runs. The evolution in each run is guided by a new
(dynamic) target based on the residual errors of previous runs. To obtain the final
solution, SGP-DT combines the solutions of each run using linear scaling. SGP-DT
presents a new methodology to produce the offspring that does not rely on the clas-
sic crossover. The synergy between such a methodology and linear scaling yields
final solutions with low approximation error and computational cost. We evaluate
SGP-DT on eleven well-known data sets and compare with �-lexicase, a state-of-
the-art evolutionary technique, and seven Machine Learning techniques. SGP-DT
achieves small RMSE values, on average 23.19% smaller than the one of �-lexicase.
Tuning SGP-DT ’s configuration greatly reduces the computational cost while still
obtaining competitive results.

Keywords Semantic GP · Genetic Programming · Natural Selection · Symbolic
Regression · Residuals · Linear Scaling · Crossover · Mutation

 * Stefano Ruberto

 Valerio Terragni
 v.terragni@auckland.ac.nz

 Jason H. Moore
 jhmoore@upenn.edu

1 University of Pennsylvania, Philadelphia, PA, USA
2 University of Auckland, Auckland, New Zealand
3 Present Address: Joint Research Centre - European Commission, Ispra, VA, Italy

http://orcid.org/0000-0001-8666-2782
http://crossmark.crossref.org/dialog/?doi=10.1007/s10710-021-09419-3&domain=pdf

464 Genetic Programming and Evolvable Machines (2021) 22:463–493

1 3

1 Introduction

Recently, researchers successfully applied Semantic methods to Genetic Pro-
gramming (SGP) on different domains, showing promising results [31, 33, 47].
While the classic GP operators (e.g., selection, crossover and mutation) act at the
syntactic level, blindly to the semantic (behavior) of the individuals (e.g., pro-
grams), the key idea of SGP is to apply semantic evaluations [47]. More specifi-
cally, classic GP operators ignore the behavioral characteristic of the offspring,
focusing only on improving the fitness of the individuals. Differently, SGP uses a
richer feedback during the evolution that incorporates semantic awareness, which
has the potential to improve the power of genetic programming [47].

In this paper, we are considering the Symbolic Regression domain, and thus
assuming the availability of training cases (defined as m pairs of inputs and
desired output). Following the most popular SGP approaches [47], we intend
“semantics” as the set of output values of a program on the training cases [22].
Such an approach obtains a richer feedback during the evolution relying on the
evaluation of the individuals on the training cases. More formally, the seman-
tics of an individual I is a vector sem(I) = ⟨y1, y2,⋯ , ym⟩ of responses to the m
inputs of the training cases. Let sem(ŷ) = ⟨ŷ1, ŷ2,⋯ , ŷm⟩ denote the semantic vec-
tor of the target (as defined in the training set), where ŷ1, ŷ2,⋯ , ŷm are the desired
outputs. SGP defines semantic space [47] with a metric that characterizes the
distance between the semantic vectors of the individuals sem(I) and the target
sem(ŷ) . SGP often relies on such a distance to compute the fitness score, inducing
a unimodal fitness landscape, which avoids local optima by construction [25].

The effectiveness of SGP depends on the availability of GP operators that can
move in the semantic space towards the global optimum. An example of semantic
operator is the geometric crossover proposed by Moraglio et al. [25]. It produces
an offspring with a semantic vector that lies on the line connecting the parents
in the semantic space. Thus, it guarantees that the offspring is no worse than the
worst of the parents [25]. However, such crossover operator has the major draw-
back of producing individuals with an exponentially increasing size (i.e., expo-
nential bloat) [25, 47]. To avoid the exponential bloat, researchers proposed vari-
ants of this operator that minimize bloating [33] but at the cost of dropping the
important guarantee of non-worsening crossover operations.

In this paper, we present a SGP approach called SGP-DT [41, 42] (Semantic
Genetic Programming based on Dynamic Targets) that minimizes the exponen-
tial bloat problem and at the same time gives a bound on the worsening of the
offspring. SGP-DT divides the search problem into multiple GP runs. Each run
is guided by a different dynamic target, which SGP-DT updates at each run based
on the residual errors of the previous run. Then, SGP-DT combines the results of
each run into a “optimized” final solution.

In a nutshell, SGP-DT works as follows. SGP-DT runs the GP algorithm (see
Algorithm 1) a fixed number of times (Next) depending on the available budget.
We call these runs external iterations. As opposed to the internal iterations (i.e.,
generations) that the GP algorithm performs to evolve the individuals. Each GP

465

1 3

Genetic Programming and Evolvable Machines (2021) 22:463–493

run performs a fixed number of internal iterations and returns a model (i.e., the
best solution) that we call partial model. The next external iteration runs the GP
algorithm with a modified training set, where SGP-DT replaces the m desired
outputs ŷi = ⟨ŷ1, ŷ2,⋯ , ŷm⟩ with the residual errors of the partial model returned
by the previous iteration. That is, the difference between sem(Ii) and sem(ŷi−1) ,
where Ii is the partial model at the ith iteration. Thus, at each external iteration,
the fitness function evaluates differently the individuals (because the fitness func-
tions predicates on different training sets). As such, each partial model focuses on
a different portion of the problem, the one that most influences the fitness value.
As a result, our approach leads to dynamic targets that change at each external
iteration incorporating the semantic information. SGP-DT obtains the final solu-
tion after Next iterations with a linear combination in the form

∑Next

i=0
ai + bi ⋅ Ii ,

where ai and bi are computed with the well-known linear scaling [14]. There is
a key advantage of using linear scaling. Keijzers showed that linear scaling gives
a bound on the error of those generated individuals that are linear scaled [14].
Therefore, SGP-DT entails a bound on the worsening of the offspring at each
internal and external iteration.

To reduce the exponential bloat problem, SGP-DT performs the internal GP iter-
ations relying on classic mutation operators only. It does not rely on any form of
crossover, neither geometric nor classic, and thus avoids their fundamental limita-
tions. Geometric crossover leads to exponential bloat and classic crossover decreases
the chance to obtain a fitness improvement because it exchanges random function-
alities at random points [36]. Despite the absence of crossovers, SGP-DT implicitly
recombines different functionalities, similarly to a geometric crossover [25]. This is
because, each partial model focuses on a different characteristic of the problem that
the fitness function recognized as important (at that iteration). This makes the search
more efficient because the evolution focuses on a single characteristic at a time leav-
ing unaltered other (already optimized) characteristics.

This paper summarizes and extends our previous conference paper that presented
SGP-DT [41]. In particular, in the conference paper we evaluated our approach on
eight well-known regression problems. We compared SGP-DT with two baselines:
lasso, a least square regression technique by Efron et al. [8]; and �-lexicase a state-
of-the-art SGP approach by La Cava et al. [19]. The results show that our approach
obtains a median RMSE on 50 runs that is, on average, 51.47 and 23.19% smaller
than the one of lasso and �-lexicase, respectively. Moreover, SGP-DT requires as
much as 9.26× fewer tree computations than �-lexicase (4.81× on average).

This paper presents an additional set of experiments that investigate alternative
configurations of SGP-DT to reduce the computational cost while maintaining good
performance. More specifically, we considered configurations of SGP-DT with a
reduced computational cost by three orders of magnitude, with respect to the experi-
ments presented in our previous conference paper. Then, we explore different con-
figurations to understand what are the aspects of our technique that influence the
accuracy and overfitting. We evaluated these new configuration of SGP-DT by com-
paring them with seven well known ML techniques on five datasets (three differ-
ent from the previous ones) obtaining competitive results and precious insight on
the SGP-DT characteristics. The paper is organized as follows. Section 2 describes

466 Genetic Programming and Evolvable Machines (2021) 22:463–493

1 3

our proposed approach. Section 3 discusses the related work. Section 4 reports our
experimental evaluation and discusses the results. The experimental evaluation is
divided into two parts. the first part (Cost-effectiveness experiments) summarizes
the results presented in the conference paper. The second part (Sensitivity experi-
ments) discusses the new results. Section 5 concludes the paper.

2 Methodology

This section describes the SGP-DT framework using the symbolic regression as the
targeted ML problem.

Algorithm 1 overviews the SGP-DT approach. Given the values of the independ-
ent (x) and dependent (̂y) variables of the training cases, and the number of external
(Next) and internal (Nint) iterations, it returns the final solution (finalModel).

SGP-DT considers tree-like individuals with the usual non-terminal symbols:
+,−, ⋅, ∕(the protected division), ERC (between -1 and 1). In addition, SGP-DT con-
siders the functions Min and Max that returns the minimum and maximum between
two numbers, respectively. The rationale of adding the two latter symbols is to inject

467

1 3

Genetic Programming and Evolvable Machines (2021) 22:463–493

discontinuity to make the linear combinations more adaptable. Although also the pro-
tected division adds discontinuity in the form of asymptotes, such discontinuity often
promotes overfitting [14, 27]. With Min and Max functions, we introduce valid discon-
tinuities alternatives that do not suffer from the limitation of the protected division.

Algorithm 1 holds out a portion of the training cases for validation (lines 1-3). SGP-
DT will use such validation sets to construct the final solution (line 22). Lines 4-5 ini-
tialize the current target with ŷ and the lists of the best models with the empty list.
Line 6 starts the external loop, which re-assigns P to a fresh randomly generated popu-
lation with the ramped-half-and-half approach (function get-random-initial-popula-
tion of Algorithm 1). Starting every external iteration with a new population alleviates
the overfitting problem. Indeed, the syntactic structures of already evolved individuals
can be too complex to adapt to a new fitness landscape or to generalize on unseen data.
To further reduce overfitting and the cost of fitness evaluation, SGP-DT generates the
initial population with individuals with low complexity (i.e., a few nodes).

