
Vol.:(0123456789)

Genetic Programming and Evolvable Machines (2021) 22:101–135
https://doi.org/10.1007/s10710-020-09393-2

1 3

Fuzzy cognitive maps for decision‑making in dynamic 
environments

Tomas Nachazel1 

Received: 31 May 2019 / Revised: 29 March 2020 / Published online: 27 May 2020 
© Springer Science+Business Media, LLC, part of Springer Nature 2020

Abstract
This paper describes a new modification of fuzzy cognitive maps (FCMs) for the 
modeling of autonomous entities that make decisions in a dynamic environment. 
The paper offers a general design for an FCM adjusted for the decision-making of 
autonomous agents through the categorization of its concepts into three different 
classes according to their purpose in the map: Needs, Activities, and States (FCM-
NAS). The classification enables features supporting decision-making, such as the 
easy processing of input from sensors, faster system reactions, the modeling of inner 
needs, the adjustable frequency of computations in a simulation, and self-evaluation 
of the FCM-NAS that supports unsupervised evolutionary learning. This paper pre-
sents two use cases of the proposed extension to demonstrate its abilities. It was 
implemented into an agent-based artificial life model, where it took advantage of all 
the above features in the competition for resources, natural selection, and evolution. 
Then, it was used as decision-making for human activity simulation in an ambient 
intelligence model, where it is combined with scenario-oriented mechanism proving 
its modularity.

Keywords Autonomous systems · Decision-making · Dynamic environments · 
Fuzzy cognitive maps · Multi-agent models

1 Introduction

Fuzzy cognitive maps (FCMs) are powerful tools for the simulation of dynamic phe-
nomena. They are generally used to predict or simulate systems that consist of many 
dependent variables in a complex dynamic structure [1]. FCM has proved to be a 

Area Editor: Sebastian Risi.

 * Tomas Nachazel 
 tomas.nachazel@uhk.cz

1 Faculty of Informatics and Management, University of Hradec Králové, Rokitanskeho 62, 
500 03 Hradec Králové, Czech Republic

http://orcid.org/0000-0001-6484-3793
http://crossmark.crossref.org/dialog/?doi=10.1007/s10710-020-09393-2&domain=pdf


102 Genetic Programming and Evolvable Machines (2021) 22:101–135

1 3

strong decision-making method, even for autonomous agents. An agent is an intelli-
gent computer system that is capable of evaluating a situation, making decisions and 
performing actions [2]. It is usually an entity with a location and an ability to move 
within the environment, but the proposed approach is also applicable to static ambi-
ent intelligence, in which the observed environment is inside the entity.

The motivation for this paper was the proposal of a new modification of the FCM 
with Needs, Activities, and States node classes (FCM-NAS) aimed at the decision-
making of autonomous agents in a dynamic environment. The original design of 
FCMs does not allow for differences between concepts; each concept node has the 
same range of values, the same behavior, and the same interpretation. This approach 
is sufficient in a dynamic system with equal elements of the  same type; however, 
some changes are unavoidable if an FCM needs to process some concept nodes 
differently. The management of different kinds of nodes after computation often 
becomes very confusing and context-dependent, hindering the modularity and scal-
ability of the FCM. This paper offers a new design of FCMs that allows for various 
types of nodes. The proposed method processes nodes according to an implemented 
classification during computation, meaning that special treatment after computation 
is not necessary.

The FCM-NAS approach is quite different from the classical FCM in terms of 
its structure and use. This method has several advantages that are not possible for a 
standard approach to achieve without ad-hoc editing of the algorithm. For instance, 
it enables decision-making, the easy processing of input from sensors, faster system 
reactions, more realistic behavior in simulations (disabling parallel activities if nec-
essary), the simulation of inner needs, adjustments to the frequency of computations 
in a simulation, and self-evaluation of the agent (fitness), which supports learning.

To verify the proposed design and demonstrate its abilities, this paper describes the 
implementation of the design within two models: an artificial life model and an ambi-
ent intelligence model. The first model was chosen for its ability to test the quality of 
artificial intelligence, as thousands of test subjects with various attributes and behav-
iors compete in a single model. Artificial life modeling allows us to explore real natu-
ral phenomena, emergence, and evolution within a runtime of only minutes. Autono-
mous individuals behave according to their needs and the situation in their vicinity, 
and their intelligence is tested through competition for limited resources. To survive, 
they also need to deal with changes in a  dynamic environment. Natural selection 
guides the main directions of evolution and the specialization of various species after 
several generations. The second model, the ambient intelligence model, was chosen to 
demonstrate a combination of FCM-NAS and scenario-based behavior, which proves 
its ability to cooperate with other decision-making mechanisms effortlessly.

The proposed concept has already been modified for large-scale models in which 
performance is a key factor. In the latter case, an analytic hierarchy process replaced 
the decision-making part of FCM-NAS [3]. The analytic hierarchy process combi-
nation improved performance, but the quality of decision-making and possibilities 
for evolutionary progress were slightly decreased. Although this modification has 
already been published [3], a full description of FCM-NAS has not previously been 
published, which is the objective of this paper.
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The paper is organized as follows: Sect. 2.1 introduces the essential elements of 
the original FCMs. Section 2.2 provides an overview of the various uses of FCMs, 
and the extensions and modifications that support autonomous agents or systems. 
Section 3 continues with a description of the new FCM extension: FCM-NAS. This 
section covers the fundamental aspects of the modification and is followed by Sect. 4 
in which some more advanced optional additions are described. Section 5 presents 
two example use cases of this method. Firstly, it provides the complete, step-by-step 
design of the FCM-NAS for an artificial life model and discusses the testing of the 
created FCM-NAS in the model. Later, this section also describes the implementa-
tion of the proposed approach into an ambient intelligence model to prove its modu-
larity. Finally, Sect. 6 gives concluding remarks.

2  Related work

2.1  Fuzzy cognitive maps

FCMs are dynamic systems of concept nodes with a complex network of relations. 
The values of the concept nodes change through iterations according to a set of 
relationships. The original FCMs are based on a collection of n concept nodes C, 
relations wij between these nodes and a function used to adjust values of nodes. An 
FCM consisting of a graph with directed, weighted edges can be represented as an 
adjacency matrix. The adjacency matrix R in Eq.  (1) is a commonly used form to 
express behavior through iterations [1].

where n is the number of concept nodes. Each value wij represents the influence of 
node ci on node cj. Throughout this paper, the indices i, j take values in ℕ to refer 
to a specific node. Values wij may be any real number between − 1 (strong negative 
causality) and 1 (strong positive causality):

If wij = 0, then node ci has no direct influence on node cj. If wij > 0, then the larger 
the value of node ci, and the more it raises the level of node cj. If  wij < 0, then the 
larger the value of node ci, and the more it lowers the value of node cj.

In addition to the matrix R, an FCM needs the truth values of nodes based on 
fuzzy logic [4]. Let vi denote the truth value of node ci. This value represents how 
active or strong its corresponding concept node is. For example, an agent with a high 
level for the value corresponding to concept node Fatigue means that the agent is 
tired. Names of nodes determine the understanding and design of concept nodes and 
their relationships. When designing causal relations, each concept is interchange-
able with its opposite counterpart after inverting all the relations of the inverted 

(1)R =

⎛⎜⎜⎝

w11 ⋯ w1n

⋮ ⋱ ⋮

wn1 ⋯ wnn

⎞⎟⎟⎠

(2)∀wij ∶ wij ∈ [−1, 1]
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concept; then, this change does not influence the logic of the FCM [1] (e.g., the rela-
tion ‘Fatigue positively influences Sleep’ is equal to ‘Fatigue negatively influences 
Vigilance/Not-Sleep’).

