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Abstract
A fundamental aspect of intelligent agent behaviour is the ability to encode sali-
ent features of experience in memory and use these memories, in combination with 
current sensory information, to predict the best action for each situation such that 
long-term objectives are maximized. The world is highly dynamic, and behavioural 
agents must generalize across a variety of environments and objectives over time. 
This scenario can be modeled as a partially-observable multi-task reinforcement 
learning problem. We use genetic programming to evolve highly-generalized agents 
capable of operating in six unique environments from the control literature, includ-
ing OpenAI’s entire Classic Control suite. This requires the agent to support discrete 
and continuous actions simultaneously. No task-identification sensor inputs are pro-
vided, thus agents must identify tasks from the dynamics of state variables alone 
and define control policies for each task. We show that emergent hierarchical struc-
ture in the evolving programs leads to multi-task agents that succeed by performing 
a temporal decomposition and encoding of the problem environments in memory. 
The resulting agents are competitive with task-specific agents in all six environ-
ments. Furthermore, the hierarchical structure of programs allows for dynamic run-
time complexity, which results in relatively efficient operation.
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1  Introduction

Life is full of new situations and challenges that pose a high degree of uncertainty 
for organisms. In many cases, this uncertainty can only be mitigated through trial-
and-error interaction with the environment. For example, the challenge of learning 
to walk or ride a bike cannot be solved by studying a dataset of examples for how 
one should map sensory inputs to muscle movements in every possible situation. 
No such dataset, or model of behaviour, exists. Reinforcement Learning (RL) is a 
general process through which living organisms and computational machines can 
manage this type of uncertainty through trial-and-error interaction with the problem 
environment over time [32, 43]. In machine RL, the learning agent is represented by 
a Virtual Machine (VM), and time is divided into discrete steps. At each timestep, 
the agent observes its environment through sensor inputs, takes an action that 
changes the state of the environment, and receives a feedback signal that describes 
the desirability of its current situation. The goal is to develop agent behaviours that 
map observations to actions such that the summed feedback, or reward, over all 
timesteps is maximized, see Figure 1f.

1.1 � Multi‑task reinforcement learning environment

The unique Multi-Task Reinforcement Learning (MTRL) environment formulated in 
this work includes partially-observable versions of the following 6 widely-used RL 
benchmarks from the literature [43]: CartPole, Acrobot, CartCentering, Pendulum, 
MountainCar, and MountainCarContinuous, Figs. 1(a) to 1(e). These are dynamic 
control problems with between 2 and 4 state variables and a mix of discrete and con-
tinuous action spaces. For example, in the CartPole task (Fig. 1a), a pole is attached 
by an un-actuated joint to a cart, which moves Left or Right along a frictionless 
track. The state of the system at each timestep, s⃗(t) , is described for 4 variables 
including the cart position (x), cart velocity ( ẋ ), pole angle ( � ), and pole velocity at 
the tip ( 𝜃̇ ). The system is controlled by applying a force of +1 or -1 to the cart. The 
pole starts nearly upright, and the goal is to prevent it from falling over. A reward of 
+1 is provided for every timestep that the pole remains upright. The episode ends 
when the pole is more than 15 degrees from vertical, or the cart moves more than 
2.4 units from the center. Complete details about all tasks and implementations used 
in this work can be found in OpenAI Gym’s Classic Control Suite [7].

Critical characteristics of these RL problems can be summarized as the following:

Episodic interactions Agent-environment interactions are episodic. Each interac-
tion begins in an initial state of the environment (often a stochastic sampling of the 
state variables, s⃗ ) and continues until a terminal state is reached or a time constraint 
is exceeded. The quality of an agent’s behaviour can be characterized by the sum 
total of rewards received over the course of an episode.

The temporal credit assignment problem Credit assignment is the mechanism 
used to modify agent behaviour relative to information obtained through the 
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reward signal. In sequential decision-making problems, the task environment may 
provide the agent with a non-zero reward in response to each action taken. How-
ever, it is often difficult to determine which specific decision(s) led to ultimate 
success or failure. For example, even actions with a neutral or negative step-wise 
reward may ultimately contribute to a successful outcome. This is known as the 
temporal credit assignment problem [17, 42]. The problem is addressed differ-
ently by methods that perform a learning update relative to each decision and 
the immediate reward within the temporal sequence, or ontogenetic learning (e.g 
Temporal Difference learning, TD(� ) [42]), and cases such as Genetic Program-
ming (GP), in which an agent’s decision-making policy is evaluated as a whole 

(a) (b)

(e)

(c)

(f)

(d)

Fig. 1   Classic control task environments used in this work. For complete details on each task, see [7]
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based on the final episode outcome only, or phylogenetic learning. In effect, deci-
sion-level credit in GP is applied implicitly, since agents that make better deci-
sions will receive higher fitness and produce more offspring. Thus, evolution 
manages the temporal credit assignment problem by directing the search in favour 
of agents that make decisions that contribute to a positive overall outcome. In 
the context of model building with GP, each learning update effectively creates 
a new model (e.g. by selection and variation operators in the Genetic Algorithm 
(GA)), and thus the search process is performed over the space of possible mod-
els (decision-making policies) within a particular representation. Under RL tasks 
this approach is known as policy search.

The relative merits of ontogenetic and phylogenetic learning for sequential deci-
sion making tasks has been the subject of debate [3], and which method is superior 
for a particular problem remains an open question, with arguments supporting the 
advantages of both phylogenetic [30] and ontogenetic [42, 43] methods. While no 
argument is made one way or the other here, this work can be seen as an empirical 
example of the strengths of phylogenetic, evolutionary RL.

Mixed discrete and continuous actions Depending on the problem, actions may 
be discrete valued, continuous, or both. For example, in the CartPole task described 
above, the agent controls the system with a bang-bang force by selecting from 2 
discrete actions (1 or -1). By contrast, in the Pendulum task the agent must swing 
a pendulum upright and balance it by supplying a continuous torque value applied 
to the joint. Other examples include learning to play Atari video games, where the 
agent must select from a set of 18 discrete actions corresponding to joystick posi-
tions [29]. In the challenging RL benchmark of RoboCup soccer, the agent may be 
required to select which teammate to kick the ball to and provide a continuous value 
describing how hard to kick [11]. Continuous action spaces introduce non-trivial 
design choices for the RL practitioner [27, 34, 35]. For example, continuous control 
problems cannot be solved by simply discretizing the action space due to the expo-
nentially large number of bins over which policies would have to be learned [28].

Partial observability The agent observes its environment at each timestep t 
through a sensory interface that provides a set of state variables, s⃗(t) . In many cases, 
these observations do not contain all the information required to determine the best 
action, i.e. the environment is only partially-observable. For example, consider a 
maze navigation task in which s⃗(t) does not contain a global map of the maze, or 
an environment that contains entities in motion but does not provide their velocity, 
which is the case for all the control problems considered in this work. In partially-
observable environments, the agent is required to identify and store salient features 
of s⃗ in memory over time, encoding a representation of the environment that cap-
tures temporal properties of the current state [12]. Thus, part of the agent’s behav-
iour must be dedicated to active perception [33]: constructing and managing a rep-
resentation of the environment in memory. This is an example of a model based 
RL agent [43], which is a distinct approach from purely reactive, model free agents. 
In the later case, the agent defines a direct mapping from state to action without 
any internal representation of state, and thus no temporal integration of experience 
is possible. Finally, RL agents are also active in the sense that their action choices 
influence the state of the system and hence their experience of the environment. 
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Therefore they must balance exploration vs. exploitation: exploring enough of the 
environment to gain a breadth of experience (and possibly build an internal model), 
while also selecting actions that optimize their objective.

