
Vol.:(0123456789)

Genetic Programming and Evolvable Machines (2021) 22:229–266
https://doi.org/10.1007/s10710-021-09402-y

1 3

Efficiency improvement of genetic network programming
by tasks decomposition in different types of environments

Mohamad Roshanzamir1  · Maziar Palhang2 · Abdolreza Mirzaei2

Received: 28 November 2019 / Revised: 9 February 2021 / Accepted: 12 March 2021 /
Published online: 22 March 2021
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature
2021

Abstract
Genetic Network Programming (GNP) is a relatively recently proposed evolutionary
algorithm which is an extension of Genetic Programming (GP). However, individu-
als in GNP have graph structures. This algorithm is mainly used in decision mak-
ing process of agent control problems. It uses a graph to make a flowchart and use
this flowchart as a decision making strategy that an agent must follow to achieve
the goal. One of the most important weaknesses of this algorithm is that crosso-
ver and mutation break the structures of individuals during the evolution process.
Although it can lead to better structures, this may break suitable ones and increase
the time needed to achieve optimal solutions. Meanwhile, all the researches in this
field are dedicated to test GNP in deterministic environments. However, most of the
real-world problems are stochastic and this is another issue that should be addressed.
In this research, we try to find a mechanism that GNP shows better performance
in stochastic environments. In order to achieve this goal, the evolution process of
GNP was modified. In the proposed method, the experience of promising individu-
als was saved in consecutive generations. Then, to generate offspring in some prede-
fined number of generations, the saved experiences were used instead of crossover
and mutation. The experimental results of the proposed method were compared with
GNP and some of its versions in both deterministic and stochastic environments.
The results demonstrate the superiority of our proposed method in both determinis-
tic and stochastic environments.

Keywords  Evolutionary algorithms · Genetic network programming · Genetic
programming · Agent control problems · Deterministic and Stochastic environments

Area Editor: Sebastian Risi.

 *	 Mohamad Roshanzamir
	 mohamad.roshanzamir@ec.iut.ac.ir

Extended author information available on the last page of the article

http://orcid.org/0000-0002-4620-9008
http://crossmark.crossref.org/dialog/?doi=10.1007/s10710-021-09402-y&domain=pdf

230	 Genetic Programming and Evolvable Machines (2021) 22:229–266

1 3

1  Introduction

It is proven that there is no optimization method that can be better than all others
to solve all types of optimization problems. This theory is known as No-Free-
Lunch Theorem [1]. So, different meta-heuristic algorithms such as Genetic Algo-
rithm (GA) [2], Genetic Programming (GP) [3, 4], Particle Swarm Optimization
(PSO) [5], Ant Colony Optimization (ACO) [6, 7], Artificial Bee Colony (ABC)
[8], the Estimation of Distribution Algorithm (EDA) [9] and many new variants
are continuously invented and being used to solve various optimization problems
[10–18]. Genetic Network Programming (GNP) [19–21] as an extension of GP
is one of them. However, instead of using the tree structure as in GP, the graph
structure is used to represent the individuals to improve GNP expression ability.
In the GNP algorithm, the graph structure of individuals makes this algorithm
suitable for decision making in agent control problems [22]. The graph structure
has been composed of judgment and processing nodes enabling the individuals
to represent a decision making process as a flowchart. Indeed, they are similar to
GP’s elementary functions. Judgment and processing nodes correspond to non-
terminal and terminal nodes of GP respectively. In GNP, the individuals are com-
posed by connecting these nodes. The first difference between GNP and GP is
that in former, the processing or action nodes are terminal nodes while in latter
there is no terminal node. It means that in GP, the processing or action nodes are
not connected to other ones. But in GNP, they may have a connection to other
nodes. As a result, decisions in GNP are made according to not only the cur-
rent condition of the environment but also the actions done in the past. It means
that implementing some structures such as loops which are essential in generating
strategies for agents is easy using GNP structures while it is not convenient at all
to generate these types of strategies in GP. For example, suppose that it needs
to generate the following instruction: if condition c1 is true do action a1, then
action a2 and again action a2, then while condition c2 is true do actions a3 and
a2 respectively. Although generating these types of instructions may be possible
in GP, it needs too many modifications on crossover, mutation and the structures
of individuals in GP. In addition, GP has an inherent bloat of tree problem [23].
However, GNP does not have this problem because the number of nodes of each
individual does not change during the evolution process. Meanwhile, GNP can
generate compact and sophisticated structures considering only needed judgment
and processing nodes according to necessity [20].

There are also some other network-oriented structure evolutionary methods
such as Parallel Algorithm Discovery and Orchestration (PADO) [24], Cartesian
Genetic Programming (CGP) [25, 26] and Evolutionary Programming (EP) [27].
PADO proposes an evolutionary computation algorithm on graph like automata
which is so similar to GNP. It is formed by three main components. They are
the main program, Automatically Defined Function (ADF) programs and indexed
memory. There are a start and an end nodes in the main program of PADO. ADF
is a function set which is automatically defined in the program runs. PADO is
executed from the start node and ends in the end node in the network. CGP was

231

1 3

Genetic Programming and Evolvable Machines (2021) 22:229–266	

proposed about 20 years ago for the first time. It explores the graph based GP
motivated by a general representation of the graph structure compared with the
tree structure of GP. It can represent the solutions of computational problems as
graphs. Its encoding is an integer string that denotes the list of node connections
and functions. It also includes redundant genes to help for effective evolutionary
search. EP has also a graph structure that for the first time proposed by Fogel.
It is an evolutionary computation algorithm like GA and GP. However, gener-
ally, it uses only mutation as the evolutionary operator. EP is used as a method
for the synthesis of finite state machines automatically which is used for solving
sequence prediction problems.

However, GNP is different from these methods. While GNP can evolve programs
in both static and dynamic environments, PADO aims to evolve them in only static
environments [28]. Meanwhile, nodes in PADO have both function (processing) and
branching (judgment) behavior. They are governed by stack and index memory [29].
Different from CGP, GNP emphasizes the information transition inside the graph.
There is not any terminal or output node that halts the program explicitly. Conse-
quently, this structure is suitable to make the behavior sequences for agents [30]. In
addition, there are some notable differences between CGP and GNP. For example, In
CGP, the individuals are in the form of directed acyclic graphs while in GNP having
cycles is an important feature of individuals that helps it to produce behavioral strat-
egies for agents. Meanwhile, CGP uses 1 + λ EA in its evolution process. Commonly
crossover is not used in the evolution process of CGP. There is no explicit notion of
time delay in CGP. Finally, another important difference between GNP and CGP is
that in GNP, judgment nodes provide expert-designed high-level functionality based
on the task whereas CGP functions are usually standard mathematic functions.

There are some essential differences between GNP and EP. While in EP, the tran-
sition rule for all combinations of states and inputs must be defined, in GNP, nodes
are connected by necessity. In each situation, only the essential inputs are used in the
network flow. So, the structure of the GNP is quite compact [31].

Overall, GNP has some advantages with respect to other evolutionary algorithms.
The reusability of the nodes that make the structure more compact, creating connec-
tions according to necessity and make decisions according to not only the current
state of environment but also according to actions which were done in the past are
some of them.

For the performance improvement of GNP, various modifications were suggested.
It is also used in various applications. For example, In [19], Q-learning [32] was
used to improve the efficiency of GNP. The combination of GNP and Q-learning has
also been used in [28, 33] for faster adaptation in dynamic environments. SARSA
algorithm [32] is another reinforcement learning algorithm used in [34, 35]. It has
been applied on Khepera robot control process [36] to improve GNP efficiency.
Another combination of GNP with reinforcement learning (RL) was proposed in
[31]. In this version, there are several functions in each node. During the evolution
process, a function is selected according to its Q value. In addition, crossover and
mutation operators are defined differently from standard GNP. Defining more than
one start node is another modification proposed by Mabu and Hirasawa [37]. They
want to extract several programs from an individual.

232	 Genetic Programming and Evolvable Machines (2021) 22:229–266

1 3

Li et al. [38, 39] used EDA in their proposed method. In each iteration of their
algorithm, the structure of elite individuals is used to calculate the probabilistic
model. Then, next generation is produced according to the estimated probabilistic
model. In other words, crossover and mutation were substituted by this probabilistic
model. This mechanism was used by Li et al. [38] to find association rules in a traf-
fic forecasting system. EDA and RL are also used to produce next generation in [40].
Finally, these papers are summarized in [41].

In standard GNP, the branches have an equal chance when using crossover and
mutation operators. In individuals with high fitness values, inappropriate branches
may exist. To fix this problem, the non-uniform mutation is introduced by Meng
et al. [42]. In evolutionary algorithms, it is common to start the evolution process
from scratch. To prevent this problem, Li et al. [43] used knowledge transfer. This
leads to the shorter evolution process. In this algorithm, knowledge was formu-
lated using the rules extracted from individuals. Then, this knowledge was used as
a guideline in the evolution process. Meanwhile, RL was used to transfer knowledge
automatically.

There are also some researches that used this algorithm or some other versions
of it for different applications, especially in single/multi agent decision making
problems. Coordination of the agents in a multi-agent system is an example of GNP
applications [44, 45]. GNP was used in these studies to generate a strategy in the
pursuit domain [46]. Automatically creation of a multi-agent system using GNP
is another research done by Itoh et al. [47]. Making a Learning Classifier System
(LCS) using GNP is proposed in [48, 49]. In their proposed method, the rules were
extracted from the structure of individuals.

Swarm intelligence was also combined with GNP. ACO as one of the most suc-
cessful swarm intelligence algorithms was used in [50–52] in order to make bet-
ter exploitation ability in GNP. To make a good tradeoff between exploration and
exploitation, Lu et al. [50, 51] dedicated one iteration to ACO in every 10 iterations
of GNP in their proposed method. ABC is another swarm intelligence algorithm that
was used in [53].

In [54, 55], an investigation on one of the important features of GNP i.e. transi-
tion by necessity was done theoretically and empirically. Standard operators of GNP
treat all branches equally during evolution. In addition, the fitness of individuals
only depends on the nodes which are used during evaluation. So, new genetic opera-
tors were proposed in these papers.

Overall, according to [40, 41], breaking the useful structures when using crosso-
ver and mutation is one of the most important weaknesses of GNP. Since an indi-
vidual in GNP represents a strategy that agents must follow to achieve their goal, the
dependency of nodes in the individual’s structure is high. Crossover and mutation
break the connections frequently and completely randomly. Meanwhile, when the
agents use the strategy proposed by an individual in a stochastic environment, its
fitness is not precise. Solving this problem needs several time evaluation process of
each individual. However, as the fitness evaluation is commonly the most time con-
suming section in evolutionary algorithms, several time evaluation process of each
individual is not a suitable solution for solving this problem. In this research, both of
these issues are considered.