Since this paper anticipates that an FCM is used in a dynamic environment, it will 
be changed through iterations (often called time steps in simulations). A time vari-
able is therefore necessary for calculations. Let us denote time steps with t, which 
is a positive whole number starting at zero as FCMs calculates values on a discrete 
time scale and is only able to advance in time. Note that simulation may run in con-
tinuous time; in that case, an FCM is processed at regular intervals corresponding 
with the time unit for which the FCM was designed. Changing values of nodes are 
then specified as vt

i
 , which is the value of concept node ci at time step t. As a truth 

value, vt
i
 is always a real number ranging between 0 (definitely not true) and 1 (defi-

nitely true). Even if the value exceeds these limits after computation, it needs to be 
immediately reduced to the valid range:

These values form a vector Vt; a one-dimensional array also valid only for the 
time step t:

The sizes of all components are constant since concept nodes are neither removed 
nor added. The vector Vt is updated at every time step, and the content of R is static. 
Equation (5) shows the computation of iteration at time step t based on the original 
definition model, and Eq. (6) is a version in which the product of the multiplication 
is added to the previous value, known as the incremental model [5].

In both equations, the function f represents a transformation of values. It is a real 
function of a real variable. Many diverse types of nonlinear functions can be used 
(e.g., sigmoid, hyperbolic, step). The primary task of this function is to keep the val-
ues within the interval from zero to one. The model described in this paper mostly 
uses a simple linear transformation unless a value exceeds this interval:

(3)∀vt
i
∶ vt

i
∈ [0, 1]

(4)Vt =

⎛⎜⎜⎜⎝

vt
1

vt
2

⋮

vt
n

⎞⎟⎟⎟⎠

(5)Vt = f
(
R ⋅ V (t−1)

)

(6)Vt = f
(
V (t−1) + R ⋅ V (t−1)

)

(7)f (x) =

⎧⎪⎨⎪⎩

0 for x < 0

x for x ∈ [0, 1]

1 for x > 1

where x ∈ ℝ
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The original FCMs handle all concept nodes in the same way, which causes a few 
issues in systems that contain elements of a different type. For example, if an FCM 
considers a number of inputs and then decides whether to trigger an action, then a 
trigger node has to be processed differently to the other nodes. In addition to choos-
ing a sufficient level of the node to trigger an action, it usually has to recognize only 
two states of node: an action is performed or not. Such differences in the processing 
and interpretation of specific nodes make FCMs generally confusing and less modu-
lar, because they create arbitrary links between the implementation of the method 
and designed behavior. This is why a modification which is proposed in this paper to 
handle such situations should be used.

2.2  Uses and extensions of FCMs

FCMs offer a powerful approach to modeling various systems that consist of many 
dependent variables within a  complex structure. Usually, an FCM is designed for 
a single, narrowly focused task, such as a support tool for analysis [6, 7], decision-
making [8, 9], predictions [10], or various tasks in social sciences [11, 12]. These 
FCMs aim to generate specific values or a steady state after a few iterations. How-
ever, this paper defines an FCM as a decision-making method for intelligent systems 
in dynamic environments. Those systems need to handle a much wider range of situ-
ations, and require a slightly different approach to FCMs based on the core mechan-
ics, but at the same time supporting decision-making, goal-oriented behavior, or 
machine learning. FCMs with a few enhancements have been shown to be strong 
artificial intelligence methods, even for autonomous agents [13].

In the field of intelligent systems, some projects aimed at interaction with humans 
use an FCM to simulate emotions. A virtual pet was designed for educational purposes, 
based on an FCM that ensures believable reactions to the user’s actions [14]. An ambi-
ent intelligence system also enriched its user interface with FCM-based emotions to 
provide additional comfort and to respond naturally to the presence of users [15].

In many projects, FCMs are a core component of a system or agent in a model. 
For instance, this approach has been used by monitoring systems in which an FCM 
assesses risk in critical situations [16], a situation awareness model for infantry pla-
toon leaders [17], and even landing site selection for planetary exploration [18].

2.2.1  Adaptive FCMs

Several articles have addressed the possibilities of learning FCMs [5, 19]. They are 
mostly focused on the design of FCMs, where a learning algorithm helps to prevent 
human errors during the design, or approximate missing or unclear data. Especially 
in projects with a dynamic environment, where FCMs need to deal with continuous 
changes, unsupervised training of the FCM or even its adjustment during runtime are 
desirable features. According to [5], genetic algorithms and Hebbian algorithms are 
commonly used as bases for various extensions to adjust the configuration of FCMs.

A dynamic fuzzy cognitive map (DFCM) is an extension focusing on the adapta-
tion of FCMs. It is based on the reinforcement learning of a random neural model, 
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which was designed to react to random events by modifying causal relations. The 
main feature of this approach is its ability to change the weights of relations of 
an FCM during runtime, enabling adaptation and changes in behavior at runtime. 
Although its use is suitable for autonomous agents and systems, it does not neces-
sarily overlap with the modification proposed in this paper because it focuses rather 
on the learning process of the system instead of its general structure and processing. 
This extension has been used as a supervision system [20], a navigation system for 
a robot [13, 21], and an intelligent controller [22]. In the last case, the authors tested 
a DFCM on a sample industrial mixer process. The authors set boundaries for some 
concepts and let a DFCM adjust weights (i.e., influences) between the concepts to 
maintain levels within specified limits. As the authors state in [13], the main dis-
advantage of DFCMs is their complexity even for small systems which hinders a 
manual development of the model.

In [23], authors evaluated their extended idea of DFCM: Dynamic Rule-based 
Fuzzy Cognitive Maps (DRBFCM). It uses fuzzy rules to adapt weights during a sim-
ulation through a set of fuzzy IF-THEN rules expressed by experts in the modelled 
field. This rule set helps with designing the model, as it does not require the precise 
recognition of weights because DRBFCMs adjust weights dynamically. An experi-
ment reported in [23] made better predictions with a DRBFCM than the original FCM.

Several papers describe the mechanisms of learning by evolutionary principles 
[24]. In [25], multi-agent genetic algorithms were used to train an FCM. In a grid 
layout, agents (i.e., their genes) compete with each other by generating values. The 
values are then evaluated by their similarity to the desired solution. The goal of this 
approach is to find weights of the FCM’s causal relations that would make its response 
as close to the observed data as possible. This paper [25] demonstrated the abilities to 
efficiently teach an FCM to capture the causal relations of the modeled problem. The 
method uses a simplified multi-agent approach as a tool for learning with its purpose 
to reconstruct time series, which differs from our proposed approach focusing on the 
decision-making of agents in a complex dynamic environment.

2.2.2  FCMs in multi‑agent systems

The connection of FCMs with multi-agent systems provides some beneficial fea-
tures. In [26], the authors propose a hybrid approach focused on influencing agents’ 
mental models: CoFluences. This approach assumes that every agent has a different 
configuration of an FCM (i.e., a different view of the modeled problem) and agents 
directly influence each other. Some nodes are able to influence or be influenced by 
other agents. CoFluences use FCMs in a classic way as a mental model of a static 
problem. Agents influence each other by direct virtual links between their FCMs, 
which is still very different from the approach proposed in this paper, where each 
agent is a separate entity able to interact with the environment and other agents only 
through its sensors and actuators.