Non-stationary, multi-task environments The environment defines a transi-
tion function that maps the state of the system at time t, s⃗(t) , and the action pro-
vided by the agent, a(t), to the next state and reward, s⃗(t + 1) and r(t + 1) . The 
real world is highly dynamic, and realistic machine RL can model this by design-
ing non-stationary benchmark environments in which the transition function and/
or the reward function changes over time. Video games are a prime example of 
non-stationary tasks: as the player interacts with the game, new “levels” of play 
are encountered and the physics of the simulation change (e.g. entities react dif-
ferently and move faster) such that gameplay becomes increasingly challenging 
[51]. The agent should be able to adapt to environmental changes without for-
getting behaviours that are intermittently important over time. Managing multi-
ple modes of behaviour is the central focus of MTRL. More broadly, the goal of 
MTRL is to build generalized agents capable of operating in multiple environ-
ments without requiring an oracle to identify which situation is currently being 
experienced. That is, s⃗(t) does not contain information which would explicitly 
identify the task. At any point in time, the agent must infer which task environ-
ment it is interacting with by observing how the state variables change over time, 
and then behave in a manner that satisfies the objective of the task [21, 44].

In this MTRL study, the goal is to build a single agent that can learn to solve 
all tasks in Figs. 1a–e through direct interaction with the environment. Table 1 
describes a common agent-environment interface used for all tasks. Notice that 
the state of each system is described by the position and velocity of different 
entities (Table 1). In this work, the agent is blind to velocity variables, implying 
that all tasks are partially-observable. In order to solve these problems, agents 

Table 1   Agent-Environment interface, see Figure 1f

The observable state at time t, s⃗(t) , contains state variables 0 and 1. The agent cannot observe variables 
that describe temporal properties of the system (i.e. velocities in bold italic). To maintain a common 
2-input interface for all tasks, in certain cases the second state variable is replaced by a random number 
in [0,1]. Disc. Act and Cont. Act describe how discrete and continuous actions are interpreted by each 
task. prev indicates the previous action is repeated. Blank cells indicate the action is ignored. Reward 
functions for each task appear in Table 2

Task State variables Disc. Act a
d
∈ {0, 1, 2} Cont. act a

c
∈ ℝ

Mapping to force

0 1 2 3 0 1 2

CartPole x � ẋ 𝜽̇ 1 Prev −1

Acrobot �1 �2 𝜽̇
1

𝜽̇
2

Torque = ac

CartCentering x Rand ẋ 1 Prev −1

Pendulum � Rand 𝜽̇ Torque = ac

MountainCar x Rand ẋ 1 0 −1

MountainCarC. x Rand ẋ Force = ac
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will need to predict the system velocities by integrating the observable varia-
bles over time. The state observation, s⃗(t) , contains 2 state variables. Note that 
neither variable explicitly identifies the task. The observable state variables are 
normalized to the range [−1, 1] to ensure that their magnitude cannot be used to 
identify the task. The agent will need to infer which task it is currently inter-
acting with by observing how the state variables change over time. Finally, the 
agent must produce 1 discrete action and 1 continuous action at each timestep. 
CartPole, CartCentering, and MountainCar will respond to the discrete action, 
while the remaining tasks will respond to the continuous action. This MTRL 
challenge is exceptionally difficult. However, the individual tasks are well-
known, tractable RL benchmarks. Thus, with this methodology we establish the 
minimum essential properties for a new MTRL testbed. Algorithms evaluated 
in this testbed will need to address the following primary challenges of MTRL 
[44]: 

1.	 Scalability Jointly learning N tasks should not take N times as long as learning 
each task individually, and the resulting multi-task agent should not be N times 
as complex.

2.	 Distraction dilemma The magnitude of each task’s reward signal may be differ-
ent, causing certain tasks to appear more salient than others.

3.	 Catastrophic forgetting When learning multiple tasks in sequence, the agent 
must have a mechanism to avoid unlearning task-specific behaviours that are 
intermittently important over time.

4.	 Negative transfer If the environments and objectives are similar, then simultane-
ously learning multiple tasks might improve the learning/search process through 
positive inter-task transfer. Conversely, jointly learning multiple dissimilar tasks 
is likely to make MTRL more difficult than approaching each task individually.

Table 2   Definition of task rewards, provided to the agent when an episode ends due to success, failure, or 
a time constraint

tend is the timestep at which an episode ended, while tmax is the max timesteps per episode. In the Pen-
dulum task, � is a function to normalize the pole angle: �(�) = ((� + �) mod (2 × �)) − � . Complete 
simulation details for all tasks are available in source code [19]

Task Episode reward t
max

CartPole ∑tend
t=1

1.0 300

Acrobot ∑tend
t=1

−1.0 200

CartCentering −
(|||

x

xmax

||| +
|||

ẋ

ẋmax

||| × 0.5 +
tend

tmax
× 0.1

)
500

Pendulum ∑tmax
t=1

−(𝜙(𝜃)2 + 0.1 × 𝜃̇2 + 0.001 × Torque2) 300

MountainCar ∑tend
t=1

−1.0 200

MountainCarC. ∑t
end

t=1

�
100 if x ≥ 0.45 ∧ ẋ ≥ 0

−(Force2 × 0.1), otherwise

200
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1.2 � Tangled program graphs and emergent modularity

Tangled Program Graph (TPG) is a GP framework which incrementally builds com-
putational organisms from multiple subsystems which were initially developed inde-
pendently, akin to compositional evolution [47]. In doing so, TPG automates two 
critical properties of such a system: 1) The identification of stable building blocks, 
or subsystems; and 2) Establishing the nature of the interaction among subsystems 
within a hierarchical organism, or module interdependence.

With respect to the first property to be automated, i.e. discovery of stable build-
ing blocks, Herbert Simon [38] suggests that the presence of stable intermediate 
structures speeds up evolution by providing building blocks from which increas-
ingly complex hierarchies may be constructed. Put simply, Simon points out that if a 
complex system is built from structurally modular building blocks, its development 
is less likely to require a restart from scratch should an error be introduced during 
construction (see Simon’s famous Watchmaker’s Parable for an illustrative example 
of this concept). In other words, modularity helps promote stability in an evolving 
organism, preventing a particular genome from being a “House of Cards” [24] in 
which a single variation might bring it tumbling down. Ultimately, Simon’s sugges-
tion is that modular systems are more evolvable, that is, more capable of continu-
ously discovering new organisms with higher fitness than their parents. This theory 
has been investigated widely among evolutionary biologists [31, 45, 48].

As for the second property to be automated, module interdependence, Watson 
et al. [47] demonstrate that structural modularity (i.e. structural complexity encap-
sulated such that dependencies between subsystems are weaker than dependencies 
within subsystems) does not imply independence of subsystems. Specifically, func-
tional interdependence among subsystems is critical for hierarchies in which all lev-
els of organization are meaningful. Simply accumulating multiple building blocks 
into an aggregate set does not capture the full potential of modularity. Module inter-
dependence is essential for emergence because without meaningful interdepend-
ence, a hierarchy of subsystems is nothing more than the sum of its parts. Watson 
argues that systems with strong module interdependence are evolvable under certain 
conditions, namely compositional evolution.

TPG has leveraged emergent modularity in hierarchical model building to make a 
variety of contributions in the context of visual Reinforcement Learning (RL). In the 
Atari video game testbed, TPG evolved game-playing agents that match the qual-
ity of solutions from a variety of deep learning methods [22]. More importantly, 
TPG agents were less computationally demanding and required fewer calculations 
per decision than any of the other methods. This efficiency is possible because 1) the 
hierarchical complexity of each organism is a property that emerges through inter-
action with the problem environment, rather than being fixed a priori, as was the 
case for deep learning, e.g. [29]; and 2) subsystems within a TPG organism typically 
specialize on different parts of the visual input space, thus only subsets of the overall 
organism require execution at any given point in time.

