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Abstract
Genetic Network Programming (GNP) is a relatively recently proposed evolutionary 
algorithm which is an extension of Genetic Programming (GP). However, individu-
als in GNP have graph structures. This algorithm is mainly used in decision mak-
ing process of agent control problems. It uses a graph to make a flowchart and use 
this flowchart as a decision making strategy that an agent must follow to achieve 
the goal. One of the most important weaknesses of this algorithm is that crosso-
ver and mutation break the structures of individuals during the evolution process. 
Although it can lead to better structures, this may break suitable ones and increase 
the time needed to achieve optimal solutions. Meanwhile, all the researches in this 
field are dedicated to test GNP in deterministic environments. However, most of the 
real-world problems are stochastic and this is another issue that should be addressed. 
In this research, we try to find a mechanism that GNP shows better performance 
in stochastic environments. In order to achieve this goal, the evolution process of 
GNP was modified. In the proposed method, the experience of promising individu-
als was saved in consecutive generations. Then, to generate offspring in some prede-
fined number of generations, the saved experiences were used instead of crossover 
and mutation. The experimental results of the proposed method were compared with 
GNP and some of its versions in both deterministic and stochastic environments. 
The results demonstrate the superiority of our proposed method in both determinis-
tic and stochastic environments.
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1 Introduction

It is proven that there is no optimization method that can be better than all others 
to solve all types of optimization problems. This theory is known as No-Free-
Lunch Theorem [1]. So, different meta-heuristic algorithms such as Genetic Algo-
rithm (GA) [2], Genetic Programming (GP) [3, 4], Particle Swarm Optimization 
(PSO) [5], Ant Colony Optimization (ACO) [6, 7], Artificial Bee Colony (ABC) 
[8], the Estimation of Distribution Algorithm (EDA) [9] and many new variants 
are continuously invented and being used to solve various optimization problems 
[10–18]. Genetic Network Programming (GNP) [19–21] as an extension of GP 
is one of them. However, instead of using the tree structure as in GP, the graph 
structure is used to represent the individuals to improve GNP expression ability. 
In the GNP algorithm, the graph structure of individuals makes this algorithm 
suitable for decision making in agent control problems [22]. The graph structure 
has been composed of judgment and processing nodes enabling the individuals 
to represent a decision making process as a flowchart. Indeed, they are similar to 
GP’s elementary functions. Judgment and processing nodes correspond to non-
terminal and terminal nodes of GP respectively. In GNP, the individuals are com-
posed by connecting these nodes. The first difference between GNP and GP is 
that in former, the processing or action nodes are terminal nodes while in latter 
there is no terminal node. It means that in GP, the processing or action nodes are 
not connected to other ones. But in GNP, they may have a connection to other 
nodes. As a result, decisions in GNP are made according to not only the cur-
rent condition of the environment but also the actions done in the past. It means 
that implementing some structures such as loops which are essential in generating 
strategies for agents is easy using GNP structures while it is not convenient at all 
to generate these types of strategies in GP. For example, suppose that it needs 
to generate the following instruction: if condition c1 is true do action a1, then 
action a2 and again action a2, then while condition c2 is true do actions a3 and 
a2 respectively. Although generating these types of instructions may be possible 
in GP, it needs too many modifications on crossover, mutation and the structures 
of individuals in GP. In addition, GP has an inherent bloat of tree problem [23]. 
However, GNP does not have this problem because the number of nodes of each 
individual does not change during the evolution process. Meanwhile, GNP can 
generate compact and sophisticated structures considering only needed judgment 
and processing nodes according to necessity [20].

There are also some other network-oriented structure evolutionary methods 
such as Parallel Algorithm Discovery and Orchestration (PADO) [24], Cartesian 
Genetic Programming (CGP) [25, 26] and Evolutionary Programming (EP) [27]. 
PADO proposes an evolutionary computation algorithm on graph like automata 
which is so similar to GNP. It is formed by three main components. They are 
the main program, Automatically Defined Function (ADF) programs and indexed 
memory. There are a start and an end nodes in the main program of PADO. ADF 
is a function set which is automatically defined in the program runs. PADO is 
executed from the start node and ends in the end node in the network. CGP was 
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proposed about 20  years ago for the first time. It explores the graph based GP 
motivated by a general representation of the graph structure compared with the 
tree structure of GP. It can represent the solutions of computational problems as 
graphs. Its encoding is an integer string that denotes the list of node connections 
and functions. It also includes redundant genes to help for effective evolutionary 
search. EP has also a graph structure that for the first time proposed by Fogel. 
It is an evolutionary computation algorithm like GA and GP. However, gener-
ally, it uses only mutation as the evolutionary operator. EP is used as a method 
for the synthesis of finite state machines automatically which is used for solving 
sequence prediction problems.