At line 8, SGP-DT starts the Nint internal iterations, which resembles the classic
GP but with the addition of linear scaling and the absence of crossover. Before line 11
computes the fitness of each individual I in P , line 10 performs the linear scaling of I
[14]. Linear scaling has the advantage of transforming the semantic of individuals so
that their potential fit with the current target is immediately given: we do not need to
wait for GP to produce a partial model that reaches the same result [14]. And thus, lin-
ear scaling reduces the number of both external and internal iterations. Fewer iterations
means populations with simpler structural complexity and less computational cost.
Reducing the complexity of the solutions may reduce overfitting [38].

Linear scaling has another important property: it gives an upper bound on the error
[14]. Recall that SGP-DT considers errors on dynamic targets, which change at each
iteration (at the first iteration the dynamic target is ŷ). To exploit such a situation, we
propose a fitness function based on this upper bound. Following Keijzer [14], we com-
pute the linear scaling of an individual I as follows:

We define the following fitness function of an individual I :

The rationale of this function is that the Mean Square Error (MSE) of Ils has the
variance (�2) of the current target as an upper bound [15]:

where m is the number of training cases (y).
At each new external iteration the residual error becomes the new target (line 21).

(1)Ils =a + b ⋅ I

(2)where a =ŷ − b ⋅ y and b =

∑n

i=1
[(ŷi − ŷ) ⋅ (yi − y)]
∑n

i=1
[(yi − y)2]

(3)fitness(I) = 𝜎
2(sem(Ils(x)) − ŷ)

(4)MSE =

∑m

i=0
(yi − ŷi)

2

m
≤ 𝜎

2(ŷ)

468 Genetic Programming and Evolvable Machines (2021) 22:463–493

1 3

where sem(I⋆
ls
(x)) is the evaluation of the best individual at the current iteration,

which we call partial model.
The inequality 4 does not guarantee that the external iterations con-

verge to a lower MSE because we do not know if 𝜎2(error) ≤ 𝜎
2(ŷ) , where

error = target − sem(I⋆
les
(x)) . Thus, by optimizing the variance of the error shown in

equation 3, we act directly on the minimization of the upper bound, so that the next
external iteration can benefit from a lower bound.

At lines 17-19, Algorithm 1 runs a classic GP algorithm without crossovers,
using only mutations. We use a tree-based mutation operator because SGP-DT uses
trees as syntactic structures for the individuals. The operator randomly generates a
subtree from a randomly chosen node. To increase the synergy with linear scaling,
we set two constraints during mutation. First, the node selection is biased towards
the leaves of the tree, so that the mutated tree does not diverge too much from the
original semantic (locality principle). Producing a mutation that is close to the origi-
nal semantic of the tree preserves the validity of the selection performed after the
linear scaling. And thus, we only allow minor changes to improve the fitness. Sec-
ond, for the same reason, the mutation is biased towards replacing the selected node
with a sub-tree of limited depth. Note that we decided not to limit the maximum size
(number of nodes in the tree) or depth of an individual. By doing so, GP can grow
and choose the right solution complexity for the problem at hand. These two con-
straints help us to mitigate the overfitting and bloat problem without preventing the
SGP-DT to effectively search for competitive individuals. As linear scaling helps GP
to find useful individuals (thanks to the upper bound). Moreover, additional external
iterations will further refine other aspects of the problem not yet addressed.

We decided to exclude the classic crossover operator in the internal iterations,
as several researchers argued about the effectiveness of crossover in relation to the
problem of modularity of GP [11]. There is a consensus that an effective GP algo-
rithm needs a crossover that preserves the semantics of the parts swapped among
individuals respecting the boundaries of a useful functionality within the individu-
al’s structure [18, 33, 36]. According to McPhee et al. [22] and Ruberto et al. [38]
most classic crossover operators do not obtain a meaningful variation (or any vari-
ation at all) in the program semantics, when dealing with Boolean and real value
symbolic regression domains. The main issue is that classic crossover operators do
not preserve a common context [22] among the building blocks of the individuals
exchanged during crossover, which is important to increase the chance of obtaining
a semantically meaningful offspring [18]. The idea of determining a common con-
text has been introduced by Poli and Langdon with the one-point crossover operator
[36]. But how to identify a meaningful common context among trees structures is
still an open problem.

Instead, SGP-DT exchanges functionalities among individuals by relying on the
linear combination of the partial models (i.e., the fittest individuals at each exter-
nal iteration, line 12 Algorithm 1) and on a specific mechanism for selecting and
mutating the individuals during the GP runs. In light of this, we exclude the crosso-
ver operators in the presence of these semantic recombination alternatives. To have

(5)target = ŷ − sem(I⋆
ls
(x))

469

1 3

Genetic Programming and Evolvable Machines (2021) 22:463–493

an effective exchange of functionalities among individuals we need to: (i) preserve
building blocks semantics (ii) preserve the context of building blocks (iii) make
the exchange of functionalities directed towards producing new and interesting
semantics.

The for-loop at line 6 terminates when SGP-DT concludes all external iterations.
We decide not to introduce a different stopping criterion based on the stagnation
of fitness improvement. This is because it is difficult to predict if the fitness will
not escape stagnation in future iterations. After all the external iterations, the func-
tion validate-and-select at line 22 of Algorithm 1 returns the partial models that
will be combined into the final solution. Such models are selected as follows. The
validation takes in input the ordered sequence of best individuals (models) collected
after each internal iteration (line 14 Algorithm 1) and the validation sets (xval and
ŷval) obtained at line 1. Note that SGP-DT saves the computed linear scaling param-
eters (a and b Eq. (2)) at line 10 and do not recompute them during the validation
and test phases. Internally, the validation scans the sequence models and progres-
sively computes the MSE evaluating the individuals on the validation set to find the
point in the sequence where MSE is the smallest. SGP-DT finds the smallest MSE
using the rolling mean of the validation set error at a fixed window size to minimize
the short-term fluctuations. The function validate-and-select returns the sequence
(bestModels) of the partial models that were produced before the smallest MSE.
Such a sequence represents the transformation chain of the dynamic targets. In case
SGP-DT obtained the model with the smallest MSE during the internal iterations, it
appends this individual at the end of bestModels. Line 23 of Algorithm 1 computes
the final model by summing all the models in bestModels.

3 Related work

This section divides the related work of SGP-DT in three groups. Each group
refers to techniques that are relevant to a main characteristic of SGP-DT: (i) having
dynamic or semantic objectives, (ii) using linear combinations or geometric opera-
tors, (iii) using an iterative approach on residual errors.

3.1 Dynamic or semantic objectives

The GP techniques proposed by Krawiec et al. [16] and Liskowski et al. [20] present
semantic approaches that consider interactions between individuals and the train-
ing set. These approaches cluster such interactions to derive new targets for a multi-
objective GP.

Otero et al. proposed an approach with dynamic objectives that combines inter-
mediate solutions in a final Boolean tree [30]. This technique progressively elimi-
nates from the training cases the ones perfectly predicted from the current interme-
diate solution and operates exclusively in a Boolean domain.

Krawiec and O’Reilly [17] proposed a GP approach that explicitly models the
semantic behavior of a solution during the computation of training cases.

470 Genetic Programming and Evolvable Machines (2021) 22:463–493

1 3

BPGP by Krawiec and O’Reilly [17] explicitly models the semantic behavior
of a solution during the computation of training cases. BPGP proposes an opera-
tor that mutates an individual by replacing a randomly selected sub-tree with a
random one. According to Krawiec and O’Reilly this “mutation-like” [17] oper-
ator is intended as a “form of crossover”. We think that this is similar in princi-
ple to our design choice of dropping crossover altogether and instead choosing
among mutated alternatives in the population. However, Krawiec and O’Reilly
still use the traditional crossover alongside with this new mutation [17].

We differ from all of these techniques because we build our solution progres-
sively crystallizing the intermediate achievements. Most of these approaches use
auxiliary objectives during their search and use a single GP run. Conversely,
SGP-DT uses a non-predetermined number of objectives in subsequent GP runs.
The approach of Otero et al. [30] is the only one that progressively builds the
solution but it uses a strategy that works for Boolean trees only.

3.2 Linear combinations

 MRGP [1] uses multiple linear regression to combine the semantics of sub-
programs (subtrees) to form the semantic of an individual.

Ruberto et al. proposed ESAGP [37], which derives the target semantics by
relying on a specific linear combination between two “optimally aligned” indi-
viduals in the error space. Leveraging such geometric alignment property, Vann-
eschi et al. proposed na-gp [48], which performs linear combinations between
two aligned chromosomes belonging to the same individual.

Gandomi et al. proposed MGGP [10], where each individual is composed of
multiple trees. MGGP produces the final solution with a linear combination of
the tree’s semantics, deriving the values of the coefficients from the training data
with a classic least squares method. However, the number of trees in the linear
combination is fixed and the fitness landscape is not dynamic.

Moraglio et al. proposed the Geometric Semantic GP (GSGP) crossover
operator [25], which uses linear combinations to guarantee offspring that is not
worse than the worst of the parents. Unfortunately, GSGP suffers from the expo-
nential bloat problem and requires many generations to converge, especially if
the target is not in the convex hull spanned by the initial population [25].

Notably, all the approaches described in this second group use a single run
to search for the final solution. Differently from SGP-DT, they fix the number
of components in advance (the only exception is GSGP but it suffers from the
exponential bloat problem [25]). In addition, all of the techniques in the first and
second groups have a static target, and thus they continuously evolve a popula-
tion without re-initialization. This limits the diversity of the genetic alternatives
when the population converges at later generations. Conversely, SGP-DT has a
dynamic target and it starts with a fresh population at each internal iteration (see
Algorithm 1).

471

1 3

Genetic Programming and Evolvable Machines (2021) 22:463–493

3.3 Iterative approaches based on residual errors

Sequential Symbolic Regression (SSR) [28] uses the crossover operator GSGP [25]
to iteratively transform the target using a semantic distance that resembles the classi-
cal residual approach. However, no statistically significant difference (on the errors)
from the classical GP approach was found [28]. Differently from SGP-DT, SSR
considers residuals that do not optimize the linear combinations with a least square
method. Although SSR overcomes the exponential bloat, it weakens the advantage
of using residuals.