Modularity and specialization also allow TPG to support transfer learning in dif-
ficult RL problems [21]. In this case, solutions initially evolved for simple subtasks 
can be reused within hierarchical organisms in order to improve learning in a more 
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complex task. The resulting agents achieve state-of-the-art levels of play in Robo-
Cup Half-Field Offense and surpass scores previously reported in the Ms. Pac-Man 
literature while employing less domain knowledge during training. Again, the highly 
modular organisms are shown to be significantly more efficient than state-of-the-art 
solutions in both domains.

Finally, modularity and specialization are also useful in dynamic environments 
where the distribution in sensory inputs may change drastically over time. When 
forced to switch randomly between multiple Atari game titles throughout evolution, 
TPG can evolve solutions to multiple titles simultaneously with no additional com-
putational cost [22]. In this case, modularity is critical to avoid unlearning or cata-
strophic forgetting [25] of behaviours that are intermittently important over time.

1.3 � Modular memory models

All the work outlined in Sect.  1.2 was conducted using an early version of TPG 
in which organisms were stateless. That is, even though agents operated in epi-
sodic, sequential decision-making environments involving hundreds or thousands of 
timesteps, the agents were purely reactive. They had no temporal memory mecha-
nism to enable the integration of experience over time. This is a serious limitation in 
partially-observable tasks in which it is impossible to retrieve complete information 
about the state of the environment from a single observation. More recently, mul-
tiple models have been proposed which support temporal memory sharing among 
subsystems within TPG organisms, allowing agents to operate in sequential deci-
sion-making environments with partial observability at multiple time scales [20, 
40, 41]. Examples from the deep learning community have also demonstrated that 
modularity and specialization lead to improved generalization in dynamic tasks that 
require temporal reasoning [2, 13].

2 � Research objectives

Section  1.2 described the capabilities of TPG for evolving hierarchical/modu-
lar agents in high-dimensional (e.g. visual) RL environments with discrete action 
spaces. The approach has recently been extended to incorporate temporal memory 
mechanisms that enable operation in environments with partial-observability at mul-
tiple time scales. The work herein is an extension of our study published at GECCO 
2020 [23]. The first objective of our initial study was to propose a highly-modu-
lar memory structure that manages the temporal properties of a task and enables 
operation in problems with continuous action spaces. This significantly broadens the 
scope of real-world applications for TPGs, from symbolic regression to time series 
forecasting.

TPG’s success in high-dimensional RL is due in part to its capacity to adap-
tively decompose the input space such that individual subsystems within an 
organism could specialize their role relative to small subsets of the input space, 
or spatial decomposition [22]. The second objective of our initial study was to 
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examine how the modular memory mechanism allows organisms to achieve a 
temporal problem decomposition. This is significant because temporal problem 
decomposition is likely beneficial in dynamic, non-stationary environments. 
Examples of this include MTRL, as well as time series forecasting or streaming 
data classification tasks when the underlying process generating the data stream 
changes significantly over time [1, 16].

Putting these developments together, the overall goal of this work is to dem-
onstrate how TPG can be used to build hierarchical memory-prediction machines 
that address the MTRL challenges outlined in Sect. 1.1. First, we test the hypoth-
esis that TPG’s shared memory framework [20, 23] can be further extended to 
support continuous and discrete action spaces and temporal memory manage-
ment simultaneously. Next, we propose that a fundamental property of a success-
ful multi-task behavior is its ability to hierarchically decompose the problem. In 
support of this proposal, we show that TPG can evolve hierarchical multi-task 
behaviors by combining several agents which were initially adapted indepen-
dently. Over time, a collective behavior emerges that builds on the individual 
specializations of multiple agents. Finally, we evaluate TPG’s ability to manage 
partial-observability in multi-task environments. Specifically, we examine how 
TPG’s modular memory mechanism [20, 23] allows agents within a hierarchical 
VM to share temporal information and collectively build a shared representation 
of environmental state. Critically, both hierarchical problem decomposition and 
shared memory management are emergent properties of an open-ended evolution-
ary system.

The remainder of this paper is organized as follows: Sect.  3 reviews recent 
work in MTRL. Section  4 provides a detailed description of the extended TPG 
algorithm. An empirical evaluation is provided in Sect.  5. We evaluate TPG in 
the context of learning 6 unique environments from the control literature. This 
requires the agent to support discrete and continuous actions simultaneously. 
No task-identification inputs are provided, thus agents must identify tasks from 
the dynamics of state variables alone and define control policies for each task. 
We show that emergent hierarchical structure in the evolving programs leads to 
multi-task agents that succeed by performing a temporal decomposition/encod-
ing of the problem environments in memory. The resulting agents are competitive 
with task-specific deep learning agents in all 6 environments. Furthermore, their 
model simplicity and dynamic run-time complexity results in relatively efficient 
operation. Section 7 concludes the paper and provides an outlook to future work.

3 � Related work in deep learning

Two broad research questions are explored in the MTRL literature: 1) How to 
support knowledge sharing across multiple related tasks; and 2) How to support 
multiple unrelated or competing tasks by decomposing the overall problem and 
problem solver (agent).
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3.1 � Shared representations and manual decomposition

In deep learning, support for shared knowledge primarily takes the form of learning 
shared feature representations. That is, how networks can be developed such that 
weight parameters are general enough to model features relevant to multiple tasks. 
D’Eramo et. al [8] recently formulated proofs that this approach can lead to gains in 
performance and sample efficiency when compared to single-task learning. How-
ever, only part of the network was shared among tasks. The multi-task problem is 
manually decomposed in order to design a network with task-specific input and out-
put layers for each task. Knowledge of which task the network is currently interact-
ing with is required to select which task-specific network components to activate 
at any timestep. Furthermore, a separate replay memory is required for each task, 
incurring a significant memory overhead compared to single-task learning.

Policy distillation [36] is another deep learning approach to developing shared 
representations for MTRL. In this case, multiple pre-trained, single-task Deep 
Q Network (DQN) agents [29], called teachers, are used to generate a multi-task 
replay memory (i.e. a dataset) of example < state, action > pairs. A student network 
is then trained from the replay memory using supervised learning. The student can 
effectively model the behaviour of multiple DQN agents. Furthermore, the student 
is typically a simpler network, thus policy distillation can result in a scaled-down, 
faster MTRL agent with performance comparable to multiple DQN teachers. How-
ever, pretraining a single-task DQN teacher for each task incurs a significant com-
putational cost. Furthermore, multi-task decomposition is pre-configured manually: 
the student network included a separate output layer trained for each task, once again 
implying that a task label is required during model deployment to select the correct 
output layer at each timestep.

IMPALA and PopArt [15] are deep learning methods that leverage a distributed 
actor-learner architecture to propose a scalable method of learning shared represen-
tations in MTRL. In short, a centralized learner network acts as a shared parameter 
server from which multiple actor networks can copy parameters before going off 
to interact with multiple unique task environments in parallel. Each actor’s experi-
ence ( < state, action > pairs) is periodically (asynchronously) integrated back into 
the learner’s shared representation. PopArt included a method of normalizing the 
rewards over the entire task set, thus improving over IMPALA by avoiding the dis-
traction dilemma. The entire network architecture is shared among all tasks, imply-
ing that the power of these methods lies in their ability to learn generalized fea-
ture representations that captured salient properties of all tasks. That is, there is an 
underlying assumption that all of the tasks have something in common, and there-
fore problem decomposition is not given significant attention. However, no task 
label is required to switch between task-specific modules. The network input con-
sisted solely of the 96 × 72 pixel matrix (i.e. the game screen), implying that the net-
work could infer the task without access to a label. Finally, the network architecture 
included a Long Short-Term Memory (LSTM) [14] module. As such, the method 
could be applied to partially-observable environments such as the first-person 3D 
DeepMind Lab benchmark suite [5]. However, no ablation study was performed to 
confirm the significance of the LSTM.
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3.2 � Shared representations and automatic decomposition

Methods that attempt automatic problem decomposition typically incorporate some 
form of modularity to build prediction machines with diverse structural components 
that specialize on subsets of the overall problem. Soft Modularization [50] is one 
such approach. In this case, a base policy network, which maps s⃗(t) to an action, is 
trained together with a routing network. At each timestep, the routing network is 
given a 1-hot task embedding (i.e. task label) and selects a route through the the base 
policy network. In effect, the routing network dynamically selects which modules in 
the base policy network should be active for the task at hand. The architecture for 
both networks is predefined, thus the nature of the modularity is not emergent. How-
ever, the base policy design provides a modular template such that the routing net-
work can effectively learn how to decompose the multi-task problem within special-
ized structural modules which are dynamically switched in and out of the execution 
path at run-time. This improves positive inter-task transfer compared to networks 
with fixed routing because modules that specialize at specific aspects of the prob-
lem can be switched in when they are required and switched out when their (over) 
specialization might result in negative transfer. Dynamic routing also improves effi-
ciency because only part of the overall network is executed at each timestep. The 
primary limitation of Soft Modularization is that knowledge of the active task label 
is required as input to the routing network.