As described in [27], there are two approaches to incorporating an FCM into 
multi-agent systems: an FCM representing a macro view of the whole model, or 
FCMs on a micro level as a property of each agent. Narrowing the group of pos-
sible uses to decision-making, these two approaches translate into two areas of 
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multi-agent systems that are suitable for FCMs: a supervisor monitoring or control-
ling a whole model [20, 28], or an artificial intelligence controlling individual agents 
[29, 30]. The latter is not widely used, since FCMs in their original form are not 
convenient for this purpose, and modifications that could support this role are not 
yet available; however, many of the works mentioned above touched at least slightly 
on the problem of FCMs for autonomous systems. Moreover, some models already 
process agents with an FCM, such as the artificial life model ALModel, the design of 
which forms part of this paper (more in Sect. 5), and the EcoSim model [30].

EcoSim, an artificial life model, uses an FCM to process the behavior of individu-
als. The simulation allows for the evolution of values in the FCM, which enables the 
adaptation of behavior. Individuals can choose from a  limited set of basic actions 
and select the optimal one for the current situation. The development and behavior 
of the population emerge from interactions between agents. EcoSim contains two 
types of species, predator and prey, which both evolve to increase their chances of 
success against the rival species. The decision-making of both the prey and predator 
species differs in terms of its actions and observed properties. High-level and low-
level control are combined in a single map, which generates a very complex FCM 
(26 concepts). Despite this  complexity, the behavior is focused only on reproduc-
tion and the management of food and energy. The patterns generated in this way are 
visually close to those of cell-based models. EcoSim aims to observe the emergence 
and evolution of the population, rather than to simulate the behavior of individuals 
realistically [31].

3  Fuzzy cognitive maps with needs, activities and states

This section presents a new approach to design FCM-NAS, FCMs with three node 
classes: Needs, Activities and States. It makes the creation of FCMs for more com-
plex systems with various types of concept nodes more comprehensive, effective, 
extensible and systematic. This  new proposed extension of FCMs offers several 
advantages that would be impossible to achieve with the general classical approach. 
Each concept class uses a  different computational model or transformation func-
tion which later allows additional useful features. This section describes the over-
all structure of the extension in the following subsections, and examines individual 
classes and the specifics of their computation process in detail.

3.1  Structure

The fundamental step required to introduce FCM-NAS into a project is the partition 
of concept nodes into three classes. ℂ is a partition of the original set of concept 
nodes C (see Eq. (8)). CN denotes the set of nodes which were identified as Needs, 
CA represents the set of Activities, and CS is the set of States:

(8)ℂ =
{
CN ∪ CA ∪ CS

}
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Since classes are pairwise disjoint sets, each concept node is in exactly one class. 
The original notation of the number of general concept nodes n is extended to distin-
guish the number of concepts in new classes: nN for the number of Needs, nA for the 
number of Activities, and nS for the number of States. The following statements then 
result from the features of the new structure:

The notation of individual nodes (ci) and their values ( vt
i
 ) remains the same as in 

the original FCM design. To distinguish the assignment of nodes for the introduced 
classes, it is necessary to define the collection of nodes as having a static order of 
nodes starting with Needs, then Activities, and ending with States. Nodes are thus 
uniquely identified based on their index:

3.2  Concept class needs

Needs are the first class of concept nodes. Unlike other classes, Needs keep their 
previous value as their starting point in iterations, meaning it is the only class whose 
values are developing through time instead of calculating it every iteration from 
scratch. A designed system usually has to observe a variable and perform an action 
repeatedly to keep the variable under control. If the action costs limited resources 
or time, the system should consider those costs, as it may not be efficient to take 
actions too often. The system could then use sensitive balancing or a  time delay 
which Needs allow. Alternatively, systems have at least one purpose, which it is try-
ing to fulfill, and a measure of success might be useful. In such cases, Needs are 
the optimal choice for the representation of the concepts. It is an obvious choice for 
the simulated biological needs of agents in an  artificial life model. However, it is 
crucial even in non-biologically related areas: it can be used for a simulated level of 
satisfaction with memory management in a system, where its corresponding action 
repeatedly moves data from temporary fast memory to persistent database, or a set 
of needs balancing performance or workload between available resources.

The main difference between Needs and the other classes is their behavior 
during computation. Their computation is based on the incremental model intro-
duced in Eq. (6), meaning it keeps its previous value and adds (or subtracts) an 
increment based on the influence of other nodes. If there are no active influences 
from the other nodes, then it holds its value. Equation (12) shows the computa-
tion of value vt

i
 of node ci. This equation uses the basic transformation function 

(9)∀ci ∶ ci ∈
(
CN ∪ CA ∪ CS

)

(10)n = nN + nA + nS

(11)ci ∈

⎧
⎪⎨⎪⎩

CN for i =
�
1,… , nN

�
CA for i =

�
nN + 1,… , nN + nA

�
CS for i =

�
nN + nA + 1,… , n

�
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f [see Eq. (7)]. As a reminder, note that the value wij represents the influence of 
node ci on node cj.

The value of a Need node represents the level of the necessity to do something 
to satisfy the corresponding need. Zero means the need has been satisfied, and 
an agent does not have to do anything. If its level approaches one, then the agent 
has to satisfy the need and should take appropriate action as soon as possible. 
The designer determines the threshold level of a Need node, which triggers a cor-
responding activity. This design choice depends on the configuration of relations 
in matrix R. The design of Needs and their integration into FCM-NAS enable 
features like the adjustable frequency of computations in a simulation, the addi-
tion of true positive causality to itself, the self-evaluation of an FCM-NAS, and 
the varying necessity of actions (all described in Sect. 4).

3.3  Concept class activities

The next class of concept nodes, Activities, represents all possible actions that 
a system or agent can perform. If an agent with an FCM-NAS is not just a passive 
observer and has to react, manage, or in any way affect its environment or itself, 
then there are two possible solutions. The first approach involves another mecha-
nism outside of an FCM that reads values from the FCM and makes a decision 
[3]. The other approach places the actions directly inside the FCM-NAS, which 
then holds the decision-making responsibility.

An action either takes place or it does not, thus after computation, the Activi-
ties only have two possible values: zero (false; the action is inactive) or one (true; 
an agent performs the activity). During their computation, however, these values 
retain the full interval from zero to one. They are calculated with a similar algo-
rithm as general nodes in the original FCMs [based on the definition model intro-
duced in Eq. (5)]. Equation (13) shows the full computation of Activities.

The values are rounded using a simple algorithm (the transformation fa ), which 
decides the activation of Activities based on their truth values acquired from the 
computation. Depending on whether parallel activities are available, it selects 
only the activity with the highest value (see Sect. 4.3) or performs all activities 
reaching a certain critical level ac as seen in Eq. (14):

(12)vt
j
= f

[
vt−1
j

+

(
n∑
i=1

wij ⋅ v
t−1
i

)]
for j =

{
1,… , nN

}

(13)vt
j
= fa

(
n∑
i=1

wij ⋅ v
t−1
i

)
for j =

{
nN + 1,… , nN + nA

}

(14)fa(x) =

{
1 if x ≥ ac
0 otherwise

where x ∈ ℝ



110 Genetic Programming and Evolvable Machines (2021) 22:101–135

1 3

In cases when Activities are supposed to provide a  truth value to express 
an intensity of actions, basic f transformation Eq. (7) could be used. Transforma-
tion functions are adjustable to the demands of the system without any issues 
with the rest of the design.

