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Abstract
Regular expression is a technology widely used in software development for

extracting textual data, validating the structure of textual documents, or formatting

data. Regex Golf is a challenge that consists in finding the smallest possible regular

expression given a set of sentences to perform matches and another set not to match.

An algorithm capable of meeting the Regex Golf requirements is a relevant con-

tribution to the area of semi-structured document data extraction. In this paper, we

propose a heuristic search algorithm based on local search, combined with a regular

expression shrinker, to find valid results for Regex Golf problems. An experimental

study was conducted to compare the proposed technique with an exact algorithm

and a genetic programming algorithm designed for the Regex Golf challenge. The

proposed local search was shown to outperform both competing algorithms in six

out of fifteen problem instances, tying in another three instances. On the other hand,

all algorithms still lack the ability to outperform human software developers in

designing regular expressions for the challenge.
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1 Introduction

Regular expressions are a technology widely used in software development for

extracting data from textual documents, validating the structure of such documents,

or formatting data. However, building a regular expression tailored to a specific

problem is often difficult, tricky, and time-consuming. It requires a considerable

amount of skill, expertise, and creativity by the programmer [5] to assure that the

regular expression is correct in all scenarios expected for its usage.

The wide application and high development cost of regular expressions has

attracted many researchers to develop algorithms to automatically generate these

expressions. Among the techniques tested for that purpose we find exact algorithms

[14], genetic programming [2, 4, 7, 8, 11], machine learning [4, 16], and a

combination of them. Some of the techniques for automatic creation of regular

expressions use a list of text samples to be extracted from textual documents by

means of the generated regular expression to ensure its quality [7].

In 2014, Peter Norvig published a blog post featuring a challenge called Regex
Golf [14]. It is based on Code Golf challenges, where the goal is to create the

smallest algorithm possible to solve a given problem. The Regex Golf challenge
involves creating the smallest regular expression that matches all phrases in a list

(known as match list) and does not match any sentence in a second list (known as

unmatch list) [3]. Table 1 presents an instance of the problem: a match list with the

names of all books from the ‘‘Harry Potter’’ series and an unmatch list with the

names from the books of the ‘‘The Galaxy Backpacker’s Guide’’ series.

A solution to this instance is the regular expression ^the ns[^r][^i], where^
is the line start marker used to determine that the regular expression needs to look

for the string at the beginning of the line, the symbolizes the literal string ‘‘the’’,

ns marks a blank space, [^r] indicates that the following character cannot be the

letter r and [^i] indicates that the next character cannot be the letter ’i’. This
instance of the problem will be used in the examples in the next sections.

An algorithm capable of meeting the Regex Golf challenge may help extracting

data from textual documents, particularly from sets of documents sharing the same

structure, such as a set of filled documents from the same form. Algorithms that

generate regular expressions from positive examples only (match lists) may tend to

Table 1 An instance of the Regex Golf challenge

Match list Unmatch list

The philosopher’s stone The hitchhiker’s guide to the galaxy

The chamber of secrets The restaurant at the end of the universe

The prisoner of azkaban Life, the universe and everything

The goblet of fire So long, and thanks for all the fish

The order of the phoenix Mostly harmless

The half-blood prince And another thing

The deathly hallows
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generate generic expressions (e.g. .*) due to the lack of constraints and examples

of text snippets that cannot be accepted by the expression being built. On the other

hand, using text snippets from other parts of the document as counterexamples to

create regular expressions requires the ability to use an unmatch list. Finally,

reducing the size of the regular expression has the advantage of making it easier for

a developer to process and understand.

Generating regular expressions is a complex and error-prone process [1] and

Regex Golf is considered an NP-hard problem [3]. We rely on heuristic search to

find good solutions for the problem. Heuristic search algorithms are methods that

yield good results for combinatorial parsing problems with this level of complexity.

In this paper, we describe a Local Search algorithm that, combined with a regular

expression shrinker, constitutes a new heuristic for the Regex Golf challenge. We

tested the proposed algorithm using 15 instances of the challenge and compared it to

an exact algorithm and a Genetic Programming heuristic designed for the same

problem. The heuristic proposed in this paper produced competitive results to those

of the exact algorithm, winning in eight instances and tying in three, and better

results than Genetic Programming, losing only in two instances and executing in a

shorter time. The proposed algorithm was also compared to humans’ results,

although it ties in three instances and loses all others.

The major contributions of this paper include: (a) a local search based algorithm

to automatically create regular expressions for the Regex Golf challenge; (b) an

experimental study performed to compare the proposed algorithm quantitatively

with other state-of-the-art algorithms designed to the same end, as well as compare

them to human-designed solutions; and (c) a thorough qualitative analysis of the

former results, highlighting the conditions that lead one or another algorithm to

produce better solutions. While the first two contributions allow us to claim the

badge for the best algorithm to create solutions for the Regex Golf challenge, the

last contribution paves the way to dethroning our proposed algorithm.

The local search outperforms the more complex genetic programming search

because (a) it uses mutation operators carefully designed for the domain of the

problem at hand; (b) the shrinking algorithm simplifies solutions made complex by

the search process and allows new searches from a functional-equivalent standpoint;

and (c) it is fast. These properties allow integrating the local search (or the domain

knowledge used to build its mutation operators) into a Genetic Programming

framework. Besides that, the paper establishes a benchmark for the Regex Golf
problem, as we show human solutions that outperform both search approaches.

Human-developed regular expressions set a new target for the competitiveness of

automated regex generation algorithms, showing the distance that must be gained by

such algorithms to outperform human developers on this task.

This paper is organized into five sections, starting with this introduction.

Section 2 presents related work, briefly describing several approaches that have

been used to generate regular expressions automatically. Section 3 presents our

proposed solution, which is evaluated in Sect. 4. Section 5 closes the paper,

wrapping up its contributions.
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2 Related work

By mapping the literature related to the generation of regular expressions, we found

out that three classes of algorithms were already used to that end: exact algorithms,

machine learning [4, 16], and heuristic optimization [2, 4, 7, 8, 11].

We hereby classify an algorithm as exact if it produces the same outputs for a

given set of inputs, regardless of how many times, when, or in which computing

environment it is executed. Rastogi et al. [15] created a log analysis system that

generates regular expression to extract data from the logs and create reports for the

user. Larson et al. [12] present an algorithm to create test cases for regular

expressions. In comparison with a similar algorithm, the proposal proved to be more

efficient in identifying regular expressions that accept a broader selection of texts

than they should. Zhang et al. [17] created an algorithm that uses generated regular

expressions to detect automatic download attacks, checking if the URL addresses

accessed by a web application belong to a list of websites known to distribute

malware. Norvig [14] presents an exact algorithm for the Regex Golf challenge that
builds regular expressions from the elements contained in the match and unmatch

lists. The author tested his algorithm with lists created with arbitrary data (such as

the subtitles of Star Wars and Star Trek movies) and showed that it was able to build

regular expressions that worked according to the challenge.

As for heuristic search algorithms, there is a predominance in the literature of

heuristics based on genetic algorithms, although some studies use local search for

the automatic generation of regular expressions. Yunyao Li [13] presents a local

search algorithm for the automatic generation of regular expressions based on

positive and negative examples. The algorithm was tested on 50,000 web pages to

generate expressions to extract software names, course names, and phone numbers.