However, GNP is different from these methods. While GNP can evolve programs 
in both static and dynamic environments, PADO aims to evolve them in only static 
environments [28]. Meanwhile, nodes in PADO have both function (processing) and 
branching (judgment) behavior. They are governed by stack and index memory [29]. 
Different from CGP, GNP emphasizes the information transition inside the graph. 
There is not any terminal or output node that halts the program explicitly. Conse-
quently, this structure is suitable to make the behavior sequences for agents [30]. In 
addition, there are some notable differences between CGP and GNP. For example, In 
CGP, the individuals are in the form of directed acyclic graphs while in GNP having 
cycles is an important feature of individuals that helps it to produce behavioral strat-
egies for agents. Meanwhile, CGP uses 1 + λ EA in its evolution process. Commonly 
crossover is not used in the evolution process of CGP. There is no explicit notion of 
time delay in CGP. Finally, another important difference between GNP and CGP is 
that in GNP, judgment nodes provide expert-designed high-level functionality based 
on the task whereas CGP functions are usually standard mathematic functions.

There are some essential differences between GNP and EP. While in EP, the tran-
sition rule for all combinations of states and inputs must be defined, in GNP, nodes 
are connected by necessity. In each situation, only the essential inputs are used in the 
network flow. So, the structure of the GNP is quite compact [31].

Overall, GNP has some advantages with respect to other evolutionary algorithms. 
The reusability of the nodes that make the structure more compact, creating connec-
tions according to necessity and make decisions according to not only the current 
state of environment but also according to actions which were done in the past are 
some of them.

For the performance improvement of GNP, various modifications were suggested. 
It is also used in various applications. For example, In [19], Q-learning [32] was 
used to improve the efficiency of GNP. The combination of GNP and Q-learning has 
also been used in [28, 33] for faster adaptation in dynamic environments. SARSA 
algorithm [32] is another reinforcement learning algorithm used in [34, 35]. It has 
been applied on Khepera robot control process [36] to improve GNP efficiency. 
Another combination of GNP with reinforcement learning (RL) was proposed in 
[31]. In this version, there are several functions in each node. During the evolution 
process, a function is selected according to its Q value. In addition, crossover and 
mutation operators are defined differently from standard GNP. Defining more than 
one start node is another modification proposed by Mabu and Hirasawa [37]. They 
want to extract several programs from an individual.
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Li et al. [38, 39] used EDA in their proposed method. In each iteration of their 
algorithm, the structure of elite individuals is used to calculate the probabilistic 
model. Then, next generation is produced according to the estimated probabilistic 
model. In other words, crossover and mutation were substituted by this probabilistic 
model. This mechanism was used by Li et al. [38] to find association rules in a traf-
fic forecasting system. EDA and RL are also used to produce next generation in [40]. 
Finally, these papers are summarized in [41].

In standard GNP, the branches have an equal chance when using crossover and 
mutation operators. In individuals with high fitness values, inappropriate branches 
may exist. To fix this problem, the non-uniform mutation is introduced by Meng 
et al. [42]. In evolutionary algorithms, it is common to start the evolution process 
from scratch. To prevent this problem, Li et al. [43] used knowledge transfer. This 
leads to the shorter evolution process. In this algorithm, knowledge was formu-
lated using the rules extracted from individuals. Then, this knowledge was used as 
a guideline in the evolution process. Meanwhile, RL was used to transfer knowledge 
automatically.

There are also some researches that used this algorithm or some other versions 
of it for different applications, especially in single/multi agent decision making 
problems. Coordination of the agents in a multi-agent system is an example of GNP 
applications [44, 45]. GNP was used in these studies to generate a strategy in the 
pursuit domain [46]. Automatically creation of a multi-agent system using GNP 
is another research done by Itoh et  al. [47]. Making a Learning Classifier System 
(LCS) using GNP is proposed in [48, 49]. In their proposed method, the rules were 
extracted from the structure of individuals.

Swarm intelligence was also combined with GNP. ACO as one of the most suc-
cessful swarm intelligence algorithms was used in [50–52] in order to make bet-
ter exploitation ability in GNP. To make a good tradeoff between exploration and 
exploitation, Lu et al. [50, 51] dedicated one iteration to ACO in every 10 iterations 
of GNP in their proposed method. ABC is another swarm intelligence algorithm that 
was used in [53].

In [54, 55], an investigation on one of the important features of GNP i.e. transi-
tion by necessity was done theoretically and empirically. Standard operators of GNP 
treat all branches equally during evolution. In addition, the fitness of individuals 
only depends on the nodes which are used during evaluation. So, new genetic opera-
tors were proposed in these papers.

Overall, according to [40, 41], breaking the useful structures when using crosso-
ver and mutation is one of the most important weaknesses of GNP. Since an indi-
vidual in GNP represents a strategy that agents must follow to achieve their goal, the 
dependency of nodes in the individual’s structure is high. Crossover and mutation 
break the connections frequently and completely randomly. Meanwhile, when the 
agents use the strategy proposed by an individual in a stochastic environment, its 
fitness is not precise. Solving this problem needs several time evaluation process of 
each individual. However, as the fitness evaluation is commonly the most time con-
suming section in evolutionary algorithms, several time evaluation process of each 
individual is not a suitable solution for solving this problem. In this research, both of 
these issues are considered.
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In the proposed algorithm, the reproduction probability of useful structures is 
increased using the experience of promising individuals during the evaluation pro-
cess. It reduces the destructive effect of crossover and mutation. In addition, the 
proposed method was applied to deterministic and stochastic environments. In sto-
chastic environments, the experience of promising individuals could help us to esti-
mate the fitness of each individual more precisely. Keeping a good balance between 
exploration and exploitation is another goal of our proposed method.