Medernach et al. presented the wave technique [23, 24] that similarly to SGP-
DT, executes multiple GP runs using the same definition of residual errors (Eq. 5)
and obtains the final model by summing the intermediate models. wave produces
a sequence of short and heterogeneous GP runs, obtained by “fuzzifying” the set-
tings of system parameters (e.g, population size, number of internal iterations) and
by alternating the use of linear scaling. However, SGP-DT drastically differs from
wave. The Heterogeneous nature of wave emulates this dynamic evolutionary envi-
ronment by simulating periods of a rapid change [23, 24]. The effectiveness of such
an approach requires specific combinations of system parameters that converge to
a fitter solution. Due to the huge space of possible system parameters, finding such
combinations often requires a large number of iterations [23, 24]. Conversely, SGP-
DT steers the evolution with a novel approach that gradually evolves the building
blocks of the final solution without exploring the huge space of possible combina-
tions of system parameters.

All the techniques of this group use residuals differently from SGP-DT. Moreo-
ver, they rely on the classic or geometric crossover. Conversely, one of the key novel
aspects of SGP-DT is to avoid crossover altogether.

4 Experiments

We performed two sets of experiments. The first set of experiments aims to evalu-
ate the cost-effectiveness of our approach compared to state-of-the-art methods.We
compared the approach’s performance in terms of Root Square Mean Error (RMSE)
and computational cost measured with the number of evaluated nodes. The results
show that SGP-DT outperforms state-of-the-art evolutionary approaches. However,
evolutionary techniques are computationally expensive compared to other Machine
Learning (ML) methods because they require the evaluations of populations of solu-
tions. SGP-DT is not an exception to this rule. In the second set of experiments, we
drastically reduce the computations required by SGP-DT constraining the popula-
tion size to 100 individuals. From this starting point, we investigate key parameters
of SGP-DT to understand if it’s possible to maintain a good accuracy of the models
while drastically reducing the computational cost. The results from the first set of
experiments might suggest that SGP-DT suffers from the overfitting problem. We
investigate if reducing the computations also helps with overfitting. Having identi-
fied the configurations with an interesting trade-off between effectiveness and cost
of the analysis, we perform a final test comparing SGP-DT with seven well-known

472 Genetic Programming and Evolvable Machines (2021) 22:463–493

1 3

ML techniques. The final tests show that SGP-DT has a competitive accuracy, hav-
ing reduced its computational cost by three orders of magnitude with respect to the
first set of experiments.

4.1 Cost‑effectiveness experiments

4.1.1 Data sets

We performed our experiments on eight well-known data sets of regression prob-
lems that have been used to evaluate most of the techniques discussed in Sect. 3 [1,
10, 19, 23, 24, 48]. Table 1 shows the name, number of attributes, and number of
instances for each data set. All data sets expect uball5d are from the UCI repository
[2].

For uball5d,1 we followed the same configuration used by Cava et al. [6].

4.1.2 Methods

We compared SGP-DT with two techniques (lasso [8] and �-lexicase [19]) and two
variants of SGP-DT (DT-EM and DT-NM).

lasso Both SGP-DT and lasso [8] use the least square regression method to lin-
early combine solution components. More specifically, lasso incorporates a regu-
larization penalty into least-squares regression using an �1 norm of the model coef-
ficients and uses a tuning parameter � to specify the weight of this regularization
[8]. We relied on the lasso implementation by Efron et al. [8], which automatically
chooses � using cross-validation.

�-lexicase This evolutionary technique adapts the lexicase selection operator for
continuous domains [19]. The idea behind �-lexicase selection is to promote candi-
date solutions that perform well on unique subsets of samples in the training set, and
thereby maintain and promote diverse building blocks of solutions [19]. Each par-
ent selection begins with a randomized ordering of both the training cases and the
solutions in the selection pool (i.e., population). Individuals are iteratively removed
from the selection pool if they are not within a small threshold (�) of the best per-
formance among the pool on the current training sample. The selection procedure

Table 1 Data sets of regression problems

name # attributes # instances source name # attributes # instances source

airfoil 5 1503 UCI [2] housing 14 506 UCI [2]
concrete 8 1030 tower 25 3135
enc 8 768 yacht 6 309
enh 8 768 uball5d 5 6024 [49]

1 f (x) = 10∕(5 +
∑5

i=1
(xi − 3)2).

473

1 3

Genetic Programming and Evolvable Machines (2021) 22:463–493

terminates when all but one individual is left in the pool, or until all individuals
have tied performance. In the latter case, a random one is chosen. The recent study
of Orzechowski et al. shows that �-lexicase [19] outperforms many GP-inspired
algorithms [29]. We relied on the publicly available implementation of �-lexicase,
ellyn,2 which uses stochastic hill climbing to tune the scalar values of each gener-
ated individual. It also relies on a 25% validation hold-out from the training data to
choose the final model from a bi-dimensional Pareto archive, which ellyn constantly
updates during the evolution. The two dimensions are the number of nodes and the
fitness.

DT-EM We considered a variant of SGP-DT (called DT-EM) with a modified
fitness function as the only difference with SGP-DT:

While the original fitness of SGP-DT minimizes the upper bound of the MSE
in Eq. 3, this function directly minimizes the MSE in Eq. 6. This variant helps to
evaluate the impact of a direct error minimization with respect to a more qualitative
and indirect measure of the error, such as the variance (�2).

DT-NM We considered another variant, called DT-NM, that excludes the Min
and Max non-terminal symbols (as the only difference with SGP-DT), and thus eval-
uating the advantage of different discontinuity types during the evolution.

4.1.3 Evaluation setup

Following the setup of Orzechowski et al. [29] for �-lexicase, we set for all the four
GP techniques (SGP-DT, �-lexicase, DT-EM, and DT-NM) a population size of
1,000 and a budget of 1,000 generations. We ran 50 trials for every technique on
each data set using 25% of the data for testing and 75% for training.

SGP-DT and its two variants share the same configuration: We divided the 1,000
generations in 20 external iterations (Next = 20), and thus the number of internal
iterations (Nint) is 50. We used ramped half&half initialization up to a maximum
depth of four (function get-random-initial-population at line 7 of Algorithm 1).
The probability of mutation is 100% and the maximum depth of the sub-trees gener-
ated by the mutation operators is five. The probability of a sub-tree mutation hap-
pening at the leaf level is 70%. We set no limits on the number of nodes in the trees
and on the depth of the trees. We set the Elitism to keep only the best individual
at each internal iteration (function elite at line 16 of Algorithm 1). We obtained
the validation set by extracting 10% of the training cases (function split at line 1
of Algorithm 1). The fixed window size for the rolling-mean is 20. We chose this
configuration after a preliminary tuning phase and kept uniform for all the eight data
sets.

(6)fitness(I) = MSE =

∑m

i=0
(yi − ŷi)

2

m

2 https:// github. com/ Epist asisL ab/ ellyn.

https://github.com/EpistasisLab/ellyn

474 Genetic Programming and Evolvable Machines (2021) 22:463–493

1 3

4.1.4 Results and discussion

Errors’ Comparison Following previous work we use the Root Mean Square Error
(RMSE) to evaluate the final solution with the test set. The first five columns of
Table 2 show for each technique the median RMSE of the 50 trials. The last four
columns of Table 2 indicate the percentage decrease of the RMSE medians with
respect to the competitor techniques.3 A positive percentage value means that the
RMSE median of SGP-DT is lower (i.e., better), while a negative value means a
worst median RMSE. Figure 1 shows the box plots of the RMSE values of the 50
trials.4 When comparing the RMSE values we performed a non-parametric pairwise
Wilcoxon rank-sum test with Holm correction for multiple-testing, with a confi-
dence level of 95% (p value <0.05).

SGP-DT achieves a smaller RMSE than lasso for all the data sets, obtaining
always statistical significance. The decrease of the RMSE medians ranges from
9.06% for housing to 88.67% for yacht (51.47% on average). SGP-DT has smaller
RMSE medians than �-lexicase for all data sets but housing (decrease -4.48%).
This is the only comparison of SGP-DT and �-lexicase without statistical sig-
nificance. The decrease of the RMSE medians ranges from -4.48% for housing
to 57.07% for ench (23.19% on average). This is a remarkable result consider-
ing that �-lexicase outperforms many GP-inspired algorithms [29]. Comparing
with the variant DT-EM, SGP-DT achieves the only statistically significant differ-
ences with DT-EM on the data sets uball5d and yacht, with percentage decreases
of 6.63 and 20.45%, respectively. For such datasets SGP-DT performs better

Table 2 Median RMSE of the 50 trials

Data set Root Mean Square Error (RMSE) Median RMSE% decrease of SGP-DT
over:

SGP-DT lasso �-lexicase DT-EM DT-NM lasso �-lexicase DT-EM DT-NM

airfoil 2.4634 4.8484 3.6505 2.5643 2.9237 49.19% 32.52% 3.94% 15.75%
concrete 6.5123 10.5383 7.0707 6.4476 6.4132 38.20% 7.90% –1.00% –1.55%
enc 1.4838 3.2498 1.8647 1.4993 1.4584 54.34% 20.43% 1.03% –1.75%
enh 0.5560 2.9645 1.2952 0.5714 0.5410 81.25% 57.07% 2.70% –2.76%
housing 4.4700 4.9155 4.2785 4.4377 4.5273 9.06% –4.48% –0.73% 1.26%
tower 0.2606 0.2953 0.2975 0.2900 0.2900 11.75% 12.39% 10.12% 10.12%
uball5d 0.0402 0.1939 0.0618 0.0430 0.0372 79.29% 35.00% 6.63% –7.87%
yacht 1.0221 9.0237 1.3577 1.2849 1.1786 88.67% 24.72% 20.45% 13.28%

Average RMSE% decrease: 51.47% 23.19% 5.39% 3.31%

3 calculated with ((MT −MD)∕MT) ⋅ 100 , where MD is the median RMSE of SGP-DT and MT is the one
of the competing technique.
4 for readability reasons we omitted 4 out-layers for lasso, 13 for �-lexicase, 30 for SGP-DT, 30 for
DT-NM and 35 for DT-EM.