Generally, FCMs are not suitable for a  combination of high-level decision-
making (“what should be done”) and low-level operations (“how it should be 
done”; e.g., pathfinding). That combination often requires too many variables in 
one structure which may cause performance issues in large scale models as the 
time complexity of FCMs is O(n2) [3].

3.4  Concept class states

The third class of concept nodes States is very similar to general concepts in the 
original FCMs. The way it is calculated is almost the same as for the original 
definition model [see Eq. (5)], and its purpose does not have a narrow focus, as in 
the previously presented classes:

Besides general concepts, States are an advantageous choice for external input 
nodes. If an agent needs to be able to perceive an attribute of the environment and 
take it into account during the decision-making process, then it requires a dedi-
cated State node in its FCM-NAS. As a property of the environment, the value of 
this node is not directly affected by any node in the FCM-NAS. All relations to 
this node in matrix R therefore equal zero, which allows its whole calculation to 
be omitted. Instead, it is updated by sensors. Obviously, the inserted values have 
to be transformed into truth values (ranging from zero to one).

4  Additional extensions to FCM‑NAS

While the previous section described the core of the proposed method, this sec-
tion provides its optional extensions that are very useful for certain systems but 
not necessary for others. Although a few of these are dependent on each other (the 
dependencies are noted), the core design presented above can be implemented 
independently of the following options. Note that more extensions can always be 
proposed as this is not an exclusive list.

4.1  Frequency of computations

Since agents process an FCM-NAS through iteration in discrete time steps, the 
selection of the period of virtual time between computations of FCMs is a crucial 

(15)vt
j
= f

(
n∑
i=1

wij ⋅ v
t−1
i

)
for j =

{
nN + nA + 1,… , n

}
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issue, regardless of whether the system deals with continuous real-time or dis-
crete time steps. The values of an FCM in a dynamic environment are always 
valid only within the particular interval for which the FCM was designed. Fig-
ure 1 shows how an FCM-NAS perceives a continuous variable with different set-
tings for the frequency in continuous time. A FCM-NAS with a frequency of 0.5 
is four times more demanding in terms of performance but is also more precise 
than one with a  frequency of 2.0. The parameter g is a multiplier representing 
the length of an interval between computations (measured in virtual time), which 
is relative to the default length of the  interval for which a model was initially 
designed.

In a model with continuous time, the designer chooses how often an FCM 
updates its values. In a  model with discrete time, the problem instead lies in 
deciding how much virtual time (or how many time steps) elapses between the 
computations or how much the environment changes in a single time step. After 
an FCM is designed, any change to the length of this interval invalidates cer-
tain values related to dynamic phenomena in the environment. With the proposed 
solution, however, the effect of the frequency of computations on concept classes 
is evident: only Needs are affected as they are the only time-dependent class of 
nodes. Activities are not, since a decision could be made at any time. States typi-
cally are not affected, but since they have a broader use, some may be affected in 
cases when a node has non-zero relation with itself.

The effect of this frequency on Needs causes differences in their growth (or 
decrease). This can be easily compensated for with a simple enhancement of the 
calculation, and the nodes always adjust to the current simulation speed. Equa-
tion  (16)  shows the addition of the  parameter g, which adjusts the size of the 
increment every time step.

(16)vt
j
= f

[
vt−1
j

+ g ⋅

(
n∑
i=1

wij ⋅ v
t−1
i

)]
for j =

{
1,… , nN

}

0
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Fig. 1  Comparison of different settings of frequency of computations
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The values of the Needs reach (1/g) times more computations per virtual time 
unit than they would have with g = 1. Figure 2 shows an example in an artificial 
life model. A predator would reach his prey after one time step with the default 
frequency, but if the prey moved, then the predator missed it. With the frequency 
at 0.25, the predator processes computations four times. Of course, in both cases, 
it can run the same length for the same amount of virtual time, but due to the 
frequency of computations, it has four times as many opportunities to reconsider 
the activity or the direction of its movement.

The main advantage of this feature is the adjustability of a model during its 
development. It allows a designer to set values according to a specific time frame 
during a design phase and later adjust the time frame without the requirement of 
redesigning the whole matrix of relations. For example, if the value of node c1 
(for simplicity, assume it is always at 1.0) is supposed to increase the value of the 
Need node c2 at rate 0.6 per hour, and the matrix is designed in this time-scale in 
mind, then w12 would be set at 0.6. Later in the development, a designer would 
realize that one computation per hour is not enough for the system. For the period 
of one minute between computations, parameter g would be set at 1/60, and the 
system would process FCM once per minute. Thanks to this feature, the designed 
increase rate of Need node c2 remains automatically at 0.6 per hour (or 0.6/60 per 
minute). Otherwise, the designer would need to edit every value in matrix R by 
hand with every change to the frequency of computations of the model. This pro-
cess would be especially laborious when testing different computation intervals.

This is very similar to sampling in signal processing; when samples are too 
far apart, much of the information between them can be lost; when samples are 
too close to each other, its processing is more demanding. Generally, a shorter 
interval generates better reactions of agents, but it raises performance demands 
of simulations as it is processed more often per virtual time unit. Note that the 
frequency parameter of agents may vary in a single system, meaning that they can 
have different reaction times.

4.2  Faster reactions of agents

As seen in Eqs. (5) and (6), the original FCMs compute the current values by using 
the values of the previous iteration. This procedure inevitably causes a delay between 

Fig. 2  Example of different behavior based on the frequency of computation; the dark dot represents 
predator following a prey (white dot) in a continuous time, and model with b g = 1 and c g = 0.25
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a stimulus and the corresponding reaction (i.e., one time step or the interval between 
computations of the FCM). Depending on how often the FCMs are recomputed, this 
delay may cause problems if the short reaction time is essential for the proper opera-
tion of a system. For example, a monitoring system should react to fire immediately, 
as soon as sensors detect it, rather than waiting for the next iteration to take action.

Some researchers solve this with incremental or cumulative models [5]; however, 
their goal is to achieve FCM with stable converged values in the shortest time pos-
sible. FCM-NAS does not seek one set of values in order to decide; instead, it uses the 
values to make decision at every time step (i.e., every iteration is the solution to the 
current situation). Considering the objectives and abilities of this method, there is a far 
more efficient way to ensure not only faster but even instantaneous reactions of agents.

Thanks to the partition of concept nodes to different classes, the computation of 
an  FCM-NAS can be divided into three parts, which can then be performed in any 
order. Some parts can even consider the values of the current iteration from parts that 
have already been computed. The best order has proved to be as follows: first the Needs, 
then the States and finally the Activities. This is because Needs do not have to corre-
spond to the most current values; since they use an incremental model as shown in 
Eq. (12), their values are primarily based on their own previous values and actions per-
formed in the previous time step. States may be based on the current values of needs, 
but also contain external inputs that have to be considered in decision-making as soon 
as possible. Finally, Activities, as the decision-making part of the model, should access 
the latest values in order to give the best possible reaction to the current situation.

The implementation of this feature requires only the replacement of values from 
the previous time step vt−1

i
 with the current ones vt

i
 for classes that have been already 

computed. Equations (17) and (18) show adjusted expressions for the order recom-
mended above. The equation for Needs is not affected since no other current values 
are yet available for time step t.