This paper is organized as follows. The GNP algorithm is reviewed in Sect. 2. 
Section  3 describes the stochastic environments. Our proposed algorithm is pre-
sented in detail in Sect. 4. In Sects. 5 and 6, the experimental results and discussion 
are presented, respectively. In the end, conclusions and future works are discussed in 
Sect. 7.

2  GNP

As it is shown in Algorithm  1, GNP includes three steps. As the first step, some 
directed graphs are produced. Then, they are evaluated and finally according to their 
fitness some offspring are generated using crossover and mutation.

2.1  Population structure

Unlike GP that individuals have a tree structure, in GNP, they have a graph structure. 
This structure increases its expressive ability. It can describe more complex strategies. 
As it is clear in Fig. 1, a directed graph like a flowchart can model a strategy that an 
agent must follow to achieve its goal. The directed graph is made of these three types of 
nodes. They are start node as the indicator that the strategy starts, the judgment nodes 
that investigate the conditions in the environment and the processing nodes that are 
defined according to the actions that the agents can do. As it is shown in the genotype 
structure of an individual, each node has an identification number i and is composed 
of two sections. The first section is Node Gene and the second section is Connection 
Gene. The Node Gene is composed of three subsections. The first subsection is NTi. It 

Node 1
Node 2
Node 3
Node 4
Node 5
Node 6

0   0     0 2 0
1   J1 1 4   0 3   0 6   0
1   J2 1 6   0 4   0
2 P1 5 3   0
2 P2 5 2   0
2 P1 5 5   0

Node i
Node Gene Connection Gene (Bi)

NTi NFi di Ci1 di1 … Cin din

Start node          Judgement Node        Processing node

(a) (b)

1

5

4

2

36

Fig. 1  a Phenotype and b Genotype structure of an individual in GNP algorithms
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denotes the type of node i. The second subsection is NFi that denotes the function that 
node i executes and the last subsection is di that shows the time delay of node i function 
execution. Connection Gene section which is named Bi is the set of node i branches. It 
is composed of two subsections. Subsection Cij determines the node that jth branch of 
node i is connected to and the subsection dij shows the transition time delay of the jth 
branch of node i.

As it is shown in Fig. 1b, NT, NF and d subsections of start node are set to zero. 
The start node only denotes the node from which the strategy must be started. Conse-
quently, only the Connection Gene of this node is assigned. For judgment nodes, NT 
is set to one and the number of connections in the Connection Gene is more than one. 
Each branch in a Connection Gene corresponds to a specific condition in the environ-
ment. In processing nodes, NT is set to two and the number of connections in the Con-
nection Gene is one because there is no conditional branch in them.

This structure shows a strategy that agents follow in the environment. For example, 
suppose that an agent wants to use the individual presented in Fig. 1 as its strategy. 
The agent starts at Node 1. According to this node, it must go to Node 2. Node 2 is a 
judgment node. The agent executes the J1 function. This function investigates the state 
of environment. If according to the environment state, the agent has to follow the third 
branch of Node 2, it goes to Node 6 and executes P1 as the process specified in this 
node. Then, it goes to Node 5 and executes the process of this node i.e. P2.

In the GNP structure, there are two types of time delay. di is the time delay for node i 
execution and dij is the time delay needed for the transition between nodes of individu-
als. These two types of time delays are introduced to model the delays in the human 
decision making process. They can be used to define the steps in the decision making 
process. The number of steps is considered a terminal condition during the decision 
making process.

2.2  Crossover

As it is clear in Fig. 2, two offspring are generated by crossover operator applied on two 
parents selected by an algorithm of choice such as tournament selection [23]. During 
crossover operation, in the selected parents, a pair of nodes with the same identification 
number exchange their connections with a predefined probability Pc.

2.3  Mutation

For mutation, as it is illustrated in Fig. 3, each branch of Connection Gene is changed 
to another randomly selected node identification number with probability Pm.

3  Deterministic and stochastic environments

According to [56], if the current state of an environment and executed action 
of an agent completely determine the next state of the environment, then this 
type of environment is known as deterministic. If this feature does not exist, the 
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environment is known as stochastic. An example model of a stochastic environ-
ment is shown in Fig. 4. In these environments, with a specific probability named 
as the deterministic parameter, each action achieves the intended outcome. Sup-
pose the agent wants to move forward. In this case, the probability of moving 

Offspring 1 Offspring 2

1

5

4

2

36

1

5

4

2

36

1

5

4

2

36

1

5

4

2

36

Fig. 2  In GNP, the crossover operator exchanges the bold connections between nodes 3 and 5

Parent Offspring

1

5

4

2

36

1

5

4

2

36

Fig. 3  In GNP, mutation operator changes the bold connections of nodes 1 and 2

Fig. 4  An example of stochastic 
model [56]

0.6

0.20.2
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forward is 60% and there is 20% chance of moving left and 20% chance of mov-
ing right.