Progressive Neural Networks [37] take hand-designed modularity to an extreme, 
dedicating an entire network to each task. The framework is designed for multi-
task learning scenarios in which a sequence of tasks is pre-defined and the machine 
learns each new task in sequence. A new network is added for each task and the 
weights of all previous networks are frozen to avoid catastrophic forgetting. Lateral 
connections connect each frozen network to all subsequent nets. The final machine 
solves up to 4 Atari tasks, and it is shown that positive transfer from previous net-
works/tasks can significantly accelerate learning new tasks. The primary limitation 
of Progressive Neural Networks is scalability because a new network is added for 
each new task. In addition, while all networks process s⃗(t) at each timestep, the out-
put of only one must be selected using knowledge of the active task label. Elastic 
Weight Consolidation (EWC) [25] showed improved scalability by using a single 
network for continual learning of multiple tasks. The algorithm slows down updates 
on certain weights based on how important they are to previously seen tasks. A task-
recognition model was incorporated to infer which task is being performed and auto-
matically manage which sets of weights to protect at any given time. A DQN agent 
augmented with EWC was able to learn up to 10 Atari games. However, it did not 
reach the score that would have been obtained by training ten separate DQNs. Fur-
thermore, DQN side-steps the issue of partial-observability by using an autoregres-
sive state representation. In short, frame stacking is employed such that s⃗(t) contains 
a hard-coded historical window of the 4 most recent state observations (See [29]). 
As such, no temporal memory mechanism is required to infer short-term temporal 
properties of the environment such as the directional velocity of moving game enti-
ties. This approach to dealing with partial-observability is limited because design-
ing a temporal sliding window, or autoregressive state, relies on the experimenter’s 
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intuition/assumptions about the environment, and can only mitigate partial-observ-
ability within the fixed window. Furthermore, the machine is unable to adapt this 
window if the properties of the task change over time.

PathNet [10] is an approach to sequential multi-task learning which evolves sub-
networks within a super network, essentially discovering how to reuse parameters 
from previous tasks while learning new ones. Learning takes place over two dis-
tinct timescales: Online gradient descent adjusts the weights of “active” subnets as 
they interact with the environment. A GA is used to discover which parts from a 
template super network to use within each subnet. As new tasks are introduced, the 
best subnets and their weight parameters from the previous task are frozen. This 
mechanism supports multi-task parameter reuse without catastrophic forgetting, and 
demonstrated positive inter-task transfer. However, PathNet was only evaluated on 
sequential learning of 2 Atari and Labyrinth games. Furthermore, the network archi-
tecture still included a separate output layer for each task. As such, the networks 
have no mechanism to identify which environment they are interacting with, and a 
task label is again required.

In summary, there has recently been a surge of work in MTRL, but to date there 
has not been significant progress made on approaches that address all the funda-
mental properties that make MTRL challenging. The motivation for this study is to 
fill this gap with an evolutionary approach to MTRL in which: 1) Agent complex-
ity scales through interaction with the environment, and the run-time complexity of 
the agents does not grow linearly with the number of tasks; 2) The agent’s multi-
task behaviour includes task-recognition capability, removing the need for an oracle 
to provide the current task label; 3) The environments are partially-observable and 
require agents to support temporal memory.

4 � Algorithm description

The algorithm investigated in this work is an extension of Tangled Program Graphs 
[22]. TPG was initially designed for RL tasks in which solutions map sensor inputs 
to a set of discrete actions. This work represents the first time the method has 
been used to build programs capable of operating in discrete-action and continu-
ous-action RL environments simultaneously, which is achieved through an exten-
sion of the shared memory mechanism introduced in [20]. This section outlines the 
extended algorithm, paying specific attention to two critical components: 1) How 
memory is shared among individual programs in a team-based model; and 2) How 
multiple independent teams are adaptively combined into a hierarchical organism, or 
program graph, through compositional evolution. All source code is publicly avail-
able [19].

4.1 � Coevolving independent teams

A team of programs is the basic representation for a stand-alone agent in TPG. Each 
team defines a group of programs that collectively map input state at time t, s⃗(t) to 
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a pair of discrete and continuous actions, < ad, ac > . Teams can be thought of as 
vertices in a computational graph where the edges are programs that process s⃗(t) and 
produce output, Fig. 2. In this work, all programs are linear register machines [6], 
see Algorithm 1 and Table 3. For the purposes of this study, it is important to note 
that programs contain internal register memory that is stateless, that is, reset prior 
to each execution. Programs also have a pointer to one shared stateful memory bank 
that is only reset at the start of each episode of interaction with the environment. 
In the case of sequential decision-making tasks where programs are executed mul-
tiple times per episode, shared stateful memory allows programs to communicate 
with each other and to integrate information across multiple timesteps. This is a cru-
cial aspect of behaviour which allows teams to construct an internal world model of 
partially-observable environments. In this case, the team-based agent must encode 
salient information from s⃗(t) into stateful memory such that it can be reused, in com-
bination with s⃗(t + n) , when selecting an action a time t + n . This is one example of 
an agent taking an active role in its perception of the environment. As we will dem-
onstrate, programs construct their world model dynamically at run-time from the 
content of temporal memory, m⃗(t) and the current sensor input, or state s⃗(t).

Programs have a dual-purpose role within a team: 

1.	 Memory management In order to manage the content of stateful memory, pro-
grams can read from current environmental state, s⃗(t) , and/or stateful memory, 
m⃗(t) , and write to m⃗(t);

2.	 Program graph traversal In the context of a team, programs can be character-
ized as directed graph edges that dynamically set their weight as a function of 
s⃗(t) and m⃗(t) . Each team maintains at least two programs, and each program has 
a pointer to one discrete action (See Figure 2). The team maps < s⃗(t), m⃗(t) > to a 
pair of actions < ad, ac > , by executing all programs in order and then following 
the path with the largest weight. If the program is a leaf, then ad is the discrete 

Fig. 2   Illustration of the relationship between teams, programs, and shared memory in TPG. Initially, all 
programs are leaf nodes. Over time, program action pointers may be modified to refer to other teams and 
program graphs emerge. When a team is subsumed into a program graph, it is cloned and the clone ( t1c ) 
becomes an internal node. See Section 4.2 for details
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action associated with the winning program, and ac is the content of its shared 
stateful memory register m[0], i.e., a continuous value left over after all programs 
have executed (See Algorithm 1).

Note that programs simultaneously manage stateful memory and define the 
appropriate context (relative to s⃗(t) and m⃗(t) ) in which their action pair should 
define the agent’s output (Algorithm 1).