These expressions achieved a success rate of 92%, 69% and 35%, respectively. The

approach presented in this paper applies a shrinking algorithm and restarts the

search systematically when it finds a local minimum. Also, it uses a broader list of

neighborhood operators to improve the search than Li’s work.

Cetinkaya [8] presents an algorithm based on Grammar Evolution that uses a list

of statements to automatically create a regular expression that matches such

statements. The technique was evaluated based on a web page with 266 anchor tags
(a tags with links to other pages) and was successful in identifying similar tags on
other web pages. Cody-Kenny et al. [10] present a Grammatical Evolution-based

algorithm that improves the performance of regular expressions. For a given regular

expression, the algorithm searches a functionally equivalent expression (one that

passes a set of positive and negative test cases) that requires less runtime to evaluate

under a test suite. The authors selected nine regular expressions used in libraries

such as AngularJS and D3 or recognized as problematic cases regarding execution

time. They built a test suite for fitness evaluation using known texts that matched the

expressions and systematically changed them to create negative tests. They found

regular expressions with shorter runtime for all cases subjected to optimization with

observed improvement ranging from 7 to 12,000%.
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Bartoli et al. [2] created a Genetic Programming algorithm to generate regular

expressions for textual data extraction based on examples. Each example consists in

a string t and the substring s of t that should be extracted by the desired

expression. The authors compared the proposed algorithm to the local search

presented by Yunyao Li et al. [13] and found similar results. They also found that

the genetic programming based algorithm outperformed Cetinkaya’s algorithm [8]

obtaining almost 100% precision (against 76%) in the proposed tasks.

Bartoli et al. [3, 6] also proposed a genetic programming algorithm to generate

regular expressions for the Regex Golf challenge. This algorithm used the work of

Norvig [14] as a basis to improve the generation of regular expressions for the

challenge. The authors tested their algorithm using 16 instances extracted from a

website (https://alf.nu/RegexGolf) that provides an online version of Regex Golf in
which any person can suggest regular expressions for various instances of the

challenge. The algorithm presented better solutions than those suggested by

humans, but it did not reach the maximum score for all instances. The same website

was used in the experimental studies carried out in this paper. However, the solu-

tions found by humans improved significantly and currently exceed the results

found by Bartoli et al’s algorithm [3].

Cochran et al. [9] present a programming crowd-sourcing approach that consists

of hiring several developers to generate solutions to a difficult problem and feeding

these solutions as the initial population of a Genetic Programming algorithm that

will merge and evolve them into a final solution. The underlying ideas are that each

developer will solve part of the problem and the optimization algorithm can merge

the best parts of their solutions to build a better solution. The authors applied the

proposed approach to create regular expressions for four problems, using positive

and negative examples to validate these expressions. They used symbolic finite

automata to represent the regular expressions and developed specific crossover and

mutation operators that leverage in this representation. Experimental evaluation

indicates that the crossover operator, despite of being applied more frequently,

yields limited benefits to the evolutionary process, whereas the mutation operator is

more relevant. Results show an average increase of 16.25% on the accuracy of the

initial regular expressions by using the proposed approach.

Finally, among the machine learning algorithms designed to generate

regular expressions, active learning seems to be the most frequently used technique.

Wu et al. [16] present a semi-supervised active learning algorithm that identifies

relevant snippets of input data for generating regular expressions based on examples

presented by the user. Bartoli et al. [4] use a similar approach; while the regular

expressions themselves are build using genetic programming, active learning is used

to scan a large textual corpus and find the next relevant piece of data to be collected

based on examples given by the user. Upon knowing the correctness of the

selection, the machine learning algorithm feeds the heuristic approach with a new

set of sample texts from which the expression is created.
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3 A local search algorithm to build regular expressions

The Regex Golf challenge is considered an NP-hard [3, 14] problem and heuristic

search algorithms have shown good results while addressing such problems. We

already have automatic regular expression generation algorithms complying with

the Regex Golf challenge, such as Norvig’s exact algorithm [14] and Bartoli’s

Genetic Programming algorithm [3]. However, while the first does not attempt to

minimize the regular expression that it generates, the second requires a lot of

computational power to produce a regular expression.

We developed a local search algorithm that works with a regular expression

shrinker algorithm to find solutions for the Regex Golf challenge. Local search was

selected as the basis of the new algorithm because we wanted to explore the

capabilities of a simple heuristic approach in comparison to the state-of-the-art

genetic algorithm presented by Bartoli et al. [3]. We believed such algorithm might

produce a comparable regular expression by using a fraction of the computational

time required by the genetic algorithm and be useful as a platform to test domain-

specific mutation operators that might be further integrated into a genetic

programming approach.

The following subsections describe the proposed algorithm in detail. It receives

the match and unmatch lists as input and creates two character lists to help

generating the neighborhood for a solution (Sect. 3.1). The search starts from a

randomly generated solution (Sect. 3.4) and is driven by a fitness function that

encodes the objectives of the Regex Golf challenge (Sect. 3.2). The neighborhood

of this solution is generated following the transformations presented in Sect. 3.3.

The local search heuristic uses the Best-ascent Hill Climbing strategy, that is, all

solutions that make up the neighborhood of the current solution are evaluated and

the algorithm moves to the best among them in each interaction. All possible

combinations of operands for each operator are tested to transform the current

solution into a new one. If any combination of operator and operands produce a

solution that is fitter than current one, the fittest among these solutions is selected as

the basis for the next interaction. If the neighborhood has no better solution than the

current one, the regular expression shrinker algorithm (Sect. 3.5) is enacted to

shorten the representation of the current solution. If the shrinker succeeds in finding

a smaller regular expression that is equivalent to the current solution, the local

search proceeds from this smaller expression. Otherwise, a new solution is randomly

generated and the local search is restarted from it.

3.1 Solution representation

A solution evolved by the local search is represented by a syntax tree whose leaf

nodes are characters and whose intermediate (function) nodes are operators used in

the regular expression. A leaf node is represented by the character it conveys, while

function nodes have characters representing the regular expression operator and a

placeholder, the � character, which represents the location where operands

represented in its branches are placed when the expression is converted to its
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textual format. This model is based on the solution representation used by Bartoli

et al. [3]. Figure 1 presents the regular expression ^ab[^c] in its syntax tree

format.

Some operators in the regular expression are represented by more than one

function node type. For instance, the quantifier operator can be represented by three

different function nodes: the Star quantifier, the Plus quantifier, and the

Repetition. The Character Set operator can be represented by two function

nodes—List and Range—to denote different subsets of characters. The Concate-
nation operator, which concatenates its two operands, has been added to aid in the

representation and mutations performed in the syntax tree. Table 2 presents all

possible function nodes and their representation.

3.2 Fitness function

In heuristic search, a fitness function is used to determine the quality of a solution. A

solution is considered feasible if it represents a regular expression that matches all

phrases in the match list and does not match any phrases in the unmatch list. The

fitness function used in the proposed local search algorithm is based on the work of

Bartoli et al. [3], which also used the fitness function of the website https://alf.nu/

RegexGolf from where instances1 of the Regex Golf challenge were selected for the

experimental evaluation of their algorithm.