4  Proposed algorithm

Our proposed algorithm is named Tasks Decomposition Genetic Network Program-
ming (TDGNP). This algorithm is composed of two phases. These phases are named 
exploration oriented phase and exploitation oriented phase. To produce new indi-
viduals in the exploration oriented phase of TDGNP, standard operators of GNP i.e. 
mutation and crossover are used. In addition, during this phase, promising individu-
als distribute their fitness on the sequences of nodes’ connections used by the agents. 
This distribution is done according to our proposed method which is explained in 
the following. Before that, we need to define two concepts: (1) sequence and (2) 
task. A sequence is defined as the trail of some tasks. A task is defined as some 
judgment nodes followed by some processing nodes that an agent uses according 
to the structure of an individual when that individual is used as the strategy of the 
agent. In Fig. 5, an example of a sequence composed of two tasks is shown.

In the proposed method, a value is assigned to all possible connections propor-
tional to the fitness of promising individuals within the exploration oriented phase. 
Then, within the exploitation oriented phase, these values as the accumulated expe-
rience of previous generations are used to produce the next generation. Algorithm 2 
clearly describes our proposed method. Like other evolutionary algorithms, TDGNP 
is an iterative algorithm and in every K iterations, exploration and exploitation 
oriented phases take turn. There are exploration and exploitation in both of these 
phases but their names are chosen based on the dominant feature. During the explo-
ration phase, next generation is produced using standard operators of GNP i.e. cross-
over and mutation. However, during exploitation phase, the individuals are gener-
ated according to the accumulated experience of promising individuals.

According to [22], the philosophy behind GNP is finding the optimal strategy 
for decision making of agents in the environments. It was mentioned in this refer-
ence that using GNP, we want to find which condition(s) must be investigated and 
according to each condition, which action(s) must be done. Then, according to what 
has been performed so far, the next conditions or actions are selected to be inves-
tigated or executed, respectively. Using task decomposition, we try to improve the 

Task 1 Task 2

Sequence

Fig. 5  There are two tasks in this sequence
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quality of producing these types of structures. The value assigned to the connections 
of each task in each sequence is proportional to its importance in goal achievement. 
In GP, because of the tree structure of its individuals, applying this mechanism is 
not straightforward.

In the following, we will explain how this accumulated experience is calculated. 
In each iteration of exploration oriented phase, crossover and mutation of standard 
GNP produce the individuals of the next generation. However, within the iterations 
of the exploitation oriented phase, branch b of node i which is shown by bi is con-
nected to node n with probability p(bi,n). This probability is calculated according to 
Eq. 1. This is done for all branches of all nodes in the structures of an individual to 
produce a new one.

In this equation, N shows the number of nodes in the structure of an individual. 
In the structure of individuals, the indegree of the first node (start node) is zero. So, 
in this equation, variable m is set to 2. Finally, v(bi,n) is the value assigned to the bi 
assuming it is connected to node n.

To calculate the experience of successive generations, as the first step, the effec-
tiveness of the connections in the tasks of the sequences is assigned according to 
Eq. 2.

In this equation, the effectiveness of bi if it is connected to node n is shown by 
e(bi, n). Parameter λ (0 < λ ≤ 1) is a discounting factor. Connections in the later tasks 
have larger e(bi, n) than connections in the earlier tasks. Then, the fitness of each M 
promising individual is distributed on the connections according to Eqs. 3, 4 and 5.

In these equations, g and α show the generation number and updating factor of 
v(bi, n) respectively. In each iteration, M promising individuals update values of 
tasks’ connections using Eq. 3. fitnessk is the fitness of kth promising individual. In 
these equations, σ(bi, n)k is set to one whenever bi is used by an agent that executes 
individual k as its strategy. To prevent the value of connections from rapid growth, 
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the log function is used in Eq. 4. This can prevent premature convergence in the evo-
lution process. What we are looking for is the expected value of bi when it is con-
nected to node n. These equations can approximate this expected value proportional 
to its effectiveness in the goal achievement.

When an individual is produced, the agents use it as their strategy to interact with 
the environment. Based on the interaction results, the fitness of individuals is esti-
mated. After calculating individuals’ fitness, the sequences generated during the 
interaction of M promising individuals with the environment are extracted. Then, the 
tasks in each sequence are determined. Finally, for each of M promising individuals, 
we use Eq. 3 to distribute its fitness on the connections of its tasks.

It was mentioned that if bi which is connected to node n is used during individual 
execution, σ(bi, n)k is set to one. It not only takes into account the existence of a con-
nection but also shows how useful it is. Consequently, during an individual execu-
tion, only the value of the used connections is updated. This way, the usefulness of 
connections can be learned. In addition, when a connection of an individual is used 
several times, its effectiveness should not increase repeatedly. We only reset it to 
one. Using this mechanism, the high accumulation of fitness on the connections that 
participated in the loops is avoided.