For example, in an artificial life model, agents have two concept nodes: the Danger 
state and the Escape activity. When an agent recognizes a dangerous situation, it should 
immediately escape rather than wait until the next time step to take action. Tables 1 
and 2 show both approaches during a situation with a predator appearing in an agent’s 
vicinity at time step t = 2. While the agent with the original approach reacts by escaping 
at time step t = 3 (one step after noticing danger), the agent with FCM-NAS using faster 
reactions starts the escape at the same time step as noticing a predator (t = 2) because it 
uses the updated values for Activities (i.e., decision-making). Obviously, an agent with 
the FCM-NAS with this feature has a much better chance of escaping and surviving.
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4.3  Disabling parallel activities

In many systems, the individual actions are independent of each other; however, there 
are cases where an agent is limited to one action per time step since different activities 
require the agent to be in different locations or several of them utilize a single actuator. 
The original FCM method cannot restrict this without another algorithm that processes 
and adjusts the values of specific nodes. If any process or value is bound to specific 
nodes by its position in an FCM, then the algorithm has to be adjusted after any change. 
This is confusing and a less modular approach.

The FCM-NAS uses a simple adjusted transformation algorithm for its Activities, 
meaning that it is not bound to specific nodes, which allows simple changes in con-
cepts without disrupting the algorithm. This feature is useful in human activity sim-
ulation, artificial life models, or more generally for any non-trivial decision-making. 
For example, as a simulated person, an agent should not be able to eat, drink, and 
sleep at the same time step. The following code describes the adjusted transforma-
tion algorithm for non-parallel activities:

When it is necessary to disable parallel activities, the algorithm finds the Activity 
node with the highest value after all nodes are calculated. If the found value exceeds 
a critical level ac , then the activity is performed; otherwise, the agent does nothing 

Table 1  The delay in reaction 
time in the original FCM

Time step 1 2 3 4 5 6 7 8

Danger 0 1 0 0 1 1 1 0
Escape 0 0 1 0 0 1 1 1

Table 2  Immediate reactions in 
the FCM-NAS

Time step 1 2 3 4 5 6 7 8

Danger 0 1 0 0 1 1 1 0
Escape 0 1 0 0 1 1 1 0
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(alternatively returns to its default state or starts a free time activity). Within this 
single cycle, the algorithm finds the most necessary activity and rounds the values 
to zero or one.

4.4  Primary state, fitness and constant increments

The evaluation of a system is a critical topic in any field: the development and pro-
gress of any system always depend on some kind of feedback. Since the Needs in the 
FCM-NAS serve as indicators of success in particular tasks, their values can be eas-
ily converted into a general evaluation measure of the success (fitness) of an FCM.

In order to integrate the fitness into an FCM-NAS, a Primary State (PS) node 
is added to the States. Only Needs that are included in the evaluation of the system 
can affect the PS node. If the recommended convention for the setting of the Needs 
is met (a value of zero indicates maximal satisfaction; no action is required), then 
all these relations are negative. Therefore, the higher the value of a Need node, the 
lower the fitness of an FCM-NAS. Since fitness ranges from zero to one and is likely 
to change during the previous computation, its base value has to be reset to one 
before computations. The relation of the PS node to itself wpp is also equal to one, 
where p is the position of this node in an FCM-NAS.

For example, Table 3 shows a part of the matrix R of the FCM-NAS in an artifi-
cial life model. This part contains three Needs and the Primary State node. The last 
row in the table contains the relations of all nodes to the PS node. Since the value 
of the Needs decreases with increasing satisfaction, these relations are negative, and 
the PS node is set to 1.0 before computation begins. In this example, Hunger and 
Thirst are more important for success than Reproductive Need; they therefore have a 
much higher negative impact on the fitness of an individual.

If the PS node starts at 1.0, then it can serve as a  constant increment to any 
node. For the PS node cp and a node ci, the relation wpi guarantees that a steady 
increase (or decrease) is added to node ci at every time step. This relationship 
is especially useful for the  stable growth of Needs. The last column of Table 3 
shows the positive relations of the PS node to the Needs. These relations sim-
ulate a constant increase of the needs over time. For instance, Thirst would be 
increased by 0.1 per every time step (with default frequency parameter g = 1.0).

Table 3  An example of matrix 
R of an FCM with fitness

Hunger Thirst Repro-
ductive 
need

Primary state …

Hunger 0 0 0 0.05
Thirst 0 0 0 0.1
Reproductive need 0 0 0 0.01
Primary state − 0.5 − 0.5 − 0.2 1
… …
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4.5  Necessity

The necessity of actions provides the FCM-NAS with another useful measure for 
decision-making. If several Needs have high values, then the decision-making 
prefers actions that relate to the  most vital need. This feature is useful for the 
decision-making process in an FCM-NAS with disabled parallel activities. For 
example, in the  artificial life model, an  individual with values of both Hunger 
and Reproductive Need of 1.0 will prefer activities that lead to the meeting of a 
more critical need. In the case shown in Table 3, the individual would select feed-
ing rather than reproduction, since the Hunger need affects the PS more than the 
Reproductive Need does.

This feature uses states to evaluate the necessity of the Needs. The PS node is 
recommended since at least one fitness value is required. More states can represent 
the different fitness functions of the system, and the necessity feature covers even 
this possibility. In the first step, a designer identifies those States that are used as 
fitness values and compares their necessity to the system. The constant di represents 
these evaluations for all States in the form of values ranging from zero to one, where 
di = 1.0 means that State node ci has the highest priority and vice versa. The neces-
sity value for a PS node would therefore be at 1.0, other States would range from 
zero to one depending on their relative importance to the PS node, and all States 
nodes that do not serve as a fitness value (e.g., an external inputs) would be at 0.0. 
Note that index i does not start at one for di values since i represents the position of 
the node in an FCM-NAS that also contains other types of nodes that come before 
States.

The necessity of each Need node is calculated during initialization of the system 
according to their influence on the States and the corresponding values di:

Then the coefficients are adjusted by an increment kn that shifts their values, so 
their mean is 1.0. In this way, setting absolute values of necessity does not affect the 
activation of Activities:

Then, ei is the final necessity coefficient of Need node ci and e’i is the necessity value 
ei without the compensation of the offset kn . In the computation of an FCM-NAS, the 
necessity is used to calculate the Activities from the Needs. Equation (22) shows the 
placement of the necessity coefficient. Calculations of the effects of Needs to Activities 
have to be separated; otherwise the rest stays the same as in Eq. (13).
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4.6  Summary of the solution

The process of computing the FCM-NAS occurs periodically in intervals with con-
stant length. This procedure contains calculations of each class, reading values for 
input nodes, and the selection of activity. The fact that all classes are processed indi-
vidually means it can be rearranged and also use new values of previously processed 
nodes. The algorithm of the full process is described by pseudocode in the appendix 
of this paper. Figure 3 shows the best possible order of computations which allows 
the decision-making part of the FCM-NAS to react to the current situation instead 
of the situation at the previous time step (more in Sect. 4.2). In the first phase, Needs 
are updated; then, computation of States can optionally use these new values. After 
this part, external inputs are imported to dedicated States. Alternatively, this import 
could appear at the very beginning since the calculation of nodes dedicated to exter-
nal inputs would be ideally omitted. If these calculations are processed, however, 
they would overwrite the value after its import.

At this stage, the new updated value of Primary State is copied to an external 
variable, if this node is used for constant increments. In that case, the PS node would 
be reset to 1.0 before the computation of Activities. Activities are calculated dur-
ing this stage; optionally using both updated sets of nodes to make the reactions 
of the decision-making immediate. Finally, the values of Activities go through the 
transformation function to select the activity (or activities) to perform. Lower-level 
decision-making or actuators then take control until the next computation.
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Fig. 3  Summary of the computation of the FCM-NAS optimized for autonomous agents with described 
features
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5  Applications of FCM‑NAS

This section demonstrates the proposed approach in two models: (1) an artificial life 
model aiming for evolution and testing artificial intelligence of autonomous agents, 
and (2) an ambient intelligence model, where the FCM-NAS processes the decision-
making of simulated inhabitant of a smart environment.