475

1 3

Genetic Programming and Evolvable Machines (2021) 22:463–493

than DT-EM indicating that our fitness function that minimizes the upper bound
achieves a better final solution. SGP-DT has statistically significant differences
of the median RMSE with DT-NM only with the data sets airfoil, tower and
uball5d. SGP-DT performs better than DT-NM on the airfoil and tower datasets:
3.94 and 10.12% of percentage decrease, respectively. This means that the Min
and Max non-terminal symbols provide an advantage only in these two datasets.

S
G
P
−D

T

la
ss
o

le
x

D
T−

E
M

D
T−

N
M

2.0

2.5

3.0

3.5

4.0

4.5

5.0

airfoil
R
M
S
E

(a)

S
G
P
−D

T

la
ss
o

le
x

D
T−

E
M

D
T−

N
M

6

7

8

9

10

11

concrete

R
M
S
E

(b)
S
G
P
−D

T

la
ss
o

le
x

D
T−

E
M

D
T−

N
M

1.5

2.0

2.5

3.0

3.5

enc

R
M
S
E

(c)

S
G
P
−D

T

la
ss
o

le
x

D
T−

E
M

D
T−

N
M

0.5

1.0

1.5

2.0

2.5

3.0

enh

R
M
S
E

(d)

S
G
P
−D

T

la
ss
o

le
x

D
T−

E
M

D
T−

N
M

3

4

5

6

housing

R
M
S
E

(e)

S
G
P
−D

T

la
ss
o

le
x

D
T−

E
M

D
T−

N
M

0.25

0.30

0.35

0.40

0.45

0.50

0.55

tower

R
M
S
E

(f)

S
G
P
−D

T

la
ss
o

le
x

D
T−

E
M

D
T−

N
M

0.05

0.10

0.15

0.20

uball5d

R
M
S
E

(g)

S
G
P
−D

T

la
ss
o

le
x

D
T−

E
M

D
T−

N
M

2

4

6

8

10

yacht

R
M
S
E

(h)

Fig. 1 RMSE of test set for all the techniques and for all the eight data sets

476 Genetic Programming and Evolvable Machines (2021) 22:463–493

1 3

However, Fig. 1 indicates that using such non-terminal symbols does not penalize
the outcome in any other dataset, but uball5d where the difference is statistically
significant (the decrease is -7.87%).

Error comparison with related work Unfortunately, the implementation of
wave [23, 24] is not publicly available, and thus a direct comparison would be diffi-
cult. We extracted the median RMSE from the GECCO 2016 paper [24] for our two
common subjects: 4.1 (concrete) and 8.7 (yacht). SGP-DT achieves a median RMSE
percentage decrease of 25.17% (concrete) and 75.12% (yacht), see Table 2 for the
reference values. Note that the computational cost reported in the GECCO paper has
the same order of magnitude with the one of SGP-DT.

From the paper of Vanneschi et al. [48], we extracted the median RMSE on the
data set concrete of the following GP techniques: 10.44 (na-gp [48]), 8.1 (na-
gp-50 [48]), 12.50 (gsgp [25]), and 9.43 (gsgp-ls [5]). SGP-DT has a percent-
age decrease of 37.64, 19.62, 47.92 and 30.96%, respectively. These results are only
indicative because their evaluation setup differs from ours.

Computational effort To evaluate the computational effort of the evolutionary
techniques we decided not to rely on execution time because it depends on imple-
mentation details. Instead, we relied on the total number of evaluated nodes (being
not a GP technique this metric is not applicable to lasso). Both SGP-DT and �-lex-
icase operate on nodes, SGP-DT on tree-like data structures, while �-lexicase on
stack-based ones. Following Ruberto et al. [38], we count a node operation every
time a technique evaluates a node regardless the purpose of the operation (e.g.,
mutation, fitness computation). We excluded the computational effort of linear scal-
ing because it does not perform operations on nodes. However, it has a linear com-
putational cost of O(m ⋅ P) , where m is the size of the training set and P the popu-
lation size. For comparing the number of evaluated nodes, we used the Wilcoxon
rank-sum test with Holm correction for multiple-testing, with a confidence level of
95% (p-value <0.05). The test shows that all the comparisons between each pair of
techniques are statistically significant, except for the comparison with SGP-DT and
DT-NM on subject uball5d.

Table 3 Median number of evaluated nodes and reduction ratio of SGP-DT

Data set Median number of evaluated nodes Reduction ratio of SGP-DT over

SGP-DT �-lexicase DT-EM DT-NM �-lexicase DT-EM DT-NM

airfoil 1.00E+10 9.28E+10 1.00E+10 9.03E+09 9.26× 1.00× 0.90×
concrete 1.14E+10 6.43E+10 1.14E+10 8.82E+09 5.64× 1.00× 0.77×
enc 1.18E+10 4.99E+10 1.17E+10 9.37E+09 4.25× 0.99× 0.80×
enh 1.18E+10 5.08E+10 1.17E+10 9.27E+09 4.30× 0.99× 0.78×
housing 7.70E+09 3.09E+10 7.63E+09 6.03E+09 4.02× 0.99× 0.78×
tower 7.21E+10 1.94E+11 7.12E+10 4.45E+10 2.69× 0.99× 0.62×
uball5d 9.83E+10 3.94E+11 9.76E+10 7.50E+10 4.01× 0.99× 0.76×
yacht 4.62E+09 2.00E+10 4.58E+09 3.47E+09 4.34× 0.99× 0.75×

Average reduction ratio: 4.81× 0.99× 0.77×

477

1 3

Genetic Programming and Evolvable Machines (2021) 22:463–493

Table 3 reports the median number of nodes (of the 50 runs) that the GP tech-
niques evaluate to produce the final solution. The last three columns of Table 3
report the ratio between the number of node evaluations of SGP-DT with those
of �-lexicase, DT-EM and DT-NM. A ratio greater (lower) than one means that
SGP-DT evaluates a lower (higher) number of nodes. Comparing with �-lexicase,
SGP-DT reduces the amount of node evaluations by a factor between 4.01× and
9.26× , obtaining statistically significant better RMSE values than �-lexicase for
seven out of eight data sets. This result can be explained by (i) SGP-DT computes
only a fraction of the entire solution (partial models) at a time; (ii) the size of the
individuals is kept at minimum (see Sect. 2).

The number of evaluated nodes of SGP-DT and DT-EM are almost identical
(0.99× on average). This indicates that guiding the evolution with the fitness func-
tion of SGP-DT and with the one of DT-EM yield to the same computational cost
but SGP-DT achieves better median RMSE (5.39% on average). DT-NM always
evaluated fewer nodes than SGP-DT (0.77× on average).

Size of the final solutions SGP-DT has no limits on the maximum complexity
of the individuals, while �-lexicase has a limit of 50 nodes because at higher lim-
its the computational effort of �-lexicase becomes prohibitively expensive [19].
SGP-DT produces solutions with size ranging from 442 to 1,184 nodes (760 on
average), which is on average 15× larger than the one produced by �-lexicase and
is not large enough to be considered (exponential) bloat. This extra complexity of
the final solutions positively contributes to the performance of the algorithm. We
are investigating a post-processing phase to simplify the final solutions.

On average, DT-EM produces solutions with 806 nodes and DT-NM with 591.
DT-NM generates smaller solutions than DT-EM, perhaps because DT-NM has
a smaller search space (DT-NM omits the Min and Max symbols). Evaluating
smaller solutions requires less computation; this explains why DT-NM requires
fewer computations than SGP-DT and DT-EM (see Table 3).

Overfitting Figure 2 plots, for each data set, the median of the best RMSE by
computational effort (number of evaluated tree nodes) for SGP-DT and its two
variants. Unfortunately, the implementation of �-lexicase that we used does not
report the intermediate RMSE on test. We use the computational effort, rather
the number of generations, for a fair comparison of the three techniques. This is
because the number of evaluated nodes is not uniform across the generations.

The eight plots indicate that SGP-DT slightly overfits the data sets tower and
yacht, while on housing produces a substantial overfitting, which is comparable
to the one of DT-EM but less severe than the one of DT-NM. DT-EM overfits
four data sets: airfoil (Fig.2a), housing (Fig.2e), tower (Fig.2f), yacht (Fig.2h).
The worst performance is from DT-NM that shows severe overfitting on airfoil
(Fig.2a), housing (Fig.2e), tower (Fig.2f) and yacht (Fig.2h). Note that all three
techniques overfit the data sets yacht (Fig.2h) and housing (Fig.2e). This can be
explained by their relatively low number of instances (see Table 1).

For the data sets concrete (Fig.2b), enc (Fig.2c) and enh (Fig.2d) all three tech-
niques do not manifest overfitting (yet). Interestingly, in these three cases DT-NM
arrives to a low RMSE with less computation than SGP-DT and DT-EM. We

478 Genetic Programming and Evolvable Machines (2021) 22:463–493

1 3

conjecture that this is because concrete, enc and enh are problems that do not
need the additional expressiveness of the Min and Max symbols.

DT-NM is the technique that yields the smaller individuals, as such we would
expect less overfitting. Surprisingly, this is not the case. We believe that, to compen-
sate the absence of discontinuity that Max and Min introduce, DT-NM used the pro-
tected divisions more frequently. This may lead to many asymptotic discontinuities,
which are known to increase overfitting [14].

When considering each data set individually, SGP-DT and DT-EM mostly mani-
fest similar overfitting, while DT-NM manifests overfitting much earlier. This sug-
gests that (i) the non-terminal symbols Max and Min help to alleviate the overfitting
problem; and (ii) relying on the variance (SGP-DT) rather than MSE (DT-EM) in
the fitness function indeed contributes to reducing RMSE (5.39% on average, see
Table 2) but it does not influence overfitting.