Table 3   Operations and 
instruction formats

Programs encode 16 operations in a 4-bit op-code. 
In addition, programs have access to 18 constants: 
{ −0.9,−0.8, ...,−0.1, 0.1, 0.2, ..., 0.9 }, included as read-only registers 
at the end of their private register bank r[] (See Algorithm 1). Let x 
and y be generic registers or input state references such that x ∈ r[i] 
or m[i] and y ∈ r[j] , m[j], or s⃗(t)[j]

Instruction Operations

x ← x◦y ◦ ∈ {+,−,×,÷, xy}

x ← ◦(y) ◦ ∈ {cos, ln, exp,
√
, sin}

◦ ∈ {tanh, y2, |y|, y3}
IF (x◦y) THEN x ← −x ◦ ∈ {<,>}



587

1 3

Genetic Programming and Evolvable Machines (2021) 22:573–605	

Teams, programs, and shared memory registers are each stored in separate 
populations and coevolved. Evolution is driven by a generational GA in the fol-
lowing sequence of steps (parameters listed in Table 4): 

1.	 Initialization Evolution begins with a population of Rsize stochastically generated 
teams. Each team contains tmSizeinit new programs which are initialized with a 
unique memory bank (i.e. each initial team has a unique complement of tmSizeinit 
programs, and each program has a unique memory pointer), Fig. 2. Programs are 
initially all leaf nodes.

2.	 Generate offspring Let ℙ be the power set of all task combinations. For 6 tasks, 
ℙ will contain 63 unique task sets. For each set s ∈ ℙ , the process for generating 
team offspring will create nelite new root teams.1 To create each new root, the 
process uniformly samples two teams, parent1 (always a root team) and parent2 . 
Crossover is applied with probability px . When no crossover is applied, parent1 
is cloned to create a new child team. Otherwise the crossover operator begins by 
creating an empty child team. Shared memory implies that the order of program 
execution within a team potentially impacts the outcome. To avoid disrupting this 
order, the crossover operator interleaves programs from parent1 and parent2 in 
order within the child, where each parent program is copied to the child with 50% 
probability, Fig. 3. Mutation operators are then applied to the child team, as listed 
in Table 4. Team mutation operators may modify the discrete action and memory 
pointers, modify the program order, and add, remove, and modify programs in 
the team. In short, team complement, program length and content, and the degree 
of memory sharing are all adapted properties. Further details on TPG’s variation 
operators are available in [18].

3.	 Evaluation Every root team in the population represents a stand-alone agent. 
Thus, every new root team (created in the previous step) is evaluated in 20 epi-
sodes in each task environment.

4.	 Selection For each set s ∈ ℙ (the power set of task combinations), nelite teams with 
the highest fitness are designated as survivors and protected from deletion in this 
generation.2. For single task sets, team fitness is simply the average reward over 
20 episodes in that task. For multi-task sets, team fitness captures how well a team 
performs on multiple tasks by ranking teams by their weakest task performance in 
the set. To achieve this, every root team’s mean reward on each task is normalized 
relative to the rest of the current root population. Normalized score for team tmi 
on task tj is calculated as: 

(1)scnrm(tmi, tj) = (sc(tmi, tj) − scmin(tj))∕(scmax(tj) − scmin(tj))

1  With the parameters listed in Table 4, the team generation process creates 1575 new agents in each 
generation.
2  The population at any given generation includes 1575 new agents and 1575 elite agents from previous 
generations. The initial population size ( R

size
 in Table 4) is 1000. Thus, after 2 generations the 63 bins 

of elites will remain full, their content being recalculated in each generation based on the fitness of new 
agents.
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 where sc(tmi, tj) is the mean score for team tmi on task tj and scmin,max(tj) are the 
population-wide min and max mean scores for task tj . Multi-task fitness for team 
tmi is then min(scnrm(tmi, t{1..n}) , or the minimum normalized score for team tmi 
over all tasks. n denotes the number of tasks. Thus, multi-task survivors are 
the teams with the highest minimum normalized fitness over all tasks in each 
task set. Any team not identified as a survivor in this process is deleted. Note 
that normalizing rewards is a critical part of quantifying multi-task fitness and 
mitigates the distraction dilemma (See Section 1.1). Finally, programs have no 
individual concept of fitness. After team deletion, programs that are not part of 
any team are also deleted. As such, selection is driven by a symbiotic relation-
ship between programs and teams: teams will survive as long as they define a 

Fig. 3   Illustration of team 
crossover operator. Each parent 
program is copied to the child 
with 50% probability. Parent 
programs are interleaved within 
the child, maintaining their 
original ordering

Table 4   Parameterization of team and program populations

Rsize is the initial number of root teams. nelite is the number of root teams to maintain for each task set 
(See Section 4 text). For the team population, px is the probability of crossover and pmx denotes a muta-
tion operator in which: x ∈ {d, a} are the probability of deleting or adding a program respectively; 
x ∈ {m, n, s} are the probability of creating a new program, changing a program’s action pointer (leaf 
or team), and changing a program’s shared memory pointer respectively. For the program population, 
px denotes a mutation operator in which x ∈ {delete, add,mutate, swap} are the probability for deleting, 
adding, mutating, or reordering instructions within a program. patomic is the probability that a modified 
action-pointer for a program will be atomic (leaf)

Team population

Parameter Value Parameter Value

Rsize 1000 pmd 0.7
nelite 25 pma 0.6
tmSizeinit 10 pmn, pms 0.1
tmSizemax ∞ pmm 0.2

px 0.2

Program population

Parameter Value Parameter Value

Size of r 8 Size of m 8
ProgSizeinit 10 ProgSizemax ∞
pdelete 0.5 padd 0.4
pmutate 1.0 pswap 0.2
patomic 0.95
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complementary group of programs, while individual programs will survive as 
long as they collaborate successfully within a team.

5.	 Go to step 2.

4.2 � Evolving team hierarchies

When a program is modified by variation operators in Step 2, it will remain a leaf 
with probability patomic , and will otherwise connect to one team from the set of 
teams present from any previous generation, chosen with uniform probability. These 
connection mutations are the mechanism by which TPG supports compositional 
evolution, adaptively recombining multiple (previously independent) teams into var-
iably deep/wide directed graph structures, or program graphs, Fig. 2.

Execution of a program graph begins at the root team ( t3 in Fig.  2), where all 
programs in the team will execute in order. Graph traversal then follows the program 
with the largest weight, repeating the execution process at every team along the 
path until a leaf node is reached. Thus, the program graph computes one path from 
root to leaf at each timestep, where only a subset of programs in the graph (those in 
teams along the path) require execution. Note that cycles may appear in the graph 
structure but are ignored during execution. That is, no team is visited more than 
once per traversal. If the edge with the largest weight leads to a team that has already 
been visited, the edge is simply ignored and the program/edge with the next highest 
weight is considered. Team variation operators are constrained such that each team 
maintains at least one program that is a leaf node, ensuring an output can always be 
found.

As hierarchical structures emerge, only root teams (i.e. teams with indegree of 0) 
define independent agents, and only these root teams are subject to deletion, cloning, 
and variation. Non-root teams are protected from deletion as long as they are a com-
ponent of a graph that performs well collectively. As such, program graphs incre-
mentally grow and break apart at their root node, i.e. from the top up/down. While 
the team and program population sizes vary throughout evolution, the number of 
root teams to maintain in the population is a function of the number of tasks and the 
nelite parameter (See step 4). Whenever a root team is subsumed within a program 
graph, it will first be cloned and the clone becomes the internal node (See Figure 2). 
Thus, as hierarchies grow, they must directly compete with their (simpler) subgraphs 
(i.e. prior to the addition of a new root node). This clone-when-subsumed constraint 
ensures that root teams with strong performance are not subsumed within a weaker-
performing program graph. Without cloning, the subsumed root behaviour would no 
longer be part of the pool of independent agents, and its (high-fitness) stand-alone 
behaviour would be lost until the hierarchy breaks down.