233

1 3

Genetic Programming and Evolvable Machines (2021) 22:229–266	

In the proposed algorithm, the reproduction probability of useful structures is
increased using the experience of promising individuals during the evaluation pro-
cess. It reduces the destructive effect of crossover and mutation. In addition, the
proposed method was applied to deterministic and stochastic environments. In sto-
chastic environments, the experience of promising individuals could help us to esti-
mate the fitness of each individual more precisely. Keeping a good balance between
exploration and exploitation is another goal of our proposed method.

This paper is organized as follows. The GNP algorithm is reviewed in Sect. 2.
Section 3 describes the stochastic environments. Our proposed algorithm is pre-
sented in detail in Sect. 4. In Sects. 5 and 6, the experimental results and discussion
are presented, respectively. In the end, conclusions and future works are discussed in
Sect. 7.

2 � GNP

As it is shown in Algorithm 1, GNP includes three steps. As the first step, some
directed graphs are produced. Then, they are evaluated and finally according to their
fitness some offspring are generated using crossover and mutation.

2.1 � Population structure

Unlike GP that individuals have a tree structure, in GNP, they have a graph structure.
This structure increases its expressive ability. It can describe more complex strategies.
As it is clear in Fig. 1, a directed graph like a flowchart can model a strategy that an
agent must follow to achieve its goal. The directed graph is made of these three types of
nodes. They are start node as the indicator that the strategy starts, the judgment nodes
that investigate the conditions in the environment and the processing nodes that are
defined according to the actions that the agents can do. As it is shown in the genotype
structure of an individual, each node has an identification number i and is composed
of two sections. The first section is Node Gene and the second section is Connection
Gene. The Node Gene is composed of three subsections. The first subsection is NTi. It

Node 1
Node 2
Node 3
Node 4
Node 5
Node 6

0 0 0 2 0
1 J1 1 4 0 3 0 6 0
1 J2 1 6 0 4 0
2 P1 5 3 0
2 P2 5 2 0
2 P1 5 5 0

Node i
Node Gene Connection Gene (Bi)

NTi NFi di Ci1 di1 … Cin din

Start node Judgement Node Processing node

(a) (b)

1

5

4

2

36

Fig. 1   a Phenotype and b Genotype structure of an individual in GNP algorithms

234	 Genetic Programming and Evolvable Machines (2021) 22:229–266

1 3

denotes the type of node i. The second subsection is NFi that denotes the function that
node i executes and the last subsection is di that shows the time delay of node i function
execution. Connection Gene section which is named Bi is the set of node i branches. It
is composed of two subsections. Subsection Cij determines the node that jth branch of
node i is connected to and the subsection dij shows the transition time delay of the jth
branch of node i.

As it is shown in Fig. 1b, NT, NF and d subsections of start node are set to zero.
The start node only denotes the node from which the strategy must be started. Conse-
quently, only the Connection Gene of this node is assigned. For judgment nodes, NT
is set to one and the number of connections in the Connection Gene is more than one.
Each branch in a Connection Gene corresponds to a specific condition in the environ-
ment. In processing nodes, NT is set to two and the number of connections in the Con-
nection Gene is one because there is no conditional branch in them.

This structure shows a strategy that agents follow in the environment. For example,
suppose that an agent wants to use the individual presented in Fig. 1 as its strategy.
The agent starts at Node 1. According to this node, it must go to Node 2. Node 2 is a
judgment node. The agent executes the J1 function. This function investigates the state
of environment. If according to the environment state, the agent has to follow the third
branch of Node 2, it goes to Node 6 and executes P1 as the process specified in this
node. Then, it goes to Node 5 and executes the process of this node i.e. P2.

In the GNP structure, there are two types of time delay. di is the time delay for node i
execution and dij is the time delay needed for the transition between nodes of individu-
als. These two types of time delays are introduced to model the delays in the human
decision making process. They can be used to define the steps in the decision making
process. The number of steps is considered a terminal condition during the decision
making process.

2.2 � Crossover

As it is clear in Fig. 2, two offspring are generated by crossover operator applied on two
parents selected by an algorithm of choice such as tournament selection [23]. During
crossover operation, in the selected parents, a pair of nodes with the same identification
number exchange their connections with a predefined probability Pc.

2.3 � Mutation

For mutation, as it is illustrated in Fig. 3, each branch of Connection Gene is changed
to another randomly selected node identification number with probability Pm.

3 � Deterministic and stochastic environments

According to [56], if the current state of an environment and executed action
of an agent completely determine the next state of the environment, then this
type of environment is known as deterministic. If this feature does not exist, the

235

1 3

Genetic Programming and Evolvable Machines (2021) 22:229–266	

environment is known as stochastic. An example model of a stochastic environ-
ment is shown in Fig. 4. In these environments, with a specific probability named
as the deterministic parameter, each action achieves the intended outcome. Sup-
pose the agent wants to move forward. In this case, the probability of moving

Offspring 1 Offspring 2

1

5

4

2

36

1

5

4

2

36

1

5

4

2

36

1

5

4

2

36

Fig. 2   In GNP, the crossover operator exchanges the bold connections between nodes 3 and 5

Parent Offspring

1

5

4

2

36

1

5

4

2

36

Fig. 3   In GNP, mutation operator changes the bold connections of nodes 1 and 2

Fig. 4   An example of stochastic
model [56]

0.6

0.20.2

236	 Genetic Programming and Evolvable Machines (2021) 22:229–266

1 3

forward is 60% and there is 20% chance of moving left and 20% chance of mov-
ing right.

4 � Proposed algorithm

Our proposed algorithm is named Tasks Decomposition Genetic Network Program-
ming (TDGNP). This algorithm is composed of two phases. These phases are named
exploration oriented phase and exploitation oriented phase. To produce new indi-
viduals in the exploration oriented phase of TDGNP, standard operators of GNP i.e.
mutation and crossover are used. In addition, during this phase, promising individu-
als distribute their fitness on the sequences of nodes’ connections used by the agents.
This distribution is done according to our proposed method which is explained in
the following. Before that, we need to define two concepts: (1) sequence and (2)
task. A sequence is defined as the trail of some tasks. A task is defined as some
judgment nodes followed by some processing nodes that an agent uses according
to the structure of an individual when that individual is used as the strategy of the
agent. In Fig. 5, an example of a sequence composed of two tasks is shown.

In the proposed method, a value is assigned to all possible connections propor-
tional to the fitness of promising individuals within the exploration oriented phase.
Then, within the exploitation oriented phase, these values as the accumulated expe-
rience of previous generations are used to produce the next generation. Algorithm 2
clearly describes our proposed method. Like other evolutionary algorithms, TDGNP
is an iterative algorithm and in every K iterations, exploration and exploitation
oriented phases take turn. There are exploration and exploitation in both of these
phases but their names are chosen based on the dominant feature. During the explo-
ration phase, next generation is produced using standard operators of GNP i.e. cross-
over and mutation. However, during exploitation phase, the individuals are gener-
ated according to the accumulated experience of promising individuals.

According to [22], the philosophy behind GNP is finding the optimal strategy
for decision making of agents in the environments. It was mentioned in this refer-
ence that using GNP, we want to find which condition(s) must be investigated and
according to each condition, which action(s) must be done. Then, according to what
has been performed so far, the next conditions or actions are selected to be inves-
tigated or executed, respectively. Using task decomposition, we try to improve the

Task 1 Task 2

Sequence

Fig. 5   There are two tasks in this sequence

237

1 3

Genetic Programming and Evolvable Machines (2021) 22:229–266	

quality of producing these types of structures. The value assigned to the connections
of each task in each sequence is proportional to its importance in goal achievement.
In GP, because of the tree structure of its individuals, applying this mechanism is
not straightforward.

In the following, we will explain how this accumulated experience is calculated.
In each iteration of exploration oriented phase, crossover and mutation of standard
GNP produce the individuals of the next generation. However, within the iterations
of the exploitation oriented phase, branch b of node i which is shown by bi is con-
nected to node n with probability p(bi,n). This probability is calculated according to
Eq. 1. This is done for all branches of all nodes in the structures of an individual to
produce a new one.

In this equation, N shows the number of nodes in the structure of an individual.
In the structure of individuals, the indegree of the first node (start node) is zero. So,
in this equation, variable m is set to 2. Finally, v(bi,n) is the value assigned to the bi
assuming it is connected to node n.

To calculate the experience of successive generations, as the first step, the effec-
tiveness of the connections in the tasks of the sequences is assigned according to
Eq. 2.

In this equation, the effectiveness of bi if it is connected to node n is shown by
e(bi, n). Parameter λ (0 < λ ≤ 1) is a discounting factor. Connections in the later tasks
have larger e(bi, n) than connections in the earlier tasks. Then, the fitness of each M
promising individual is distributed on the connections according to Eqs. 3, 4 and 5.

In these equations, g and α show the generation number and updating factor of
v(bi, n) respectively. In each iteration, M promising individuals update values of
tasks’ connections using Eq. 3. fitnessk is the fitness of kth promising individual. In
these equations, σ(bi, n)k is set to one whenever bi is used by an agent that executes
individual k as its strategy. To prevent the value of connections from rapid growth,

(1)p
�

bi, n
�

=
v
�

bi, n
�

∑N

m=2
v
�

bi,m
�

∀bi

(2)e
(

bi, n
)

=

{

1 if
(

bi, n
)

∈ current task

�e
(

bi, n
)

O.W.
∀
(

bi, n
)

(3)

v
�

bi, n
�

g+1
= v

�

bi, n
�

g
+ �

�

e
�

bi, n
�

∑M

k=1
Δv

�

bi, n
�

k
∑M

k=1
�
�

bi, n
�

k

− v
�

bi, n
�

g

�

∀
�

bi, n
�

(4)Δv
(

bi, n
)

k
=

{

log
(

fitnessk
)

if self loop is not created

0 O.W.

(5)�
(

bi, n
)

k
=

{

1 if it is used durig runtime

0 O.W.

238	 Genetic Programming and Evolvable Machines (2021) 22:229–266

1 3

the log function is used in Eq. 4. This can prevent premature convergence in the evo-
lution process. What we are looking for is the expected value of bi when it is con-
nected to node n. These equations can approximate this expected value proportional
to its effectiveness in the goal achievement.

When an individual is produced, the agents use it as their strategy to interact with
the environment. Based on the interaction results, the fitness of individuals is esti-
mated. After calculating individuals’ fitness, the sequences generated during the
interaction of M promising individuals with the environment are extracted. Then, the
tasks in each sequence are determined. Finally, for each of M promising individuals,
we use Eq. 3 to distribute its fitness on the connections of its tasks.