To calculate the fitness of a solution, we employ the same procedure used by

Bartoli et al. [3]. The regular expression is executed for each phrase in the match list

Fig. 1 Syntax tree representation of regular expression ^ab[^c]

1 By instance we mean a description of a Regex Golf challenge, comprised by a match and a unmatch
list. We have collected 15 of such descriptions from the website for experimental evaluation purposes.
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and the unmatch list. When a match occurs in the match list, the solution scores a

point. When a match occurs in the unmatch list, the solution loses a point. The result

is multiplied by a weight defined on an instance basis to represent the instance’s

complexity. Finally, the number of characters in the text representation of the

regular expression is subtracted from the score to favor smaller solutions. Therefore,

the fitness function is defined by Eq. (1).

fitnessðRÞ ¼ WR � ðM � UÞ � lengthðRÞ ð1Þ

where R is the regular expression represented by the solution, M is the number of

matches in the match list, U is the number of matches in the unmatch list, and WR is

the weight of the instance as defined in the website that stores instances for the

Regex Golf challenge. If two solutions have the same score, the tie-breaking criteria

are the number of characters in the solution (the smaller, the better) and the number

of matches in the match list.

The maximum score a solution can achieve is the number of phrases in the match

list times WR. It is important to emphasize that the minimum and maximum fitness

values are related to the problem instance and not to the problem itself.

Furthermore, negative results are possible.

3.3 Neighborhood generation

The neighborhood of a solution is built performing transformations on the regular

expression represented by the solution. These transformations were based on both

the exact [14] and genetic programming [3] algorithms created for the Regex Golf

challenge. They use four-character lists, formed from the phrases of the problem

instance, presented below.

Table 2 Function nodes of the

syntax tree representing regular

expressions in the solution space

Function node Representation

Concatenation �
Alternation � j �
Negative char set [^�]
Start anchor ^�
End anchor �$
Star Quantifier ��
Plus Quantifier �þ
Repetition �#
List [�]
Range [�-�]
Optional �?
Group (�)
Dot �
Back-reference \#�
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3.3.1 Match char list

A character list consisting of characters from the match list. All valid characters are

extracted from the match list, removing duplicates to make a list of unique

characters. Characters are ordered based on how often they appear in sentences.

Table 3 presents this list for the problem instance used as an example in the

introduction.

3.3.2 Unmatch char list

A character list similar to match char list, but based on unmatch list. It contains all

valid characters from the unmatch list phrases and follows the same sorting criteria

based on the characters most present in these phrases. Table 4 presents this list for

the problem instance used as an example.

3.3.3 Inclusive char list

A list of all characters presented in match char list that are not present in the

unmatch char list. Table 5 presents this list for the problem instance used as an

example.

3.3.4 Exclusive char list

A list of all characters presented in unmatch char list that are not present in match

char list. Table 6 presents this list for the problem instance used as an example.

The neighborhood of a solution is comprised of all solutions generated from the

transformations presented below:

• Swap: exchanges each tree node A for a leaf node with a character from the

inclusive char list, if A is either a leaf node or a function node with a single

parameter, or a concatenation node with a character from the inclusive char list

on the left and A on the right, if A is a function node. Concatenation nodes from

the original tree are not replaced and start anchor nodes are converted to

concatenation when placed on the right. This transformation is performed N
times for each node of the current solution, N being the number of items in the

inclusive char list. The result is N � L generated solutions, L being the number

of nodes in the current solution except for concatenation nodes. For instance,

given the inclusive char list (t, x) and the regular expression ^ab[^c], the
following solutions are generated: tab[^c], ^tb[^c], ^at[^c], ^abt,

Table 3 Match char list: character list composed by extracted and sorted characters from the match list

t \s o e h r i f l p n b a

s d c m z k g ’ x – y w
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^ab[^t], xab[^c], ^xb[^c], ^ax[^c], ^abx, and ^ab[^x]. Figure 2

depicts the first four solutions generated by the swap transformation if applied to

the regular expression ^ab[^c];
• Concatenation: exchanges a tree node for a Concatenation operator

containing a leaf node with a character from inclusive char list and a node

extracted from the branches of the solution. This transformation is done 2� N
times for each node of the current solution, N being the number of items in the

inclusive char list. The result is up to 2� N � L generated solutions, L being the

number of nodes in the current solution. For instance, given the inclusive char

list (t, x) and the regular expression ^ab[^c], the following valid solutions are
gener-

ated: ^tab[^c], ^atb[^c], ^abt[^c], ^ab[^ct], ^ab[^c]t, ^-
xab[^c], ^axb[^c], ^abx[^c], ^ab[^cx], and ^ab[^c]x. Invalid

solutions, such as t^ab[^c] and x^ab[^c], are discarded, as nothing could

be on the left of the start anchor node. The transformation is performed twice for

Table 4 Unmatch char list: Character list composed by extracted and sorted characters from the unmatch

list

t \s a r e h s o i d g n

l f y u k v , x ’ c m

Table 5 Inclusive char list: Character list composed by characters from the match char list which

do not appear in the unmatch char list

p b z – w

Table 6 Exclusive char list: Character list composed by characters from unmatch char list which

do not appear in the match char list

u v ,

Fig. 2 The first four solutions generated by the swap operator if applied to the base regular expression
(shown on the left-side)
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each node of the current solution to ensure that the additional leaf node is

positioned in both branches. Figure 3 depicts the first four solutions generated by

the concatenation transformation if applied to ^ab[^c];
• Start anchor: adds a node with the Start Anchor operator as the root of the

solution tree. For instance, given the regular expression abc, the solution

^abc is generated. This transformation also occurs in function node branches of

type Alternation. For instance, given the regular expression abcd|ef|, the
solutions ^ab|cd|ef|, |ab|^cd|ef|, and ab|cd|^ef are generated.

This leads to X þ 1 solutions, X being the number of Alternation nodes in

the current solution;

• End anchor: exchanges the last node for a function node with the Concate-
nation operator, containing the replaced node and a node with the End
Anchor on its branches. For instance, given the regular expression abc, the
solution abc$ is generated. As the Start Anchor transformation, this

transformation also occurs in function nodes with the Alternation operator.