4.2 Sensitivity experiments

In this section, we perform a series of experiments to investigate whether we can
further reduce the computational cost of SGP-DT while maintaining high perfor-
mance. Similarly to many evolutionary approaches, SGP-DT is computationally
more expensive than other Machine Learning methods. In this set of experiments,
we decrease the population size from 1000 to 100 because this is one of the factors

0e+00 2e+09 4e+09 6e+09 8e+09 1e+10

2.
5

3.
0

3.
5

4.
0

4.
5

5.
0

Comp Effort

m
ed

ia
n

be
st

 R
M

S
E

SGP−DT
DT−EM
DT−NM

(a) airfoil

0e+00 2e+09 4e+09 6e+09 8e+09 1e+10

7
8

9
10

11
12

Comp Effort

m
ed

ia
n

be
st

 R
M

S
E

SGP−DT
DT−EM
DT−NM

(b) concrete

0.0e+00 4.0e+09 8.0e+09 1.2e+10

1.
5

2.
0

2.
5

3.
0

3.
5

Comp Effort

m
ed

ia
n

be
st

 R
M

S
E

SGP−DT
DT−EM
DT−NM

(c) enc

0.0e+00 4.0e+09 8.0e+09 1.2e+10

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

3.
5

Comp Effort

m
ed

ia
n

be
st

 R
M

S
E

SGP−DT
DT−EM
DT−NM

(d) enh

0e+00 2e+09 4e+09 6e+09 8e+09

4.
5

5.
0

5.
5

Comp Effort

m
ed

ia
n

be
st

 R
M

S
E

SGP−DT
DT−EM
DT−NM

(e) housing

0e+00 1e+10 2e+10 3e+10 4e+10 5e+10 6e+10 7e+10

0.
3

0.
4

0.
5

0.
6

Comp Effort

m
ed

ia
n

be
st

 R
M

S
E

SGP−DT
DT−EM
DT−NM

(f) tower

0e+00 2e+10 4e+10 6e+10 8e+10 1e+11

0.
04

0.
08

0.
12

0.
16

Comp Effort

m
ed

ia
n

be
st

 R
M

S
E

SGP−DT
DT−EM
DT−NM

(g) uball5d

0e+00 1e+09 2e+09 3e+09 4e+09

1.
5

2.
0

2.
5

3.
0

Comp Effort

m
ed

ia
n

be
st

 R
M

S
E

SGP−DT
DT−EM
DT−NM

(h) yacht

Fig. 2 Median RMSE of the best so far on the test set by computational effort

479

1 3

Genetic Programming and Evolvable Machines (2021) 22:463–493

that greatly influence the computational cost of evolutionary approaches. After
setting this value, we investigated how other parameters of the algorithms can be
adjusted to maintain an acceptable level of accuracy and overfitting.

We took a subset of the datasets from the cost-effectiveness experiments
(Sect. 4.1) in which SGP-DT manifests different degrees of overfitting. Then, we
evaluate the change in performances with respect to the previous tests. We added
three new datasets from the UCI repository [2] to evaluate SGP-DT in other scenar-
ios. Using these datasets, we perform a sensitivity analysis from three viewpoints:
(1) the size of the validation set and the validation strategy itself, (2) the number
of internal iterations, and (3) the maximum depth of the trees representing the indi-
viduals in the population. These are key parameters that directly influence the per-
formance of SGP-DT and the computational costs.

All the experiments in this section use a training set equal to 70% of the dataset.
The other parameters that are not specified explicitly are kept the same as in the
cost-effectiveness test section.

4.2.1 Datasets

For the experiments in Sect. 4.2, we consider five datasets: airfoil, yacht, ccpp, aq_
tox, real_estate.

airfoil and yacht are the same datasets used in the experiments of Sect. 4.1.
We choose them because SGP-DT manifests neither strong nor weak overfit. We
think that in this intermediate condition would be easier to understand what factors
would make SGP-DT overfit more or less. Moreover, airfoil is among the datasets in
Table 1 with the highest number of instances (1503). On the contrary, yacht is the
dataset with fewer instances (309), giving us the possibility to explore these two dif-
ferent conditions.

The ccpp [46] dataset consists of measurements of environmental variables influ-
encing the production of energy in a Combined Cycle Power Plant over a period of
six years (2006-2011). To predict the net hourly electrical energy output, we use
the following features: temperature, ambient pressure, relative humidity, and exhaust
vacuum. This dataset has the highest number of data points, so we expect lower
overfitting.

To test the performance of SGP-DT in challenging conditions, we included the
datasets aq_tox [4] and real_estate [50], which are known to be prone to overfit-
ting. The aq_tox dataset aims to predict the acute aquatic toxicity towards Daphnia
Magna (LC50 data) given eight molecular descriptors. The variable to predict in the
real_estate dataset is the price of unit area in the selected cities. The dataset includes
six features: transaction age, house age, distance from the nearest subway-like sta-
tions, and geographical coordinates.

4.2.2 Validation set sensitivity analysis

A common approach to mitigate the overfitting problem is using a validation set dur-
ing training as a stopping criterion. In our experiments, SGP-DT uses a validation
set of 10% of the training set. More specifically, after all the external iterations, the

480 Genetic Programming and Evolvable Machines (2021) 22:463–493

1 3

Function validate-and-select at line 22 of Algorithm 1 scans the sequence of par-
tial models and progressively computes the MSE evaluating the individuals on the
validation set to find the point in the sequence where MSE is the smallest. SGP-DT
finds the smallest MSE using the rolling mean of the validation set error at a fixed
window size to minimize the short-term fluctuations. The function validate-and-
select returns the sequence (bestModels) of the partial models produced before the
smallest MSE. Such a sequence represents the transformation chain of the dynamic
targets.

The size of the validation set is a key parameter when overfitting is concerned.
Theoretically, the larger the validation set, the lower the risk of overfitting. Valida-
tion and training sets are complementary. Large validation sets would lead to a small
training set, hence to an underperforming model.

To understand this trade-off when using SGP-DT, we perform a sensitivity analy-
sis on the size of the validation set. We run SGP-DT with five configurations, vary-
ing the validation size while keeping fixed the other parameters values. We choose
the following values of validation size: 5, 10, 20, 30 and 40% (the experiments in
Sect. 4.1 uses 10%).

For all the other settings, we choose a default configuration. We set the maximum
depth of the trees to 5, while the number of internal iteration is 50 and the total num-
ber of iterations 2000.

Another key design choice of SGP-DT is the validation strategy to mitigate the
overfitting problem. It is important to clarify that SGP-DT relies on the validation set
to construct the final model after completing a predefined number of external itera-
tions. We call this strategy global minimum. SGP-DT does not use the validation set
at runtime to decide when to stop the internal or external iterations. Although a stop-
ping criterion could drastically reduce the computational cost, it is often hard to find
the correct threshold that stops the evolution at the right moment without prevent-
ing the algorithm from finding a model in which the validation set further reduces
the RMSE. To confirm our intuition, we repeated the experiments using as stopping
criterion the first local minima in the validation errors of the partial models. We call
this strategy first minimum, which monitors the validation error at runtime and stops
the evolution if the error is higher than a given threshold. We used the same rolling
mean (with a window size of 20) used by the strategy global minimum. The rolling
mean helps to give some tolerance against error fluctuations.

We run SGP-DT 30 times for each of the five configurations, each strategy
(global minimum and first minimum), and each dataset (1,500 runs in total). Figure 3
shows the distributions of the RMSE values of the 30 runs for different combina-
tions of validation sizes and stopping criteria. The distributions marked with only
the percentage of the validation set represent the configurations with the global min-
imum strategy, and the ones marked with ’%f’ are the configurations with the first
minimum.

Global minimum. As expected, the smallest and largest validation sizes (5
and 40%) lead to the worst performance (the median RMSE and the variance are
higher). This confirms that a small validation set does not help mitigate the overfit-
ting problem and that a large validation set leads to a model that does not generalize
well on unseen data. This phenomena is more obvious for the datasets prone to high

481

1 3

Genetic Programming and Evolvable Machines (2021) 22:463–493

overfitting (real_estate, aq_tox and yacht). Overall, the validation sizes that lead to
better performance are 10 and 20%.

First minimum. The results confirm our hypothesis that the first minimum
strategy performs much worse than the global minimum one. For every dataset and
validation size, the original strategy of SGP-DT performs better. This validates our
hypothesis that an early stopping criterion based on the first minimum is not effec-
tive. However, the global optimum strategy improvements come at the cost of per-
forming more computations for partial models not included in the final model.

Comparing the configurations in Fig. 3 we performed a non-parametric pairwise
Wilcoxon rank-sum test with Holm correction for multiple testing, with a confidence
level of 95% (p-value <0.05). The P-values confirm significant differences between
the RMSE computed considering global minimum and first minimum strategies.
Exceptions to this general finding are found in the dataset that overfit more (i.e.,
real_estate and aq_tox) where all the patterns are less clear. For this dataset, the first
minimum and the global minimum strategies are not statistically different for all the
configurations. Differences within the same type of validation strategy having dif-
ferent validation sizes are generally non-significant. We believe that more marked
differences could be observed performing experiments with more external iterations
(Next).

We noticed the presence of some outlier not represented in Figure 3 and this
influence the variance of the results. Considering the outliers, the RMSE variance
is higher for the methods relying on the global minimum strategy. That happens
because this method generally considers more partial models and, in some cases,
may produce overfit even if not detected by the validation set. The first minimum
method is more conservative and thus generates fewer outliers.

Fig. 3 RMSE for different sizes of the validation set is expressed as the portion of the training set (in per-
centage). The final results have been obtained considering the point where the validation error is lower

482 Genetic Programming and Evolvable Machines (2021) 22:463–493

1 3

We observe that the validation strategy (global or first minimum) is more impor-
tant than the validation set size and that the performance does not degrade abruptly
modifying this parameter.

4.2.3 Parameter sensitivity

To better understand how SGP-DT works, we analyzed two characteristic param-
eters of this algorithm.

One key parameter of SGP-DT is the maximum depth of the tree that repre-
sents each partial model. Such a parameter influences two essential aspects of the
algorithm.

