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Abstract
Semantic GP is a promising branch of GP that introduces semantic awareness 
during genetic evolution to improve various aspects of GP. This paper presents a 
new Semantic GP approach based on Dynamic Target (SGP-DT) that divides the 
search problem into multiple GP runs. The evolution in each run is guided by a new 
(dynamic) target based on the residual errors of previous runs. To obtain the final 
solution, SGP-DT combines the solutions of each run using linear scaling. SGP-DT 
presents a new methodology to produce the offspring that does not rely on the clas-
sic crossover. The synergy between such a methodology and linear scaling yields 
final solutions with low approximation error and computational cost. We evaluate 
SGP-DT on eleven well-known data sets and compare with �-lexicase, a state-of-
the-art evolutionary technique, and seven Machine Learning techniques. SGP-DT 
achieves small RMSE values, on average 23.19% smaller than the one of �-lexicase. 
Tuning SGP-DT ’s configuration greatly reduces the computational cost while still 
obtaining competitive results.
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1 Introduction

Recently, researchers successfully applied Semantic methods to Genetic Pro-
gramming (SGP) on different domains, showing promising results [31, 33, 47]. 
While the classic GP operators (e.g., selection, crossover and mutation) act at the 
syntactic level, blindly to the semantic (behavior) of the individuals (e.g., pro-
grams), the key idea of SGP is to apply semantic evaluations [47]. More specifi-
cally, classic GP operators ignore the behavioral characteristic of the offspring, 
focusing only on improving the fitness of the individuals. Differently, SGP uses a 
richer feedback during the evolution that incorporates semantic awareness, which 
has the potential to improve the power of genetic programming [47].

In this paper, we are considering the Symbolic Regression domain, and thus 
assuming the availability of training cases (defined as m pairs of inputs and 
desired output). Following the most popular SGP approaches [47], we intend 
“semantics” as the set of output values of a program on the training cases [22]. 
Such an approach obtains a richer feedback during the evolution relying on the 
evaluation of the individuals on the training cases. More formally, the seman-
tics of an individual I  is a vector sem(I) = ⟨y1, y2,⋯ , ym⟩ of responses to the m 
inputs of the training cases. Let sem(ŷ) = ⟨ŷ1, ŷ2,⋯ , ŷm⟩ denote the semantic vec-
tor of the target (as defined in the training set), where ŷ1, ŷ2,⋯ , ŷm are the desired 
outputs. SGP defines semantic space [47] with a metric that characterizes the 
distance between the semantic vectors of the individuals sem(I) and the target 
sem(ŷ) . SGP often relies on such a distance to compute the fitness score, inducing 
a unimodal fitness landscape, which avoids local optima by construction [25].

The effectiveness of SGP depends on the availability of GP operators that can 
move in the semantic space towards the global optimum. An example of semantic 
operator is the geometric crossover proposed by Moraglio et al. [25]. It produces 
an offspring with a semantic vector that lies on the line connecting the parents 
in the semantic space. Thus, it guarantees that the offspring is no worse than the 
worst of the parents [25]. However, such crossover operator has the major draw-
back of producing individuals with an exponentially increasing size (i.e., expo-
nential bloat) [25, 47]. To avoid the exponential bloat, researchers proposed vari-
ants of this operator that minimize bloating [33] but at the cost of dropping the 
important guarantee of non-worsening crossover operations.

In this paper, we present a SGP approach called SGP-DT [41, 42] (Semantic 
Genetic Programming based on Dynamic Targets) that minimizes the exponen-
tial bloat problem and at the same time gives a bound on the worsening of the 
offspring. SGP-DT divides the search problem into multiple GP runs. Each run 
is guided by a different dynamic target, which SGP-DT updates at each run based 
on the residual errors of the previous run. Then, SGP-DT combines the results of 
each run into a “optimized” final solution.

In a nutshell, SGP-DT works as follows. SGP-DT runs the GP algorithm (see 
Algorithm 1) a fixed number of times ( Next ) depending on the available budget. 
We call these runs external iterations. As opposed to the internal iterations (i.e., 
generations) that the GP algorithm performs to evolve the individuals. Each GP 
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run performs a fixed number of internal iterations and returns a model (i.e., the 
best solution) that we call partial model. The next external iteration runs the GP 
algorithm with a modified training set, where SGP-DT replaces the m desired 
outputs ŷi = ⟨ŷ1, ŷ2,⋯ , ŷm⟩ with the residual errors of the partial model returned 
by the previous iteration. That is, the difference between sem(Ii) and sem(ŷi−1) , 
where Ii is the partial model at the ith iteration. Thus, at each external iteration, 
the fitness function evaluates differently the individuals (because the fitness func-
tions predicates on different training sets). As such, each partial model focuses on 
a different portion of the problem, the one that most influences the fitness value. 
As a result, our approach leads to dynamic targets that change at each external 
iteration incorporating the semantic information. SGP-DT obtains the final solu-
tion after Next iterations with a linear combination in the form 

∑Next

i=0
ai + bi ⋅ Ii , 

where ai and bi are computed with the well-known linear scaling [14]. There is 
a key advantage of using linear scaling. Keijzers showed that linear scaling gives 
a bound on the error of those generated individuals that are linear scaled [14]. 
Therefore, SGP-DT entails a bound on the worsening of the offspring at each 
internal and external iteration.

To reduce the exponential bloat problem, SGP-DT performs the internal GP iter-
ations relying on classic mutation operators only. It does not rely on any form of 
crossover, neither geometric nor classic, and thus avoids their fundamental limita-
tions. Geometric crossover leads to exponential bloat and classic crossover decreases 
the chance to obtain a fitness improvement because it exchanges random function-
alities at random points [36]. Despite the absence of crossovers, SGP-DT implicitly 
recombines different functionalities, similarly to a geometric crossover [25]. This is 
because, each partial model focuses on a different characteristic of the problem that 
the fitness function recognized as important (at that iteration). This makes the search 
more efficient because the evolution focuses on a single characteristic at a time leav-
ing unaltered other (already optimized) characteristics.

This paper summarizes and extends our previous conference paper that presented 
SGP-DT [41]. In particular, in the conference paper we evaluated our approach on 
eight well-known regression problems. We compared SGP-DT with two baselines: 
lasso, a least square regression technique by Efron et al. [8]; and �-lexicase a state-
of-the-art SGP approach by La Cava et al. [19]. The results show that our approach 
obtains a median RMSE on 50 runs that is, on average, 51.47 and 23.19% smaller 
than the one of lasso and �-lexicase, respectively. Moreover, SGP-DT requires as 
much as 9.26× fewer tree computations than �-lexicase (4.81× on average).

This paper presents an additional set of experiments that investigate alternative 
configurations of SGP-DT to reduce the computational cost while maintaining good 
performance. More specifically, we considered configurations of SGP-DT with a 
reduced computational cost by three orders of magnitude, with respect to the experi-
ments presented in our previous conference paper. Then, we explore different con-
figurations to understand what are the aspects of our technique that influence the 
accuracy and overfitting. We evaluated these new configuration of SGP-DT by com-
paring them with seven well known ML techniques on five datasets (three differ-
ent from the previous ones) obtaining competitive results and precious insight on 
the SGP-DT characteristics. The paper is organized as follows. Section 2 describes 
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our proposed approach. Section 3 discusses the related work. Section 4 reports our 
experimental evaluation and discusses the results. The experimental evaluation is 
divided into two parts. the first part (Cost-effectiveness experiments) summarizes 
the results presented in the conference paper. The second part (Sensitivity experi-
ments) discusses the new results. Section 5 concludes the paper.