For instance, given the regular expression abcd|ef|, the solutions ab|c-
d|ef$, ab|cd$|ef, and ab$|cd|ef are generated. This leads to X þ 1

solutions, X being the number of Alternation nodes in the current solution;

• Alternative: replaces a tree node with a function node with the Alternation
operator containing the replaced node in one of its branches. This transformation

is performed once for each node of the current solution, but often the generated

result is invalid and ends up being discarded. For instance, given the regular

expression ^ab[^c], the following valid solutions are generated: ^a|b[^c]
and ^ab|[^c];

• Negation: replaces a tree node for a function node with the Negative char
set operator and having one character from the exclusive char list as its

operand. This transformation is performed N times for each node of the current

solution, N being the number of items in the exclusive char list. The result is

ðN þ 1Þ � L solutions, L being the number of nodes in the current solution. If the

node to be exchanged is already a Negative char set node, the value that

would be added to the tree is added to the current node, resulting in a

negative char set node with one more character. For example, given the

exclusive char list (x, y) and the regular expression ab[^c], the solutions

[^x]ab[^c], [^x]b[^c], a[^x]b[^c], a[^x][^c],
ab[^x][^c], ab[^cx], ab[^c][^x], [^y]ab[^c], [^y]b[^c],

Fig. 3 The first four solutions generated by the concatenation operator if applied to the base regular
expression (shown on the left-side)
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a[^y]b[^c], a[^y][^c], ab[^y][^c], ab[^cy], and

ab[^c][^y] are generated;

• Range: first, this operator creates a list of function nodes with the Range
operator having the values of all possible two-character combinations of the

including char list. For instance, if the including char list is (a, h, m, x), the
following nodes are created: [ah], [am], [ax], [hm], [hx], and [mx].
Than, a tree node is exchanged for a function node of this list. This

transformation is performed N times for each node of the current solution and

N times by adding the node as the root of the tree, N being the number of node in

the newly created list. The result is ðN þ 1Þ � L solutions, L being the number of

nodes in the current solution. For instance, given the including char list

(a, m, y) and the regular expression xyz, the solutions [am]xyz, [am]yz,
x[am]yz, x[am]z, xy[am]z, xy[am], xyz[am], [ay]xyz,
[ay]yz, x[ay]yz, x[ay]z, xy[ay]z, xy[ay], xyz[ay],
[my]xyz, [my]y, x[my]yz, x[my]z, xy[my]z, xy[my], and

xyz[my] are generated;

• Star quantifier: exchanges a tree node for a function node with the

Concatenation operation having a function node with the Star quantifier

and the extracted node in its branches. This transformation is performed only on

leaf nodes and function nodes of the types List, Range, Group and

Negation. This leads to N solutions, with N being the number of leaf nodes

plus the number of function nodes of the types supported by this transformation.

For instance, given the regular expression ab[hz], the solutions a*b[hz],
ab*[hz], and ab[hz]* are generated;

• Plus quantifier: has the same behavior as the Star quantifier transformation, but

uses a Plus quantifier node. For instance, given the regular expression

ab[hz], the solutions a?b[hz], ab?[hz] and ab[hz]? are generated;

• Repetition: exchanges a tree node for a function node with a Concatenation
operator having a Repetition node (with the literal value 2) and the

extracted node in its branches. Like the Star quantifier, this transformation is

performed only on leaf nodes and function nodes of the types List, Range,
Group and Negation. For instance, given the regular expression ab[^z],
solutions a{2}b[^z], ab{2}[^z], and ab[^z]{2} are generated. If a

Repetition node is being subjected to the transformation, the number of

repetitions is incremented by one instead of the change described above. For

instance, transforming the regular expression ab{2}[^z] yields the solution

ab{3}[^z]. This leads to N þ L solutions, N being the number of end nodes

plus the number of function nodes of the types accepted by this transformation

and L the number of nodes of type Repetition;
• Dot: replaces a tree node with a Concatenation node having a function node

with the Dot operator and the node extracted from the solution in its branches.

This transformation is performed N times for each node of the current solution

and once by adding the Dot node as the root of the tree, N being the number of

nodes in the current solution. Since invalid solutions can be generated, the result

is up to N þ 1 solutions. For instance, given the regular expression ab[^c],
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the following valid solutions are generated: .ab[^c], .b[^c], a.b[^c],
a.[^c], ab.[^c] and ab.;

• Back reference: wraps a tree node with a Group node and appends or replaces

the other nodes with a back reference node (such as \1). The number of the back

reference is calculated according to the number of back references already in the

expression. For instance, given the regular expression abc, the following

solutions are generated: (a)\1 bc, (a)\1c, (a)b\1c, (a)b\1,
(a)bc\1, (ab)\1c, (ab)\1, (ab)c\1, (abc)\1, a(b)\1c,
a(b)\1, a(b)c\1, a(bc)\1, and ab(c)\1;

• Optional: has the same behavior as the Star quantifier transformation, but uses

an optional node. For instance, given the regular expression ab[hz], the

solutions a?b[hz], ab?[Hz], and ab[hz]? are generated;

• Extraction: removes a node from the tree. This transformation is performed

once for each node of the current solution, including both terminal nodes and

function nodes (along with their operands). For instance, given the regular

expression a[bh][^k]$, the solutions [bh][^k]$, a[^k]$,
a[h][^k]$, a[b][^k]$, a[bh]$, and [bh][^k] are generated.

3.4 Randomly generating a solution

To generate a solution to start or restart the search, the algorithm uses two strategies.

First, it uses a set of n-grams based on the sentences in the match list. A n-gram is a

fragment of a phrase (that is, a set of characters) transformed into a regular

expression that must match at least one sentence on the match list and no sentence

on the unmatch list. A n-gram can be as small as one character and as big as the

whole phrase, as long as it matches some entry of the match list and does not match

any sentence on the unmatch list. The algorithm generates the list of all possible n-
grams and consumes the entries of this list one at a time when a new starting

solution is required.

Once the n-gram list is empty, the algorithm uses a tree depth parameter and

generates a number between one and the parameter value to serve as the tree depth

for the initial solution. Then, a Concatenation node is created, a leaf node is

sampled and added as a branch. The leaf node can be a random character from the

match char list, a negation based on a random character from the unmatch char list,

a Dot operator, a Start anchor operator, or a End anchor operator. The leaf

node is randomly picked from the available choices. Next, a new Concatena-
tion node is created, added as the second branch of the former Concatenation
node, a new leaf node is sampled and added as a branch for the new function node.

The process is repeated X � 1 times, being X the randomly sampled tree depth.

3.5 Regular expression shrinker

The regular expression shrinker algorithm is intended to reduce the number of

characters in a regular expression while keeping the same amount of matches in the

match list and unmatches in the unmatch list. This algorithm performs
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transformations on each node of the syntax tree, trying to transform it into an

equivalent node with fewer characters on its textual representation.

We expected that, when the search reached a local minimum, the shrinker might

lead to a different point in the search space representing an equivalent regular

expression but with a neighborhood amenable for improvement. The transforma-

tions applied by the shrinker are:

• Remove redundant operators: a regular expression with two or more Start
anchor or End anchor operators is a valid expression, but excess operators

are unnecessary and can be removed to reduce the size of the expression. For

instance, ^^abc and abc$$ can be transformed, respectively, into ^abc and

abc$;
• Remove duplicate values: Nodes of type List and Negative Char Set

may contain unnecessarily repeated values. This transformation removes these

duplicate values. For instance, the regular expressions abc[eefg] and

a[^bbc] can be transformed into abc[efg] and a[^bc], respectively;
• Merge repetitions: when Repetition nodes are juxtaposed in the tree, they

can be merged into a single Repetition node without affecting the number of

matches and unmatches of the solution. For instance, a{1}a{2} can be

transformed into a{3};
• Convert to repetition: when two or more leaf or function nodes of types

Concatenation, List, Range, Group, and Negative Char Set have

the same values and are juxtaposed in the tree, they can replace by a

Repetition node containing a single instance of the original nodes. For

instance, the regular expressions abcccccdef, [ad][ad] and [^z][^z]
can be transformed into abc{5}def, [ad]{2}, and [^z]{2}, respectively;