It was mentioned that if bi which is connected to node n is used during individual
execution, σ(bi, n)k is set to one. It not only takes into account the existence of a con-
nection but also shows how useful it is. Consequently, during an individual execu-
tion, only the value of the used connections is updated. This way, the usefulness of
connections can be learned. In addition, when a connection of an individual is used
several times, its effectiveness should not increase repeatedly. We only reset it to
one. Using this mechanism, the high accumulation of fitness on the connections that
participated in the loops is avoided.

5 � Experimental results

Our proposed method was applied to Tile-world [57] and Pursuit-domain [46]
benchmarks to test its effectiveness. These problems are two agent control problems
that are commonly used in GNP research [20, 21, 28, 41, 44, 45, 49].

5.1 � Tile‑world

In this benchmark, we have some agents that try to push some tiles into the holes
while there are some obstacles in the environment. An example of this problem can
be seen in Fig. 6.

The interactions of the agents with the environment are based on judgment and
processing functions defined for them. These functions are listed in Table 1. An
example of using judgment functions is shown in Fig. 7. According to the results
of these judgment functions, agents select one or more processing functions to

Fig. 6   Tile-world environmen

239

1 3

Genetic Programming and Evolvable Machines (2021) 22:229–266	

execute in the environment. When a tile is dropped into a hole, the hole is filled
by the tile and both of them are vanished. The corresponding cell is also con-
verted into the floor. The program of controlling the agents’ behaviors can be
generated by combining judgment and processing functions.

The behavior of agents is evaluated by the method proposed in [41]. According
to that method, the fitness of an individual is calculated based on the number of
tiles which is dropped into the holes, the speed of agents in dropping the tiles and
if the agents cannot drop all tiles into the holes, how much they can push the tiles
nearer to the holes. These three factors are taken into accounts in the Eq. 6.

Table 1   List of Tile-world functions

Node type ID Node function Outputs of the functions

Judgment J1 Check immediately forward cell Floor, Obstacle, Tile, Hole, Agent
J2 Check immediately backward cell
J3 Check immediately left cell
J4 Check immediately right cell
J5 Check the direction of nearest tile Forward, Backward, Left, Right, Not found
J6 Check the direction of the nearest hole
J7 Check the direction of the nearest hole

from nearest tile
J8 Check the direction of the second nearest

tile
Processing P1 Move forward There is no output

P2 90 degree turn left
P3 90 degree turn right
P4 Stay in place

Judgment
Functions ID

Outputs

J1 Obstacle

J2 Floor

J3 Floor

J4 Tile

J5 Right

J6 Backward

J7 Backward

J8 Forward

(a) (b)

Fig. 7   a How an agent can sense the directions in Tile-world and b the outputs of using these judgment
functions

240	 Genetic Programming and Evolvable Machines (2021) 22:229–266

1 3

In this equation, SUB is the predefined number of steps that the agents are allowed
to move in the environment. The number of dropped tiles into the holes within SUB
steps is shown by DT. Sused is used to measure the speed of agents to drop all tiles
into the holes. It shows how many steps the agents use to achieve their goals. T is
the number of tiles which is not dropped into the holes. The initial and final distance
of each tile from its nearest hole is shown by ID and FD, respectively. Finally, the
weight of these three factors is shown by wt, ws and wd. In this research, SUB, wt, ws
and wd are set to 60, 100, 3 and 20, respectively. The goal of this experiment is to
find an individual that can achieve the highest fitness value when agents are con-
trolled according to this individual.

5.2 � Pursuit‑domain

Pursuit-domain or prey and predator problem is also used as a benchmark to test
the performance of agent control algorithms. Pursuit-domain consists of some adja-
cent cells like Tile-world. A segment of the environment of this benchmark is shown
in Fig. 8a. In this study, the pursuit domain is a 20 × 20 2D toroidal environment
[46] with one prey and four predators in it. The cells of this environment may con-
tain prey or predator. Otherwise, they are considered as floor. If the prey is put in a
situation like Fig. 8b, it means that it was captured by the predators. The judgment
and processing functions that correspond to the sensors and the actors of predators
respectively are described in Table 2. Meanwhile, the prey moves randomly in the
environment. In this research, the speed of the prey is half of the predators’ speed.

Like Tile-world, the fitness of individuals in this benchmark is calculated accord-
ing to three factors. The first factor is the predator’s ability in chasing after the prey.
The second factor is the number of predators which is placed in the adjacent cells of
the prey and the third factor is how fast the prey can be hunted by the predators. We
formulate these three factors as Eq. 7.

(6)Fitness = [wt × DT] + [ws × (SUB − Sused)] +

[

wd ×

(

T
∑

t=1

(

ID(t) − FD(t)

)

)]

(7)

Fitnessr,w =

[

Sused
∑

i=1

NoP
∑

j=1

(

ES

DP2P
j

i

)]

+

[

cPos
∑

i=1

ES

]

+
[

4 × ES ×
(

SUB − Sused + 1
)]

Fig. 8   a Prey and predators in
Pursuit-domain, b The predators
capture the prey

241

1 3

Genetic Programming and Evolvable Machines (2021) 22:229–266	

In this equation, ES shows the environment size. In step i, the distance of preda-
tor j from the prey is shown by DP2Pj

i
 . Sused is the number of taken steps to hunt the

prey and NoP is the number of predators in the environment. Agents are allowed to
move at most SUB steps in the environment. After this number of steps, the number
of immediately adjacent cells that are occupied by predators is shown by cPos. In
world number w and run number r, fitnessr,w is calculated according to Eq. (7).

Pursuit-domain is a dynamic environment. So, each individual is run R times on
W environments with different positions of the predators and prey. Consequently, the
final fitness of each individual is estimated according to Eq. 8.

5.3 � Experimental analysis

In this section, the performance of TDGNP was compared with GNP [19–21] and
some other states-of-the-art extensions of GNP which we call GNP-ACO1 [51],
GNP-ACO2 [50] and GNP-ABC [53]. Some other algorithms like SARSA, Q-learn-
ing and GP were compared with GNP and some of its versions [41, 53]. Accord-
ing to the reported results, their performances are almost always in the next rank of
GNP. So, we did not implement and investigate them again in this research.

We conducted experiments for different values of the deterministic parameter
defined in Sect. 3 on both of the above mentioned benchmarks. The deterministic
parameter values used in the experiments are 0.5, 0.75 and 1.0. This helps us to see
how the performance of the investigated algorithms varies with respect to determin-
istic parameter changes. Meanwhile, the various number of instance of each node
indexed in Tables 1 and 2 is used in each individual. In other words, it is possible to
have more than one instance of each judgment and processing nodes in an individ-
ual. When there is more than one instance of each node, making different structures
in an individual is more flexible. Suppose that in the optimal strategy, two instances

(8)Final fitness =

(

R
∑

r=1

W
∑

w=1

fitnessr,w

)

∕(R ×W)

Table 2   List of the functions in Pursuit-domain

Node type ID Node function Outputs of the functions

Judgment J1 Check immediately forward cell Floor, Obstacle, Prey, Predator
J2 Check immediately backward cell
J3 Check immediately left cell
J4 Check immediately right cell
J5 Check the direction of the nearest prey

form a predator
Forward, Backward, Left, Right

Processing P1 Move forward There is no output
P2 90 degree turn left
P3 90 degree turn right
P4 Stay in its place

242	 Genetic Programming and Evolvable Machines (2021) 22:229–266

1 3

of a node are needed. If there is only one instance of that node, it must be used in
the position that the individual shows better performance. However, if there are two
instances, they can be used in two different situations and the evolutionary algorithm
is not forced to have a selection between two situations that needs that specific node.
In this research, this parameter which is named program size is set with different
values 1, 3, 5 and 10 to investigate its effectiveness on the algorithms. The other
parameters of these algorithms are set to the optimal values as suggested in their
references (see Table 3). Each algorithm was run 30 times. So, 30 independent solu-
tions were created which their performance will be compared.

5.3.1 � Tile world problem experimental results

In this section, the algorithms are applied to Tile-world shown in Fig. 6 and their
performances are compared and analyzed. Termination condition in these algo-
rithms is the maximum number of fitness evaluation and in this benchmark, we set
it to 300,000.

When the deterministic parameter is set to 1, i.e. the environment is deterministic,
the fitness of investigated algorithms is illustrated in Fig. 9. This figure exhibits that
in all tests, TDGNP surpasses other algorithms particularly when program size is
set to 1. Others show more or less similar performance. GNP-ACO2 performance
is better than GNP-ACO1 because GNP-ACO2 accumulates its previous experience
during the evolution process while in GNP-ACO1, after a predefined number of iter-
ations, the accumulated experience is reset. GNP-ABC could achieve results similar
to other methods but at a slower rate because of its weaker exploration ability [53].

Table 3   Different algorithms’ parameters in the pursuit domain (P.D.) and Tile-world (T.W.) problems

* This parameter is the number of individuals produced by this mechanism in next generation

Name of algorithms Standard GNP GNP-ACO1 GNP-ACO2 GNP-ABC TDGNP

Parameter name P.D T.W P.D T.W P.D T.W P.D T.W P.D T.W

Population size 50 300 50 300 50 300 50 300 50 300
SUB 60 60 60 60 60 60 60 60 60 60
Elite ind.* 1 1 1 1 1 1 – – – –
Crossover ind.* 20 120 20 120 20 120 – – – –
Crossover rate 0.90 0.40 0.90 0.10 0.90 0.10 – – – –
Mutation ind.* 29 179 29 179 29 179 – – – –
Mutation rate 0.01 0.01 0.01 0.01 0.01 0.01 – – – –
Tournament size 2 2 2 2 2 2 2 2 – –
ρ – – 0.1 0.1 0.1 0.1 – – 0.1 0.1
λ – – – – – – – – 0.99 0.99
α – – – – – – – – 0.9 0.9
K – – – – – – – – 10 10
M – – – – – – – – 10 10

243

1 3

Genetic Programming and Evolvable Machines (2021) 22:229–266	

The experimental results are detailed in Tables 4, 5, 6, 7, 8, 9, 10 and 11. For
clarity, the results of the best algorithm are marked in boldface. They reveal that
TDGNP is better than other algorithms. However, according to the p-values of the
Wilcoxon test at 0.05 significant level [58], in some cases, there is no significant
difference between TDGNP and some other algorithms when program size is more
than one. Strategies generated by individuals lack sufficient representation power
when program size is one. For example, suppose that the optimal strategy requires
at least two processing nodes that cause agents to move forward. When only one is
available (due to program size of one), the algorithm cannot create the eligible indi-
vidual to achieve the goal. So, the algorithms must investigate the search space more
precisely to find better solutions. It needs an excellent balance between exploration
and exploitation. On the other hand, when the program size is large, the dimension
of search space is increased drastically. But the representation power of generated
individuals is also increased. In both of these cases, TDGNP and GNP-ACO2 are in
the first and second ranks, respectively. It shows that these two algorithms exhibit
better exploration–exploitation balance during the evolution process.