First, evaluating and mutating deeper trees increases the computational costs of
the algorithm. Second, by considering deeper trees, we increase the expressiveness
of the models that can capture complex data patterns. However, a well-known draw-
back of complex solutions is that they are prone to overfit the training data. Simpler
(smaller) solutions often generalize better with unseen data.

In the experiments that evaluated the cost-effectiveness of SGP-DT, we set no
limit on the maximum depth of the tree that represents each partial model. However,
setting a maximum depth of the tree could substantially reduce the computational
cost of SGP-DT and, at the same time, improve the generalization ability of the final
model. To shed light on this opportunity, we performed a sensitivity analysis on the
maximum depth of the tree. We choose the values 5, 10, and 15.

Another essential parameter of SGP-DT is the number of internal iterations (Nint),
i.e., the number of generations that evolve each partial model. The choice of such a
parameter is much more crucial than the number of external iterations (Next). Indeed,
the validation set helps to identify the best number of external iterations that leads to
the final model with the lowest MSE. Conversely, the number of internal iterations
(Nint) is a fixed value, which SGP-DT does not automatically adjust for the particular
problem at hand.

Similarly to the maximum depth of the tree, the number of internal iterations
(Nint) influences both the computation cost and the generalization ability of the final
model. Indeed, the more generations each GP run performs the higher are the com-
putational cost and the chance to obtain a fitter model for the training set.

We choose the values: 25, 50, 100, 150 for Nint . We performed a set of 30 runs
for every combination of Nint and maximum depth of the tree (dth) parameters total-
ing 12 different configurations. For the other parameters, we choose the following
default configuration: a validation set size equal to the 20% of the training and the
number of total iterations equal to 5000.

Using the global minimum method for validation we computed the results showed
in Fig. 4. A first look at ccpp and yacht results reveal two opposite pattern: in ccpp
increasing the number internal iterations worsen the performance while for yacht the
opposite is true. These results underline the importance of the dataset’s characteris-
tics for the performance of SGP-DT.

To reveal other patterns, we build a grid showing the relative performance of
each parameter combination. Figure 5 represent better performance in green and
worst performance in red. We notice that the combination with a depth of 5 are

483

1 3

Genetic Programming and Evolvable Machines (2021) 22:463–493

more advantageous in three dataset (i.e., airfoil, aq_tox, and yacht). High-perfor-
mance combinations with a depth of 10 are fewer, and even fewer are the combi-
nations having a depth of 15. Looking at Fig. 5 we have the feeling that a higher

Fig. 4 Test results showing RMSE for all the problems and all the combinations of parameters (it =
Internal Iterations and depth = maximum tree depth)

Fig. 5 RMSE comparison for the combination of the Internal Iteration and Max Tree Depth parameters.
Green combinations are better than red ones for the given problem

484 Genetic Programming and Evolvable Machines (2021) 22:463–493

1 3

depth requires more internal iterations to be effective, probably because optimiz-
ing deeper trees requires more iterations.

Comparing the results in Fig. 4, we performed a non-parametric pairwise Wil-
coxon rank-sum test with Holm correction for multiple testing, with a confidence
level of 95% (p value <0.05). There are only a few results that show statistically
significant differences. Considering the parameters couple formed by internal itera-
tions and max trees depth (Nint, depth) in Fig. 5, for the dataset airfoil the combina-
tion (150, 10) is significantly better than (25, 10). For the dataset yacht combination
(100, 5) is better than (50, 10), (25, 10) and (25, 15) while (150, 5) is better than
(25, 15). The other comparisons are not statistically significant.

To further clarify the role of these parameters in SGP-DT, we observe the evolu-
tion’s dynamic by reporting the Median RMSE of the 30 runs with respect to the
number of nodes evaluated during the whole evolutionary process, see Figs. 6, 7,
8. Different tree depth and internal iterations imply different computational costs.
For this reason, we prefer to refer to the x axes the number of nodes evaluated as a
measure of the computational costs. We set in advance the number of total iterations
in our experiments, and so the lines in Figs. 6, 7, 8 vary in length. Looking directly
at the errors’ dynamics exclude any possible effect of the validation process on the
final result, thus highlighting the internal iterations and max tree depth parameters
influence.

Figure 8 shows the training results. We observe that combinations of fewer
internal iterations with a limited tree depth lead to lower RMSE in the training set.
Moreover, employing a higher number of partial models looks advantageous for the
training.

We observe a different pattern for the test and validation error dynamics. In
Figs. 6 and 7, the combinations that lead to better performances (the lowest RMSE
in the graph) in three cases out of five are the ones with a higher number of internal
iterations (e.g., in Fig. 6, 150 for airfoil and yacht while 100 for aq_tox). Further-
more, in all cases being equal to the number of computations, combinations with
fewer internal iterations overfit sooner. More internal iterations lead to more sta-
ble results. In this case, the validation procedure can be more robust with respect
to fluctuations in the errors’ value. Fig. 6 shows that SGP-DT can reach lower test
errors when using fewer partial models but more optimized through more internal
iterations. Overall, the overfitting phenomena appear to be related mainly with the
number of partial models included in the final model and less with the internal iter-
ations used to produce the partial models. Finally, the comparison of Fig. 2 with
Fig. 6 shows that the constrained configurations of this section are less computation-
ally expensive by three orders of magnitude.

4.2.4 Comparison with other ML techniques

This section presents a more general comparison between off-the-shelf Machine
Learning techniques (ML) and SGP-DT.

In the previous sections, we have explored different parameter values to reduce
the computational cost of SGP-DT while maintaining a similar performance.
We limited the maximum depth of the trees, reduced the internal iterations and

485

1 3

Genetic Programming and Evolvable Machines (2021) 22:463–493

Fig. 6 Median RMSE test error for different combinations of Internal Iteration and Max Tree Depth
parameters

486 Genetic Programming and Evolvable Machines (2021) 22:463–493

1 3

Fig. 7 Median RMSE validation error for different combinations of Internal Iteration and Max Tree
Depth parameters

487

1 3

Genetic Programming and Evolvable Machines (2021) 22:463–493

Fig. 8 Median RMSE train error for different combinations of Internal Iteration and Max Tree Depth
parameters

488 Genetic Programming and Evolvable Machines (2021) 22:463–493

1 3

population size, achieving a reduction of the computational cost of three orders of
magnitude with respect to the configuration of SGP-DT used in the first set of exper-
iments. We estimate new parameter values based on the previous tests to understand
the impact that this reduction in computational cost has to the performance of the
SGP-DT.

Evolutionary approaches are know to have higher computational costs than other
ML approaches. In our second set of experiments, the attempt to abruptly compress
such costs could results in an unacceptable loss of accuracy. The goal of this last
section is to compare the performance of SGP-DT with other ML techniques to be
informed about the feasibility of this cost reduction strategy for SGP-DT. We do not
expect leading performance because of the very aggressive configuration. Instead,
we aim at depicting an informative framework that help us to validate this line of
thinking. On the other end, to understand the full potential of SGP-DT, the reader
should consider that the performance of our main evolutionary competitor, �-lex-
icase, has already been evaluated by Orzechowski et al. [29] in comparison with
other ML techniques. As such, it is easy to have a clear idea of SGP-DT perfor-
mance with respect to other ML techniques when the typical evolutionary cost is not
an issue.

Table 5 shows the configurations of SGP-DT for each dataset. We select the
configuration that had the lowest RMSE in Fig. 6 for the problems overfitting soon
(i.e. real_estate,aq_tox,yacht) and we set the maximum iterations to a point after
the minimum test RMSE. For the remaining problems (i.e., airfoil and ccpp), we
select the lowest RMSE configuration that did not overfit. The idea is that with more
iterations, these configurations can improve significantly. In these latter cases, the
number of iterations is set so that it potentially achieves the minimum RMSE. The
computational costs are still very limited.

As before, we run SGP-DT and all the ML techniques 30 times for each of the
five problems. For this comparison we used the following ML regression methods
from scikit-learn [34]: AdaBoost [9], Gradient Boosting [12], random forest [3]
(using 100 estimators), Epsilon-Support Vector Regression with Radial Basis Func-
tions Kernel [35] (RBFSVM), K-Nearest Neighbors, Multi-layer Perceptron (MLP
with 3 thousand iterations) [13], Lasso [8]. All the ML parameters not specified here
were set as the default. This comparison is not fair because we did not try to tune
the ML parameters and the primary goal of SGP-DT tuning is a drastic saving in
computational power. However, this test is useful to understand the potential of a
more balanced trade-off between the initial test configurations and these last ones.
We show the results on the test set in Figure 9. The performance of SGP-DT looks
competitive in all the datasets, although it is never the best option.

As expected, the accuracy of SGP-DT decreased. Anyway, being still competi-
tive, we believe that a more balanced parameters’ setting, especially for the popula-
tion size, would deliver a good compromise, also optimizing computational costs. In
the light of this result, we think that this setup represents a sort of lower bound for
the computational cost of SGP-DT. Below this threshold, probably, the performance
of SGP-DT would degrade too much.

For the dataset airfoil, this constrained configuration of SGP-DT is still better
than �-lexicase in the first set of experiments. We observed more outliers in the test

489

1 3

Genetic Programming and Evolvable Machines (2021) 22:463–493

Table 4 SGP-DT Variance of ML techniques and SGP-DT. Outliers in SGP-DT results push the value of
the variance

AdaBoost Gra-
dient-
Boosting

Lasso MLP Nearest-
Neigh-
bors

RBFSVM RandomForest SGPDT

airfoil 0.02 0.02 0.02 0.61 0.05 0.02 0.01 479440.14
ccpp 0.07 0.01 0.01 0.02 0.01 0.02 0.01 63.65
real_estate_

valuation
1.58 1.40 1.54 24.48 0.63 1.20 1.56 50.96

qsar_aquatic_
toxicity

0.00 0.00 0.01 0.20 0.01 0.01 0.00 0.01

yacht 0.05 0.05 2.77 5.76 2.44 2.37 0.09 144.96

Fig. 9 RMSE comparison of SGP-DT with seven ML techniques

Table 5 SGP-DT configurations used for the final comparison test

Internal
iterations

Total iterations Max tree
depth

Validation size Population size

airfoil 150 21500 5 20% 100
cccp 50 10000 10 20% 100
real_estate 25 200 5 20% 100
aq_tox 100 200 5 20% 100
yacht 150 2000 10 20% 100

490 Genetic Programming and Evolvable Machines (2021) 22:463–493

1 3

results of SGP-DT not shown in Fig. 9. This condition is reflected in the anoma-
lous value of the variance showed in Table 4. Even if we did not perform a spe-
cific experiment, we believe that the presence of outliers is an issue connected with
the population size. In the comparison of SGP-DT with �-lexicase this was a minor
issue even with the anecdotal test conducted with different parameters but the same
population size (1000). Probably the selection acting on vast populations can pro-
mote individuals that generalize better.