• Merge quantifiers: nodes with the Star or Plus quantifier and having the

same operands can be merged into a single node. For example, the regular

expressions a?a?, b*b* and c?c* can be transformed into a?, b*, and c?,

respectively;

• Simplify alternation: three or more nodes of type Alternation can be

replaced by a List or Range node. For instance, the regular expressions

a|e|h|o and a|b|c|d can be transformed into [aeho] and [a-d],
respectively;

• Remove duplicate alternation: two or more nodes of type Alternation
having the same operands can be removed without changing the number of

matches and unmatches. For instance, the regular expression ab|ab can be

transformed into ab;
• Simplify ranges: a Range node can be reduced to a representation that uses

fewer characters and performs the same matches and unmatches. If the node has

a single character as its operand, it can be replaced by a leaf node with the same

value. For instance, the regular expressions a[b-ed-h]c and [a-a] can be

transformed into a[b-h]c and a, respectively;
• Convert range to shorthand: a Range node containing values equivalent to a

shorthand character class can be replaced by a leaf node containing the
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shorthand character class. For instance, the regular expressions [a-zA-Z0-9]
and [0-9] can be transformed into \w and \d, respectively;

• Adding backrefs: when two or more nodes have the same values and such

values are more than three characters in size, the first node can be converted to a

Group node containing the value, while the other nodes may be replaced by

Back-reference nodes referring to the Group just added. For instance, the

regular expressions abcdefabc and defabcdefabcabc can be transformed

into (abc)def\1 and (def)(abc)\1\2\2, respectively;
• Simplify negation: a Negation node having no value can be replaced by a

Dot node affecting the matches and unmatches of the solution. For instance, the

regular expression a[^]bc can be transformed into a.bc.

4 Experimental evaluation

To compare the local search algorithm proposed in this paper with the aforemen-

tioned exact and genetic programming algorithms, as well as solutions presented by

software developers, we selected fifteen instances that were used in the previous

experimental study carried out by Bartoli et al. [3]. These instances were extracted

from the website https://alf.nu/RegexGolf.

The aforementioned website presents popular challenges for Regex Golf, having

been used both by the algorithms and software developers that address the

challenge. The comparison reported in the below uses the fitness function presented

in Sect. 3, which was used in Bartoli el al.’s study [3]. Therefore, the results

provided by human developers and by the selected algorithms are comparable.

4.1 Instances under evaluation

Table 7 shows the selected instances, the size of their match and unmatch lists, and

the maximum score attainable by each instance. The Long count v2 instance,

mentioned in the Bartoli el al.’s study [3], was discarded because it was not

available on the website.

4.2 Data collection

To obtain the results of the exact algorithm, we adapted the Python implementation

of the algorithm proposed by Norvig [14] and executed it for each selected instance.

The adaptations in the implementation were required because the original code did

not escape characters that represent regular expression operators and might be

present in match or unmatch lists. This problem occurred when we executed the

algorithm upon the Glob instance. After fixing this problem, we obtained all regular

expressions found by Norvig’s algorithm for all instances.

The results of the genetic programming algorithm were obtained from the paper

published by Bartoli et al. [3], which also presents the regular expressions

developed by human beings that were compared to the genetic algorithm. However,

these regular expressions could be obsolete, as years have passed since the

123

Genetic Programming and Evolvable Machines (2022) 23:105–131 119

https://alf.nu/RegexGolf


publication of the work. To find updated regular expressions developed by humans

for the same instances, we performed a search on Google using the keywords ‘‘regex

Table 7 Instances selected for the experimental study designed to evaluate the performance of the local

search algorithm in comparison to a genetic algorithm and an exact algorithm

Instance name Match list size Unmatch list size Weight Maximum score

Plain strings 20 20 10 210

Anchors 21 21 10 210

Ranges 21 21 10 210

Backrefs 21 21 10 210

Abba 21 22 10 210

A man, a plan 19 21 10 190

Prime 20 20 15 300

Four 21 21 10 210

Order 21 21 20 210

Triples 21 21 30 630

Glob 21 21 20 420

Balance 32 32 10 320

Powers 11 11 10 110

Long count 1 20 270 270

Alphabetical 17 17 20 340

Table 8 Best regular expressions developed by humans

Instance name Regular expression Fitness

Plain strings foo 207

Anchors k$ 208

Ranges ^[a-f]*$ 202

Backrefs (...).* n1 201

Abba ^(?!.*(.) n1)|ef 195

A man, a plan ^(.)[^p].* n1$ 177

Prime ^(?!(..?) n1?$) 286

Four (.)(. n1){3} 199

Order ^.{5}[^e]?$ 199

Triples 00($|3|6|9|12|15)|4.2|.1.?4|55|.17 596

Glob ai|c$|^p|[bcnrw][bnopr] 397

Balance .{37}^(\(..(?!\.[$))*[)*$ 294

Powers ^(?!(.(..)?) n1*$) 93

Long count ((.?)0 n2?1){8} 256

Alphabetical .r.{32}r|a.{10}te|n.n.. 317
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golf answers’’. Table 8 presents the best regular expressions developed by humans

we found on various websites for the selected instances.

4.3 Local search settings

The local search algorithm requires the assignment of values for two parameters: the

depth of the syntax tree and the stop criteria. The depth of the syntax tree determines

the number of nodes in the longest path from the root to a leaf that represents an

initial solution to the local search algorithm. It is also used to generate a new

random solution when the algorithm finds a local optimum solution and the shrinker

algorithm is unable to produce a smaller, equivalent regular expression. The stop
criteria is comprised of an evaluation limit and a time limit (a wall-clock timeout).
Upon reaching one of such limits, the algorithm returns the best solution found so

far as its results.

We carried out a set of experiments to determine the values for both parameters.

One million evaluations of the fitness function was selected as the evaluation limit

for the stop criteria, as well as a timeout of 10 min (twice the average execution

time in our experiments). The depth of the syntax tree parameter was defined as the

length of the largest sentence in the match list. Thus, the algorithm can generate

random solutions for the local search up to the size of the largest sentence with

which it needs to match.

The local search algorithm was executed 50 times for each instance. Table 9

presents the best regular expressions generated over all executions of the local

search algorithm for each instance under analysis.

Table 9 The best regular expressions generated over 50 executions of the local search algorithm for each

instance

Instance name Regular expression Fitness

Plain strings foo 207

Anchors k$ 208

Ranges ^[a-f]*$ 202

Backrefs ala|ea|l[op]|ro| nbm|ec|te|[m-r][^d]?.$ 172

Abba acr|nv|mi|te|st|z|.u|ph 187

A man, a plan ten|ep|mu|oo|^[^nmpy]*$ 167

Prime x{33}|^xx.?$ 153

Four ev|de|lit|ara|o[mn]|[rs].$ 184

Order [cd]e|ch|fi|[op]s|lo 190

Triples 0{9}|819|015|012|003|900|54|009|06|2[34]|[^26].5.. 580

Glob ro|rr|lle|eat|up|ig|de|lo|fa|ow|co|gen 382

Balance \[[[[\\|\\[[\[[|[[[\\\\|[\.[?[$ 239

Powers ^..?$ 15

Long count 0{4} 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 101 212

Alphabetical ar te|rt r|at e[e-r]|r sn|ne t|nant |esen 299
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4.4 Comparison

Table 10 consolidates the results for the three algorithms under comparison, as well

as solutions provided by software developers. The regular expressions developed by

humans always outperform the algorithms. Thus, hereafter we compare only the

algorithms with each other to see which comes closer to human-provided solutions.