2  Methodology

This section describes the SGP-DT framework using the symbolic regression as the 
targeted ML problem.

Algorithm 1 overviews the SGP-DT approach. Given the values of the independ-
ent ( x ) and dependent ( ̂y ) variables of the training cases, and the number of external 
( Next ) and internal ( Nint ) iterations, it returns the final solution (finalModel).

SGP-DT considers tree-like individuals with the usual non-terminal symbols: 
+,−, ⋅, ∕(the protected division), ERC (between -1 and 1). In addition, SGP-DT con-
siders the functions Min and Max that returns the minimum and maximum between 
two numbers, respectively. The rationale of adding the two latter symbols is to inject 
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discontinuity to make the linear combinations more adaptable. Although also the pro-
tected division adds discontinuity in the form of asymptotes, such discontinuity often 
promotes overfitting [14, 27]. With Min and Max functions, we introduce valid discon-
tinuities alternatives that do not suffer from the limitation of the protected division.

Algorithm 1 holds out a portion of the training cases for validation (lines 1-3). SGP-
DT will use such validation sets to construct the final solution (line 22). Lines 4-5 ini-
tialize the current target with ŷ and the lists of the best models with the empty list. 
Line 6 starts the external loop, which re-assigns P to a fresh randomly generated popu-
lation with the ramped-half-and-half approach (function get-random-initial-popula-
tion of Algorithm 1). Starting every external iteration with a new population alleviates 
the overfitting problem. Indeed, the syntactic structures of already evolved individuals 
can be too complex to adapt to a new fitness landscape or to generalize on unseen data. 
To further reduce overfitting and the cost of fitness evaluation, SGP-DT generates the 
initial population with individuals with low complexity (i.e., a few nodes).

At line  8, SGP-DT starts the Nint internal iterations, which resembles the classic 
GP but with the addition of linear scaling and the absence of crossover. Before line 11 
computes the fitness of each individual I  in P , line 10 performs the linear scaling of I  
[14]. Linear scaling has the advantage of transforming the semantic of individuals so 
that their potential fit with the current target is immediately given: we do not need to 
wait for GP to produce a partial model that reaches the same result [14]. And thus, lin-
ear scaling reduces the number of both external and internal iterations. Fewer iterations 
means populations with simpler structural complexity and less computational cost. 
Reducing the complexity of the solutions may reduce overfitting [38].

Linear scaling has another important property: it gives an upper bound on the error 
[14]. Recall that SGP-DT considers errors on dynamic targets, which change at each 
iteration (at the first iteration the dynamic target is ŷ ). To exploit such a situation, we 
propose a fitness function based on this upper bound. Following Keijzer [14], we com-
pute the linear scaling of an individual I  as follows:

We define the following fitness function of an individual I :

The rationale of this function is that the Mean Square Error (MSE) of Ils has the 
variance ( �2 ) of the current target as an upper bound [15]:

where m is the number of training cases (y).
At each new external iteration the residual error becomes the new target (line 21).

(1)Ils =a + b ⋅ I

(2)where a =ŷ − b ⋅ y and b =

∑n

i=1
[(ŷi − ŷ) ⋅ (yi − y)]
∑n

i=1
[(yi − y)2]

(3)fitness(I) = 𝜎
2(sem(Ils(x)) − ŷ)

(4)MSE =

∑m

i=0
(yi − ŷi)

2

m
≤ 𝜎

2(ŷ)
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where sem(I⋆
ls
(x)) is the evaluation of the best individual at the current iteration, 

which we call partial model.
The inequality  4 does not guarantee that the external iterations con-

verge to a lower MSE because we do not know if 𝜎2(error) ≤ 𝜎
2(ŷ) , where 

error = target − sem(I⋆
les
(x)) . Thus, by optimizing the variance of the error shown in 

equation 3, we act directly on the minimization of the upper bound, so that the next 
external iteration can benefit from a lower bound.

At lines 17-19, Algorithm  1 runs a classic GP algorithm without crossovers, 
using only mutations. We use a tree-based mutation operator because SGP-DT uses 
trees as syntactic structures for the individuals. The operator randomly generates a 
subtree from a randomly chosen node. To increase the synergy with linear scaling, 
we set two constraints during mutation. First, the node selection is biased towards 
the leaves of the tree, so that the mutated tree does not diverge too much from the 
original semantic (locality principle). Producing a mutation that is close to the origi-
nal semantic of the tree preserves the validity of the selection performed after the 
linear scaling. And thus, we only allow minor changes to improve the fitness. Sec-
ond, for the same reason, the mutation is biased towards replacing the selected node 
with a sub-tree of limited depth. Note that we decided not to limit the maximum size 
(number of nodes in the tree) or depth of an individual. By doing so, GP can grow 
and choose the right solution complexity for the problem at hand. These two con-
straints help us to mitigate the overfitting and bloat problem without preventing the 
SGP-DT to effectively search for competitive individuals. As linear scaling helps GP 
to find useful individuals (thanks to the upper bound). Moreover, additional external 
iterations will further refine other aspects of the problem not yet addressed.

We decided to exclude the classic crossover operator in the internal iterations, 
as several researchers argued about the effectiveness of crossover in relation to the 
problem of modularity of GP [11]. There is a consensus that an effective GP algo-
rithm needs a crossover that preserves the semantics of the parts swapped among 
individuals respecting the boundaries of a useful functionality within the individu-
al’s structure [18, 33, 36]. According to McPhee et al. [22] and Ruberto et al. [38] 
most classic crossover operators do not obtain a meaningful variation (or any vari-
ation at all) in the program semantics, when dealing with Boolean and real value 
symbolic regression domains. The main issue is that classic crossover operators do 
not preserve a common context [22] among the building blocks of the individuals 
exchanged during crossover, which is important to increase the chance of obtaining 
a semantically meaningful offspring [18]. The idea of determining a common con-
text has been introduced by Poli and Langdon with the one-point crossover operator 
[36]. But how to identify a meaningful common context among trees structures is 
still an open problem.

Instead, SGP-DT exchanges functionalities among individuals by relying on the 
linear combination of the partial models (i.e., the fittest individuals at each exter-
nal iteration, line 12 Algorithm 1) and on a specific mechanism for selecting and 
mutating the individuals during the GP runs. In light of this, we exclude the crosso-
ver operators in the presence of these semantic recombination alternatives. To have 

(5)target = ŷ − sem(I⋆
ls
(x))
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an effective exchange of functionalities among individuals we need to: (i) preserve 
building blocks semantics (ii) preserve the context of building blocks (iii) make 
the exchange of functionalities directed towards producing new and interesting 
semantics.