In summary, the hierarchical complexity and interdependency between teams in 
program graphs emerges entirely through interaction with the task environment. As 
a program graph operates, the subset of teams/programs that require execution is 
dynamically selected at run-time based on the current input sample and the content 
of stateful memory. This has two important implications: (1) Teams are free to spe-
cialize on particular aspects of the problem and may be switched in and out of the 
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model as needed; and (2) Program graphs can dynamically select inputs and stateful 
memory registers that are relevant to the current state observation (i.e. inputs and 
memory registers indexed by programs along the active path) while ignoring inputs/
memories that are not important at the current point in time. This is conceptually 
similar to the modular structures and attention mechanisms explored by Goyal at. 
al. [13], in which these properties were shown to improve generalization in dynamic 
memory problems. However, in that case the total number of “modules” per solu-
tion required prior specification, as did the number of “active” modules at any point 
in time. In this work we are specifically interested in how these model characteris-
tics emerge through compositional evolution. Section 5 will demonstrate how these 
properties support hierarchical task decomposition in multi-task reinforcement 
learning.

5 � Training and test performance

Figure 4 provides a summary of multi-task TPG learning curves over 10 independ-
ent runs. At intervals of 5 generations, the program graph with the highest training 
reward is identified for each task set (i.e. 63 unique sets, see Section  4), and this 
agent is evaluated in 100 test episodes for each task. Each test episode begins with 
random initial conditions not seen during training. Figure 4 reports the average test 
reward for each task at 5-generation intervals. A dotted line represents the median 
of champion single-task program graphs (i.e. each plot reports median mean reward 
for the unique single-task champion identified for each task, at each test interval). 
Single-task scores provide a benchmark for task difficulty. Some, but not all, tasks 
have a score threshold indicating when the task is considered solved. For example, 
CartPole is considered solved if the agent can balance the pole for an average of 195 
timesteps over 100 episodes, which corresponds to a reward of 195 in Fig. 4. Within 
≈ 500 generations, TPG single-task scores (dotted line) reach a quality of behaviour 
in which all tasks can reasonably be considered solved. Section 5.1 makes a direct 
comparison with state-of-the-art single-task behaviours.

Solid lines in Fig. 4 represent average test reward of the best multi-task program 
graph for each run. At each test interval, the multi-task champions identified in each 
run may exhibit a unique performance trade-off over the 6 tasks. As such, it is not 
informative to report the average or median multi-task score over multiple runs. 
Thus, Fig.  4 reports multi-task scores for each run individually (grey lines), with 
the best over all runs in black. That is, the black line in each task plot represents test 
reward of the same multi-task graph at each 5-generation interval. By generation 
≈ 1000 , the single best multi-task program graph is competent in all 6 tasks. Scores 
for this champion are compared to single-task TPG scores in Fig. 5, along with the 
champion multi-task scores from the 9 other TPG runs. It is apparent that the best 
run produced a multi-task agent that reaches roughly 90% of the best single-task 
agent scores in all 6 tasks (black line), while 5/10 runs produced multi-task agents 
that reached at least 60% of the single-task scores.
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5.1 � Comparison with fully‑observable single‑task leaderboard

OpenAi Gym’s leaderboard provides a repository to track and compare RL algo-
rithms. Figure  6 compares the performance of multi-task and single-task TPG in 
partially-observable classic control environments with the best scores in the lead-
erboard. Note that all leaderboard agents were trained and tested independently for 

Fig. 4   Summarized TPG learning curves over 10 independent MTRL runs. Rewards are averaged over 
100 episodes with random initial conditions. Dotted line represents median test reward of best single-task 
program graphs (i.e. each plot reports median (over 10 runs) reward for the unique single-task champion 
identified for each task). Solid lines represent fitness of best multi-task program graph for each run, with 
the best over all runs in black (i.e. black line in each plot represents performance of the same multi-task 
graph)
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Fig. 5   Comparison of multi-task agent test scores over 10 independent runs, normalized by the score of 
the best single-task agent in each task. Normalized score for multi-task agent ai in task tj is calculated as 
(sc(ai, tj) − scrand(tj))∕(sc(stmax(tj)) − scrand(tj))) where sc(ai, tj) is the mean score for agent ai in task tj , 
scrand(tj) is the mean score for an agent that takes random actions in task tj , and sc(stmax(tj)) is the max 
single-task score in task tj

Fig. 6   Comparison of multi-task and single-task TPG agent test scores, normalized by the score 
of the best agent from OpenAI’s leaderboard at https://github.com/openai/gym/wiki/Leader-
board. Note that all leaderboard agents were trained independently for each task in fully-observa-
ble versions of the environment. Normalized score for multi-task agent ai in task tj is calculated as 
(sc(ai, tj) − scrand(tj))∕(sc(stmax(tj)) − scrand(tj))) where sc(ai, tj) is the mean score for TPG agent ai in task 
tj , scrand(tj) is the mean score for an agent that takes random actions in task tj , and sc(stmax(tj)) is the best 
score on OpenAI’s leaderboard with an accompanying writeup at the time of this writing. In the case 
of tasks with a threshold over which they are considered solved (CartPole, both version of Mountain 
Car), this threshold is used as sc(stmax(tj)) . CartCentering is not yet part of OpenAI Gym but the time-
optimal control program for fully observable state is known [26], thus this time-optimal controller is used 
as sc(stmax(tj)) . Sources for Acrobot and Pendulum leaders are from the Distributed Distributional Deep 
Deterministic Policy Gradient algorithm, D4PG [4]
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each task with Fully-Observable (FO) versions of the environments. Multi-Task 
learning in Partially-Observable (PO) environments is a significantly more challeng-
ing problem. The champion Multi-task TPG agent, trained and tested in PO environ-
ments, reaches at least 90% of the best leaderboard score in 4/6 tasks, and ≈ 80% and 
≈ 75% in the remaining two. While the Multi-Task TPG agent does not quite match 
the leaderboard scores, it reaches a general quality of behaviour in which all tasks 
can be considered solved. Section 6 provides a detailed analysis of the structure and 
behaviour of the champion TPG MTRL agent.

5.2 � Ablation study

In order to confirm the significance of critical components of the TPG algorithm 
(Sect. 4), an ablation study is performed with 3 additional experiments, each with 
one component removed. Figure 7 summarizes the ablation results. For clarity, we 
limit the ablation analysis to a comparison of the single best multi-task agent pro-
duced from each experiment, as identified by the multi-task selection procedure 
described in Sect. 4. Without crossover (TPG-NoXover), the best multi-task agent 
still achieves at least 80% of single-task performance in all tasks. Compared to full 
TPG, TPG-NoXover is equal in one task (MountainCarContinuous), better in 2 
tasks, and worse in 3 tasks. Also, its single worst normalized score (in Pendulum) 
is less that any score from TPG. As such, it would be ranked behind TPG by the 

Fig. 7   Multi-task ablation. Plot provides normalized test scores for the single best multi-task program 
graph discovered when critical components of the TPG algorithm are removed. Normalized score for 
multi-task agent ai in task tj is calculated as (sc(ai, tj) − scrand(tj))∕(sc(stmax(tj)) − scrand(tj))) where 
sc(ai, tj) is the mean score for agent ai in task tj , scrand(tj) is the mean score for an agent that takes random 
actions in task tj , and sc(stmax(tj)) is the max single-task score in task tj
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multi-task ranking procedure outlined in Sect. 4. TPG-NoMemory refers to the sce-
nario in which all registers (internal and shared) are stateless. That is, registers are 
reset to zero prior to each program execution. In this case, agents have no means 
of building an internal model of the environment and integrating state information 
across timesteps during an episode, something that is required in partially-observ-
able environments. As a result, the best TPG-NoMemory agent is weak, achieving 
well below 50% of single-task agent scores in all tasks. Finally, TPG-NoHierarchy 
refers to the experiment in which TPG is parameterized with patomic = 1.0 . In this 
case, TPG’s ability to construct program graphs is disabled, and all evolved agents 
will take the form of a single team of programs. As described in Sect. 4, TPG sup-
ports multi-task operation by automatically decomposing the overall problem within 
the program graph hierarchy. In short, each team in the hierarchy is free to special-
ize on particular aspects of the overall multi-task problem, and the agent (program 
graph) is able to generalize by recombining various specialized team behaviours as 
it encounters different environmental scenarios over time. As seen in Figure 7, when 
hierarchical development is disabled, the best multi-task agents can still specialize 
well in one environment (MountainCarContinuous, in this case), but are unable to 
generalize to other tasks.