5.1  FCM‑NAS in an artificial life model

The proposed solution was implemented into the artificial life model ALModel, fea-
turing a randomly generated two-dimensional environment with resources and thou-
sands of individuals (see Fig. 4). The model was built on the NetLogo 5 platform, 
and is available for download at [32]. The simulation runs in discrete time steps 
(ticks), and uses an FCM-NAS as an artificial intelligence method. Each individual 
makes a decision about their activity at the beginning of every tick. Parallel activi-
ties are disabled, meaning that individuals cannot perform more than one activity 
per time step.

The proposed approach manages agents’ behavior. A  single FCM-NAS simu-
lates needs, processes information from sensors, and performs decision-making. 
Each aspect of artificial life usually requires more than one node. For instance, the 
food management of individuals uses one node for the level of need (Hunger), two 
nodes for activities (Feeding, Searching for Food) and a State node as external input, 
which allows currently available food supplies to be taken into consideration. More 
concept nodes in any FCM usually mean more possibilities, but also that the FCM 
becomes more demanding in terms of performance.

Only the core areas of artificial life were implemented in the model. The behav-
ior of individuals involves food, water, fatigue, danger, and reproduction. Artificial 
life requires evolution, and one of its elements is selection, which emerges through 

Fig. 4  Screenshot of the environment of the artificial life model [3]
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Table 4  Classification of concept nodes in the ALModel 

Needs Activities States

Hunger (c1) Feed (c5) Primary state (c13)
Thirst (c2) Drink (c6) Lack of food (c14)
Fatigue (c3) Sleep (c7) Lack of water (c15)
Reproductive N. (c4) Reproduce (c8) Lack of partners (c16)

Search for food (c9) Danger (c17)
Search for water (c10)
Search for partner (c11)
Escape (c12)

competition for resources. In this model, food and water are these vital resources. 
Fatigue is closely connected with the availability of resources, and its level affects 
the general performance of the individual. Reproduction is the next essential part of 
evolution. Finally, the State node Danger with the activity Escape enables individu-
als to escape from predators; this is the only defense for most of the individuals.

Table  4 contains all concept nodes distributed into classes. Needs are set in 
the recommended way, meaning that a value of one represents the highest need, and 
zero means maximal satisfaction. States that represent the availability of a resource 
or partner are inverted to the lack of these entities, so a negative relationship is used 
instead of a positive one; in other words, the  “Food availability causes Feeding” 
relationship is replaced by “Lack of food prevents Feeding,” which is a more intui-
tive representation.

Figure  5 depicts an individual in the  model; white arrows represent a flow 
of information, and dark arrows express a direction of influence or method call. 
The FCM-NAS reads data from sensors and inner states, and then makes a  deci-
sion according to the current situation and sends the request to actuators. It man-
ages behavior at a higher level, and the actuators try to fulfill the command within 
a given environment. The actuators perform the selected action while taking into 

Fig. 5  Diagram of an individual in the ALModel [33]
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consideration the  individual’s vicinity and attributes; for example, the FCM-NAS 
decides to search for food, and the actuators then direct the individual to the closest 
food source, if this is within sight, or alternatively to the location where the individ-
ual fed last time. If there is an obstacle (e.g., water) in the way, the actuators need to 
perform more difficult path-finding than just heading directly to the target location.

Table 5 shows the initial settings of matrix R. The top section (i.e., four rows of 
Needs) contains all relations to the Need nodes. This section represents a set of rules 
that determine the increase in the needs and the effects of activities in the model. 
These values are affected by the frequency setting of a model run.

The middle section (i.e., eight rows of Activities) represents the decision-making 
part of the FCM-NAS. In the ALModel, this section changes dynamically during a 
model run, through evolution. Its  initial setting is therefore not essential, because 
the responsibility for correct behavior moves from the designer to the evolution of 
the model. Nevertheless, due to the dynamic environment, the optimal behavior at 
the beginning usually differs from the optimal behavior at later stages of a model 
run. Various species also often require different behavior patterns that better suit 
their attributes and types of diet.

Finally, the bottom section (i.e., five rows of States) contains mostly zeros, since 
four of these States are external inputs. The PS node begins computation at a value 
of 1.0, and is then lowered by Needs. The FCM-NAS uses this node for the fitness of 
individuals and the necessity feature. Since this is the only fitness node, its impor-
tance value d1 is 1.0, while the values of the other States are 0.0.

Table  6 shows the middle section of the FCM-NAS after 89 generations. This 
particular matrix R represents a  member of a successful small omnivore species. 
A few relationships did not prove to be useful and lost their influence on behavior, 
for example the negative relationship between Hunger and the Reproduce activity or 
the positive relationship of Sleep activity with itself. On the other hand, several new 
relations arose. For instance, this species learned over generations that taking a rest 
is beneficial immediately after escaping from a predator. Also, while searching for 
water, this species is less likely to flee if they spot a predator. Since predators often 
gather near water sources, thirsty individuals have to come closer to them than they 
would normally allow in any other situation.

Figure 6 shows 100 time steps of a single individual in the model. In this case, the 
frequency parameter was set to 0.6. The top plot in the figure depicts the develop-
ment of the Needs and fitness. The bottom plot explains the changes in the values 
in the plot above with a log of the activities that this  individual performed during 
the observed 100 time steps. During the first 25 time steps, the individual struggled 
to find resources: Needs were increasing, and its fitness was decreasing. Then this 
individual finally found resources, rested, and reproduced. Reproduction raised the 
values of its Needs due to the corresponding values set in matrix R (see Table 5, 
Column c8). Except for Sleep, Escape, and Searching, all activities floor the value of 
the corresponding Need node in a single time step.

Individuals are capable of surviving over hundreds of thousands of time steps, 
increasing the population, and evolving. Verifying the solution on a larger scale of 
an entire population is problematic because the PS node enables only the evalua-
tion of individuals. In the  simulation, this fitness node is not essential for the 
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survivability of the entire species. Due to natural selection and the aggressive com-
petition in the dynamic environment, successful species tend to prefer the surviv-
ability of the species as a whole over individual satisfaction; however, the ALModel 
offers various other measures.

The ratio of deaths caused by a lack of resources to total deaths offers one pos-
sibility for verifying the adaptation of the FCM-NAS in the model. Obviously, this 
ratio depends on the availability of resources in the dynamic environment; however, 
Fig. 7 shows the development of the ratio during a model run with a  stable envi-
ronment. To cancel out any other influences except adaptation, this environment 
maintained resources at stable levels and contained a constant number of individuals 
from only one species. The decrease in this ratio proves that the artificial intelli-
gence of the individuals is capable of adaptation, even at the population scale.

Fig. 6  Need and Activity nodes of an individual in the ALModel over 100 time steps
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Fig. 7  Development of the ratio of deaths caused by lack of resources to total deaths
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With evolutionary adaptation, the genomes of individuals (i.e., their attributes 
and behavior) develop during a model run. When the genome of an offspring is suf-
ficiently differentiated from the original genome of its species, it founds a new spe-
cies, and this process generates a phylogenetic tree. Figure 8 shows a phylogenetic 
tree of species produced in a single model run, in which each bubble represents a 
different species. The arrows point to the species that evolved from the species on 
the other end of the arrow, and sizes of the bubbles represent the numbers of indi-
viduals that were classified as members of that species at the moment of creating 
the graph (i.e., small crosses correspond to extinct species). The brightness of the 
bubbles depicts specific attributes of a species; in this case, it is the type of diet (i.e., 
a black bubble means a carnivore species; a brighter one a herbivore species). The 
experimental results presented here demonstrate that this decision-making method 
allows for rational behavior with multiple objectives, learning, and interactions.