The for-loop at line 6 terminates when SGP-DT concludes all external iterations. 
We decide not to introduce a different stopping criterion based on the stagnation 
of fitness improvement. This is because it is difficult to predict if the fitness will 
not escape stagnation in future iterations. After all the external iterations, the func-
tion validate-and-select at line 22 of Algorithm 1 returns the partial models that 
will be combined into the final solution. Such models are selected as follows. The 
validation takes in input the ordered sequence of best individuals (models) collected 
after each internal iteration (line 14 Algorithm 1) and the validation sets ( xval and 
ŷval ) obtained at line 1. Note that SGP-DT saves the computed linear scaling param-
eters (a and b Eq. (2)) at line 10 and do not recompute them during the validation 
and test phases. Internally, the validation scans the sequence models and progres-
sively computes the MSE evaluating the individuals on the validation set to find the 
point in the sequence where MSE is the smallest. SGP-DT finds the smallest MSE 
using the rolling mean of the validation set error at a fixed window size to minimize 
the short-term fluctuations. The function validate-and-select returns the sequence 
(bestModels) of the partial models that were produced before the smallest MSE. 
Such a sequence represents the transformation chain of the dynamic targets. In case 
SGP-DT obtained the model with the smallest MSE during the internal iterations, it 
appends this individual at the end of bestModels. Line 23 of Algorithm 1 computes 
the final model by summing all the models in bestModels.

3  Related work

This section divides the related work of SGP-DT in three groups. Each group 
refers to techniques that are relevant to a main characteristic of SGP-DT: (i) having 
dynamic or semantic objectives, (ii) using linear combinations or geometric opera-
tors, (iii) using an iterative approach on residual errors.

3.1  Dynamic or semantic objectives 

The GP techniques proposed by Krawiec et al. [16] and Liskowski et al. [20] present 
semantic approaches that consider interactions between individuals and the train-
ing set. These approaches cluster such interactions to derive new targets for a multi-
objective GP.

Otero et al. proposed an approach with dynamic objectives that combines inter-
mediate solutions in a final Boolean tree [30]. This technique progressively elimi-
nates from the training cases the ones perfectly predicted from the current interme-
diate solution and operates exclusively in a Boolean domain.

Krawiec and O’Reilly [17] proposed a GP approach that explicitly models the 
semantic behavior of a solution during the computation of training cases.
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BPGP by Krawiec and O’Reilly [17] explicitly models the semantic behavior 
of a solution during the computation of training cases. BPGP proposes an opera-
tor that mutates an individual by replacing a randomly selected sub-tree with a 
random one. According to Krawiec and O’Reilly this “mutation-like” [17] oper-
ator is intended as a “form of crossover”. We think that this is similar in princi-
ple to our design choice of dropping crossover altogether and instead choosing 
among mutated alternatives in the population. However, Krawiec and O’Reilly 
still use the traditional crossover alongside with this new mutation [17].

We differ from all of these techniques because we build our solution progres-
sively crystallizing the intermediate achievements. Most of these approaches use 
auxiliary objectives during their search and use a single GP run. Conversely, 
SGP-DT uses a non-predetermined number of objectives in subsequent GP runs. 
The approach of Otero et  al. [30] is the only one that progressively builds the 
solution but it uses a strategy that works for Boolean trees only.

3.2  Linear combinations

  MRGP [1] uses multiple linear regression to combine the semantics of sub-
programs (subtrees) to form the semantic of an individual.

Ruberto et  al. proposed ESAGP [37], which derives the target semantics by 
relying on a specific linear combination between two “optimally aligned” indi-
viduals in the error space. Leveraging such geometric alignment property, Vann-
eschi et al. proposed na-gp [48], which performs linear combinations between 
two aligned chromosomes belonging to the same individual.

Gandomi et al. proposed MGGP [10], where each individual is composed of 
multiple trees. MGGP produces the final solution with a linear combination of 
the tree’s semantics, deriving the values of the coefficients from the training data 
with a classic least squares method. However, the number of trees in the linear 
combination is fixed and the fitness landscape is not dynamic.

Moraglio  et  al. proposed the Geometric Semantic GP (GSGP) crossover 
operator [25], which uses linear combinations to guarantee offspring that is not 
worse than the worst of the parents. Unfortunately, GSGP suffers from the expo-
nential bloat problem and requires many generations to converge, especially if 
the target is not in the convex hull spanned by the initial population [25].

Notably, all the approaches described in this second group use a single run 
to search for the final solution. Differently from SGP-DT, they fix the number 
of components in advance (the only exception is GSGP but it suffers from the 
exponential bloat problem [25]). In addition, all of the techniques in the first and 
second groups have a static target, and thus they continuously evolve a popula-
tion without re-initialization. This limits the diversity of the genetic alternatives 
when the population converges at later generations. Conversely, SGP-DT has a 
dynamic target and it starts with a fresh population at each internal iteration (see 
Algorithm 1).
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3.3  Iterative approaches based on residual errors

Sequential Symbolic Regression (SSR) [28] uses the crossover operator GSGP [25] 
to iteratively transform the target using a semantic distance that resembles the classi-
cal residual approach. However, no statistically significant difference (on the errors) 
from the classical GP approach was found [28]. Differently from SGP-DT, SSR 
considers residuals that do not optimize the linear combinations with a least square 
method. Although SSR overcomes the exponential bloat, it weakens the advantage 
of using residuals.

Medernach et  al. presented the wave technique [23, 24] that similarly to SGP-
DT, executes multiple GP runs using the same definition of residual errors (Eq. 5) 
and obtains the final model by summing the intermediate models. wave produces 
a sequence of short and heterogeneous GP runs, obtained by “fuzzifying” the set-
tings of system parameters (e.g, population size, number of internal iterations ) and 
by alternating the use of linear scaling. However, SGP-DT drastically differs from 
wave. The Heterogeneous nature of wave emulates this dynamic evolutionary envi-
ronment by simulating periods of a rapid change [23, 24]. The effectiveness of such 
an approach requires specific combinations of system parameters that converge to 
a fitter solution. Due to the huge space of possible system parameters, finding such 
combinations often requires a large number of iterations [23, 24]. Conversely, SGP-
DT steers the evolution with a novel approach that gradually evolves the building 
blocks of the final solution without exploring the huge space of possible combina-
tions of system parameters.

All the techniques of this group use residuals differently from SGP-DT. Moreo-
ver, they rely on the classic or geometric crossover. Conversely, one of the key novel 
aspects of SGP-DT is to avoid crossover altogether.

4  Experiments

We performed two sets of experiments. The first set of experiments aims to evalu-
ate the cost-effectiveness of our approach compared to state-of-the-art methods.We 
compared the approach’s performance in terms of Root Square Mean Error (RMSE) 
and computational cost measured with the number of evaluated nodes. The results 
show that SGP-DT outperforms state-of-the-art evolutionary approaches. However, 
evolutionary techniques are computationally expensive compared to other Machine 
Learning (ML) methods because they require the evaluations of populations of solu-
tions. SGP-DT is not an exception to this rule. In the second set of experiments, we 
drastically reduce the computations required by SGP-DT constraining the popula-
tion size to 100 individuals. From this starting point, we investigate key parameters 
of SGP-DT to understand if it’s possible to maintain a good accuracy of the models 
while drastically reducing the computational cost. The results from the first set of 
experiments might suggest that SGP-DT suffers from the overfitting problem. We 
investigate if reducing the computations also helps with overfitting. Having identi-
fied the configurations with an interesting trade-off between effectiveness and cost 
of the analysis, we perform a final test comparing SGP-DT with seven well-known 
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ML techniques. The final tests show that SGP-DT has a competitive accuracy, hav-
ing reduced its computational cost by three orders of magnitude with respect to the 
first set of experiments.

4.1  Cost‑effectiveness experiments

4.1.1  Data sets

We performed our experiments on eight well-known data sets of regression prob-
lems that have been used to evaluate most of the techniques discussed in Sect. 3 [1, 
10, 19, 23, 24, 48]. Table 1 shows the name, number of attributes, and number of 
instances for each data set. All data sets expect uball5d are from the UCI repository 
[2].