5  Experimental results

Our proposed method was applied to Tile-world [57] and Pursuit-domain [46] 
benchmarks to test its effectiveness. These problems are two agent control problems 
that are commonly used in GNP research [20, 21, 28, 41, 44, 45, 49].

5.1  Tile‑world

In this benchmark, we have some agents that try to push some tiles into the holes 
while there are some obstacles in the environment. An example of this problem can 
be seen in Fig. 6.

The interactions of the agents with the environment are based on judgment and 
processing functions defined for them. These functions are listed in Table 1. An 
example of using judgment functions is shown in Fig. 7. According to the results 
of these judgment functions, agents select one or more processing functions to 

Fig. 6  Tile-world environmen
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execute in the environment. When a tile is dropped into a hole, the hole is filled 
by the tile and both of them are vanished. The corresponding cell is also con-
verted into the floor. The program of controlling the agents’ behaviors can be 
generated by combining judgment and processing functions.

The behavior of agents is evaluated by the method proposed in [41]. According 
to that method, the fitness of an individual is calculated based on the number of 
tiles which is dropped into the holes, the speed of agents in dropping the tiles and 
if the agents cannot drop all tiles into the holes, how much they can push the tiles 
nearer to the holes. These three factors are taken into accounts in the Eq. 6.

Table 1  List of Tile-world functions

Node type ID Node function Outputs of the functions

Judgment J1 Check immediately forward cell Floor, Obstacle, Tile, Hole, Agent
J2 Check immediately backward cell
J3 Check immediately left cell
J4 Check immediately right cell
J5 Check the direction of nearest tile Forward, Backward, Left, Right, Not found
J6 Check the direction of the nearest hole
J7 Check the direction of the nearest hole 

from nearest tile
J8 Check the direction of the second nearest 

tile
Processing P1 Move forward There is no output

P2 90 degree turn left
P3 90 degree turn right
P4 Stay in place

Judgment 
Functions ID

Outputs

J1 Obstacle

J2 Floor

J3 Floor

J4 Tile

J5 Right

J6 Backward 

J7 Backward

J8 Forward 

(a) (b)

Fig. 7  a How an agent can sense the directions in Tile-world and b the outputs of using these judgment 
functions
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In this equation, SUB is the predefined number of steps that the agents are allowed 
to move in the environment. The number of dropped tiles into the holes within SUB 
steps is shown by DT. Sused is used to measure the speed of agents to drop all tiles 
into the holes. It shows how many steps the agents use to achieve their goals. T is 
the number of tiles which is not dropped into the holes. The initial and final distance 
of each tile from its nearest hole is shown by ID and FD, respectively. Finally, the 
weight of these three factors is shown by wt, ws and wd. In this research, SUB, wt, ws 
and wd are set to 60, 100, 3 and 20, respectively. The goal of this experiment is to 
find an individual that can achieve the highest fitness value when agents are con-
trolled according to this individual.

5.2  Pursuit‑domain

Pursuit-domain or prey and predator problem is also used as a benchmark to test 
the performance of agent control algorithms. Pursuit-domain consists of some adja-
cent cells like Tile-world. A segment of the environment of this benchmark is shown 
in Fig.  8a. In this study, the pursuit domain is a 20 × 20 2D toroidal environment 
[46] with one prey and four predators in it. The cells of this environment may con-
tain prey or predator. Otherwise, they are considered as floor. If the prey is put in a 
situation like Fig. 8b, it means that it was captured by the predators. The judgment 
and processing functions that correspond to the sensors and the actors of predators 
respectively are described in Table 2. Meanwhile, the prey moves randomly in the 
environment. In this research, the speed of the prey is half of the predators’ speed.

Like Tile-world, the fitness of individuals in this benchmark is calculated accord-
ing to three factors. The first factor is the predator’s ability in chasing after the prey. 
The second factor is the number of predators which is placed in the adjacent cells of 
the prey and the third factor is how fast the prey can be hunted by the predators. We 
formulate these three factors as Eq. 7.

(6)Fitness = [wt × DT] + [ws × (SUB − Sused)] +

[

wd ×

(

T
∑

t=1

(

ID(t) − FD(t)

)

)]

(7)

Fitnessr,w =

[

Sused
∑

i=1

NoP
∑

j=1

(

ES

DP2P
j

i

)]

+

[

cPos
∑

i=1

ES

]

+
[

4 × ES ×
(

SUB − Sused + 1
)]

Fig. 8  a Prey and predators in 
Pursuit-domain, b The predators 
capture the prey
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In this equation, ES shows the environment size. In step i, the distance of preda-
tor j from the prey is shown by DP2Pj

i
 . Sused is the number of taken steps to hunt the 

prey and NoP is the number of predators in the environment. Agents are allowed to 
move at most SUB steps in the environment. After this number of steps, the number 
of immediately adjacent cells that are occupied by predators is shown by cPos. In 
world number w and run number r, fitnessr,w is calculated according to Eq. (7).

