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Abstract
Lexicase parent selection filters the population by considering one random train-
ing case at a time, eliminating any individual with an error for the current case that 
is worse than the best error of any individual in the selection pool, until a single 
individual remains. This process often stops before considering all training cases, 
meaning that it will ignore the error values on any cases that were not yet consid-
ered. Lexicase selection can therefore select specialist individuals that have high 
errors on some training cases, if they have low errors on others and those errors 
come near the start of the random list of cases used for the parent selection event 
in question. We hypothesize here that selecting such specialists, which may have 
high total error, plays an important role in lexicase selection’s observed performance 
advantages over error-aggregating parent selection methods such as tournament 
selection, which select specialists less frequently. We conduct experiments exam-
ining this hypothesis, and find that lexicase selection’s performance and diversity 
maintenance degrade when we deprive it of the ability to select specialists. We also 
conduct experiments with a form of tournament selection that has been modified to 
allow for the selection of specialists, and find that it performs better than ordinary 
tournament selection, but not as well as lexicase selection. These findings, and other 
data that we present here, help explain the improved performance of lexicase selec-
tion compared to tournament selection, and suggest that specialists help drive evolu-
tion with lexicase selection toward global solutions.
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1  Introduction

Most parent selection methods used in genetic programming, and in evolutionary 
computation more generally, select individuals on the basis of scalar fitness values. 
For problems that involve multiple training cases, these fitness values are aggregated 
over all of the training cases, often by summing them. By contrast, lexicase selection 
selects parents on the basis of performance on un-aggregated training-case errors 
[17, 24, 34]. It does this by considering training cases one at a time, in a different 
random order for each parent selection event. For each selection it creates a pool that 
initially contains the entire population, and then, for each training case, it filters the 
pool to retain only the individuals with the best1 error for each training case. If the 
pool is reduced to a single individual, then that individual is the selected parent. If 
multiple individuals survive filtering by all of the training cases, then a randomly 
chosen survivor is designated as the selected parent.

Prior work has shown that lexicase selection often works well in practice, but the 
reasons that it does so, and the contexts in which it does and doesn’t work well, are 
still topics of active investigation. In the present article2 we address one hypothesis 
regarding the efficacy of lexicase selection: that selecting specialists is important 
for solving problems. A “specialist” is an individual that achieves low errors on a 
subset of training cases while having high errors on other training cases. The total, 
or aggregated, error of a specialist individual is often relatively high compared to 
the rest of the population, since a high error on a few training cases can dominate 
the sum of the errors. In contrast to specialists, a generalist is an individual that per-
forms approximately the same on all training cases.

Our motivation for the present study stems from anecdotal evidence observed in 
an earlier study, which suggested that specialists might contribute in important ways 
to the evolution of solutions [27]. This prior work also suggested that the selection 
of specialists might explain, to a significant degree, the better problem-solving per-
formance of lexicase selection relative to other parent selection methods.

More specifically, in this prior work we examined the lineage leading to a solu-
tion to the “Replace Space with Newline” software synthesis problem, evolved with 
a PushGP genetic programming system. In the run that we examined, the generation 
in which a solution first appeared actually contained 45 distinct solutions. All of 
these solutions were children of the same parent in the previous generation, and both 
this parent and its parent (that is, the grandparent of all of the solutions) had total 
error values that were in the worst quartile of their respective generations by total 
error. The grandparent of every solution had nearly the worst total error of its gen-
eration. Nonetheless, both the grandparent and the parent produced large numbers of 
offspring, including large numbers of solutions in the final generation.

A later study using a larger set of benchmark problems observed lexicase selec-
tion selecting individuals with high total error significantly more frequently than 

1  We assume lower errors are better, meaning the best error on a training case is the lowest one.
2  This article is an expanded version of a paper presented at the 2019 Genetic and Evolutionary Compu-
tation Conference, which was awarded Best Paper in the Genetic Programming track [15].
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tournament selection [32]. This study also observed that lexicase selection rarely 
utilizes a majority of the training cases when selecting parents.