The ALModel does not attempt to copy the real ecosystem precisely and offers 
generic individuals rather than specific animals or even biological classes. Despite 
that, evolution in the model successfully generates realistic patterns seen in real 
nature. The model has shown similar species abundance patterns that were observed 
in biological systems. Similarly to EcoSim in [34], several random samples were 
collected during a simulation run to provide data for comparisons with expected 
data calculated with Fisher’s log series. Figure 9 shows species abundance distribu-
tion in communities generated in the exact model run that created the phylogenetic 
tree shown in Fig. 8. A community is a randomly selected sample of individuals in 
the model. Members of each species are counted, forming the distribution based on 
the number of individuals per species. This comparison shows a similar pattern in 
diversity and abundance of species created by real biological evolution as species 
generated in the ALModel.

Fig. 8  A phylogenetic tree of species generated in a single run of the artificial life model (from the initial 
species 7 marked with an arrow; after over 297,000 time steps and 241 generations on average)
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5.2  FCM‑NAS in an ambient intelligence model

The proposed method was also implemented into an ambient intelligence model. The 
model was created during project GAČR “DEPIES - Decision Processes in Intel-
ligent Environments” (n. 1511724S) on the AnyLogic platform (see Fig. 10). The 
finished environment and a basic smart home system required the decision-making 
of agents (virtual inhabitants) to allow running simulations in the model. Our objec-
tive was to develop a new approach to a human simulation that would combine both 
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Fig. 9  Species abundance distribution of 10 samples (the number of individuals per sample is 500; the 
number of different species per sample is 61 on average) compared to Fisher’s logseries [34] with param-
eters approximated from sample size (α = 18; x = 0.965)

Fig. 10  Screenshot of the apartment in the model designed on the AnyLogic platform
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scenario-based and need-oriented behaviors. To accomplish this objective, stand-
ard scenario management required for routines was combined with an FCM-NAS, 
which provided need-oriented behavior and high-level decision-making [35].

This model supports multi-agent and multi-scenario simulations, conditions and 
requirements of activities, and hierarchical structure of contexts, activities, and 
actions. On top of these general features, an FCM-NAS added possibilities like 
delaying or interrupting activities due to unexpected events, managing non-planned 
tasks, and adaptation of behavior through machine learning.

Unlike in the previous case, the time-frame of the ambient intelligence model 
has to be more precise and is set in weeks or months instead of centuries required 
to observe any effects of evolution. The time-frame significantly changes priori-
ties and required detail of simulation, hence configuration of an FCM-NAS. The 
agent’s behavior covers the following needs: hunger, thirst, fatigue, boredom, 
hygiene need, toilet need, and social need. Each of these has a corresponding Activ-
ity node, which triggers one of the activities that are supposed to satisfy the need. 
The choice of the specific action to handle the need is the responsibility of lower-
level decision-making.

All States except Primary State are external inputs. In this context, it means out-
side of the FCM-NAS, not necessarily external for the agent as a whole entity. Truth 
values of nodes Planned, Delay, and NearPlanned represent states of activity buffer 
in the schedule management of a scenario. These nodes help the FCM-NAS to 
decide whether there are essential planned activities to perform or it is free to cover 
needs. Values of states Nighttime and Daytime are global; hence their values are 
the same for all agents in a model run. These values allow agents to include time in 
decision-making. Other more precise variants would also be possible. For instance, 
nodes Morning, Afternoon, Evening, and Night would potentially allow a machine-
learning algorithm to adjust behavior to day time better. With more complex scenar-
ios, nodes for distinguishing weekdays from the weekend would also be very help-
ful. For this model, the FCM-NAS was designed as a proof of concept with the least 
nodes possible to allow fast testing and learning. Otherwise, additional State nodes 
for external inputs have relatively small performance impact because their computa-
tion is omitted. Table 7 lists all nodes in the designed FCM-NAS.

Figure 11 shows the structure of the agent Person. The white arrows represent 
a flow of information; the dark arrows express a direction of influence or control. 
The dashed arrow depicts the import of the scenario into the schedule. To decide, 
the FCM gathers data from the schedule and inner states. The schedule returns 
values representing if there is an activity that should be in progress right now 
or is about to start soon. Inner states provide values of all needs and the activity 
performed last time. FCM is able to make higher-level decisions, what the agent 
should do. It selects a general group of activities (a context) and forwards it to 
actuators, which pick specific action regarding the current location or conditions. 
These lower-level decisions are made by simple rules which select a specific 
action and ensure the right position of the agent. For example, when the agent 
is supposed to eat, the algorithm checks the agent’s level of the corresponding 
need Hunger. If it is high, then the agent starts to cook a meal. Otherwise, it takes 
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a snack. If the agent is not in a kitchen, it starts moving to the corresponding spot 
in the environment.

The model triggers the decision-making of each agent every minute. This 
interval can be arbitrarily tuned thanks to the adjustable frequency of computa-
tions in FCM-NAS. This process starts with higher-level decision-making using 
FCM-NAS and schedule management. As seen in Fig. 12, regardless of the FCM-
NAS decision, the schedule always updates its activity buffer. Firstly, it checks 
all activities in the buffer for missed activities. There are two possible ways for 
activities to be missed: (1) the activity has not yet started and missed delay toler-
ance; (2) the activity started but has been interrupted and missed its latest finish 
time. After discards, the schedule adds the upcoming activities that either start 
in one hour or have a longer start tolerance interval. Then the schedule manage-
ment sorts activities by their current value of priority function, so if the FCM-
NAS decides to process a planned activity, then the first one from the buffer is 
performed.

Table 7  Classification of 
concept nodes in the ambient 
intelligence model [35]

Needs Activities States

Hunger (c1) HungerActivity (c8) PrimaryState (c16)
Thirst (c2) ThirstActivity (c9) Planned (c17)
Fatigue (c3) FatigueActivity (c10) Delay (c18)
Boredom (c4) BoredomActivity (c11) NearPlanned (c19)
HygieneNeed (c5) HygieneActivity (c12) Nighttime (c20)
ToiletNeed (c6) ToiletActivity (c13) Daytime (c21)
SocialNeed (c7) SocialActivity (c14)

PlannedActivity (c15)

Fig. 11  Diagram of the agent Person; white arrows mean direction of information flow, dark arrows rep-
resent the direction of control or influence [35]
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As in the previous model, genetic algorithms were used to configure and tune 
the relations of nodes. However, since this model does not include natural evo-
lution, it needs to be implemented separately from the main simulation. This 
approach requires many repetitions of the same simulation with different configu-
rations of decision-making. One of the ways to implement this is running parallel 
simulations corresponding with the size of the population. This model launches 
the whole population in the environment for a set number of days. To avoid any 
interactions between agents and their perceived environment, agents need to 
record any possible changes to the environment to local variables, and the ambi-
ent intelligence system must be turned off during this learning process. These 
measures ensure the same conditions for each agent and guarantee that only the 
behavior alone affects its final score.