5 Conclusion

This paper presents SGP-DT, a new evolutionary technique that dynamically discov-
ers and resolves intermediate dynamic targets. Our key intuition is that the synergy
of the linear scaling and mutation helps to exchange good genetic materials during
evolution. Notably, SGP-DT does not rely on any form of crossover, and thus with-
out suffering from its intrinsic limitations [33, 36]. Our experimental results confirm
our intuitions and show that SGP-DT outperforms �-lexicase in both lower RMSE
and less computational cost. This is a promising result as �-lexicase outperforms
many GP-inspired algorithms [29].

As a classical evolutionary technique, SGP-DT incurs computational cost issues
for evaluating the individuals in the population. In this paper we investigated the
possible trade-off between computational cost and accuracy of the model. With this
in mind, in the second part of this study, we explored key parameters and strate-
gies of SGP-DT. We reduced the population’s size and tuned the other parameters to
maintain a good models’ accuracy. This lead to a decrease of the computation cost
by three orders of magnitude, while keeping acceptable performance. The final com-
parison shows that SGP-DT has competitive results with respect to �-lexicase and
seven well-known Machine Learning techniques.

SGP-DT could employ additional strategies to reduce the computational cost. For
example, bloat control techniques can be used during internal iterations to reduce
the number of nodes computed to obtain the partial models [7, 21, 26, 32, 44, 45].
An interesting future work would be to investigate the synergy of SGP-DT and one
of such bloat control techniques. For instance, Nguyen et al.’s approach [26] reduces
computation costs without sacrificing the performance of the GP models.

Our sensitivity analysis results show that the behavior of SGP-DT with respect to
overfitting and performance, in general, is rather predictable given different param-
eter combinations: configurations having fewer internal iterations and smaller trees
get to the minimum error point and overfit sooner (see Fig.s 6, 7, 8). This observa-
tion, in our opinion, opens the possibility of learning a computational model of the
parameters or at least some heuristic to guide the SGP-DT ’s parameter tuning task.

We showed that the validation procedure is critical for SGP-DT and sometimes
fails. With smaller populations, this produces outliers in the test error results. A bet-
ter validation strategy will increase the reliability of SGP-DT, even in applications
with smaller datasets, like the ones in this paper.

Algorithms based on SGP-DT have already been developed for different appli-
cations, ranging from image analysis [39, 40] to multi-class classification [43],

491

1 3

Genetic Programming and Evolvable Machines (2021) 22:463–493

showing promising results. As such, SGP-DT can be considered as a framework for
semantic GP.

Acknowledgements National Institute of Health Grant NIH R01 LM010098.

References

 1. I. Arnaldo, K. Krawiec, U.M. O’Reilly, Multiple regression genetic programming. In: Proceedings
of the 2014 Annual Conference on Genetic and Evolutionary Computation, ACM, New York, NY,
USA, GECCO ’14, pp 879–886, https:// doi. org/ 10. 1145/ 25767 68. 25982 91, URL http:// proxy. libra
ry. upenn. edu: 4604/ 10. 1145/ 25767 68. 25982 91 (2014)

 2. A. Asuncion, D. Newman, Uci machine learning repository (2007)
 3. L. Breiman, Random forests. Mach. Learn. 45(1), 5–32 (2001)
 4. M. Cassotti, D. Ballabio, V. Consonni, A. Mauri, I.V. Tetko, R. Todeschini, Prediction of acute

aquatic toxicity toward daphnia magna by using the ga-knn method. Alternatives Lab Animals
42(1), 31–41 (2014). https:// doi. org/ 10. 1177/ 02611 92914 04200 106 (pMID: 24773486)

 5. M. Castelli, L. Trujillo, L. Vanneschi, S. Silva, E. Z-Flores, P. Legrand, Geometric semantic genetic
programming with local search. In: Proceedings of the Genetic and Evolutionary Computation Con-
ference, GECCO 2015, Madrid, Spain, July 11-15, 2015, ACM, pp 999–1006, https:// doi. org/ 10.
1145/ 27394 80. 27547 95 (2015)

 6. W.L. Cava, T. Helmuth, L. Spector, J.H. Moore, A probabilistic and multi-objective analysis of lexi-
case selection and �-lexicase selection. Evol. Comput. 5, 1–28 (2018)

 7. S. Dignum, R. Poli, Operator equalisation and bloat free gp. In: European Conference on Genetic
Programming, Springer, pp 110–121 (2008)

 8. B. Efron, T. Hastie, I. Johnstone, R. Tibshirani et al., Least angle regression. Ann. Stat. 32(2), 407–
499 (2004)

 9. Y. Freund, R.E. Schapire, A decision-theoretic generalization of on-line learning and an application
to boosting. In: Computational Learning Theory, Second European Conference, EuroCOLT ’95,
Barcelona, Spain, March 13-15, 1995, Proceedings, Springer, Lecture Notes in Computer Science,
vol 904, pp 23–37, https:// doi. org/ 10. 1007/3- 540- 59119-2_ 166 (1995)

 10. A.H. Gandomi, A.H. Alavi, A new multi-gene genetic programming approach to nonlinear system
modeling. part i: materials and structural engineering problems. Neural Comput. Appl. 21(1), 171–
187 (2012). https:// doi. org/ 10. 1007/ s00521- 011- 0734-z

 11. G. Gerules, C. Janikow, A survey of modularity in genetic programming. In: 2016 IEEE Congress
on Evolutionary Computation (CEC), pp 5034–5043, https:// doi. org/ 10. 1109/ CEC. 2016. 77483 28
(2016)

 12. T. Hastie, R. Tibshirani, J. Friedman, The Elements of Statistical Learning: Data Mining, Inference,
and Prediction (Springer Science & Business Media, New York, 2009)

 13. G.E. Hinton, Connectionist Learning Procedures Machine Learning (Elsevier, Amsterdam, 1990)
 14. M. Keijzer, Improving symbolic regression with interval arithmetic and linear scaling. In: European

Conference on Genetic Programming, Springer, pp 70–82 (2003)
 15. M. Keijzer, Scaled symbolic regression. Genet. Program. Evolvable Mach. 5(3), 259–269 (2004)
 16. K. Krawiec, P. Liskowski, Automatic derivation of search objectives for test-based genetic program-

ming. In: European Conference on Genetic Programming, Springer, pp 53–65 (2015)
 17. K. Krawiec, U.M. O’Reilly, Behavioral programming: a broader and more detailed take on seman-

tic gp. In: Proceedings of the 2014 Annual Conference on Genetic and Evolutionary Computation,
ACM, pp 935–942 (2014)

 18. K. Krawiec, T. Pawlak, Locally geometric semantic crossover: a study on the roles of semantics
and homology in recombination operators. Genet. Program. Evolvable Mach. 14(1), 31–63 (2013).
https:// doi. org/ 10. 1007/ s10710- 012- 9172-7

 19. W. La Cava, L. Spector, K. Danai, Epsilon-lexicase selection for regression. In: Proceedings of the
Genetic and Evolutionary Computation Conference 2016, ACM, pp 741–748 (2016)

 20. P. Liskowski, K. Krawiec, Online discovery of search objectives for test-based problems. Evol.
Comput. 25(3), 375–406 (2017). https:// doi. org/ 10. 1162/ evco_a_ 00179 (pMID: 26953882)

https://doi.org/10.1145/2576768.2598291
http://proxy.library.upenn.edu:4604/10.1145/2576768.2598291
http://proxy.library.upenn.edu:4604/10.1145/2576768.2598291
https://doi.org/10.1177/026119291404200106
https://doi.org/10.1145/2739480.2754795
https://doi.org/10.1145/2739480.2754795
https://doi.org/10.1007/3-540-59119-2_166
https://doi.org/10.1007/s00521-011-0734-z
https://doi.org/10.1109/CEC.2016.7748328
https://doi.org/10.1007/s10710-012-9172-7
https://doi.org/10.1162/evco_a_00179

492 Genetic Programming and Evolvable Machines (2021) 22:463–493

1 3

 21. S. Luke, L. Panait, A comparison of bloat control methods for genetic programming. Evol. Comput.
14(3), 309–344 (2006)

 22. N.F. McPhee, B. Ohs, T. Hutchison, Semantic building blocks in genetic programming. Genet. Pro-
gram. 4971, 134–145 (2008). https:// doi. org/ 10. 1007/ 978-3- 540- 78671-9- 12

 23. D. Medernach, J. Fitzgerald, R.M.A. Azad, C. Ryan, Wave: A genetic programming approach to
divide and conquer. In: Proceedings of the Companion Publication of the 2015 Annual Conference
on Genetic and Evolutionary Computation, ACM, New York, NY, USA, GECCO Companion ’15,
pp 1435–1436, https:// doi. org/ 10. 1145/ 27394 82. 27646 59 (2015)

 24. D. Medernach, J. Fitzgerald, R.M.A. Azad, C. Ryan, A new wave: A dynamic approach to genetic
programming. In: Proceedings of the Genetic and Evolutionary Computation Conference 2016,
ACM, New York, NY, USA, GECCO ’16, pp 757–764, https:// doi. org/ 10. 1145/ 29088 12. 29088 57
(2016)