Another topic of interest is the overall mean of fitness in these tables. When the
deterministic parameter is one, they are about 449, 574, 593 and 596 corresponding
to the program size of one, three, five and ten, respectively. Obviously, when the pro-
gram size is increased from one to three, the performance of algorithms significantly

Fig. 9   Performance curve in Tile-world when the deterministic parameter is 1 and program size is a 1, b
3, c 5 and d 10

244	 Genetic Programming and Evolvable Machines (2021) 22:229–266

1 3

Ta
bl

e 
4  

D
et

ai
le

d
re

su
lts

 in
 T

ile
-w

or
ld

 w
ith

 p
ro

gr
am

 si
ze

 a
nd

 d
et

er
m

in
ist

ic
 p

ar
am

et
er

 o
f 1

N
am

e
of

 a
lg

or
ith

m
s

R
an

k
Fi

tn
es

s
N

um
be

r o
f s

uc
-

ce
ss

fu
l r

un
s

Ta
ke

n
ste

ps

w
ith

in
 su

cc
es

sf
ul

ru

ns
M

ea
n

p-
va

lu
e

ST
D

Lo
w

er
 q

ua
rti

le
M

ed
ia

n
U

pp
er

 q
ua

rti
le

G
N

P
5

42
3

0.
00

62
26

13
8.

2
34

0
37

0
55

7
13

37
.3

8
G

N
P-

A
CO

1
4

42
6.

17
0.

01
25

13
4.

32
34

0
37

0
55

0
13

38
.2

3
G

N
P-

A
CO

2
2

45
2.

77
0.

01
20

24
13

2.
97

34
0

45
8.

5
57

6
15

34
.8

7
G

N
P-

A
B

C
3

43
2.

97
0.

04
87

56
87

.5
2

34
0

50
1

57
6

5
51

.4
TD

G
N
P

1
50
7.
83

–
12
2.
96

36
0

56
6

58
7

21
31
.1
4

M
ea

n
44

8.
54

8
13

.4

245

1 3

Genetic Programming and Evolvable Machines (2021) 22:229–266	

Ta
bl

e 
5  

D
et

ai
le

d
re

su
lts

 in
 T

ile
-w

or
ld

 w
ith

 p
ro

gr
am

 si
ze

 3
 a

nd
 d

et
er

m
in

ist
ic

 p
ar

am
et

er
 1

N
am

e
of

 a
lg

or
ith

m
s

R
an

k
Fi

tn
es

s
N

um
be

r o
f s

uc
-

ce
ss

fu
l r

un
s

Ta
ke

n
ste

ps

w
ith

in
 su

cc
es

sf
ul

ru

ns
M

ea
n

p-
va

lu
e

ST
D

Lo
w

er
 q

ua
rti

le
M

ed
ia

n
U

pp
er

 q
ua

rti
le

G
N

P
2

58
5.

17
0.

10
48

74
65

.1
6

58
0

60
6

61
5

28
26

.5
G

N
P-

A
CO

1
4

56
2.

63
0.

00
27

09
83

.4
6

56
5

59
3

60
4

26
28

.9
6

G
N

P-
A

CO
2

3
57

3.
3

0.
09

80
19

76
.2

6
58

2
60

0
61

4
27

27
.8

9
G

N
P-

A
B

C
5

56
2.

23
0.

49
33

36
81

.7
4

58
0

60
2

60
4

16
48

.7
5

TD
G
N
P

1
58
7.
2

–
78
.5
8

60
2

61
4

62
0

27
21
.5
2

M
ea

n
57

4.
10

6
24

.8

246	 Genetic Programming and Evolvable Machines (2021) 22:229–266

1 3

Ta
bl

e 
6  

D
et

ai
le

d
re

su
lts

 in
 T

ile
-w

or
ld

 w
ith

 p
ro

gr
am

 si
ze

 5
 a

nd
 d

et
er

m
in

ist
ic

 p
ar

am
et

er
 1

N
am

e
of

 a
lg

or
ith

m
s

R
an

k
Fi

tn
es

s
N

um
be

r o
f s

uc
-

ce
ss

fu
l r

un
s

Ta
ke

n
ste

ps

w
ith

in
 su

cc
es

sf
ul

ru

ns
M

ea
n

p-
va

lu
e

ST
D

Lo
w

er
 q

ua
rti

le
M

ed
ia

n
U

pp
er

 q
ua

rti
le

G
N

P
2

59
9.

83
0.

11
65

71
23

.8
3

58
8

60
4

62
0

30
26

.9
G

N
P-

A
CO

1
5

57
1.

5
0.

04
03

64
85

.9
7

58
1

60
5

61
5

26
25

.5
4

G
N

P-
A

CO
2

4
58

8.
93

0.
60

43
36

70
.8

5
59

4
61

0
62

2
28

24
.6

4
G

N
P-

A
B

C
3

59
2.

87
0.

29
24

67
70

.8
8

58
8

61
0

61
5

26
42

.3
8

TD
G
N
P

1
61
0.
7

–
12
.6
9

59
9

61
4

62
0

30
22
.1

M
ea

n
59

2.
76

6
28

247

1 3

Genetic Programming and Evolvable Machines (2021) 22:229–266	

Ta
bl

e 
7  

D
et

ai
le

d
re

su
lts

 in
 T

ile
-w

or
ld

 w
ith

 p
ro

gr
am

 si
ze

 5
 a

nd
 d

et
er

m
in

ist
ic

 p
ar

am
et

er
 0

.7
5

N
am

e
of

 a
lg

or
ith

m
s

R
an

k
Fi

tn
es

s
N

um
be

r o
f s

uc
-

ce
ss

fu
l r

un
s

Ta
ke

n
ste

ps

w
ith

in
 su

cc
es

sf
ul

ru

ns
M

ea
n

p-
va

lu
e

ST
D

Lo
w

er
 q

ua
rti

le
M

ed
ia

n
U

pp
er

 q
ua

rti
le

G
N

P
4

15
3.

43
2.

69
E 

−
 03

16
.6

8
14

0.
20

15
1.

40
16

1.
20

0
–

G
N

P-
A

CO
1

3
16

0.
75

1.
84

E 
−

 02
30

.0
9

13
8.

60
16

0.
80

17
7.

20
0

–
G

N
P-

A
CO

2
2

16
4.

24
0.

00
64

56
24

.4
7

14
2.

20
16

9.
40

18
1.

20
0.

01
45

G
N

P-
A

B
C

5
10

0.
55

7.
11

E 
−

 09
33

.4
9

78
.0

0
10

7.
10

12
9.

60
0

–
TD

G
N
P

1
19
3.
54

–
61
.7
1

14
5.
60

17
4.
20

25
0.
64

0.
09

41
.7
9

M
ea

n
15

4.
50

2
0.

02

248	 Genetic Programming and Evolvable Machines (2021) 22:229–266

1 3

Ta
bl

e 
8  

D
et

ai
le

d
re

su
lts

 in
 T

ile
-w

or
ld

 w
ith

 p
ro

gr
am

 si
ze

 5
 a

nd
 d

et
er

m
in

ist
ic

 p
ar

am
et

er
 0

.5

N
am

e
of

 a
lg

or
ith

m
s

R
an

k
Fi

tn
es

s
N

um
be

r o
f s

uc
-

ce
ss

fu
l r

un
s

Ta
ke

n
ste

ps

w
ith

in
 su

cc
es

sf
ul

ru

ns
M

ea
n

p-
va

lu
e

ST
D

Lo
w

er
 q

ua
rti

le
M

ed
ia

n
U

pp
er

 q
ua

rti
le

St
an

da
rd

 G
N

P
3

11
5.

33
9.

47
E 

−
 01

21
.8

5
10

1.
00

12
0.

00
12

6.
00

0
–

G
N

P-
A

CO
1

4
82

.1
9

1.
86

E 
−

 06
16

.6
68

.4
0

84
.2

0
93

.8
0

0
–

G
N

P-
A

CO
2

2
11

8.
16

0.
85

33
76

15
.0

6
10

8.
60

11
9.

80
12

8.
40

0.
01

56
G

N
P-

A
B

C
5

66
.6

2
7.

76
E 

−
 09

18
.6

8
53

.8
0

66
.8

0
84

.6
0

0
–

TD
G
N
P

1
11
8.
76

–
31
.4
1

99
.4
0

11
6.
50

13
5.
00

0
–

M
ea

n
10

0.
21

2
0.

00
2

249

1 3

Genetic Programming and Evolvable Machines (2021) 22:229–266	

Ta
bl

e 
9  

E
xp

er
im

en
ta

l r
es

ul
ts

 in
 T

ile
-w

or
ld

 w
ith

 p
ro

gr
am

 si
ze

 1
0

an
d

de
te

rm
in

ist
ic

 p
ar

am
et

er
 1

N
am

e
of

 a
lg

or
ith

m
s

R
an

k
Fi

tn
es

s
N

um
be

r o
f s

uc
-

ce
ss

fu
l r

un
s

Ta
ke

n
ste

ps

w
ith

in
 su

cc
es

sf
ul

ru

ns
M

ea
n

p-
va

lu
e

ST
D

Lo
w

er
 q

ua
rti

le
M

ed
ia

n
U

pp
er

 q
ua

rti
le

G
N

P
5

56
2.

33
7.

08
E 

−
 06

80
.7

2
56

2.
00

58
8.

00
60

5.
00

27
31

.2
6

G
N

P-
A

CO
1

3
60

4.
2

0.
41

13
25

27
.7

59
3.

00
61

7.
00

62
2.

00
30

25
.4

3
G

N
P-

A
CO

2
2

60
8.

2
0.

25
40

54
16

.8
59

6.
00

61
4.

00
62

0.
00

30
24

.1
3

G
N

P-
A

B
C

4
58

9.
5

0.
74

40
79

70
.7

9
58

0.
00

59
9.