For uball5d,1 we followed the same configuration used by Cava et al. [6].

4.1.2  Methods

We compared SGP-DT with two techniques (lasso [8] and �-lexicase [19]) and two 
variants of SGP-DT (DT-EM and DT-NM).

lasso  Both SGP-DT and lasso [8] use the least square regression method to lin-
early combine solution components. More specifically, lasso incorporates a regu-
larization penalty into least-squares regression using an �1 norm of the model coef-
ficients and uses a tuning parameter � to specify the weight of this regularization 
[8]. We relied on the lasso implementation by Efron et al. [8], which automatically 
chooses � using cross-validation.

�-lexicase  This evolutionary technique adapts the lexicase selection operator for 
continuous domains [19]. The idea behind �-lexicase selection is to promote candi-
date solutions that perform well on unique subsets of samples in the training set, and 
thereby maintain and promote diverse building blocks of solutions [19]. Each par-
ent selection begins with a randomized ordering of both the training cases and the 
solutions in the selection pool (i.e., population). Individuals are iteratively removed 
from the selection pool if they are not within a small threshold ( � ) of the best per-
formance among the pool on the current training sample. The selection procedure 

Table 1  Data sets of regression problems

name # attributes # instances source name # attributes # instances source

airfoil 5 1503 UCI [2] housing 14 506 UCI [2]
concrete 8 1030 tower 25 3135
enc 8 768 yacht 6 309
enh 8 768 uball5d 5 6024 [49]

1 f (x) = 10∕(5 +
∑5

i=1
(xi − 3)2).
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terminates when all but one individual is left in the pool, or until all individuals 
have tied performance. In the latter case, a random one is chosen. The recent study 
of Orzechowski et  al. shows that �-lexicase [19] outperforms many GP-inspired 
algorithms [29]. We relied on the publicly available implementation of �-lexicase, 
ellyn,2 which uses stochastic hill climbing to tune the scalar values of each gener-
ated individual. It also relies on a 25% validation hold-out from the training data to 
choose the final model from a bi-dimensional Pareto archive, which ellyn constantly 
updates during the evolution. The two dimensions are the number of nodes and the 
fitness.

DT-EM   We considered a variant of SGP-DT (called DT-EM) with a modified 
fitness function as the only difference with SGP-DT:

While the original fitness of SGP-DT minimizes the upper bound of the MSE 
in Eq. 3, this function directly minimizes the MSE in Eq. 6. This variant helps to 
evaluate the impact of a direct error minimization with respect to a more qualitative 
and indirect measure of the error, such as the variance ( �2).

DT-NM   We considered another variant, called DT-NM, that excludes the Min 
and Max non-terminal symbols (as the only difference with SGP-DT), and thus eval-
uating the advantage of different discontinuity types during the evolution.

4.1.3  Evaluation setup

Following the setup of Orzechowski et al. [29] for �-lexicase, we set for all the four 
GP techniques (SGP-DT, �-lexicase, DT-EM, and DT-NM) a population size of 
1,000 and a budget of 1,000 generations. We ran 50 trials for every technique on 
each data set using 25% of the data for testing and 75% for training.

SGP-DT and its two variants share the same configuration: We divided the 1,000 
generations in 20 external iterations ( Next = 20 ), and thus the number of internal 
iterations ( Nint ) is 50. We used ramped half&half initialization up to a maximum 
depth of four (function get-random-initial-population at line  7 of Algorithm  1). 
The probability of mutation is 100% and the maximum depth of the sub-trees gener-
ated by the mutation operators is five. The probability of a sub-tree mutation hap-
pening at the leaf level is 70%. We set no limits on the number of nodes in the trees 
and on the depth of the trees. We set the Elitism to keep only the best individual 
at each internal iteration (function elite at line  16 of Algorithm  1). We obtained 
the validation set by extracting 10% of the training cases (function split at line 1 
of Algorithm 1). The fixed window size for the rolling-mean is 20. We chose this 
configuration after a preliminary tuning phase and kept uniform for all the eight data 
sets.

(6)fitness(I) = MSE =

∑m

i=0
(yi − ŷi)

2

m

2 https:// github. com/ Epist asisL ab/ ellyn.

https://github.com/EpistasisLab/ellyn


474 Genetic Programming and Evolvable Machines (2021) 22:463–493

1 3

4.1.4  Results and discussion

Errors’ Comparison Following previous work we use the Root Mean Square Error 
(RMSE) to evaluate the final solution with the test set. The first five columns of 
Table 2 show for each technique the median RMSE of the 50 trials. The last four 
columns of Table  2 indicate the percentage decrease of the RMSE medians with 
respect to the competitor techniques.3 A positive percentage value means that the 
RMSE median of SGP-DT is lower (i.e., better), while a negative value means a 
worst median RMSE. Figure 1 shows the box plots of the RMSE values of the 50 
trials.4 When comparing the RMSE values we performed a non-parametric pairwise 
Wilcoxon rank-sum test with Holm correction for multiple-testing, with a confi-
dence level of 95% (p value <0.05).

SGP-DT achieves a smaller RMSE than lasso for all the data sets, obtaining 
always statistical significance. The decrease of the RMSE medians ranges from 
9.06% for housing to 88.67% for yacht (51.47% on average). SGP-DT has smaller 
RMSE medians than �-lexicase for all data sets but housing (decrease -4.48%). 
This is the only comparison of SGP-DT and �-lexicase without statistical sig-
nificance. The decrease of the RMSE medians ranges from -4.48% for housing 
to 57.07% for ench (23.19% on average). This is a remarkable result consider-
ing that �-lexicase outperforms many GP-inspired algorithms [29]. Comparing 
with the variant DT-EM, SGP-DT achieves the only statistically significant differ-
ences with DT-EM on the data sets uball5d and yacht, with percentage decreases 
of 6.63 and 20.45%, respectively. For such datasets SGP-DT performs better 

Table 2  Median RMSE of the 50 trials

Data set Root Mean Square Error (RMSE) Median RMSE% decrease of SGP-DT 
over:

SGP-DT lasso �-lexicase DT-EM DT-NM lasso �-lexicase DT-EM DT-NM

airfoil 2.4634 4.8484 3.6505 2.5643 2.9237 49.19% 32.52% 3.94% 15.75%
concrete 6.5123 10.5383 7.0707 6.4476 6.4132 38.20% 7.90% –1.00% –1.55%
enc 1.4838 3.2498 1.8647 1.4993 1.4584 54.34% 20.43% 1.03% –1.75%
enh 0.5560 2.9645 1.2952 0.5714 0.5410 81.25% 57.07% 2.70% –2.76%
housing 4.4700 4.9155 4.2785 4.4377 4.5273 9.06% –4.48% –0.73% 1.26%
tower 0.2606 0.2953 0.2975 0.2900 0.2900 11.75% 12.39% 10.12% 10.12%
uball5d 0.0402 0.1939 0.0618 0.0430 0.0372 79.29% 35.00% 6.63% –7.87%
yacht 1.0221 9.0237 1.3577 1.2849 1.1786 88.67% 24.72% 20.45% 13.28%

Average RMSE% decrease: 51.47% 23.19% 5.39% 3.31%

3 calculated with ((MT −MD)∕MT ) ⋅ 100 , where MD is the median RMSE of SGP-DT and MT is the one 
of the competing technique.
4 for readability reasons we omitted 4 out-layers for lasso, 13 for �-lexicase, 30 for SGP-DT, 30 for 
DT-NM and 35 for DT-EM.
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than DT-EM indicating that our fitness function that minimizes the upper bound 
achieves a better final solution. SGP-DT has statistically significant differences 
of the median RMSE with DT-NM only with the data sets airfoil, tower and 
uball5d. SGP-DT performs better than DT-NM on the airfoil and tower datasets: 
3.94 and 10.12% of percentage decrease, respectively. This means that the Min 
and Max non-terminal symbols provide an advantage only in these two datasets. 
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Fig. 1  RMSE of test set for all the techniques and for all the eight data sets
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However, Fig. 1 indicates that using such non-terminal symbols does not penalize 
the outcome in any other dataset, but uball5d where the difference is statistically 
significant (the decrease is -7.87%).