 25. A. Moraglio, K. Krawiec, C.G. Johnson, Geometric semantic genetic programming, in Parallel
Problem Solving from Nature - PPSN XII. (Springer, Berlin Heidelberg, Berlin, Heidelberg, 2012),
pp. 21–31

 26. Q.U. Nguyen, T.H. Chu, Semantic approximation for reducing code bloat in Genetic Programming.
Swarm and Evolutionary Computation 58(2020). https:// doi. org/ 10. 1016/j. swevo. 2020. 100729.
URL https:// www. scien cedir ect. com/ scien ce/ artic le/ pii/ S2210 65022 03038 25

 27. M. Nicolau, A. Agapitos, On the effect of function set to the generalisation of symbolic regres-
sion models. In: Proceedings of the Genetic and Evolutionary Computation Conference Companion,
ACM, New York, NY, USA, GECCO ’18, pp 272–273, https:// doi. org/ 10. 1145/ 32056 51. 32057 73
(2018)

 28. L.O.V. Oliveira, F.E. Otero, G.L. Pappa, J. Albinati, Sequential symbolic regression with genetic
programming. In: Genetic Programming Theory and Practice XII, Springer, pp 73–90 (2015)

 29. P. Orzechowski, W.L. Cava, J.H. Moore, Where are we now?: a large benchmark study of recent
symbolic regression methods. In: Proceedings of the Genetic and Evolutionary Computation Con-
ference, GECCO 2018, Kyoto, Japan, July 15-19, 2018, pp 1183–1190, https:// doi. org/ 10. 1145/
32054 55. 32055 39 (2018)

 30. F.E.B. Otero, C.G. Johnson, Automated problem decomposition for the boolean domain with
genetic programming, in Genetic Programming. (Springer, Berlin Heidelberg, Berlin, Heidelberg,
2013), pp. 169–180

 31. M. O’Neill, Semantic methods in genetic programming. Genet. Program. Evol. Mach. 17(1), 3–4
(2016)

 32. T.P. Pawlak, B. Wieloch, K. Krawiec, Semantic backpropagation for designing search operators in
genetic programming. IEEE Trans. Evol. Comput. 19(3), 326–340 (2014)

 33. T.P. Pawlak, B. Wieloch, K. Krawiec, Review and comparative analysis of geometric seman-
tic crossovers. Genet. Programm. Evol. Mach. 16(3), 351–386 (2015). https:// doi. org/ 10. 1007/
s10710- 014- 9239-8

 34. F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Pretten-
hofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, E.
Duchesnay, Scikit-learn: machine learning in Python. J. Mach. Learn. Res. 12, 2825–2830 (2011)

 35. J.C. Platt, Probabilistic outputs for support vector machines and comparisons to regularized like-
lihood methods. In: ADVANCES IN LARGE MARGIN CLASSIFIERS, MIT Press, pp 61–74
(1999)

 36. R. Poli, W.B. Langdon, Schema theory for genetic programming with one-point crossover and point
mutation. Evol. Comput. 6(3), 231–252 (1998)

 37. S. Ruberto, L. Vanneschi, M. Castelli, S. Silva, Esagp - a semantic gp framework based on align-
ment in the error space, in Genetic Programming. (Springer, Berlin Heidelberg, Berlin, Heidelberg,
2014), pp. 150–161

 38. S. Ruberto, L. Vanneschi, M. Castelli, Genetic programming with semantic equivalence classes.
Swarm and Evolutionary Computation 44, 453–469 (2019). https:// doi. org/ 10. 1016/j. swevo. 2018.
06. 001. URL http:// www. scien cedir ect. com/ scien ce/ artic le/ pii/ S2210 65021 63003 84

 39. S. Ruberto, V. Terragni, J.H. Moore, Image feature learning with a genetic programming autoen-
coder. In: Proceedings of the Genetic and Evolutionary Computation Conference, GECCO 2020,
Cancun, Mexico, July 8-12, 2020, pp 245–246, https:// doi. org/ 10. 1145/ 33779 29. 33899 81 (2020a)

 40. S. Ruberto, V. Terragni, J.H. Moore, Image Feature Learning with Genetic Programming. In: Paral-
lel Problem Solving from Nature - PPSN XVI, Springer International Publishing, Cham, Lecture
Notes in Computer Science, pp 63–78, https:// doi. org/ 10. 1007/ 978-3- 030- 58115-2_5 (2020b)

https://doi.org/10.1007/978-3-540-78671-9-12
https://doi.org/10.1145/2739482.2764659
https://doi.org/10.1145/2908812.2908857
https://doi.org/10.1016/j.swevo.2020.100729
https://www.sciencedirect.com/science/article/pii/S2210650220303825
https://doi.org/10.1145/3205651.3205773
https://doi.org/10.1145/3205455.3205539
https://doi.org/10.1145/3205455.3205539
https://doi.org/10.1007/s10710-014-9239-8
https://doi.org/10.1007/s10710-014-9239-8
https://doi.org/10.1016/j.swevo.2018.06.001
https://doi.org/10.1016/j.swevo.2018.06.001
http://www.sciencedirect.com/science/article/pii/S2210650216300384
https://doi.org/10.1145/3377929.3389981
https://doi.org/10.1007/978-3-030-58115-2_5

493

1 3

Genetic Programming and Evolvable Machines (2021) 22:463–493

 41. S. Ruberto, V. Terragni, J.H. Moore, SGP-DT: Semantic Genetic Programming Based on Dynamic
Targets. In: Proceedings of the 23rd European Conference on Genetic Programming, EuroGP 2020,
Springer, Lecture Notes in Computer Science, vol 12101, pp 167–183, https:// doi. org/ 10. 1007/ 978-
3- 030- 44094-7_ 11 (2020c)

 42. S. Ruberto, V. Terragni, J.H. Moore, Sgp-dt: Towards effective symbolic regression with a semantic
gp approach based on dynamic targets. In: Proceedings of the Genetic and Evolutionary Compu-
tation Conference (Hot Off the Press track), GECCO 2020, Cancun, Mexico, July 8-12, 2020, pp
25–26, https:// doi. org/ 10. 1145/ 33779 29. 33974 86 (2020d)

 43. S. Ruberto, V. Terragni, J.H. Moore, Towards effective gp multi-class classification based on
dynamic targets. In: Proceedings of the 2021 Genetic and Evolutionary Computation Conference,
ACM, https:// doi. org/ 10. 1145/ 34496 39. 34593 24 (2021)

 44. S. Silva, E. Costa, Dynamic limits for bloat control in genetic programming and a review of past and
current bloat theories. Genet. Program. Evol. Mach. 10(2), 141–179 (2009)

 45. S. Silva, S. Dignum, L. Vanneschi, Operator equalisation for bloat free genetic programming and a
survey of bloat control methods. Genet. Program. Evol. Mach. 13(2), 197–238 (2012)

 46. P. Tufekci, Prediction of full load electrical power output of a base load operated combined cycle
power plant using machine learning methods. International Journal of Electrical Power and Energy
Systems 60, 126–140 (2014). https:// doi. org/ 10. 1016/j. ijepes. 2014. 02. 027. URL https:// www. scien
cedir ect. com/ scien ce/ artic le/ pii/ S0142 06151 40009 08

 47. L. Vanneschi, M. Castelli, S. Silva, A survey of semantic methods in genetic programming. Genet.
Program. Evol. Mach. 15(2), 195–214 (2014). https:// doi. org/ 10. 1007/ s10710- 013- 9210-0

 48. L. Vanneschi, M. Castelli, K. Scott, L. Trujillo, Alignment-based genetic programming for real life
applications. Swarm and Evolutionary Computation 44, 840–851 (2019). https:// doi. org/ 10. 1016/j.
swevo. 2018. 09. 006. URL http:// www. scien cedir ect. com/ scien ce/ artic le/ pii/ S2210 65021 83002 08

 49. D.R. White, J. Mcdermott, M. Castelli, L. Manzoni, B.W. Goldman, G. Kronberger, W. Jaśkowski,
U.M. O’Reilly, S. Luke, Better gp benchmarks: community survey results and proposals. Genet.
Program. Evol. Mach. 14(1), 3–29 (2013)

 50. I.C. Yeh, T.K. Hsu, Building real estate valuation models with comparative approach through case-
based reasoning. Applied Soft Computing 65, 260–271 (2018). https:// doi. org/ 10. 1016/j. asoc. 2018.
01. 029. URL https:// www. scien cedir ect. com/ scien ce/ artic le/ pii/ S1568 49461 83003 58

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published
maps and institutional affiliations.

https://doi.org/10.1007/978-3-030-44094-7_11
https://doi.org/10.1007/978-3-030-44094-7_11
https://doi.org/10.1145/3377929.3397486
https://doi.org/10.1145/3449639.3459324
https://doi.org/10.1016/j.ijepes.2014.02.027
https://www.sciencedirect.com/science/article/pii/S0142061514000908
https://www.sciencedirect.com/science/article/pii/S0142061514000908
https://doi.org/10.1007/s10710-013-9210-0
https://doi.org/10.1016/j.swevo.2018.09.006
https://doi.org/10.1016/j.swevo.2018.09.006
http://www.sciencedirect.com/science/article/pii/S2210650218300208
https://doi.org/10.1016/j.asoc.2018.01.029
https://doi.org/10.1016/j.asoc.2018.01.029
https://www.sciencedirect.com/science/article/pii/S1568494618300358

	A semantic genetic programming framework based on dynamic targets
	Abstract
	1 Introduction
	2 Methodology
	3 Related work
	3.1 Dynamic or semantic objectives
	3.2 Linear combinations
	3.3 Iterative approaches based on residual errors

	4 Experiments
	4.1 Cost-effectiveness experiments
	4.1.1 Data sets
	4.1.2 Methods
	4.1.3 Evaluation setup
	4.1.4 Results and discussion

	4.2 Sensitivity experiments
	4.2.1 Datasets
	4.2.2 Validation set sensitivity analysis
	4.2.3 Parameter sensitivity
	4.2.4 Comparison with other ML techniques

	5 Conclusion
	Acknowledgements
	References