After a given simulation period, fitness function evaluates each genotype, mean-
ing the configuration of decision-making in this case. The fitness function in the 
model does not only rate behavior, but in the case of genetic algorithms, the fit-
ness defines the direction of evolution that forms the intended goal of the learning 
process. As the decision-making method covers two different concepts, its fitness 
function requires at least two components. The first fitness component evaluates the 
need-oriented part of behavior based on the average success rate of satisfying needs 
during the simulation. It is possible through the Primary State node. The second 
component focuses on routine behavior and planned activities. It reflects how many 
of the planned activities were finished during the simulation while considering the 
importance of activities. The early experiments revealed the need for another com-
ponent representing efficiency. Without it, the learning process led to the optimiza-
tion of behavior corresponding to both decision-making parts; however, it still did 

Fig. 12  Diagram of the higher-level decision-making process [35]
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not produce effective and reasonable behavior. Time distribution in Table 8 shows 
that an agent tends to spend any free time between planned activities to keep needs 
satisfied. This behavior seems to be always alerted and repeatedly triggers activities 
even before there is the actual need. That is the reason why the third component of 
the fitness function was introduced. All three components of fitness have a weight, 
which allows merging it into the final evaluation.

Experiments were conducted to examine the generated behavior of the agent Per-
son in a scenario of a guest of a spa resort. The combination of routine scenario-
based and need-oriented approaches, which is exclusive to this solution [35], proved 
it could autonomously manage dynamic agent’s needs within the planned scenario 
by delaying less critical activities or omitting redundant ones. All the agent’s activi-
ties with corresponding starting times were recorded during the day. The agent was 
performing planned activities and satisfying needs for a few simulated weeks in 
the model of ambient intelligence. Since the agent starts days with different inner 

Table 8  Comparison of fitness values and time distributions of initial behavior with and without the third 
fitness component; results from an experiment with one specific scenario of a guest of a spa resort [35]

*Fitness component considering free time was not used for learning; it has been added in the table for 
comparison

Set of activities (weight) Initial (designed by 
hand)

Learned (2 fitness com-
ponents)

Learned (3 fitness 
components)

Time distri-
bution (%)

Fitness Time distri-
bution (%)

Fitness Time distri-
bution (%)

Fitness

Need-oriented (0.25) 13 0.978 58 0.974 8 0.963
Planned (0.5) 29 0.800 31 0.993 30 0.985
Free time (0.25) 54 0.540 4 0.040* 59 0.595
Walking 4% – 7 – 3 –
Total fitness 0.780 0.750* 0.822

Table 9  Recording of the actual 
behavior of the agent in one 
morning and its comparison 
with the scenario [35]

Time Activity Scenario comparison

5:47 toileting 13 min early
5:58 medicine 17 min early
6:03 take_snack Not planned
6:05 eat_snack Not planned
6:11 watch_tv Not planned
6:23 exercise 7 min early
6:39 medicine 6 min early
6:44 get_drink Not planned
6:47 drink Not planned
6:49 watch_tv Not planned
7:00 eat_breakfast Not hungry (skipped)
7:00 read_news 10 min early



130 Genetic Programming and Evolvable Machines (2021) 22:101–135

1 3

values, the final order and starting times of activities may differ each day, although 
the scenario was always the same. Table 9 shows the morning of one of the simu-
lated days in comparison with the original scenario.

6  Discussion and future work

The proposed approach offers a great variety of possible uses and modifications for 
adjusting to a specific environment. The basis of this approach was developed for 
an ambient intelligence system in the limited virtual environment of Second Life 
(unfortunately, this has not yet been published in English, and the thesis [36] is the 
only source). It was later extended with evolutionary principles, allowing individuals 
to learn over generations [3, 33]. The modularity of the FCM-NAS method allows 
for the modification that replaces the decision-making part of FCM-NAS with ana-
lytic hierarchy process [3]; this modification is focused on the computational speed 
of processing, and while it is significantly faster, it slightly lowers the complexity, 
leading to fewer learning possibilities in the method. This may be advantageous for 
some applications, especially in large scale models with thousands of individuals. 
Due to its modularity, other modifications may be possible for specific objectives 
such as a network of FCMs, dynamic matrix sizes, and so on. Also, the provided set 
of optional extensions for FCM-NAS is not an exclusive list as more specific adjust-
ments could be added in future.

Recently, this method has been implemented for the simulation of human activity 
[35], which can aid in experiments with smart systems of ambient intelligence. For 
this purpose, it was connected to a schedule planner to simulate human routines and 
planning better. The result was cooperation between the dynamic schedule, which 
covers all planned activities, and the FCM-NAS, which handles needs, unplanned 
activities, and emergencies. The development of this model is still in progress.

For more complex systems, the transformation of a large FCM into several 
smaller ones seems to be an appropriate way of modeling complex structures with 
a low density of relationships. A group of FCMs structured as a hierarchy, or a net-
work recomputes all concept nodes much more quickly than one large FCM with the 
same number of nodes. Different levels of control can also be separated, with clear 
responsibilities. In combination with the FCM-NAS modification, this distribution 
undoubtedly has great potential in the modeling of autonomous agents.

As stated at the beginning of this paper, this approach aims to provide a frame-
work for decision-making in dynamic environments. As such, it requires a time 
component and an outside dynamic environment. The proposed approach is not 
appropriate for uses in static closed systems often used for predictions. Unlike these 
models, an FCM-NAS can act within simulations, complex models, or real-world 
systems, but it is not a self-sufficient model. Table 10 summarizes the advantages 
and disadvantages of the proposed method.
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7  Conclusion

This paper proposes a new approach to the design of FCMs for the decision-making 
of autonomous systems. The FCM-NAS modification distributes concepts into three 
classes according to their purpose within the map, and these classes differ in their 
calculation and interpretation. This design offers several advantages and features 
that are very useful for various systems dealing with a dynamic environment.

This paper provides the mathematical background of the proposed design and 
gives several examples for clarity. In addition to the core of the FCM-NAS, it pre-
sents many optional attachments that provide additional help in designing autono-
mous agents. The paper also presents the complete design of the FCM-NAS for the 
artificial life model, together with testing of this modification in the final model. 
This testing verified the solution and all of its features, proving both its functionality 
and evolutionary adaptation. Although this adaptation is not a part of the proposed 
modification, FCMs usually require a certain learning or training process. This 
paper verifies that the FCM-NAS supports evolutionary algorithms. Moreover, due 
to its clear classification and modularity, any combination with other algorithms or 
extensions is even easier to implement than with the original general FCM.

The current development of the modification focuses on its combination with 
other methods that can provide additional features or improve existing ones. There 
are already modifications of this method; a combination with an analytic hierar-
chy process improves the performance of a model with thousands of agents, and 
with the addition of schedule management, FCM-NAS can believably simulate 
human activities, including both routine and unplanned, spontaneous activities.

In terms of its complexity and difficulty of development, FCM-NAS is com-
plex, powerful and has a high learning ability while retaining human readability. 
Moreover, its modularity offers great potential for a wide range of uses in the 
modeling of autonomous agents.

Acknowledgments Support from the Excellence Project “Decision Support Systems: Principles and 
Applications 2” in the Faculty of Informatics and Management, University of Hradec Králové, is grate-
fully acknowledged.

Table 10  Summary of advantages and disadvantages of the proposed approach over the original FCMs

Advantages Disadvantages

Modularity Requirement of a time component
Adjustability Requirement of an outside dynamic environment
Systematic development Additional steps during its development
Easy to implement optional extensions
Clear human-readable structure for decision-making
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Appendix

The following pseudocode includes the functions of the computation of FCM-
NAS needed to process values every time step:
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