The importance of hierarchical task decomposition in multi-task learning is fur-
ther evident in Fig. 8, which reports the hierarchical complexity of decision-making 
(i.e. average number of teams visited per graph traversal during test) for the best 
agent in each combination of tasks in the task power set (See Section  4). While 
there is significant variation in hierarchical complexity, the larger task sets typically 
require agents which have subsumed more independent teams within their structure, 
and are thus able to generalize across a wider range of environments. The next sec-
tion will examine structural and behavioural properties of the best 6-task program 
graph.

Fig. 8   Hierarchical complexity of the best program graph discovered for each set in the task power set, as 
measured by the average number of teams visited per timestep (prediction) over 100 test episodes. Points 
indicate max, median, and min over 10 independent runs. Tasks are numbered in the following order: 
0-CartPole, 1-Acrobot, 2-CartCentering, 3-Pendulum, 4-MountainCar, 5-MountainContinuous



595

1 3

Genetic Programming and Evolvable Machines (2021) 22:573–605	

6 � Structure and behaviour of best program graph

Figure  9a illustrates the champion multi-task program identified from the TPG 
experiment (black lines in Figs. 4, 5, 6, 7). For clarity only the team hierarchy is 
shown, individual programs are omitted. Recall that in each timestep, graph tra-
versal begins at the root node and follows one path through the graph until an leaf 
program is found. Since every team has at least one leaf program, graph traversal 
can terminate at any team. Each team is depicted by a pie chart indicating the pro-
portion of timesteps in which it was visited over 100 test episodes in each task. 
Naturally, MountainCar and MountainCarContinuous are closely related problems, 
thus it is not surprising that individual teams often generalize over these tasks. Simi-
larly, teams often generalize over CartCentering and Pendulum, but the relationship 
between these tasks is less obvious. Animations of this program graph interacting 
with all tasks are available here [19]. Animations depict the team hierarchy as well 

CartPole
Acrobot
CartCentering
Pendulum
MountainCar
MountainCarC.

Fig. 9   Champion multi-task program graph. Each node represents one team of programs. Node charts 
illustrate proportion of timesteps in which each team was visited over 100 test episodes in each task. For 
example, the root node is visited in every timestep, thus proportions are equal for CartPole, Acrobot, 
CartCentering, Pendulum, MountainCar, and MountainCarContinuous. Barplot shows proportion of per-
task access (read or write) for all shared memory registers used by this program graph. Registers are dis-
tributed throughout graph but can be loosely tied to specific nodes by task decomposition. For example, 
registers with even proportions (Right-Hand Side of barplot) must be in root node. Node numbering and 
register x-axis labels are referenced in Sect. 6, 6.1, and 6.3 text (Color figure online)
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as individual programs. The active components in the graph are emphasized at each 
timestep, with the decision path (highest weight edges) highlighted in green.

We can gain insight into how the team hierarchy behaves in these tasks by exam-
ining where each team is active within the system state space. The state of Pendu-
lum and CartCentering can be fully described by two variables, only one of which is 
observable to the agent (See Table 1). Each cell in Fig. 10 represents one numbered 
team in Figure  9(a), and displays the points (in 2 dimensions of the state space) 
when the team was visited during graph execution. Each dot represents one timestep 
over 100 test episodes. Grey points indicated the team was visited at that step but 
ultimately passed execution to a lower-level team. Colored points indicate the team 
was the terminal stop and produced an atomic action at that timestep. For example, 
the root team (1) is active at every timestep but is never the terminal node. A com-
mon path through the graph for both tasks is [1, 3, 6, 10, 14, 18]. Notice that the 
behaviour of the terminal teams gets more specialized as execution moves down the 
hierarchy (colored dots are increasingly fewer and more concentrated). The hierar-
chy decomposes both tasks in this manner using the same path, and there are simi-
larities in the nature of this decomposition. For example, see team/cell 14, which 
makes a clear distinction at ≈ 0 in the observable state variable ( cos(�) in Pendulum 
and x in CartCentering) before passing execution to team/cell 18. In other cases, 
for example team/cell 8, the behaviour of the terminal team decomposes these tasks 
entirely differently in the space of the observable variable. This indicates that the 
agent must be encoding some representation for the (unobservable) system veloc-
ity in memory and using this prediction of velocity to determine the action. Finally, 
note that Pendulum is a continuous-action problem while CartCentering is discrete-
action. It is clear that some teams are capable of providing actions for both cases 
(e.g. teams 6, 8, 14) while others specialize on one type of action (e.g. team 5).

6.1 � Run‑time complexity

Figures  11 and   12 show the run-time dynamics of the best multi-task program 
graph during 1 test episode in each task. Each node in the graph (Fig. 9a) represents 
one team of programs. Every execution of the program graph begins at the root node 
and follows one path, which may terminate at any node. Furthermore, each team 
executes a unique subset of programs, each with a variable length list of instruc-
tions. Since the path of execution is dynamically selected, the computational com-
plexity of program graph execution is also a dynamic property. The top two plots 
in Figs. 11a through 12b show the run-time complexity for the champion program 
graph in each task. For example, the top plot in Fig. 12b indicates that the champion 
program graph executes between 2 and 6 teams per timestep in the pendulum envi-
ronment. The rate of path switching fluctuates until timestep ≈ 80 and then stabi-
lizes at 3 teams per timestep. This correlates with the 2 modes of behaviour required 
for pendulum: the agent must first rock the pendulum back and forth to gain enough 
momentum to swing the pendulum up to a vertical position (timestep 1 to ≈ 80 ). 
Then, a new mode of behaviour is required to balance the pendulum upright for the 
remainder of the episode. An animated example of this behaviour can be seen here 
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(a)

(b)

Fig. 10   Example task decompositions over 100 test episodes for the champion program graph depicted 
in Fig. 9a. Each cell displays the points (in 2 dimensions of the problem state space) when each team 
was visited during graph execution. Colored dots indicate the team was the terminal stop and produced 
an atomic action, grey dots indicate the team was visited but ultimately passed execution to a lower-level 
team. Note that the vertical axis variable describes velocity of the system and is unobservable. Pendulum 
is a continous-action problem, while CartCentering is discrete-action. Color legends indicate color-cod-
ing of points with respect to actions (Color figure online)
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[19]. Dynamic run-time complexity improves the efficiency of model deployment 
when averaged over many timesteps. This is especially significant as complex (tem-
poral) problems call for increasingly complex models. The most complex decision 
paths in any task execute 6 teams and roughly 300 instructions. This can be roughly 
compared with the D4PG deep neural network that holds several of the highest lead-
erboard scores, Sect.  5.1. The D4PG agent network has two fully connected hid-
den layers with 400 and 300 neurons respectively. This implies that computing the 
forward pass at each timestep requires at least 400 × 300 = 120, 000 calculations. 
While this can be computed in parallel on a Graphics Processing Unit (GPU), the 
relatively simple TPG agents do not require specialized hardware, making them suit-
able for operation on common embedded platforms such as the Raspberri Pi [9]. 
Note that the number of instructions per prediction in this work is significantly lower 
than that of our initial study in time series prediction [23]. In this work, teams and 
programs are initialized with a much smaller size and mutation operators are slightly 

(a) (b)

Fig. 11   Time series data recorded during replay of best multi-task program graph (Fig. 9a) under 1 epi-
sode in CartPole and Acrobot. x-axis is timesteps. See Sections 6.1, 6.2, and 6.3 for details
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(a) (b)

(c) (d)

Fig. 12   Time series data recorded during replay of best multi-task program graph (Fig. 9a) in 1 episode 
of each task. x-axis is timesteps. See Sections 6.1, 6.2, and 6.3 for details
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biased toward changes which result in simpler agents (See progSizeinit , pmd,ma , 
pdelete,add , and patomic in Table 4).