Pursuit-domain is a dynamic environment. So, each individual is run R times on 
W environments with different positions of the predators and prey. Consequently, the 
final fitness of each individual is estimated according to Eq. 8.

5.3  Experimental analysis

In this section, the performance of TDGNP was compared with GNP [19–21] and 
some other states-of-the-art extensions of GNP which we call GNP-ACO1 [51], 
GNP-ACO2 [50] and GNP-ABC [53]. Some other algorithms like SARSA, Q-learn-
ing and GP were compared with GNP and some of its versions [41, 53]. Accord-
ing to the reported results, their performances are almost always in the next rank of 
GNP. So, we did not implement and investigate them again in this research.

We conducted experiments for different values of the deterministic parameter 
defined in Sect. 3 on both of the above mentioned benchmarks. The deterministic 
parameter values used in the experiments are 0.5, 0.75 and 1.0. This helps us to see 
how the performance of the investigated algorithms varies with respect to determin-
istic parameter changes. Meanwhile, the various number of instance of each node 
indexed in Tables 1 and 2 is used in each individual. In other words, it is possible to 
have more than one instance of each judgment and processing nodes in an individ-
ual. When there is more than one instance of each node, making different structures 
in an individual is more flexible. Suppose that in the optimal strategy, two instances 

(8)Final fitness =

(

R
∑

r=1

W
∑

w=1

fitnessr,w

)

∕(R ×W)

Table 2  List of the functions in Pursuit-domain

Node type ID Node function Outputs of the functions

Judgment J1 Check immediately forward cell Floor, Obstacle, Prey, Predator
J2 Check immediately backward cell
J3 Check immediately left cell
J4 Check immediately right cell
J5 Check the direction of the nearest prey 

form a predator
Forward, Backward, Left, Right

Processing P1 Move forward There is no output
P2 90 degree turn left
P3 90 degree turn right
P4 Stay in its place
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of a node are needed. If there is only one instance of that node, it must be used in 
the position that the individual shows better performance. However, if there are two 
instances, they can be used in two different situations and the evolutionary algorithm 
is not forced to have a selection between two situations that needs that specific node. 
In this research, this parameter which is named program size is set with different 
values 1, 3, 5 and 10 to investigate its effectiveness on the algorithms. The other 
parameters of these algorithms are set to the optimal values as suggested in their 
references (see Table 3). Each algorithm was run 30 times. So, 30 independent solu-
tions were created which their performance will be compared.

5.3.1  Tile world problem experimental results

In this section, the algorithms are applied to Tile-world shown in Fig. 6 and their 
performances are compared and analyzed. Termination condition in these algo-
rithms is the maximum number of fitness evaluation and in this benchmark, we set 
it to 300,000.

When the deterministic parameter is set to 1, i.e. the environment is deterministic, 
the fitness of investigated algorithms is illustrated in Fig. 9. This figure exhibits that 
in all tests, TDGNP surpasses other algorithms particularly when program size is 
set to 1. Others show more or less similar performance. GNP-ACO2 performance 
is better than GNP-ACO1 because GNP-ACO2 accumulates its previous experience 
during the evolution process while in GNP-ACO1, after a predefined number of iter-
ations, the accumulated experience is reset. GNP-ABC could achieve results similar 
to other methods but at a slower rate because of its weaker exploration ability [53].

Table 3  Different algorithms’ parameters in the pursuit domain (P.D.) and Tile-world (T.W.) problems

* This parameter is the number of individuals produced by this mechanism in next generation

Name of algorithms Standard GNP GNP-ACO1 GNP-ACO2 GNP-ABC TDGNP

Parameter name P.D T.W P.D T.W P.D T.W P.D T.W P.D T.W

Population size 50 300 50 300 50 300 50 300 50 300
SUB 60 60 60 60 60 60 60 60 60 60
Elite ind.* 1 1 1 1 1 1 – – – –
Crossover ind.* 20 120 20 120 20 120 – – – –
Crossover rate 0.90 0.40 0.90 0.10 0.90 0.10 – – – –
Mutation ind.* 29 179 29 179 29 179 – – – –
Mutation rate 0.01 0.01 0.01 0.01 0.01 0.01 – – – –
Tournament size 2 2 2 2 2 2 2 2 – –
ρ – – 0.1 0.1 0.1 0.1 – – 0.1 0.1
λ – – – – – – – – 0.99 0.99
α – – – – – – – – 0.9 0.9
K – – – – – – – – 10 10
M – – – – – – – – 10 10
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The experimental results are detailed in Tables 4, 5, 6, 7, 8, 9, 10 and 11. For 
clarity, the results of the best algorithm are marked in boldface.  They reveal that 
TDGNP is better than other algorithms. However, according to the p-values of the 
Wilcoxon test at 0.05 significant level [58], in some cases, there is no significant 
difference between TDGNP and some other algorithms when program size is more 
than one. Strategies generated by individuals lack sufficient representation power 
when program size is one. For example, suppose that the optimal strategy requires 
at least two processing nodes that cause agents to move forward. When only one is 
available (due to program size of one), the algorithm cannot create the eligible indi-
vidual to achieve the goal. So, the algorithms must investigate the search space more 
precisely to find better solutions. It needs an excellent balance between exploration 
and exploitation. On the other hand, when the program size is large, the dimension 
of search space is increased drastically. But the representation power of generated 
individuals is also increased. In both of these cases, TDGNP and GNP-ACO2 are in 
the first and second ranks, respectively. It shows that these two algorithms exhibit 
better exploration–exploitation balance during the evolution process.      