Error comparison with related work   Unfortunately, the implementation of 
wave [23, 24] is not publicly available, and thus a direct comparison would be diffi-
cult. We extracted the median RMSE from the GECCO 2016 paper [24] for our two 
common subjects: 4.1 (concrete) and 8.7 (yacht). SGP-DT achieves a median RMSE 
percentage decrease of 25.17% (concrete) and 75.12% (yacht), see Table 2 for the 
reference values. Note that the computational cost reported in the GECCO paper has 
the same order of magnitude with the one of SGP-DT.

From the paper of Vanneschi et al. [48], we extracted the median RMSE on the 
data set concrete of the following GP techniques: 10.44 (na-gp [48]), 8.1 (na-
gp-50 [48]), 12.50 (gsgp [25]), and 9.43 (gsgp-ls [5]). SGP-DT has a percent-
age decrease of 37.64, 19.62, 47.92 and 30.96%, respectively. These results are only 
indicative because their evaluation setup differs from ours.

Computational effort  To evaluate the computational effort of the evolutionary 
techniques we decided not to rely on execution time because it depends on imple-
mentation details. Instead, we relied on the total number of evaluated nodes (being 
not a GP technique this metric is not applicable to lasso). Both SGP-DT and �-lex-
icase operate on nodes, SGP-DT on tree-like data structures, while �-lexicase on 
stack-based ones. Following Ruberto et  al. [38], we count a node operation every 
time a technique evaluates a node regardless the purpose of the operation (e.g., 
mutation, fitness computation). We excluded the computational effort of linear scal-
ing because it does not perform operations on nodes. However, it has a linear com-
putational cost of O(m ⋅ P) , where m is the size of the training set and P the popu-
lation size. For comparing the number of evaluated nodes, we used the Wilcoxon 
rank-sum test with Holm correction for multiple-testing, with a confidence level of 
95% (p-value <0.05). The test shows that all the comparisons between each pair of 
techniques are statistically significant, except for the comparison with SGP-DT and 
DT-NM on subject uball5d.

Table 3  Median number of evaluated nodes and reduction ratio of SGP-DT

Data set Median number of evaluated nodes Reduction ratio of SGP-DT over

SGP-DT �-lexicase DT-EM DT-NM �-lexicase DT-EM DT-NM

airfoil 1.00E+10 9.28E+10 1.00E+10 9.03E+09 9.26× 1.00× 0.90×
concrete 1.14E+10 6.43E+10 1.14E+10 8.82E+09 5.64× 1.00× 0.77×
enc 1.18E+10 4.99E+10 1.17E+10 9.37E+09 4.25× 0.99× 0.80×
enh 1.18E+10 5.08E+10 1.17E+10 9.27E+09 4.30× 0.99× 0.78×
housing 7.70E+09 3.09E+10 7.63E+09 6.03E+09 4.02× 0.99× 0.78×
tower 7.21E+10 1.94E+11 7.12E+10 4.45E+10 2.69× 0.99× 0.62×
uball5d 9.83E+10 3.94E+11 9.76E+10 7.50E+10 4.01× 0.99× 0.76×
yacht 4.62E+09 2.00E+10 4.58E+09 3.47E+09 4.34× 0.99× 0.75×

Average reduction ratio: 4.81× 0.99× 0.77×
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Table 3 reports the median number of nodes (of the 50 runs) that the GP tech-
niques evaluate to produce the final solution. The last three columns of Table 3 
report the ratio between the number of node evaluations of SGP-DT with those 
of �-lexicase, DT-EM and DT-NM. A ratio greater (lower) than one means that 
SGP-DT evaluates a lower (higher) number of nodes. Comparing with �-lexicase, 
SGP-DT reduces the amount of node evaluations by a factor between 4.01× and 
9.26× , obtaining statistically significant better RMSE values than �-lexicase for 
seven out of eight data sets. This result can be explained by (i) SGP-DT computes 
only a fraction of the entire solution (partial models) at a time; (ii) the size of the 
individuals is kept at minimum (see Sect. 2).

The number of evaluated nodes of SGP-DT and DT-EM are almost identical 
(0.99× on average). This indicates that guiding the evolution with the fitness func-
tion of SGP-DT and with the one of DT-EM yield to the same computational cost 
but SGP-DT achieves better median RMSE (5.39% on average). DT-NM always 
evaluated fewer nodes than SGP-DT (0.77× on average).

Size of the final solutions  SGP-DT has no limits on the maximum complexity 
of the individuals, while �-lexicase has a limit of 50 nodes because at higher lim-
its the computational effort of �-lexicase becomes prohibitively expensive [19]. 
SGP-DT produces solutions with size ranging from 442 to 1,184 nodes (760 on 
average), which is on average 15× larger than the one produced by �-lexicase and 
is not large enough to be considered (exponential) bloat. This extra complexity of 
the final solutions positively contributes to the performance of the algorithm. We 
are investigating a post-processing phase to simplify the final solutions.

On average, DT-EM produces solutions with 806 nodes and DT-NM with 591. 
DT-NM generates smaller solutions than DT-EM, perhaps because DT-NM has 
a smaller search space (DT-NM omits the Min and Max symbols). Evaluating 
smaller solutions requires less computation; this explains why DT-NM requires 
fewer computations than SGP-DT and DT-EM (see Table 3).

Overfitting Figure 2 plots, for each data set, the median of the best RMSE by 
computational effort (number of evaluated tree nodes) for SGP-DT and its two 
variants. Unfortunately, the implementation of �-lexicase that we used does not 
report the intermediate RMSE on test. We use the computational effort, rather 
the number of generations, for a fair comparison of the three techniques. This is 
because the number of evaluated nodes is not uniform across the generations.

The eight plots indicate that SGP-DT slightly overfits the data sets tower and 
yacht, while on housing produces a substantial overfitting, which is comparable 
to the one of DT-EM but less severe than the one of DT-NM. DT-EM overfits 
four data sets: airfoil (Fig.2a), housing (Fig.2e), tower (Fig.2f), yacht (Fig.2h). 
The worst performance is from DT-NM that shows severe overfitting on airfoil 
(Fig.2a), housing (Fig.2e), tower (Fig.2f) and yacht (Fig.2h). Note that all three 
techniques overfit the data sets yacht (Fig.2h) and housing (Fig.2e). This can be 
explained by their relatively low number of instances (see Table 1).