6.2 � Dynamic memory access

Since program graphs are not provided with temporal state information (velocity), 
each program graph must define a mechanism for encoding observations within 
stateful memory registers, recalling or resetting/overwriting these memories as 
required. Essentially, each program graph defines an internal encoding of the system 
state that is able to capture the temporal characteristics of any task observed during 
training. Recall from Sect. 4 that each execution requires traversing one path through 
the program graph, where each team along the path will read/write to a unique set of 
stateful memory registers. As the active path changes over time, the agent’s encod-
ing of state also becomes dynamic. In particular, the “age” of memories accessed at 
any point in time effectively defines a memory window that fluctuates in width over 
time. The time point at which stateful memory registers are reset or left to accumu-
late is selected based on the current input as well as the content of stateful memory. 
Memory Window plots in Figs. 11 and 12 depict the width of these dynamic mem-
ory windows at each timestep during test. The memory windows for time t1 to tn are 
stacked vertically along the y-axis. Each horizontal line depicts the window width 
from the newest memory accessed (right-hand-side) to the oldest memory accessed 
(left-hand-side) at each timestep. Notice how the multi-task agent exhibits a unique 
pattern of dynamic memory access for each task.

6.3 � Internal prediction of unobservable state

In partially-observable MTRL, dynamic memory access is critical for successful 
prediction of (unobservable) temporal properties of the system state. For example, 
in this work the agent is blind to system velocities. In order to select the best action 
at each timestep, the agent must predict the velocities internally. Velocity at time 
t + 1 can only be computed as a function of at least two observations made at previ-
ous timesteps and stored in memory. The Memory Window plots in Figs. 11 and 12 
show the maximum timespan from which these variables are drawn at each step. For 
example, the memory window for the pendulum task (Fig. 12b) fluctuates in size 
during the first mode of behaviour up to timestep ≈ 80 . These window-size fluc-
tuations correlate to different paths through the graph being activated during this 
period. During this mode of behaviour, the pendulum is swinging back and forth 
and its angular velocity is sweeping through its entire range from positive to nega-
tive (see Pendulum animation). The agent is continuously using temporal memory to 
predict the pendulum’s velocity internally, which is required information in order to 
produce actions (joint torques) that build the proper momentum to swing the pendu-
lum up to vertical. We can confirm that the agent is actually constructing an internal 
model of velocity through this simple 2-step process: 
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1.	 During replay, record the system velocity as well as the value stored in each 
memory register at each timestep. The best agent in this case contains 216 state-
ful registers (See Figure 9b) and the pendulum task has 1 unobservable velocity 
state variable ( 𝜃̇ ), giving us 217 time series recordings.

2.	 Calculate Pearson correlation coefficient between the system velocity and all time 
series from agent memory, then identify the individual register that most strongly 
correlates with the system velocity.

The results of this analysis during replay in each task are plotted as Internal Predic-
tion of Velocity in Figs. 11 and 12, where velocities and register time series are nor-
malized in [−1,1]. Clearly, this agent is able to compute a useful internal prediction 
of system velocities while interacting with each task. The specific register contain-
ing the most correlated velocity predictions in Figs. 11a through 12d are marked in 
Fig. 11b. Note that the exact same register is used to store the velocity prediction for 
𝜃̇1 in Acrobot and ẋ in CartCentering.

In the case of Pendulum, the internal prediction of velocity is very accurate dur-
ing the first mode of behaviour up to timestep ≈ 80 . Once the pendulum is verti-
cally stabilized with an angular velocity near zero, memory-prediction is less critical 
because the agent can simply observe the pendulum’s angle and apply a bang-bang 
force to keep it vertical. This behaviour can be seen in cell 6 of Fig. 10a. The pendu-
lum is vertical at cos(�) = 1 . Blue and pink dots in this region indicate the agent is 
applying a positive/negative bang-bang force to keep the pendulum’s angular veloc-
ity ( 𝜃̇ ) near zero (See Pendulum animation).

The ability to automatically define multiple memory windows with unique time 
delays and dynamically switch between them at run-time is critical in non-stationary 
and multi-task environments. Here, the agent exhibits unique patterns of dynamic 
memory access for tasks that have unique temporal properties and time constants 
(e.g. compare the rate of velocity change for CartPole and Pendulum in Figs.  11 
and 12). Related studies have evolved “observation windows” in non-stationary time 
series forecasting, but still required human intuition in order to parameterize the 
window behaviour [46]. By contrast, the approach in this work is entirely emergent.

7 � Conclusions and future work

TPG has been extended to support a modular temporal memory mechanism while 
simultaneously accommodating both discrete and continuous outputs. We validate 
the new algorithm in a challenging multi-task reinforcement learning problem for 
which previous versions of TPG were not applicable. Notably, we have shown that 
a single agent can recognize and solve partially-observable versions of 6 RL bench-
mark environments with a quality of behaviour that is competitive with the leading 
single-task, fully-observable deep learning approach.

Evolving memory-prediction machines addresses all the challenges of MTRL 
introduced in Sect.  1.1. Hierarchical program graphs built through compositional 
evolution support multi-task environments through automatic, hierarchical prob-
lem decomposition. In short, agents can recombine multiple previously-independent 



602	 Genetic Programming and Evolvable Machines (2021) 22:573–605

1 3

generalist and specialist behaviours, and dynamically switch between them at run-
time. This allows an agent to exploit positive inter-task transfer when tasks are 
related, and avoid negative transfer between disjoint tasks that require specialized 
behaviours. A multi-task selection process maintains a niche for generalist agents 
relative to each combination of tasks, ensuring useful hierarchical building blocks 
are always present in the population. A temporal memory mechanism allows agents 
to construct a dynamic internal world-model, which enables operation in partially-
observable environments. Scalability is addressed by initializing the evolutionary 
search with simple programs and adapting their complexity entirely through envi-
ronmental interaction. Variation operators are biased for simplicity, thus model 
complexity emerges gradually and is correlated with an increase in multi-task com-
petence. The run-time complexity of a multi-task TPG agent is several orders of 
magnitude simpler than the leading deep learning agent trained from scratch for 
each task.

Future work will address the issue of scaling to more tasks. Our current approach 
is dependent on generating new agents in quantities relative to the entire task power 
set. As the number of tasks increases, this will result in combinatorial explosion of 
population size. This scaling issue might be mitigated by dynamically optimizing 
a subset of task combinations to focus on at any point in time, in parallel with the 
agent policy search.

Compositional evolution with TPGs was initially demonstrated in high-dimen-
sional (visual) MTRL without any provision for temporal memory or support for 
mixed discrete and continuous actions spaces [22]. Given the developments pre-
sented herein, as well as recent progress made in multi-class image classification 
with TPG [39], we are interested to see how the approach operates in partially-
observable visual RL environments such as DeepMind Lab [5]. Future work will 
likely also address how the dynamic properties of TPG will behave in explicitly non-
stationary time series environments [1, 46] and dynamic memory tasks in which the 
input distribution changes significantly from training to test environments [13]. The 
proposed temporal memory mechanism might also provide benefits under multi-task 
time series prediction, where the goal is to build a single model capable of fore-
casting multiple independent data streams [49]. In short, this work significantly 
broadens the scope of our existing methods and opens a breadth of future research 
opportunities.
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