The bold values in Table 10 indicate the algorithm that produced the best result for a

given instance. For the local search, we pick the best value over the 50 optimization

rounds. The mean fitness and standard deviation for the solutions found by the local

search over the 50 rounds are shown in the ‘‘l� r’’ column.

Considering their best solutions, the three algorithms tied in the Plain strings and
Anchors instances because those are solved by using the smallest solutions among

the selected set. The local search algorithm achieved the best results for the Ranges,
Abba, A man, a plan, Order (a draw with the results of Norgiv’s exact algorithm),

and Alphabetical instances, besides Long count and Balance instances, which are

considered difficult instances. The local search was able to find a solution

compatible with the best solution developed by humans for Ranges. The exact

algorithm obtained the best results for the instances Backrefs, Four, Order, Triples,
and Glob and the genetic programming algorithm obtained the best results for

Powers and Prime, both considered difficult instances.

The most used regular expression operator in the results produced by the three

algorithms is alternation, as it provides a ‘‘divide to conquer’’ strategy. Since it is

Table 10 The results of the exact algorithm (Norvig-exact), the genetic programming algorithm (Bartoli-

GP), local search algorithm (best result, mean, and standard deviation over the 50 optimization rounds),

and solutions built by software developers (Humans)

Instance name Norvig-exact Bartoli-GP Local search Humans

Best result l� r

Plain strings 207 207 207 207 ± 0.0 207

Anchors 208 208 208 199 ± 21.2 208

Ranges 191 195 202 197 ± 1.9 202

Backrefs 175 138 172 168 ± 0.6 201

Abba 186 184 187 187 ± 0.0 195

A man, a plan 157 136 167 144 ± 12.8 177

Prime - 398 188 153 147 ± 6.1 286

Four 192 183 184 182 ± 0.3 199

Order 190 186 190 190 ± 0.0 199

Triples 589 430 580 529 ± 48.5 596

Glob 392 340 382 381 ± 9.9 397

Balance - 1457 130 239 237 ± 0.3 294

Powers - 1969 51 15 5.6 ± 32.2 93

Long count 189 191 212 212 ± 0.0 256

Alphabetical 294 132 299 299 ± 0.0 317

123

122 Genetic Programming and Evolvable Machines (2022) 23:105–131



difficult to get a lean regular expression that performs the necessary matches and

unmatches in the lists, it becomes easier to create regular expressions with few

characters to perform some matches in the match list and no matches in the unmatch

list, using the alternation operator to concatenate them into a single regular

expression. Norvig [14] calls these small regular expressions n-grams and uses this

strategy as the basis of his exact algorithm. Although the heuristic algorithms do not

follow this strategy systematically, many of their results are similar to those

produced by the exact algorithm.

The local search algorithm outperforms the other algorithms when there are a

variety of different characters in both the match and unmatch lists. Instances with

few unique characters, such as Prime, Powers, and Long count, led to poor

performance because they fail to generate good neighborhoods and depend on

character lists derived from the match and unmatch lists. The local search was only

able to produce a good result for Long count because the regular expression shrinker

algorithm was executed on the single sentence of the match list, which was used

when the algorithm restarted. In the Balance and Powers instances, there were many

timeouts due to the large sentences in the match list, some having more than 100

characters. This caused the neighborhood to be unnecessarily long, as many

neighbors would not be better than the current solution and would only consume the

fitness evaluation budget up to the timeout. The regular expression shrinker

algorithm was relevant for instances with large sentences in their match list, such as

Prime, Triples, Powers, and Long count. Executing only the local search algorithm

would not be enough to produce the regular expressions listed in Table 9, as the

search cannot generate some of the operation nodes that improve the solution, such

as the function node 09 used in the Triples instance.
The distributions of fitness for the solutions found by the local search over the 50

optimization rounds are shown in the box-plots presented in Fig. 4. The Anchors,
Glob, and Powers instances show a few outlier solutions with smaller fitness than

the remaining solutions in the distribution. The Triples instance shows a genuine

range of different solutions found by the search algorithm, its standard deviation

ranging close to 9% of the mean fitness of the solutions. All other instances have
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Fig. 4 Distributions of fitness for the solutions found by the local search on an instance basis
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small standard deviation, which shows that the local search converges for most

instances. We performed a Wilcox–Mann–Whitney test comparing the distributions

of fitness found by the local search to the fitness found by Norgiv’s algorithm and

the published fitness of the genetic programming approach. All results were

significantly different with a ¼ 0:05, except for Plain Strings (for which all

algorithms yielded the same fitness) and Order (in the comparison between the

exact algorithm and the local search).

4.4.1 Comparison to the genetic programming algorithm

The local search algorithm outperforms the genetic programming algorithm in

eleven instances, loses in two, and ties in two instances. In the Ranges and Long
count instances, the local search obtained better results due to using the quantifier
operator added by the local search or the convert to repetition operator introduced

by the regular expression shrinker algorithm. That is, the resulting regular

expressions in both search algorithms were very close for these instances, but the

shrinker managed to remove some characters, leading the local search algorithm to

victory by a few points of difference.

In the instances Four, Backrefs, Triples, and Glob both algorithms presented

solutions using the alternation operator several times. However, the regular

expressions produced by genetic programming have redundant or unnecessarily

repeated characters. For instance, the genetic programming algorithm generated

solutions that present the same n-gram twice or a group operator that does not

improve the regular expression match capability. These redundancies do not appear

in the local search because the shrinker removes unused operators and improves the

solution.

Another advantage of the local search algorithm over the genetic programming

approach is execution time. Bartoli et al. report that the execution time of the

genetic programming approach exceeds 60 minutes for almost all instances [3],

while the local search runs in less than five minutes in average, with the exception of

the Powers instance that exceeded the ten minutes timeout for all executions.

We have performed our experiments in a notebook powered by an Intel Core i7

9750H processor with 16 GB of RAM, while the genetic programming approach

was executed in an Intel Xeon E5-2440 processor with 4 GB of RAM. According to

a benchmark2 our processor is 8.3% faster than the former. Therefore, the gain in

processing time cannot be attributed only to a faster CPU, but in large part to a

simpler algorithm using domain-specific evolutionary operators.

Bartoli et al. [3] also report results collected after running the genetic

programming approach for thrice the initial number of generations. This search

ties with the local search and Norvig’s exact algorithm for the Order instance,

maintains its superior results for the Prime and Powers instances, but remains

outperformed for the other ones. On the other hand, this search required 5.2 times

the processing time of the baseline genetic programming search.

2 https://versus.com/en/intel-core-i7-9750h-vs-intel-xeon-e5-2440.
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Finally, the main advantage of the genetic programming algorithm is its ability to

traverse different points of the search space by using quite different regular

expressions. This algorithm uses the backref, lookahead, and lookbehind operators

efficiently, leading to a clear advantage for instances with few unique characters,

such as Prime and Powers.