For the data sets concrete (Fig.2b), enc (Fig.2c) and enh (Fig.2d) all three tech-
niques do not manifest overfitting (yet). Interestingly, in these three cases DT-NM 
arrives to a low RMSE with less computation than SGP-DT and DT-EM. We 
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conjecture that this is because concrete, enc and enh are problems that do not 
need the additional expressiveness of the Min and Max symbols.

DT-NM is the technique that yields the smaller individuals, as such we would 
expect less overfitting. Surprisingly, this is not the case. We believe that, to compen-
sate the absence of discontinuity that Max and Min introduce, DT-NM used the pro-
tected divisions more frequently. This may lead to many asymptotic discontinuities, 
which are known to increase overfitting [14].

When considering each data set individually, SGP-DT and DT-EM mostly mani-
fest similar overfitting, while DT-NM manifests overfitting much earlier. This sug-
gests that (i) the non-terminal symbols Max and Min help to alleviate the overfitting 
problem; and (ii) relying on the variance (SGP-DT) rather than MSE (DT-EM) in 
the fitness function indeed contributes to reducing RMSE (5.39% on average, see 
Table 2) but it does not influence overfitting.

4.2  Sensitivity experiments

In this section, we perform a series of experiments to investigate whether we can 
further reduce the computational cost of SGP-DT while maintaining high perfor-
mance. Similarly to many evolutionary approaches, SGP-DT is computationally 
more expensive than other Machine Learning methods. In this set of experiments, 
we decrease the population size from 1000 to 100 because this is one of the factors 
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Fig. 2  Median RMSE of the best so far on the test set by computational effort
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that greatly influence the computational cost of evolutionary approaches. After 
setting this value, we investigated how other parameters of the algorithms can be 
adjusted to maintain an acceptable level of accuracy and overfitting.

We took a subset of the datasets from the cost-effectiveness experiments 
(Sect.  4.1) in which SGP-DT manifests different degrees of overfitting. Then, we 
evaluate the change in performances with respect to the previous tests. We added 
three new datasets from the UCI repository [2] to evaluate SGP-DT in other scenar-
ios. Using these datasets, we perform a sensitivity analysis from three viewpoints: 
(1) the size of the validation set and the validation strategy itself, (2) the number 
of internal iterations, and (3) the maximum depth of the trees representing the indi-
viduals in the population. These are key parameters that directly influence the per-
formance of SGP-DT and the computational costs.

All the experiments in this section use a training set equal to 70% of the dataset. 
The other parameters that are not specified explicitly are kept the same as in the 
cost-effectiveness test section.

4.2.1  Datasets

For the experiments in Sect. 4.2, we consider five datasets: airfoil, yacht, ccpp, aq_
tox, real_estate.

airfoil and yacht are the same datasets used in the experiments of Sect.  4.1. 
We choose them because SGP-DT manifests neither strong nor weak overfit. We 
think that in this intermediate condition would be easier to understand what factors 
would make SGP-DT overfit more or less. Moreover, airfoil is among the datasets in 
Table 1 with the highest number of instances (1503). On the contrary, yacht is the 
dataset with fewer instances (309), giving us the possibility to explore these two dif-
ferent conditions.

The ccpp [46] dataset consists of measurements of environmental variables influ-
encing the production of energy in a Combined Cycle Power Plant over a period of 
six years (2006-2011). To predict the net hourly electrical energy output, we use 
the following features: temperature, ambient pressure, relative humidity, and exhaust 
vacuum. This dataset has the highest number of data points, so we expect lower 
overfitting.

To test the performance of SGP-DT in challenging conditions, we included the 
datasets aq_tox [4] and real_estate [50], which are known to be prone to overfit-
ting. The aq_tox dataset aims to predict the acute aquatic toxicity towards Daphnia 
Magna (LC50 data) given eight molecular descriptors. The variable to predict in the 
real_estate dataset is the price of unit area in the selected cities. The dataset includes 
six features: transaction age, house age, distance from the nearest subway-like sta-
tions, and geographical coordinates.

4.2.2  Validation set sensitivity analysis

A common approach to mitigate the overfitting problem is using a validation set dur-
ing training as a stopping criterion. In our experiments, SGP-DT uses a validation 
set of 10% of the training set. More specifically, after all the external iterations, the 
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Function validate-and-select at line 22 of Algorithm 1 scans the sequence of par-
tial models and progressively computes the MSE evaluating the individuals on the 
validation set to find the point in the sequence where MSE is the smallest. SGP-DT 
finds the smallest MSE using the rolling mean of the validation set error at a fixed 
window size to minimize the short-term fluctuations. The function validate-and-
select returns the sequence (bestModels) of the partial models produced before the 
smallest MSE. Such a sequence represents the transformation chain of the dynamic 
targets.

The size of the validation set is a key parameter when overfitting is concerned. 
Theoretically, the larger the validation set, the lower the risk of overfitting. Valida-
tion and training sets are complementary. Large validation sets would lead to a small 
training set, hence to an underperforming model.

To understand this trade-off when using SGP-DT, we perform a sensitivity analy-
sis on the size of the validation set. We run SGP-DT with five configurations, vary-
ing the validation size while keeping fixed the other parameters values. We choose 
the following values of validation size: 5, 10, 20, 30 and 40% (the experiments in 
Sect. 4.1 uses 10%).

For all the other settings, we choose a default configuration. We set the maximum 
depth of the trees to 5, while the number of internal iteration is 50 and the total num-
ber of iterations 2000.

Another key design choice of SGP-DT is the validation strategy to mitigate the 
overfitting problem. It is important to clarify that SGP-DT relies on the validation set 
to construct the final model after completing a predefined number of external itera-
tions. We call this strategy global minimum. SGP-DT does not use the validation set 
at runtime to decide when to stop the internal or external iterations. Although a stop-
ping criterion could drastically reduce the computational cost, it is often hard to find 
the correct threshold that stops the evolution at the right moment without prevent-
ing the algorithm from finding a model in which the validation set further reduces 
the RMSE. To confirm our intuition, we repeated the experiments using as stopping 
criterion the first local minima in the validation errors of the partial models. We call 
this strategy first minimum, which monitors the validation error at runtime and stops 
the evolution if the error is higher than a given threshold. We used the same rolling 
mean (with a window size of 20) used by the strategy global minimum. The rolling 
mean helps to give some tolerance against error fluctuations.

We run SGP-DT 30 times for each of the five configurations, each strategy 
(global minimum and first minimum), and each dataset (1,500 runs in total). Figure 3 
shows the distributions of the RMSE values of the 30 runs for different combina-
tions of validation sizes and stopping criteria. The distributions marked with only 
the percentage of the validation set represent the configurations with the global min-
imum strategy, and the ones marked with ’%f’ are the configurations with the first 
minimum.

Global minimum.   As expected, the smallest and largest validation sizes (5 
and 40%) lead to the worst performance (the median RMSE and the variance are 
higher). This confirms that a small validation set does not help mitigate the overfit-
ting problem and that a large validation set leads to a model that does not generalize 
well on unseen data. This phenomena is more obvious for the datasets prone to high 
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overfitting (real_estate, aq_tox and yacht). Overall, the validation sizes that lead to 
better performance are 10 and 20%.

First minimum.   The results confirm our hypothesis that the first minimum 
strategy performs much worse than the global minimum one. For every dataset and 
validation size, the original strategy of SGP-DT performs better. This validates our 
hypothesis that an early stopping criterion based on the first minimum is not effec-
tive. However, the global optimum strategy improvements come at the cost of per-
forming more computations for partial models not included in the final model.