Another topic of interest is the overall mean of fitness in these tables. When the 
deterministic parameter is one, they are about 449, 574, 593 and 596 corresponding 
to the program size of one, three, five and ten, respectively. Obviously, when the pro-
gram size is increased from one to three, the performance of algorithms significantly 

Fig. 9  Performance curve in Tile-world when the deterministic parameter is 1 and program size is a 1, b 
3, c 5 and d 10
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improved. However, this notable improvement does not continue especially when 
we change the program size from five to ten. Considering the exponential growth of 
search space with respect to the program size and negligible performance improve-
ment beyond program size of five, increasing program size more than 5 is not rea-
sonable. In this environment, when the deterministic parameter is less than 1, i.e. the 
environment is stochastic, the calculated fitness is not correct if an individual is run 
just once. It is necessary to run each individual several times and calculate expected 
fitness. So, when the deterministic parameter is set to 0.50 or 0.75, the best individ-
ual in each run is averaged over 100 times of execution to calculate its fitness more 
precisely. When the environment is stochastic, the fitness of individuals is decreased. 
This is due to the fact that executing the selected actions in a stochastic environment 
does not necessarily lead to the same outcome. This phenomenon leads astray the 
evolution process which hurts performance. However, TDGNP performance is still 
better than others because it uses accumulated fitness distributed on the connections 
during the evolution process to generate offspring. Indeed, accumulated fitness can 
tackle the stochastic condition in the environment because it uses the experience of a 
group of individuals, not just one.

The last two columns of Tables 4, 5, 6, 7, 8, 9, 10 and 11 are some other cri-
teria that can be used to compare algorithms. They show the success rate of final 
goal achievement and the number of steps taken to do so. For example, according 
to Table 4, TDGNP, as the best algorithm could be successful 21 times out of 30 
trials. In these 21 times, the goal has been achieved in 31.14 steps on average. So, 
TDGNP is not only the most successful algorithm but also is the fastest one. In our 
experiments, each step is defined as using a processing node or at most five judg-
ment nodes in the structure of individuals.

5.3.2  Pursuit‑domain experimental results

In this section, the algorithms were applied to Pursuit-domain and their perfor-
mances were compared. Solving Pursuit-domain seems easier than Tile-world. 
However, due to its dynamic nature, learning is more challenging. During this test, 
algorithms were run 30 times independently. In each run, because of the dynamic 
nature of the problem, each individual was applied to 20 environments with different 
positions of predators and prey. It means that in Eq. 8, R and W were set to 30 and 
20 respectively. The termination condition in this test is the maximum number of fit-
ness evaluations which is set to 20,000.

When the deterministic parameter is set to one, the fitness curves of different 
algorithms are shown in Fig. 10. In these tests, TDGNP is the best algorithm. GNP, 
GNP-ACO2, GNP-ACO1 and GNP-ABC, are in the next ranks, respectively.

The detailed results are shown in Tables 12, 13, 14, 15, 16, 17, 18 and 19. The 
results of the best algorithm are marked in boldface. As it is apparent, in a deter-
ministic environment, TDGNP as the best algorithm is significantly better than 
others according to the p-values. The results also illustrate TDGNP superiority in 
deterministic and dynamic conditions. Differently from Tile-world, increasing the 
program size in Pursuit-domain leads to decreasing the performance of algorithms. 
Increasing the program size makes the search space large. Consequently, finding 
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solutions will be so hard especially when the environments are dynamic. This deg-
radation is also observable in the last two columns of these tables. The number of 
successful runs for hunting the prey is reduced from 231 for program size of one to 
122 for program size of ten.       

When the environment is stochastic, although TDGNP is significantly better 
than others for program size of five and a deterministic parameter of 0.75, it cannot 
retain its superiority when program size changes to ten or deterministic parameter is 
reduced to 0.50. This is due to the fact that learning in extremely large search space 
is hard and agents’ actions do not yield the expected outcome due to the working 
in a stochastic environment. In these conditions, learning takes much more time. In 
other words, although our proposed method is better than others in stochastic envi-
ronments, it cannot afford huge stochasticity. It does not mean that other algorithms 
can do this. Indeed, in this condition, learning is extremely difficult and none of the 
algorithms can handle this condition because commonly the actions do not lead to 
the intended outcomes. The results in Tables 16 and 19 confirm this. According to 
the results in these tables, almost all the algorithms are in the same rank and there 
is no significant difference between the final results. In addition, their achieved fit-
ness is not good at all. It shows that almost no learning has happened. For example, 
in Table 19, there is no significant difference between GNP-ACO1 as the first rank 
algorithm and others except GNP-ABC. Like other tests, GNP-ABC is so slow in 
learning and almost always is in the last place.