00
61

2.
00

25
42

.8
4

TD
G
N
P

1
61
4.
3

–
13
.4
9

60
8.
00

61
4.
00

62
6.
00

30
20
.9

M
ea

n
59

5.
70

6
28

.4

250	 Genetic Programming and Evolvable Machines (2021) 22:229–266

1 3

Ta
bl

e 
10

  
D

et
ai

le
d

re
su

lts
 in

 T
ile

-w
or

ld
 w

ith
 p

ro
gr

am
 si

ze
 1

0
an

d
de

te
rm

in
ist

ic
 p

ar
am

et
er

 0
.7

5

N
am

e
of

 a
lg

or
ith

m
s

R
an

k
Fi

tn
es

s
N

um
be

r o
f s

uc
-

ce
ss

fu
l r

un
s

Ta
ke

n
ste

ps

w
ith

in
 su

cc
es

sf
ul

ru

ns
M

ea
n

p-
va

lu
e

ST
D

Lo
w

er
 q

ua
rti

le
M

ed
ia

n
U

pp
er

 q
ua

rti
le

St
an

da
rd

 G
N

P
3

13
9.

29
1.

93
 E

 −
 01

16
.4

9
13

5.
20

13
9.

80
14

8.
20

0
–

G
N

P-
A

CO
1

4
13

6.
89

2.
23

 E
 −

 02
12

.3
13

3.
40

13
8.

50
14

1.
20

0
–

G
N

P-
A

CO
2

2
14

4.
17

0.
62

56
07

19
.3

7
12

8.
00

14
3.

00
15

9.
40

0
–

G
N

P-
A

B
C

5
88

.5
5

1.
73

 E
 −

 07
24

.1
9

75
.4

0
83

.2
0

10
8.

40
0

–
TD

G
N
P

1
14
4.
65

–
45
.0
5

13
7.
40

14
4.
70

16
0.
20

0
–

M
ea

n
13

0.
71

0

251

1 3

Genetic Programming and Evolvable Machines (2021) 22:229–266	

Ta
bl

e 
11

  
D

et
ai

le
d

re
su

lts
 in

 T
ile

-w
or

ld
 w

ith
 p

ro
gr

am
 si

ze
 1

0
an

d
de

te
rm

in
ist

ic
 p

ar
am

et
er

 0
.5

0

N
am

e
of

 a
lg

or
ith

m
s

R
an

k
Fi

tn
es

s
N

um
be

r o
f s

uc
-

ce
ss

fu
l r

un
s

Ta
ke

n
ste

ps

w
ith

in
 su

cc
es

sf
ul

ru

ns
M

ea
n

p-
va

lu
e

ST
D

Lo
w

er
 q

ua
rti

le
M

ed
ia

n
U

pp
er

 q
ua

rti
le

G
N

P
3

94
.9

2
2.

46
 E

 −
 02

13
.3

86
.8

0
91

.8
0

99
.8

0
0

–
G

N
P-

A
CO

1
5

69
.1

9
8.

82
 E

 −
 07

17
.7

7
56

.2
0

71
.2

0
78

.8
0

0
–

G
N

P-
A

CO
2

2
95

.9
3

0.
04

35
63

13
.6

5
86

.4
0

94
.5

0
10

3.
80

0
–

G
N

P-
A

B
C

4
69

.4
9

1.
58

 E
 −

 05
29

.3
2

47
.4

0
64

.4
0

94
.0

0
0

–
TD

G
N
P

1
10
5.
67

–
26
.4
2

92
.4
0

10
7.
80

12
3.
40

0
–

M
ea

n
87

.0
4

0

252	 Genetic Programming and Evolvable Machines (2021) 22:229–266

1 3

improved. However, this notable improvement does not continue especially when
we change the program size from five to ten. Considering the exponential growth of
search space with respect to the program size and negligible performance improve-
ment beyond program size of five, increasing program size more than 5 is not rea-
sonable. In this environment, when the deterministic parameter is less than 1, i.e. the
environment is stochastic, the calculated fitness is not correct if an individual is run
just once. It is necessary to run each individual several times and calculate expected
fitness. So, when the deterministic parameter is set to 0.50 or 0.75, the best individ-
ual in each run is averaged over 100 times of execution to calculate its fitness more
precisely. When the environment is stochastic, the fitness of individuals is decreased.
This is due to the fact that executing the selected actions in a stochastic environment
does not necessarily lead to the same outcome. This phenomenon leads astray the
evolution process which hurts performance. However, TDGNP performance is still
better than others because it uses accumulated fitness distributed on the connections
during the evolution process to generate offspring. Indeed, accumulated fitness can
tackle the stochastic condition in the environment because it uses the experience of a
group of individuals, not just one.

The last two columns of Tables 4, 5, 6, 7, 8, 9, 10 and 11 are some other cri-
teria that can be used to compare algorithms. They show the success rate of final
goal achievement and the number of steps taken to do so. For example, according
to Table 4, TDGNP, as the best algorithm could be successful 21 times out of 30
trials. In these 21 times, the goal has been achieved in 31.14 steps on average. So,
TDGNP is not only the most successful algorithm but also is the fastest one. In our
experiments, each step is defined as using a processing node or at most five judg-
ment nodes in the structure of individuals.

5.3.2 � Pursuit‑domain experimental results

In this section, the algorithms were applied to Pursuit-domain and their perfor-
mances were compared. Solving Pursuit-domain seems easier than Tile-world.
However, due to its dynamic nature, learning is more challenging. During this test,
algorithms were run 30 times independently. In each run, because of the dynamic
nature of the problem, each individual was applied to 20 environments with different
positions of predators and prey. It means that in Eq. 8, R and W were set to 30 and
20 respectively. The termination condition in this test is the maximum number of fit-
ness evaluations which is set to 20,000.

When the deterministic parameter is set to one, the fitness curves of different
algorithms are shown in Fig. 10. In these tests, TDGNP is the best algorithm. GNP,
GNP-ACO2, GNP-ACO1 and GNP-ABC, are in the next ranks, respectively.

The detailed results are shown in Tables 12, 13, 14, 15, 16, 17, 18 and 19. The
results of the best algorithm are marked in boldface. As it is apparent, in a deter-
ministic environment, TDGNP as the best algorithm is significantly better than
others according to the p-values. The results also illustrate TDGNP superiority in
deterministic and dynamic conditions. Differently from Tile-world, increasing the
program size in Pursuit-domain leads to decreasing the performance of algorithms.
Increasing the program size makes the search space large. Consequently, finding

253

1 3

Genetic Programming and Evolvable Machines (2021) 22:229–266	

solutions will be so hard especially when the environments are dynamic. This deg-
radation is also observable in the last two columns of these tables. The number of
successful runs for hunting the prey is reduced from 231 for program size of one to
122 for program size of ten.

When the environment is stochastic, although TDGNP is significantly better
than others for program size of five and a deterministic parameter of 0.75, it cannot
retain its superiority when program size changes to ten or deterministic parameter is
reduced to 0.50. This is due to the fact that learning in extremely large search space
is hard and agents’ actions do not yield the expected outcome due to the working
in a stochastic environment. In these conditions, learning takes much more time. In
other words, although our proposed method is better than others in stochastic envi-
ronments, it cannot afford huge stochasticity. It does not mean that other algorithms
can do this. Indeed, in this condition, learning is extremely difficult and none of the
algorithms can handle this condition because commonly the actions do not lead to
the intended outcomes. The results in Tables 16 and 19 confirm this. According to
the results in these tables, almost all the algorithms are in the same rank and there
is no significant difference between the final results. In addition, their achieved fit-
ness is not good at all. It shows that almost no learning has happened. For example,
in Table 19, there is no significant difference between GNP-ACO1 as the first rank
algorithm and others except GNP-ABC. Like other tests, GNP-ABC is so slow in
learning and almost always is in the last place.

Fig. 10   Performance curve in Pursuit-domain when the deterministic parameter is set to one and pro-
gram size is a 1, b 3, c 5 and d 10

254	 Genetic Programming and Evolvable Machines (2021) 22:229–266

1 3

Ta
bl

e 
12

  
D

et
ai

le
d

re
su

lts
 in

 P
ur

su
it-

do
m

ai
n

w
ith

 p
ro

gr
am

 si
ze

 a
nd

 d
et

er
m

in
ist

ic
 p

ar
am

et
er

 o
f 1

N
am

e
of

 a
lg

or
ith

m
s

R
an

k
Fi

tn
es

s
N

um
be

r o
f s

uc
-

ce
ss

fu
l r

un
s

Ta
ke

n
ste

ps

w
ith

in
 su

cc
es

sf
ul

ru

ns
M

ea
n

p-
va

lu
e

ST
D

Lo
w

er
 q

ua
rti

le
M

ed
ia

n
U

pp
er

 q
ua

rti
le

G
N

P
4

11
5,

78
6.

7
0.

00
01

32
37

,0
79

.3
5

89
,0

81
.1

6
10

5,
38

8.
1

14
6,

71
8.

8
22

2
12

43
.8

3
G

N
P-

A
CO

1
3

11
8,

26
7.

2
0.

00
04

22
37

,1
19

.5
5

86
,6

64
.8

4
11

1,
05

9.
6

13
7,

37
7

23
8

11
90

.1
8

G
N

P-
A

CO
2

2
12

6,
64

2.
2

0.
00

30
34

32
,3

60
.6

10
3,

81
2.

7
12

3,
68

8
14

0,
19

9.
3

27
7

68
3.

96
G

N
P-

A
B

C
5

10
2,

76
7.

6
1.

19
 E

 −
 06

28
,9

11
.3

82
,2

99
.7

10
7,

99
3.

1
12

2,
51

4.
6

96
44

4.
55

TD
G
N
P

1
15
6,
56
8.
6

–
38
,3
96
.0
4

12
9,
55
2

15
5,
67
2

18
7,
77
6.
4

32
6

12
7.
79

M
ea

n
12

4,
00

6.
5

23
1.

8

255

1 3

Genetic Programming and Evolvable Machines (2021) 22:229–266	

Ta
bl

e 
13

  
D

et
ai

le
d

re
su

lts
 in

 P
ur

su
it-

do
m

ai
n

w
ith

 p
ro

gr
am

 si
ze

 3
 a

nd
 d

et
er

m
in

ist
ic

 p
ar

am
et

er
 1

N
am

e
of

 a
lg

or
ith

m
s

R
an

k
Fi

tn
es

s
N

um
be

r o
f s

uc
-

ce
ss

fu
l r

un
s

Ta
ke

n
ste

ps

w
ith

in
 su

cc
es

sf
ul

ru

ns
M

ea
n

p-
va

lu
e

ST
D

Lo
w

er
 q

ua
rti

le
M

ed
ia

n
U

pp
er

 q
ua

rti
le

G
N

P
2

13
6,

03
1.

3
7.

96
 E

 −
 03

32
,1

06
.3

4
10

8,
45

8.
3

14
2,

00
2.

9
16

2,
63

9.
5

30
5

52
0.

78
G

N
P-

A
CO

1
4

10
4,

28
3.

1
3.