Comparing the configurations in Fig. 3 we performed a non-parametric pairwise 
Wilcoxon rank-sum test with Holm correction for multiple testing, with a confidence 
level of 95% (p-value <0.05). The P-values confirm significant differences between 
the RMSE computed considering global minimum and first minimum strategies. 
Exceptions to this general finding are found in the dataset that overfit more (i.e., 
real_estate and aq_tox) where all the patterns are less clear. For this dataset, the first 
minimum and the global minimum strategies are not statistically different for all the 
configurations. Differences within the same type of validation strategy having dif-
ferent validation sizes are generally non-significant. We believe that more marked 
differences could be observed performing experiments with more external iterations 
(Next).

We noticed the presence of some outlier not represented in Figure  3 and this 
influence the variance of the results. Considering the outliers, the RMSE variance 
is higher for the methods relying on the global minimum strategy. That happens 
because this method generally considers more partial models and, in some cases, 
may produce overfit even if not detected by the validation set. The first minimum 
method is more conservative and thus generates fewer outliers.

Fig. 3  RMSE for different sizes of the validation set is expressed as the portion of the training set (in per-
centage). The final results have been obtained considering the point where the validation error is lower
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We observe that the validation strategy (global or first minimum) is more impor-
tant than the validation set size and that the performance does not degrade abruptly 
modifying this parameter.

4.2.3  Parameter sensitivity

To better understand how SGP-DT works, we analyzed two characteristic param-
eters of this algorithm.

One key parameter of SGP-DT is the maximum depth of the tree that repre-
sents each partial model. Such a parameter influences two essential aspects of the 
algorithm.

First, evaluating and mutating deeper trees increases the computational costs of 
the algorithm. Second, by considering deeper trees, we increase the expressiveness 
of the models that can capture complex data patterns. However, a well-known draw-
back of complex solutions is that they are prone to overfit the training data. Simpler 
(smaller) solutions often generalize better with unseen data.

In the experiments that evaluated the cost-effectiveness of SGP-DT, we set no 
limit on the maximum depth of the tree that represents each partial model. However, 
setting a maximum depth of the tree could substantially reduce the computational 
cost of SGP-DT and, at the same time, improve the generalization ability of the final 
model. To shed light on this opportunity, we performed a sensitivity analysis on the 
maximum depth of the tree. We choose the values 5, 10, and 15.

Another essential parameter of SGP-DT is the number of internal iterations (Nint ), 
i.e., the number of generations that evolve each partial model. The choice of such a 
parameter is much more crucial than the number of external iterations (Next ). Indeed, 
the validation set helps to identify the best number of external iterations that leads to 
the final model with the lowest MSE. Conversely, the number of internal iterations 
(Nint ) is a fixed value, which SGP-DT does not automatically adjust for the particular 
problem at hand.

Similarly to the maximum depth of the tree, the number of internal iterations 
(Nint ) influences both the computation cost and the generalization ability of the final 
model. Indeed, the more generations each GP run performs the higher are the com-
putational cost and the chance to obtain a fitter model for the training set.

We choose the values: 25, 50, 100, 150 for Nint . We performed a set of 30 runs 
for every combination of Nint and maximum depth of the tree (dth) parameters total-
ing 12 different configurations. For the other parameters, we choose the following 
default configuration: a validation set size equal to the 20% of the training and the 
number of total iterations equal to 5000.

Using the global minimum method for validation we computed the results showed 
in Fig. 4. A first look at ccpp and yacht results reveal two opposite pattern: in ccpp 
increasing the number internal iterations worsen the performance while for yacht the 
opposite is true. These results underline the importance of the dataset’s characteris-
tics for the performance of SGP-DT.

To reveal other patterns, we build a grid showing the relative performance of 
each parameter combination. Figure 5 represent better performance in green and 
worst performance in red. We notice that the combination with a depth of 5 are 
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more advantageous in three dataset (i.e., airfoil, aq_tox, and yacht). High-perfor-
mance combinations with a depth of 10 are fewer, and even fewer are the combi-
nations having a depth of 15. Looking at Fig. 5 we have the feeling that a higher 

Fig. 4  Test results showing RMSE for all the problems and all the combinations of parameters (it = 
Internal Iterations and depth = maximum tree depth)

Fig. 5  RMSE comparison for the combination of the Internal Iteration and Max Tree Depth parameters. 
Green combinations are better than red ones for the given problem
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depth requires more internal iterations to be effective, probably because optimiz-
ing deeper trees requires more iterations.

Comparing the results in Fig. 4, we performed a non-parametric pairwise Wil-
coxon rank-sum test with Holm correction for multiple testing, with a confidence 
level of 95% (p value <0.05). There are only a few results that show statistically 
significant differences. Considering the parameters couple formed by internal itera-
tions and max trees depth (Nint, depth) in Fig. 5, for the dataset airfoil the combina-
tion (150, 10) is significantly better than (25, 10). For the dataset yacht combination 
(100, 5) is better than (50, 10), (25, 10) and (25, 15) while (150, 5) is better than 
(25, 15). The other comparisons are not statistically significant.

To further clarify the role of these parameters in SGP-DT, we observe the evolu-
tion’s dynamic by reporting the Median RMSE of the 30 runs with respect to the 
number of nodes evaluated during the whole evolutionary process, see Figs.  6, 7, 
8. Different tree depth and internal iterations imply different computational costs. 
For this reason, we prefer to refer to the x axes the number of nodes evaluated as a 
measure of the computational costs. We set in advance the number of total iterations 
in our experiments, and so the lines in Figs. 6, 7, 8 vary in length. Looking directly 
at the errors’ dynamics exclude any possible effect of the validation process on the 
final result, thus highlighting the internal iterations and max tree depth parameters 
influence.

Figure  8 shows the training results. We observe that combinations of fewer 
internal iterations with a limited tree depth lead to lower RMSE in the training set. 
Moreover, employing a higher number of partial models looks advantageous for the 
training.

We observe a different pattern for the test and validation error dynamics. In 
Figs. 6 and 7, the combinations that lead to better performances (the lowest RMSE 
in the graph) in three cases out of five are the ones with a higher number of internal 
iterations (e.g., in Fig. 6, 150 for airfoil and yacht while 100 for aq_tox ). Further-
more, in all cases being equal to the number of computations, combinations with 
fewer internal iterations overfit sooner. More internal iterations lead to more sta-
ble results. In this case, the validation procedure can be more robust with respect 
to fluctuations in the errors’ value. Fig. 6 shows that SGP-DT can reach lower test 
errors when using fewer partial models but more optimized through more internal 
iterations. Overall, the overfitting phenomena appear to be related mainly with the 
number of partial models included in the final model and less with the internal iter-
ations used to produce the partial models. Finally, the comparison of Fig.  2 with 
Fig. 6 shows that the constrained configurations of this section are less computation-
ally expensive by three orders of magnitude.

4.2.4  Comparison with other ML techniques

This section presents a more general comparison between off-the-shelf Machine 
Learning techniques (ML) and SGP-DT.