Fig. 10  Performance curve in Pursuit-domain when the deterministic parameter is set to one and pro-
gram size is a 1, b 3, c 5 and d 10
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In addition, in most experiments, the number of successful runs in TDGNP is 
higher than others. However, in some cases such as Table  13, GNP overtakes 
TDGNP. GNP was successful in 305 runs while TDGNP had 301 successful runs. 
But it should be noted that for GNP, this number of successful runs happened during 
520.78 steps on average while TDGNP could achieve 301 successful runs in only 
120.64 steps on average which is much faster than GNP.

6  Discussion

The algorithm proposed in this research i.e. TDGNP consists of two phases. In the 
exploration oriented phase, the algorithm investigates good individual structures 
while it is biased to explore in the search space. During this search, the algorithm 
tries to save its experience. In the exploitation oriented phase, using the saved expe-
rience, the new individuals are generated. In other words, the new population is 
generated according to the experience of promising individuals during the evolution 
process. By the combination of these two phases, our algorithm could overtake other 
ones. The concluding remarks are as follows:

• When program size is 1, the representation power of an individual is low. So, a 
better balance between exploration and exploitation is needed and our method 
could better achieve this feature. In the Tile-world, which is simpler than Pur-
suit-domain, when program size is 1, our algorithm shows better performance 
than others. However, it cannot keep its superiority when the program size is 
increased. When Pursuit-domain is used as the benchmark, as it is a more com-
plex problem (because it is a dynamic environment), our algorithm is signifi-
cantly better than others especially when the deterministic parameter is less than 
1 (the environment is stochastic).

• As the convergence rate of GNP-ABC is low, its performance is not good at all, 
especially when it runs in more dynamic and stochastic environments.

• The performance of GNP-ACO2 and GNP-ACO1 are almost the same in Pursuit-
domain and GNP is better than both of them. It shows that in Pursuit-domain as 
a dynamic environment when the deterministic parameter is one, exploration is 
more important than exploitation. But it is not true when the environment is sto-
chastic. It is obvious that when the environment is stochastic, previous experi-
ences have a high influence on the performance of algorithms.

• Unlike GNP-ACO2 and GNP-ACO1 which actually are a combination of GNP 
and ACO, in TDGNP, updating the value of the connections is not done accord-
ing to their usage frequency. In these methods, the individuals are used in the 
role of flowcharts. Consequently, some parts of them may be considered as a 
loop and used many times by the agents that behave according to them. If the 
values of connections of tasks in a sequence are updated according to their usage 
frequency, their values increase improperly. Therefore, in our proposed method, 
the connections’ values of tasks in a sequence are updated depending on whether 
they are used in the individual or not regardless of their usage frequency.
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• In TDGNP, the behavior of agents are handled more efficiently by the manage-
ment of the sequence of tasks that they do. This algorithm helps the agents to 
extract a more suitable sequence of tasks to achieve their goals. TDGNP could 
achieve this object by distributing the fitness of promising individuals on the 
more useful sequences of tasks.

7  Conclusion and future work

In this paper, a new algorithm was proposed to adapt GNP to be used in more com-
plex environments i.e. dynamic and stochastic environments. In this new algorithm, 
the more useful and efficient sequences of tasks which agents select their behav-
iors according to them are extracted. Then, the value of the connections that makes 
these tasks are increased proportional to their usefulness in the algorithm. In addi-
tion, a better tradeoff between exploration and exploitation is achieved by defin-
ing two different phases during the evolution process. In the exploration oriented 
phase, standard crossover and mutation were used inclined toward exploration. Dur-
ing this phase, promising individuals were also selected and their experiences were 
saved. The experiences were used in the exploitation oriented phase to generate new 
individuals. These modifications improve the efficiency of the purposed method in 
comparison with some other versions of GNP in both deterministic and stochastic 
environments.

It is clear that some tasks can achieve better fitness if they are executed con-
secutively. In this case, it is better not to decompose them. However, our proposed 
method lacks the ability to detect and exploit such scenarios. So, as a field for future 
research, it is worth working on a mechanism which is able to prevent these types of 
tasks from decomposition. We have to find a method to use these tasks together in 
the generation of new individuals. As a result, the algorithm can produce promising 
individuals faster. Meanwhile, we can investigate the performance of the proposed 
algorithm on more complex benchmarks for better evaluation of the algorithms. 
Another important subject that must be considered as the future work is parameter 
tuning of the used algorithms. We know that it is one of the important factors in 
their performance [59, 60]. Automatic parameter tuning is an appropriate approach 
for parameter tuning and fairness in the comparisons. We could also consider using 
multi-objective fitness since a composed fitness is used in our experiments. In addi-
tion, testing and comparing the proposed method on a larger set of problems could 
better show the proposed algorithm ability.
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