09
 E

 −
 06

31
,8

43
.2

6
79

,6
01

.1
2

94
,5

17
.3

5
12

9,
13

2.
3

18
6

13
58

.4
8

G
N

P-
A

CO
2

3
10

8,
12

1.
2

4.
12

 E
 −

 06
28

,8
61

.5
2

86
,9

68
.0

9
10

3,
94

4.
6

12
5,

73
4.

8
21

1
11

55
.8

2
G

N
P-

A
B

C
5

75
,1

92
.0

6
1.

86
 E

 −
 09

20
,6

16
.5

9
64

,0
30

.9
6

74
,8

97
.3

2
92

,3
45

.5
1

53
77

8.
46

TD
G
N
P

1
16
0,
36
7.
3

–
41
,3
74
.4
8

12
7,
31
6.
3

16
8,
11
4

18
7,
45
4.
8

30
1

12
0.
64

M
ea

n
11

6,
79

9
21

1.
2

256	 Genetic Programming and Evolvable Machines (2021) 22:229–266

1 3

Ta
bl

e 
14

  
D

et
ai

le
d

re
su

lts
 in

 P
ur

su
it-

do
m

ai
n

w
ith

 p
ro

gr
am

 si
ze

 5
 a

nd
 d

et
er

m
in

ist
ic

 p
ar

am
et

er
 1

N
am

e
of

 a
lg

or
ith

m
s

R
an

k
Fi

tn
es

s
N

um
be

r o
f s

uc
-

ce
ss

fu
l r

un
s

Ta
ke

n
ste

ps

w
ith

in
 su

cc
es

sf
ul

ru

ns
M

ea
n

p-
va

lu
e

ST
D

Lo
w

er
 q

ua
rti

le
M

ed
ia

n
U

pp
er

 q
ua

rti
le

G
N

P
2

10
6,

19
7.

7
1.

60
 E

 −
 07

26
,3

94
.3

8
87

,1
21

.2
8

10
2,

37
9.

7
12

0,
73

5.
9

22
5

90
9.

16
G

N
P-

A
CO

1
4

90
,2

85
.2

8
8.

89
 E

 −
 10

22
,6

60
.3

1
76

,2
96

.2
9

87
,7

85
.6

1
10

1,
02

7.
7

14
1

15
35

.5
8

G
N

P-
A

CO
2

3
98

,7
26

.2
5

1.
56

 E
 −

 08
25

,6
24

.8
4

77
,9

75
.5

6
96

,1
11

.7
5

11
9,

61
5.

9
17

4
13

12
.1

8
G

N
P-

A
B

C
5

63
,4

76
.7

5
3.

34
 E

 −
 11

21
,3

84
.4

9
45

,9
16

.0
2

57
,9

14
.7

9
78

,2
90

.3
3

41
76

0
TD

G
N
P

1
15
6,
37
0.
3

–
31
,3
07
.4
2

13
4,
99
5.
5

14
8,
02
3.
5

17
8,
22
1

32
8

11
8

M
ea

n
10

3,
01

1.
2

18
1.

8

257

1 3

Genetic Programming and Evolvable Machines (2021) 22:229–266	

Ta
bl

e 
15

  
D

et
ai

le
d

re
su

lts
 in

 P
ur

su
it-

do
m

ai
n

w
ith

 p
ro

gr
am

 si
ze

 5
 a

nd
 d

et
er

m
in

ist
ic

 p
ar

am
et

er
 0

.7
5

N
am

e
of

 a
lg

or
ith

m
s

R
an

k
Fi

tn
es

s
N

um
be

r o
f s

uc
-

ce
ss

fu
l r

un
s

Ta
ke

n
ste

ps

w
ith

in
 su

cc
es

sf
ul

ru

ns
M

ea
n

p-
va

lu
e

ST
D

Lo
w

er
 q

ua
rti

le
M

ed
ia

n
U

pp
er

 q
ua

rti
le

G
N

P
2

62
,8

53
.3

1
1.

38
 E

 −
 02

94
84

.5
9

54
,0

67
.2

4
64

,8
09

.7
3

71
,0

78
.7

8
49

30
22

.4
7

G
N

P-
A

CO
1

3
60

,1
31

.7
2

3.
18

 E
 −

 03
10

,6
44

.7
9

51
,9

39
.3

2
59

,4
57

.9
68

,3
96

.7
4

58
25

18
.5

9
G

N
P-

A
CO

2
4

55
,9

57
.5

2.
39

 E
 −

 04
10

,0
18

.3
2

48
,0

80
.2

6
56

,6
40

.5
4

62
,5

39
.3

9
46

30
55

.2
6

G
N

P-
A

B
C

5
34

,5
64

.0
3

5.
46

 E
 −

 09
14

,8
62

.3
26

,0
19

.6
4

29
,7

79
.8

1
36

,0
83

.7
6

10
86

6.
67

TD
G
N
P

1
78
,2
14
.1
4

–
25
,4
64
.6
1

55
,2
59
.0
7

78
,3
76
.9
4

95
,5
69
.2
3

51
62
9

M
ea

n
58

,3
44

.1
4

42
.8

258	 Genetic Programming and Evolvable Machines (2021) 22:229–266

1 3

Ta
bl

e 
16

  
D

et
ai

le
d

re
su

lts
 in

 P
ur

su
it-

do
m

ai
n

w
ith

 p
ro

gr
am

 si
ze

 5
 a

nd
 d

et
er

m
in

ist
ic

 p
ar

am
et

er
 0

.5

N
am

e
of

 a
lg

or
ith

m
s

R
an

k
Fi

tn
es

s
N

um
be

r o
f s

uc
-

ce
ss

fu
l r

un
s

Ta
ke

n
ste

ps

w
ith

in
 su

cc
es

sf
ul

ru

ns
M

ea
n

p-
va

lu
e

ST
D

Lo
w

er
 q

ua
rti

le
M

ed
ia

n
U

pp
er

 q
ua

rti
le

G
N

P
4

24
,1

71
.9

1
3.

15
 E

 −
 02

10
,1

84
.9

7
11

,3
72

.2
3

27
,5

21
.1

6
31

,3
90

.6
5

1
47

95
G

N
P-

A
CO

1
5

23
,5

10
.4

6
3.

37
 E

 −
 04

58
43

.3
9

20
,0

95
.0

1
24

,1
92

.5
4

27
,9

87
.9

8
2

47
50

G
N

P-
A

CO
2

2
29

,4
62

.2
6.

52
 E

 −
 01

58
93

.5
5

24
,6

89
.2

4
29

,4
66

.6
3

33
,2

67
.9

1
3

46
99

G
N

P-
A

B
C

3
26

,6
55

.6
8

2.
71

 E
 −

 02
14

,5
65

.4
7

17
,0

56
.5

23
,4

85
.6

3
32

,1
08

.5
6

5
10

50
TD

G
N
P

1
30
,1
51
.7
1

–
73
81
.7

24
,8
43
.2
1

30
,4
33
.2
1

33
,8
16
.6
5

4
12
00

M
ea

n
26

,7
90

.3
9

3

259

1 3

Genetic Programming and Evolvable Machines (2021) 22:229–266	

Ta
bl

e 
17

  
D

et
ai

le
d

re
su

lts
 in

 P
ur

su
it-

do
m

ai
n

w
ith

 p
ro

gr
am

 si
ze

 1
0

an
d

de
te

rm
in

ist
ic

 p
ar

am
et

er
 1

N
am

e
of

 a
lg

or
ith

m
s

R
an

k
Fi

tn
es

s
N

um
be

r o
f s

uc
-

ce
ss

fu
l r

un
s

Ta
ke

n
ste

ps

w
ith

in
 su

cc
es

sf
ul

ru

ns
M

ea
n

p-
va

lu
e

ST
D

Lo
w

er
 q

ua
rti

le
M

ed
ia

n
U

pp
er

 q
ua

rti
le

St
an

da
rd

 G
N

P
2

10
5,

36
4.

1
9.

88
 E

 −
 03

28
,5

46
.9

1
83

,1
35

.9
10

2,
36

5.
9

12
4,

84
4.

8
18

8
97

7.
82

G
N

P-
A

CO
1

3
75

,8
83

.8
1

2.
00

 E
 −

 06
21

,2
35

.6
1

58
,9

88
.2

71
,7

77
.6

2
93

,6
90

.5
9

12
4

14
69

.5
G

N
P-

A
CO

2
4

74
,3

77
.4

8
9.

53
 E

 −
 07

17
,4

16
.4

3
60

,8
67

.7
8

71
,7

85
.5

8
87

,5
85

.5
3

81
23

61
.6

2
G

N
P-

A
B

C
5

45
,2

67
.4

6.
72

 E
 −

 10
14

,1
69

.0
4

32
,8

32
.0

8
42

,3
36

.3
9

56
,1

03
.7

7
15

98
1.

82
TD

G
N
P

1
14
6,
05
8.
5

–
64
,6
86
.6
1

10
0,
35
2.
9

13
7,
75
8.
9

18
3,
33
3

20
2

23
0.
46

M
ea

n
89

,3
90

.2
6

12
2

260	 Genetic Programming and Evolvable Machines (2021) 22:229–266

1 3

Ta
bl

e 
18

  
D

et
ai

le
d

re
su

lts
 in

 P
ur

su
it-

do
m

ai
n

w
ith

 p
ro

gr
am

 si
ze

 1
0

an
d

de
te

rm
in

ist
ic

 p
ar

am
et

er
 0

.7
5

N
am

e
of

 a
lg

or
ith

m
s

R
an

k
Fi

tn
es

s
N

um
be

r o
f s

uc
-

ce
ss

fu
l r

un
s

Ta
ke

n
ste

ps

w
ith

in
 su

cc
es

sf
ul

ru

ns
M

ea
n

p-
va

lu
e

ST
D

Lo
w

er
 q

ua
rti

le
M

ed
ia

n
U

pp
er

 q
ua

rti
le

G
N

P
2

56
,4

26
.0

6
1.

76
 E

 −
 01

13
,9

14
.3

4
50

,0
31

.0
5

57
,8

08
.9

6
65

,9
59

.6
3

43
31

70
.1

1
G

N
P-

A
CO

1
4

47
,1

56
.7

3
1.