In the previous sections, we have explored different parameter values to reduce 
the computational cost of SGP-DT while maintaining a similar performance. 
We limited the maximum depth of the trees, reduced the internal iterations and 
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Fig. 6  Median RMSE test error for different combinations of Internal Iteration and Max Tree Depth 
parameters
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Fig. 7  Median RMSE validation error for different combinations of Internal Iteration and Max Tree 
Depth parameters
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Fig. 8  Median RMSE train error for different combinations of Internal Iteration and Max Tree Depth 
parameters



488 Genetic Programming and Evolvable Machines (2021) 22:463–493

1 3

population size, achieving a reduction of the computational cost of three orders of 
magnitude with respect to the configuration of SGP-DT used in the first set of exper-
iments. We estimate new parameter values based on the previous tests to understand 
the impact that this reduction in computational cost has to the performance of the 
SGP-DT.

Evolutionary approaches are know to have higher computational costs than other 
ML approaches. In our second set of experiments, the attempt to abruptly compress 
such costs could results in an unacceptable loss of accuracy. The goal of this last 
section is to compare the performance of SGP-DT with other ML techniques to be 
informed about the feasibility of this cost reduction strategy for SGP-DT. We do not 
expect leading performance because of the very aggressive configuration. Instead, 
we aim at depicting an informative framework that help us to validate this line of 
thinking. On the other end, to understand the full potential of SGP-DT, the reader 
should consider that the performance of our main evolutionary competitor, �-lex-
icase, has already been evaluated by Orzechowski et  al. [29] in comparison with 
other ML techniques. As such, it is easy to have a clear idea of SGP-DT perfor-
mance with respect to other ML techniques when the typical evolutionary cost is not 
an issue.

Table  5 shows the configurations of SGP-DT for each dataset. We select the 
configuration that had the lowest RMSE in Fig. 6 for the problems overfitting soon 
(i.e. real_estate,aq_tox,yacht) and we set the maximum iterations to a point after 
the minimum test RMSE. For the remaining problems (i.e., airfoil and ccpp), we 
select the lowest RMSE configuration that did not overfit. The idea is that with more 
iterations, these configurations can improve significantly. In these latter cases, the 
number of iterations is set so that it potentially achieves the minimum RMSE. The 
computational costs are still very limited.

As before, we run SGP-DT and all the ML techniques 30 times for each of the 
five problems. For this comparison we used the following ML regression methods 
from scikit-learn [34]: AdaBoost [9], Gradient Boosting [12], random forest [3] 
(using 100 estimators), Epsilon-Support Vector Regression with Radial Basis Func-
tions Kernel [35] (RBFSVM), K-Nearest Neighbors, Multi-layer Perceptron (MLP 
with 3 thousand iterations) [13], Lasso [8]. All the ML parameters not specified here 
were set as the default. This comparison is not fair because we did not try to tune 
the ML parameters and the primary goal of SGP-DT tuning is a drastic saving in 
computational power. However, this test is useful to understand the potential of a 
more balanced trade-off between the initial test configurations and these last ones. 
We show the results on the test set in Figure 9. The performance of SGP-DT looks 
competitive in all the datasets, although it is never the best option.

As expected, the accuracy of SGP-DT decreased. Anyway, being still competi-
tive, we believe that a more balanced parameters’ setting, especially for the popula-
tion size, would deliver a good compromise, also optimizing computational costs. In 
the light of this result, we think that this setup represents a sort of lower bound for 
the computational cost of SGP-DT. Below this threshold, probably, the performance 
of SGP-DT would degrade too much.

For the dataset airfoil, this constrained configuration of SGP-DT is still better 
than �-lexicase in the first set of experiments. We observed more outliers in the test 
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Table 4  SGP-DT Variance of ML techniques and SGP-DT. Outliers in SGP-DT results push the value of 
the variance

AdaBoost Gra-
dient-
Boosting

Lasso MLP Nearest-
Neigh-
bors

RBFSVM RandomForest SGPDT

airfoil 0.02 0.02 0.02 0.61 0.05 0.02 0.01 479440.14
ccpp 0.07 0.01 0.01 0.02 0.01 0.02 0.01 63.65
real_estate_

valuation
1.58 1.40 1.54 24.48 0.63 1.20 1.56 50.96

qsar_aquatic_
toxicity

0.00 0.00 0.01 0.20 0.01 0.01 0.00 0.01

yacht 0.05 0.05 2.77 5.76 2.44 2.37 0.09 144.96

Fig. 9  RMSE comparison of SGP-DT with seven ML techniques

Table 5  SGP-DT configurations used for the final comparison test

Internal 
iterations

Total iterations Max tree 
depth

Validation size Population size

airfoil 150 21500 5 20% 100
cccp 50 10000 10 20% 100
real_estate 25 200 5 20% 100
aq_tox 100 200 5 20% 100
yacht 150 2000 10 20% 100
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results of SGP-DT not shown in Fig.  9. This condition is reflected in the anoma-
lous value of the variance showed in Table 4. Even if we did not perform a spe-
cific experiment, we believe that the presence of outliers is an issue connected with 
the population size. In the comparison of SGP-DT with �-lexicase this was a minor 
issue even with the anecdotal test conducted with different parameters but the same 
population size (1000). Probably the selection acting on vast populations can pro-
mote individuals that generalize better.

5  Conclusion

This paper presents SGP-DT, a new evolutionary technique that dynamically discov-
ers and resolves intermediate dynamic targets. Our key intuition is that the synergy 
of the linear scaling and mutation helps to exchange good genetic materials during 
evolution. Notably, SGP-DT does not rely on any form of crossover, and thus with-
out suffering from its intrinsic limitations [33, 36]. Our experimental results confirm 
our intuitions and show that SGP-DT outperforms �-lexicase in both lower RMSE 
and less computational cost. This is a promising result as �-lexicase outperforms 
many GP-inspired algorithms [29].

As a classical evolutionary technique, SGP-DT incurs computational cost issues 
for evaluating the individuals in the population. In this paper we investigated the 
possible trade-off between computational cost and accuracy of the model. With this 
in mind, in the second part of this study, we explored key parameters and strate-
gies of SGP-DT. We reduced the population’s size and tuned the other parameters to 
maintain a good models’ accuracy. This lead to a decrease of the computation cost 
by three orders of magnitude, while keeping acceptable performance. The final com-
parison shows that SGP-DT has competitive results with respect to �-lexicase and 
seven well-known Machine Learning techniques.

SGP-DT could employ additional strategies to reduce the computational cost. For 
example, bloat control techniques can be used during internal iterations to reduce 
the number of nodes computed to obtain the partial models [7, 21, 26, 32, 44, 45]. 
An interesting future work would be to investigate the synergy of SGP-DT and one 
of such bloat control techniques. For instance, Nguyen et al.’s approach [26] reduces 
computation costs without sacrificing the performance of the GP models.

Our sensitivity analysis results show that the behavior of SGP-DT with respect to 
overfitting and performance, in general, is rather predictable given different param-
eter combinations: configurations having fewer internal iterations and smaller trees 
get to the minimum error point and overfit sooner (see Fig.s 6, 7, 8). This observa-
tion, in our opinion, opens the possibility of learning a computational model of the 
parameters or at least some heuristic to guide the SGP-DT ’s parameter tuning task.

We showed that the validation procedure is critical for SGP-DT and sometimes 
fails. With smaller populations, this produces outliers in the test error results. A bet-
ter validation strategy will increase the reliability of SGP-DT, even in applications 
with smaller datasets, like the ones in this paper.

Algorithms based on SGP-DT have already been developed for different appli-
cations, ranging from image analysis [39, 40] to multi-class classification [43], 
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showing promising results. As such, SGP-DT can be considered as a framework for 
semantic GP.
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