4.4.2 Comparison to the exact algorithm

The exact algorithm starts by generating n-grams of up to four characters. This

limits its search capacity to the point of having some results represented by all

sentences in the match list concatenated with the alternation operator. For these

instances, the exact algorithm’s strategy produces large regular expressions with

low, often negative, fitness value.

As explained in Sect. 2, the exact algorithm is always able to generate a regular

expression that represents a feasible solution for the challenge. However, the

algorithm does not take into account the length of the resulting regular expression; it

accounts only for the number of matches and unmatches performed in the related

lists. This also leads to large regular expressions which are penalized by the fitness

function. Since the exact algorithm does not generate regular expressions that have

quantifier operators, the fitness in the Prime, Balance, and Powers instances, whose
solutions rely on such operator, is impaired due to excessive usage of alternation
operators.

These poor fitness values caused the local search algorithm to outperform the

exact algorithm in eight instances, tie in three, and lose in four instances. In the

Backrefs and Four instances, the local search lost by only three and eight points,

respectively. This indicates that it might be possible to improve the neighborhood

operators to allow the search moving to a smaller solution. On the other hand, the

exact algorithm is very fast and finds solutions in a fraction of the number of fitness

evaluations required by the local search.

4.4.3 Comparison to expressions developed by humans

The regular expressions reported in Table 8 were crafted and evolved for years by

humans.3;4 While it is not possible to determine the level of knowledge of the

people who participated in the development of these regular expressions, we can

safely suggest that considerable skill is required to develop them. The fitness value

for all instances is quite close to the maximum possible score. Therefore, it might be

difficult to find software developers who honed their regular expression creation

skills to that point.

The local search algorithm finds the same regular expressions developed by

humans for the Plain string, Anchors, and Ranges instances. However, these are the
only instances on which humans do not win the local search. The difference in other

instances is not very large, but the number of characters in regular expressions

3 https://gist.github.com/jpsim/8057500.
4 https://gist.github.com/Davidebyzero/9221685.
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developed by software developers may be less than half of those in the best solution

found by local search, such as in the cases of the Backrefs, Long count, and A man, a
plan instances. The solutions proposed by humans for these instances are so

complex that it is not possible to generate them using the present version of the

neighborhood operators, which lack the ability to generate regular expression

operators nested to other operators in a concise manner. This is the main limitation

of the present implementation of the local search algorithm, if compared to human

designed regular expressions.

4.5 Contributions of the components of the heuristic search approach

In this subsection, we analyze the contribution of the regular expression shrinker

and neighborhood operators for the local search. This evaluation aims to find the

operators that contributed most to the quality of the solutions found by the proposed

algorithm.

4.5.1 The expression shrinker and its operators

The regular expression shrinker had a limited impact on the overall performance of

the search: only 14.77% of its applications resulted in an improvement of the

solutions under analysis. However, the contribution of the shrinker varies strongly

from instance to instance. It ranges from less than 6% improvement in 10 out of 15

instances to 49.98% and 74.4% of its applications resulting in reductions for

solutions of the Powers and Prime instances, respectively. The latter instances use a
single character repeated multiple times. The shrinker replaced parts of the regular

expressions by the character followed by a number of repetitions or suppressed

redundant parts of the sequence, thus reducing the expressions and improving the

quality of the solutions found by the search.

Table 11 shows the number of times the shrinker was activated for each instance

(average over the 50 optimization rounds, in column Count), the number of times it

reduced the subjected regular expression (average over 50 rounds, in column

Effective), the percentage of times the shrinker improved a solution (the ratio of

Effective by Count, in column % Effec.), and the number of times each shrinking

operator was used (accumulated over the 50 rounds, in the remaining columns).

The convert to repetition (CR) operator was used 1,239,862 times, with a large

concentration of uses for the Prime (10.7%), Balance (12.4%), Powers (51.9%), and

Long count (22.1%) instances. The remove duplicate values (RD) operator was

used 163,706 times, with a large concentration of uses for the Powers instance

(87%). The simplify negation (SN) and simplify ranges operators complement the

set of effective operators used by the shrinker with far limited contribution than the

former ones.

Therefore, we observe that while the shrinker applies eleven different operators,

only four of them had any impact on the optimization of the selected instances. Two

of these operators are related to sequences of characters repeated over the regular

expression, while the latter were simplifications of complex operations that might be

built during the search process. We also see a concentration of successful
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applications on instances having a limited character set in their match and unmatch

lists, which fosters repetitions and their subsequent simplifications.

4.5.2 The neighborhood operators

Table 12 shows the number of times each neighborhood operator applied by the

local search improved a solution over the 50 optimization rounds on an instance

basis. Only the eight most frequently successful operators are shown due to space

restrictions. The acronyms for the neighborhood operators are extraction (EXT),

swap (SW), range (RNG), dot (DOT), star quantifier (STAR), concatenation
(CC), negation (NEG), and back reference (BR).

All optimization rounds considered, four operators complement Table 12: the

plus quantifier, with 408 occurrences (0.02%) concentrated in the Prime and

Ranges instances; the start anchor operator, with 186 occurrences (0.01%), most in

the Plain strings and Ranges instances; the optional operator, with 163 occurrences

(0.01%) focused in the Prime instance; and the end anchor operator, with 129

occurrences (0.01%) concentrated in the Plain strings and Ranges instances.
We observe a concentration on the operators that add, remove, and swap nodes

using characters from the match and unmatch lists (extraction, swap, range, and
concatenation). They correspond to more than 97% of the successful applications

of neighborhood operators. We also observe that these operators are useful for

Table 11 Number of applications and effectiveness of the regular expression shrinker (average over the

50 optimization rounds) and the number of times its operators were successfully applied (accumulated

over the 50 rounds)

Instance name Count Effective % Effec. CR RD SN SR

Plain strings 721.0 23.7 3.29 18,420 150 1027 –

Anchors 76.6 2.8 3.63 122 37 94 –

Ranges 1142.0 47.5 4.16 9134 409 1609 3

Backrefs 32.7 0.9 2.75 58 18 23 –

Abba 79.4 2.8 3.53 121 46 83 –

A man, a plan 47.6 1.8 3.74 1271 10 68 –

Prime 2343.0 1743.0 74.40 132,187 11,481 1677 –

Four 55.1 1.7 3.01 112 36 41 1

Order 102.0 3.1 3.04 455 18 134 –

Triples 149.0 8.1 5.41 3919 107 204 –

Glob 32.4 1.6 5.00 681 41 5 –

Balance 444.0 132.0 29.70 153,410 3390 6 –

Powers 11,551.0 5774.0 49.98 642,902 143,039 1391 –

Long count 606.0 105.0 17.30 274,187 4253 16 –

Alphabetical 145.0 18.3 12.60 2883 671 6 –

CR stands for the ‘‘Convert to repetition’’ operator, RD is ‘‘Remove duplicate values’’, SN stands for

‘‘Simplify negation’’, and SR is ‘‘Simplify ranges’’
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almost all instances. The same applies to the dot and star quantifier operators,

whose contribution is smaller but applied to a broad range of instances.