89
 E

 −
 04

11
,1

00
.7

42
,0

02
.8

2
44

,5
84

.0
4

53
,9

96
.7

3
25

38
02

.3
8

G
N

P-
A

CO
2

3
53

,2
06

.3
6

1.
38

 E
 −

 02
10

,3
11

.9
6

45
,7

28
.4

6
52

,1
07

.9
3

60
,9

41
.5

5
39

34
87

.1
1

G
N

P-
A

B
C

5
24

,7
12

.6
4

1.
96

 E
 −

 10
95

52
.3

8
19

,1
36

.0
1

21
,2

93
.5

8
28

,6
47

.2
3

12
00

TD
G
N
P

1
64
,8
79
.7
6

–
20
,7
20
.8
2

49
,1
40
.6
8

65
,7
66
.8

76
,9
69
.0
3

33
83
0

M
ea

n
49

,2
76

.3
1

28
.6

261

1 3

Genetic Programming and Evolvable Machines (2021) 22:229–266	

Ta
bl

e 
19

  
D

et
ai

le
d

re
su

lts
 in

 P
ur

su
it-

do
m

ai
n

w
ith

 p
ro

gr
am

 si
ze

 1
0

an
d

de
te

rm
in

ist
ic

 p
ar

am
et

er
 0

.5

N
am

e
of

 a
lg

or
ith

m
s

R
an

k
Fi

tn
es

s
N

um
be

r o
f s

uc
-

ce
ss

fu
l r

un
s

Ta
ke

n
ste

ps

w
ith

in
 su

cc
es

sf
ul

ru

ns
M

ea
n

p-
va

lu
e

ST
D

Lo
w

er
 q

ua
rti

le
M

ed
ia

n
U

pp
er

 q
ua

rti
le

G
N

P
3

17
,0

99
.7

5.
11

 E
 −

 01
82

86
.4

9
10

,2
10

.9
7

11
,8

39
.4

2
24

,2
27

.4
2

0
–

G
N
P-
AC

O
1

1
17
,8
56
.7
4

–
78
97
.1
5

11
,2
34
.3
1

15
,9
78
.5
6

23
,0
87
.3
8

0
–

G
N

P-
A

CO
2

2
17

,1
80

.7
9

9.
23

 E
 −

 01
61

00
.4

8
12

,7
33

.7
2

16
,8

97
22

,2
19

.5
8

1
47

65
G

N
P-

A
B

C
5

11
,0

38
.3

3.
77

 E
 −

 04
35

18
.2

7
89

45
.6

74
10

,6
21

.1
3

13
,7

27
0

–
TD

G
N

P
4

14
,4

71
.6

3
6.

79
 E

 −
 02

70
79

.7
88

92
.0

07
11

,1
10

.1
6

21
,8

94
.2

1
0

–
M

ea
n

15
,5

29
.4

3
0.

2

262	 Genetic Programming and Evolvable Machines (2021) 22:229–266

1 3

In addition, in most experiments, the number of successful runs in TDGNP is
higher than others. However, in some cases such as Table 13, GNP overtakes
TDGNP. GNP was successful in 305 runs while TDGNP had 301 successful runs.
But it should be noted that for GNP, this number of successful runs happened during
520.78 steps on average while TDGNP could achieve 301 successful runs in only
120.64 steps on average which is much faster than GNP.

6 � Discussion

The algorithm proposed in this research i.e. TDGNP consists of two phases. In the
exploration oriented phase, the algorithm investigates good individual structures
while it is biased to explore in the search space. During this search, the algorithm
tries to save its experience. In the exploitation oriented phase, using the saved expe-
rience, the new individuals are generated. In other words, the new population is
generated according to the experience of promising individuals during the evolution
process. By the combination of these two phases, our algorithm could overtake other
ones. The concluding remarks are as follows:

•	 When program size is 1, the representation power of an individual is low. So, a
better balance between exploration and exploitation is needed and our method
could better achieve this feature. In the Tile-world, which is simpler than Pur-
suit-domain, when program size is 1, our algorithm shows better performance
than others. However, it cannot keep its superiority when the program size is
increased. When Pursuit-domain is used as the benchmark, as it is a more com-
plex problem (because it is a dynamic environment), our algorithm is signifi-
cantly better than others especially when the deterministic parameter is less than
1 (the environment is stochastic).

•	 As the convergence rate of GNP-ABC is low, its performance is not good at all,
especially when it runs in more dynamic and stochastic environments.

•	 The performance of GNP-ACO2 and GNP-ACO1 are almost the same in Pursuit-
domain and GNP is better than both of them. It shows that in Pursuit-domain as
a dynamic environment when the deterministic parameter is one, exploration is
more important than exploitation. But it is not true when the environment is sto-
chastic. It is obvious that when the environment is stochastic, previous experi-
ences have a high influence on the performance of algorithms.

•	 Unlike GNP-ACO2 and GNP-ACO1 which actually are a combination of GNP
and ACO, in TDGNP, updating the value of the connections is not done accord-
ing to their usage frequency. In these methods, the individuals are used in the
role of flowcharts. Consequently, some parts of them may be considered as a
loop and used many times by the agents that behave according to them. If the
values of connections of tasks in a sequence are updated according to their usage
frequency, their values increase improperly. Therefore, in our proposed method,
the connections’ values of tasks in a sequence are updated depending on whether
they are used in the individual or not regardless of their usage frequency.

263

1 3

Genetic Programming and Evolvable Machines (2021) 22:229–266	

•	 In TDGNP, the behavior of agents are handled more efficiently by the manage-
ment of the sequence of tasks that they do. This algorithm helps the agents to
extract a more suitable sequence of tasks to achieve their goals. TDGNP could
achieve this object by distributing the fitness of promising individuals on the
more useful sequences of tasks.

7 � Conclusion and future work

In this paper, a new algorithm was proposed to adapt GNP to be used in more com-
plex environments i.e. dynamic and stochastic environments. In this new algorithm,
the more useful and efficient sequences of tasks which agents select their behav-
iors according to them are extracted. Then, the value of the connections that makes
these tasks are increased proportional to their usefulness in the algorithm. In addi-
tion, a better tradeoff between exploration and exploitation is achieved by defin-
ing two different phases during the evolution process. In the exploration oriented
phase, standard crossover and mutation were used inclined toward exploration. Dur-
ing this phase, promising individuals were also selected and their experiences were
saved. The experiences were used in the exploitation oriented phase to generate new
individuals. These modifications improve the efficiency of the purposed method in
comparison with some other versions of GNP in both deterministic and stochastic
environments.

It is clear that some tasks can achieve better fitness if they are executed con-
secutively. In this case, it is better not to decompose them. However, our proposed
method lacks the ability to detect and exploit such scenarios. So, as a field for future
research, it is worth working on a mechanism which is able to prevent these types of
tasks from decomposition. We have to find a method to use these tasks together in
the generation of new individuals. As a result, the algorithm can produce promising
individuals faster. Meanwhile, we can investigate the performance of the proposed
algorithm on more complex benchmarks for better evaluation of the algorithms.
Another important subject that must be considered as the future work is parameter
tuning of the used algorithms. We know that it is one of the important factors in
their performance [59, 60]. Automatic parameter tuning is an appropriate approach
for parameter tuning and fairness in the comparisons. We could also consider using
multi-objective fitness since a composed fitness is used in our experiments. In addi-
tion, testing and comparing the proposed method on a larger set of problems could
better show the proposed algorithm ability.

References

	 1.	 D.H. Wolpert, W.G. Macready, No free lunch theorems for optimization. IEEE Trans. Evol. Com-
put. 1, 67–82 (1997)

	 2.	 J.H. Holland, Adaptation in Natural and Artificial Systems. An Introductory Analysis with Applica-
tion to Biology, Control, and Artificial Intelligence (University of Michigan Press, Ann Arbor, MI,
1975).

264	 Genetic Programming and Evolvable Machines (2021) 22:229–266

1 3

	 3.	 J.R. Koza, Genetic Programming II: Automatic Discovery of Reusable Subprograms (MA, USA,
Cambridge, 1994).

	 4.	 J. R. Koza, Genetic programming: on the programming of computers by means of natural selection
vol. 1: MIT press, 1992.

	 5.	 J. Kennedy and R. Eberhart, "Particle swarm optimization," in Proceedings of ICNN’95 - Interna-
tional Conference on Neural Networks, 1995, pp. 1942–1948.

	 6.	 M. Dorigo, M. Birattari, T. Stutzle, Ant colony optimization. IEEE Comput. Intell. Mag. 1, 28–39
(2006)

	 7.	 M. Dorigo, V. Maniezzo, A. Colorni, “Ant system: optimization by a colony of cooperating agents,”
IEEE Transactions on Systems, Man, and Cybernetics. Part B (Cybernetics) 26, 29–41 (1996)

	 8.	 D. Karaboga, B. Basturk, On the performance of artificial bee colony (ABC) algorithm. Applied
Soft Computing 8, 687–697 (2008)

	 9.	 M. Pelikan, "Probabilistic model-building genetic algorithms," presented at the Proceedings of the
10th annual conference companion on Genetic and evolutionary computation, Atlanta, GA, USA,
2008.

	10.	 G. Dhiman, V. Kumar, KnRVEA: A hybrid evolutionary algorithm based on knee points and ref-
erence vector adaptation strategies for many-objective optimization. Appl. Intell. 49, 2434–2460
(2019)

	11.	 M. Roshanzamir, M.A. Balafar, S.N. Razavi, Empowering particle swarm optimization algorithm
using multi agents’ capability: A holonic approach. Knowl.-Based Syst. 136, 58–74 (2017)

	12.	 M. Roshanzamir, M.A. Balafar, S.N. Razavi, A new hierarchical multi group particle swarm opti-
mization with different task allocations inspired by holonic multi agent systems. Expert Syst. Appl.
149, 113292 (2020)

	13.	 L. Araujo, Genetic programming for natural language processing. Genet. Program Evolvable Mach.
21, 11–32 (2020)

	14.	 V. Ciesielski, Linear genetic programming. Genet. Program Evolvable Mach. 9, 105–106 (2008)
	15.	 N. Pillay, The impact of genetic programming in education. Genet. Program Evolvable Mach. 21,

87–97 (2020)
	16.	 A. Lensen, M. Zhang, B. Xue, Multi-objective genetic programming for manifold learning: balanc-

ing quality and dimensionality. Genet. Program Evolvable Mach. 21, 399–431 (2020)
	17.	 W. La Cava, J.H. Moore, Learning feature spaces for regression with genetic programming. Genet.

Program Evolvable Mach. 21, 433–467 (2020)
	18.	 T. Hu, M. Tomassini, W. Banzhaf, A network perspective on genotype–phenotype mapping in

genetic programming. Genet. Program Evolvable Mach. 21, 375–397 (2020)
	19.	 S. Mabu, K. Hirasawa, J. Hu, J. Murata, Online Learning of Genetic Network Programming. IEEJ

Transactions on Electronics, Information and Systems 122, 355–362 (2002)
	20.	 H. Katagiri, K. Hirasawa, J. Hu, and J. Murata, "Network structure oriented evolutionary model-

genetic network programming-and its Comparison with genetic programming," presented at the Pro-
ceedings of the 3rd Annual Conference on Genetic and Evolutionary Computation, San Francisco,
California, USA, 2001.

	21.	 H. Katagiri, K. Hirasama, and J. Hu, "Genetic network programming - application to intelligent
agents," in IEEE International Conference on Systems, Man, and Cybernetics, 2000, pp. 3829–3834
vol.5.

	22.	 S. Mabu, K. Hirasawa, M. Obayashi, T. Kuremoto, A variable size mechanism of distributed graph
programs and its performance evaluation in agent control problems. Expert Syst. Appl. 41, 1663–
1671 (2014)

	23.	 A. E. Eiben and J. E. Smith, Introduction to evolutionary computing vol. 53: Springer, 2003.
	24.	 A. E. Teller and M. Veloso, "PADO: Learning Tree Structured Algorithms for Orchestration into an

Object Recognition System," Carnegie Mellon University1995.
	25.	 J. F. Miller and P. Thomson, "Cartesian Genetic Programming," Berlin, Heidelberg, 2000, pp.

121–132.
	26.	 J.F. Miller, Cartesian genetic programming: its status and future. Genet. Program Evolvable Mach.

21, 129–168 (2020)
	27.	 D.B. Fogel, An introduction to simulated evolutionary optimization. IEEE Trans. Neural Networks

5, 3–14 (1994)
	28.	 S. Mabu, K. Hirasawa, and J. Hu, "Genetic Network Programming with Reinforcement Learning

and Its Performance Evaluation," in Genetic and Evolutionary Computation Conference, GECCO,

265

1 3

Genetic Programming and Evolvable Machines (2021) 22:229–266	

Seattle, WA, USA, June 26–30. Proceedings, Part II, K. Deb, Ed., ed Berlin, Heidelberg: Springer
Berlin Heidelberg, 2004, pp. 710–711.

	29.	 T. Atkinson, D. Plump, and S. Stepney, "Evolving Graphs by Graph Programming," Cham, 2018,
pp. 35–51.

	30.	 Q. Meng, S. Mabu, Y. Wang, and K. Hirasawa, "Guiding the evolution of Genetic Network Pro-
gramming with reinforcement learning," in IEEE Congress on Evolutionary Computation, 2010, pp.
1–8.

	31.	 S. Mabu, K. Hirasawa, J. Hu, A Graph-Based Evolutionary Algorithm: Genetic Network Program-
ming (GNP) and Its Extension Using Reinforcement Learning. Evol. Comput. 15, 369–398 (2007)

	32.	 R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction vol. 1: MIT press Cam-
bridge, 1998.

	33.	 S. Mabu, K. Hirasawa, and J. Hu, "Genetic network programming with learning and evolution for
adapting to dynamical environments," in The Congress on Evolutionary Computation 2003, pp.
69–76 Vol.1.

	34.	 P. Sung Gil, S. Mabu, and K. Hirasawa, "Robust Genetic Network Programming using SARSA
Learning for autonomous robots," in ICCAS-SICE, 2009, pp. 523–527.

	35.	 S. Mabu, H. Hatakeyama, K. Hirasawa, and H. Jinglu, "Genetic Network Programming with Rein-
forcement Learning Using Sarsa Algorithm," in IEEE International Conference on Evolutionary
Computation, 2006, pp. 463–469.

	36.	 O. Michel, "Khepera simulator package version 2.0: Freeware mobile robot simulator written at the
University of Nice-Sophia-Antipolis by Olivier Michel," Khepera Simulator version 2. 0, 1996.

	37.	 S. Mabu and K. Hirasawa, "Evolving plural programs by genetic network programming with
multi-start nodes," in IEEE International Conference on Systems, Man and Cybernetics, 2009, pp.
1382–1387.

	38.	 X. Li, S. Mabu, H. Zhou, K. Shimada, and K. Hirasawa, "Genetic Network Programming with Esti-
mation of Distribution Algorithms for class association rule mining in traffic prediction," in IEEE
Congress on Evolutionary Computation, 2010, pp. 1–8.

	39.	 X. Li, S. Mabu, K. Hirasawa, Towards the Maintenance of Population Diversity: A Hybrid Probabil-
istic Model Building Genetic Network Programming. Transaction of the Japanese Society for Evolu-
tionary Computation 1, 89–101 (2010)

	40.	 X. Li, B. Li, S. Mabu, and K. Hirasawa, "A novel estimation of distribution algorithm using graph-
based chromosome representation and reinforcement learning," in IEEE Congress of Evolutionary
Computation, 2011, pp. 37–44.

	41.	 X. Li, S. Mabu, K. Hirasawa, A Novel Graph-Based Estimation of the Distribution Algorithm and
its Extension Using Reinforcement Learning. IEEE Trans. Evol. Comput. 18, 98–113 (2014)

	42.	 Q. Meng, S. Mabu, and K. Hirasawa, "Genetic Network Programming with Sarsa Learning Based
Nonuniform Mutation," in IEEE International Conference on Systems, Man and Cybernetics, 2010,
pp. 1273–1278.

	43.	 X. Li, W. He, and K. Hirasawa, "Learning and evolution of genetic network programming with
knowledge transfer," in IEEE Congress on Evolutionary Computation, 2014, pp. 798–805.

	44.	 A. T. Naeini and M. Ghaziasgar, "Improving coordination via emergent communication in coopera-
tive multiagent systems: A Genetic Network Programming approach," in IEEE International Con-
ference on Systems, Man and Cybernetics, 2009, pp. 589–594.

	45.	 A. T. Naeini and M. Palhang, "Evolving a multiagent coordination strategy using Genetic Network
Programming for pursuit domain," in IEEE Congress on Evolutionary Computation (IEEE World
Congress on Computational Intelligence), 2008, pp. 3102–3107.

	46.	 M. Benda, V. Jagannathan, R. Dodhiawala, “On Optimal Cooperation of Knowledge Sources - An
Empirical Investigation,” Technical Report BCS-G2010-28 (Boeing Advanced Technology Center,
Boeing Computing Services, Seattle, WA, USA, 1986).

	47.	 H. Itoh, N. Ikeda, and K. Funahashi, "Heterogeneous Multi-agents Learning Using Genetic Net-
work Programming with Immune Adjustment Mechanism," in New Advances in Intelligent Decision
Technologies: Results of the First KES International Symposium IDT, K. Nakamatsu, G. Phillips-
Wren, L. C. Jain, and R. J. Howlett, Eds., ed Berlin, Heidelberg: Springer Berlin Heidelberg, 2009,
pp. 383–391.

	48.	 X. Li and K. Hirasawa, "Extended rule-based genetic network programming," presented at the
Proceedings of the 15th annual conference companion on Genetic and evolutionary computation,
Amsterdam, The Netherlands, 2013.

266	 Genetic Programming and Evolvable Machines (2021) 22:229–266

1 3

	49.	 X. Li, M. Yang, S. Wu, Niching genetic network programming with rule accumulation for decision
making: An evolutionary rule-based approach. Expert Syst. Appl. 114, 374–387 (2018)

	50.	 Y. Lu, Z. Jin, M. Shingo, H. Kotaro, H. Jinglu, and M. Sandor, "Elevator group control system
using genetic network programming with ACO considering transitions," in SICE Annual Confer-
ence, 2007, pp. 1330–1336.

	51.	 Y. Lu, Z. Jin, M. Shingo, H. Kotaro, H. Jinglu, and S. Markon, "Double-deck Elevator Group Super-
visory Control System using Genetic Network Programming with Ant Colony Optimization," in
IEEE Congress on Evolutionary Computation, 2007, pp. 1015–1022.

	52.	 M. Roshanzamir, M. Palhang, A. Mirzaei, Graph structure optimization of Genetic Network Pro-
gramming with ant colony mechanism in deterministic and stochastic environments. Swarm and
Evolutionary Computation 51, 100581 (2019)

	53.	 X. Li, G. Yang, and K. Hirasawa, "Evolving directed graphs with artificial bee colony algorithm," in
14th International Conference on Intelligent Systems Design and Applications, 2014, pp. 89–94.

	54.	 X. Li, H. Yang, M. Yang, Revisiting Genetic Network Programming (GNP): Towards the Simplified
Genetic Operators. IEEE Access 6, 43274–43289 (2018)

	55.	 X. Li, W. He, and K. Hirasawa, "Genetic Network Programming with Simplified Genetic Opera-
tors," in Neural Information Processing: 20th International Conference, ICONIP 2013, Daegu,
Korea, November 3–7, 2013. Proceedings, Part II, M. Lee, A. Hirose, Z.-G. Hou, and R. M. Kil,
Eds., ed Berlin, Heidelberg: Springer Berlin Heidelberg, 2013, pp. 51–58.

	56.	 S. Russell and P. Norvig, Artificial Intelligence: A Modern Approach: Prentice Hall Press, 2009.
	57.	 M. Pollack and M. Ringuette, "Introducing the Tileworld: experimentally evaluating agent architec-

tures," environment, pp. 183–189, 1990.
	58.	 F. Wilcoxon, Individual Comparisons by Ranking Methods. Biometrics Bulletin 1, 80–83 (1945)
	59.	 V. Nannen, S. K. Smit, and A. E. Eiben, "Costs and Benefits of Tuning Parameters of Evolutionary

Algorithms," Berlin, Heidelberg, 2008, pp. 528–538.
	60.	 A.E. Eiben, R. Hinterding, Z. Michalewicz, Parameter control in evolutionary algorithms. IEEE

Trans. Evol. Comput. 3, 124–141 (1999)

Authors and Affiliations

Mohamad Roshanzamir1  · Maziar Palhang2 · Abdolreza Mirzaei2

	 Maziar Palhang
	 palhang@cc.iut.ac.ir

	 Abdolreza Mirzaei
	 mirzaei@cc.iut.ac.ir

1	 Department of Computer Engineering, Faculty of Engineering, Fasa University,
74617‑81189 Fasa, Iran

2	 Department of Electrical and Computer Engineering, Isfahan University of Technology,
84156‑83111 Isfahan, Iran

http://orcid.org/0000-0002-4620-9008

	Efficiency improvement of genetic network programming by tasks decomposition in different types of environments
	Abstract
	1 Introduction
	2 GNP
	2.1 Population structure
	2.2 Crossover
	2.3 Mutation

	3 Deterministic and stochastic environments
	4 Proposed algorithm
	5 Experimental results
	5.1 Tile-world
	5.2 Pursuit-domain
	5.3 Experimental analysis
	5.3.1 Tile world problem experimental results
	5.3.2 Pursuit-domain experimental results

	6 Discussion
	7 Conclusion and future work
	References