The remaining operators have effect on specific instances, such as the negation
operator for the Ranges instance and the back reference operator for Prime. The
Ranges instance is prone to the negation operator because it is formed by repetitions

of character sequences whose boundaries can be marked by exclusion (that is, by

listing the characters that cannot occupy those positions). The start and end anchors

also play a role in delimiting the repetitions in the Ranges instance and inhibit

matches with the unmatch list. On the other hand, Prime contains a single character
repeated multiple times and back referencing parts of the sequence, as well as using

the star and plus quantifiers, allows for more concise regular expressions with better

fitness.

Table 13 shows the average contribution of each neighborhood operator in terms

of fitness point on an instance basis. While the most frequently used operators

(extraction, swap, range, and concatenation) are the most important to 6 out of 15

instances, the less common operators are paramount for the high-quality solutions

found for other instances. For the sake of an example, the largest increase in fitness

for the Four and Order instances is due to the back reference operator, even though

Table 12 Number of effective applications of each neighborhood operator during the local search

accumulated over the 50 optimization rounds on an instance basis

Instance EXT SW RNG DOT STAR CC NEG BR

Plain strings 29,508 13,663 3218 25 1136 215 43 4

Anchors 3823 13,282 2512 52 83 23 10 –

Ranges 71,648 57,845 23,626 1080 5220 1704 1441 –

Backrefs 2021 6104 7649 15 33 16 27 –

Abba 5092 11,886 4553 547 80 19 5 –

A man, a plan 2127 8778 1715 130 73 37 124 –

Prime 87,045 30,490 – 9503 6598 632 – 560

Four 3136 7240 8226 6 57 3 – 1

Order 5222 8827 20,327 12 205 61 3 1

Triples 7257 20,035 14,986 113 387 166 – –

Glob 2433 6162 4913 – 2 – – –

Balance 34,604 66,024 – 7307 2 – – –

Powers 1,286,066 – – 2212 154 1 – 2

Long count 28,544 10,168 – – – – – –

Alphabetical 7321 24,227 7225 – 2416 1 – –

Total 1,575,847 284,731 98,950 21,002 16,446 2878 1653 568

Total (%) 78.68 14.21 4.94 1.05 0.82 0.14 0.08 0.03

EXT stands for ‘‘Extraction’’, SW is the ‘‘Swap’’ operator, RNG stands for ‘‘Range’’, DOT is the ‘‘Dot’’

operator, STAR is the star quantifier, CC is ‘‘Concatenation’’, NEG is the ‘‘Negation’’ operator, and BR
stands for the ‘‘back reference’’ operator

Only the top eight most frequently successful operators are shown due to space restrictions
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this operator was successful only once for each of these instances. For six other

instances, the most important operators in terms of fitness gains are not reported in

Table 13: the optional operator provides the best gain for the Anchors and Ranges
instances (despite being successful in only 3 and 14 uses, respectively); the end
anchor operator provides the best gain for Backrefs, despite being successful only

twice, and for the A man, a plan instance (four successful applications); the start
anchor operator yielded the best gain for Triples (over nine successful applica-

tions); and, finally, the plus quantifier produced the best gain for Abba on a single

successful application.

Therefore, we observe that while the operators that grow or shorten the regular

expressions by adding or removing characters are relevant and required for the

evolutionary process to work, domain-specific operators are responsible for the

largest improvements in a number of instances. These operators allowed the local

search to outperform the genetic programming approach used as a baseline for our

comparisons and should be added and applied frequently to a regular expression

generation framework, be it driven by a local search or a more complex algorithm.

Table 13 Average improvement yielded by each neighborhood operator during the local search over the

50 optimization rounds on an instance basis

Instance EXT SW RNG DOT STAR CC NEG BR Fitness

Plain strings 28.8 195.0 73.0 67.9 36.7 80.4 36.3 168.0 207

Anchors 8.1 16.2 20.9 51.6 35.1 104.0 41.5 – 208

Ranges 39.8 37.8 46.8 11.3 46.1 26.4 21.7 – 202

Backrefs 8.9 12.4 8.8 17.8 17.4 11.2 11.5 – 172

Abba 21.1 19.0 10.8 48.8 18.2 23.5 44.2 – 187

A man, a plan 5.8 11.4 11.5 18.4 17.3 28.7 8.1 – 167

Prime 11.1 115.0 – 31.7 21.3 21.1 – 64.2 153

Four 18.7 20.9 14.7 3.0 23.0 58.7 – 136.0 184

Order 13.5 32.4 17.9 15.5 27.7 26.7 53.7 86.0 190

Triples 21.1 46.7 38.2 34.0 48.8 43.0 – – 580

Glob 34.2 29.1 21.4 – 20.0 – – – 382

Balance 40.8 42.1 – 30.0 8.0 – – – 239

Powers 8.2 – – 14.8 14.8 9.0 – 6.0 15

Long count 7.1 236.0 – – – – – – 212

Alphabetical 8.4 43.7 16.7 – 20.0 19.0 – – 299

Only the top eight most frequently successful operators are shown due to space restrictions. EXT stands

for ‘‘Extraction’’, SW is the ‘‘Swap’’ operator, RNG stands for ‘‘Range’’, DOT is the ‘‘Dot’’ operator,

STAR is the star quantifier, CC is ‘‘Concatenation’’, NEG is the ‘‘Negation’’ operator, and BR stands for

the ‘‘back reference’’ operator. The Fitness column shows the fitness of the best solution found by the

local search
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5 Conclusion

In this paper a new heuristic search technique was presented to generate regular

expressions for problems proposed in the Regex Golf challenge. This new heuristic

is based on a local search algorithm combined with a regular expression shrinker.

The Regex Golf challenge was chosen for its emphasis on finding the smallest

regular expression possible for a given problem, as well as presenting examples and

counterexamples of the expected matches.

An experimental study was designed to evaluate the proposed local search in

comparison to the state-of-the-art algorithms designed for the same problem. Fifteen

instances of the Regex Golf challenge were selected and the local search algorithm

was executed 50 times for each instance. This experiment compared the results

generated by the local search algorithm with the other two algorithms developed for

the challenge: an exact algorithm and a Genetic Programming algorithm. The local

search algorithm found better solutions in most of the selected instances in less time

than the Genetic Programming algorithm. The code used in the experimental studies

is hosted on GitHub and can be accessed at the URL https://github.com/andrefarzat/

regex-golf.

While the Regex Golf challenge rewards shorter regular expressions, this is

hardly the single aspect that might be relevant for all software developers. Shorter

regular expression may be harder to read by less experienced developers, as can be

seem in some examples in Table 8. Such expressions may become a problem for

maintenance and evolution. Software projects may also require efficient regular

expressions and such property is not clearly related to their size: parsers may check

simple, though larger expressions against a text snippet faster than small expressions

using complex operators, such as quantifiers or back-reference. Other projects may

need regular expressions that are compatible with more than one programming

language or parsing library, thus limiting the operators to be used while building

these expressions.

Furthermore, a balance of these aspects may be required by certain projects,

leading to multi-objective optimization. While the local search algorithm may be a

good choice to find regular expressions for a single fitness function, such as the one

designed for the Regex Golf challenge, genetic algorithms are much more

frequently used to find solutions in multi-objective settings. Therefore, adapting the

general genetic programming framework for the regular expression generation

problem with the domain-specific mutation operators and the shrinking algorithm

proposed in this paper may be an interesting future work.
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