These observations motivated the present study, but anecdotal evidence is not suf-
ficient to ground scientific understanding or to guide engineering practice. System-
atic studies are required to determine the extent to which the selection of specialists 
is truly important, and the contexts in which this is the case. In this paper we docu-
ment such a study, providing clear evidence supporting the hypothesis that the selec-
tion of specialists is responsible, in large measure, for the superiority of lexicase 
selection to tournament selection.

In the following sections we present background on lexicase selection and then 
the design, results, and analysis of our new experiments.

2 � Background on lexicase selection

The basic and most commonly used version of the lexicase selection algorithm pro-
ceeds as follows each time a parent is required: 

1.	 A collection of candidates is set initially to contain the entire population.
2.	 A collection of cases is set initially to contain all of the training cases, shuffled 

in random order.
3.	 (Optional pre-selection) Partition candidates into groups of individuals with 

the same error vector. Retain only one individual from each group.
4.	 Until a parent has been designated, loop: 

(a)	 Discard all individuals in candidates except those with exactly the lowest 
error for the first case in cases.

(b)	 If just a single individual remains in candidates, then designate it as the 
parent.

(c)	 If only a single item remains in cases, then designate a randomly chosen 
individual from candidates as the parent.

(d)	 Otherwise, remove the first item from cases.

With regard to the lexicase selection algorithm, it is important to note that the con-
dition in step (b) often triggers before examining all training cases and, as we will 
show later, often considers less than half of the cases. This scenario provides the 
mechanism by which lexicase selection can select specialists: A specialist that per-
forms well on a subset of the cases may have those cases appear first in some selec-
tion event, allowing it to be selected before considering the cases on which it per-
forms poorly.

The optional pre-selection step (step 3) of the lexicase selection algorithm has 
no functional effect on the probability of lexicase selecting any given individual, but 
in our experience gives significant computational time savings. Consider a group 
of individuals with identical error vectors. Without the pre-selection step, once 
this group of individuals are the only ones left in candidates, the algorithm must 
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continue through the remaining cases, and then choose one of the individuals in the 
group randomly. With the pre-selection step, there is only one individual from the 
group in candidates, so at the point when only individuals in the group would have 
remained, that will be the only individual left in candidates and will be selected. 
Because of this, the pre-selection step can significantly reduce the number of com-
parisons of errors on training cases, without changing the probability of lexicase 
selection selecting a given individual. Note that this pre-selection step cannot be 
used with epsilon lexicase selection or some other relaxations of the algorithm (see 
below), as pre-selection changes the probabilities of selection with these algorithms.

Lexicase selection has been studied in several settings, and several variants of 
the basic algorithm have been proposed (for example, relaxations of the algorithm 
[36]). Among the most significant of these variations is epsilon lexicase selection, in 
which “exactly the lowest error” in the description of the algorithm is replaced with 
“within epsilon of the lowest error” for a suitably defined epsilon; this has proven 
to be particularly effective on problems with floating-point errors such as sym-
bolic regression [24, 25]. Additionally, lexicase selection has been effectively used 
to solve benchmark problems in areas such as general program synthesis [6, 16], 
boolean logic and finite algebras [17, 26], learning classifier systems [1], evolution-
ary robotics [29, 30], and boolean constraint satisfaction using genetic algorithms 
[28].

Lexicase selection often produces and maintains particularly diverse popula-
tions, which has been hypothesized to be responsible, in part, for its problem-solv-
ing power [11, 12]. If lexicase selection does in fact select specialists more often 
than other parent selection techniques, this may contribute to its effects on diversity, 
regardless of effects on problem-solving performance. We investigate this question 
in Sect. 6.4.

An additional aspect of lexicase selection that bears consideration is the fact that 
selected individuals will always be non-dominated in their populations and elite 
with respect to at least one training case, a property that has been characterized as 
inhabiting the “corners” of the Pareto front [24].

3 � Specialists in genetic programming

As we have discussed, specialists achieve low errors on some training cases and high 
errors on others, resulting in a relatively high total error. On the other hand, general-
ists perform similarly on all training cases. Consider the following training cases for 
the function y = (x1)

2 − x2.

The following two tables describe the actual output ( ̂y ) and expected output (y) of a 
generalist and a specialist on each training case.

x1 x2 y

2 1 3

3 5 4

1 3 − 2
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Generalist Specialist

ŷ y Error ŷ y Error

10 3 7 −100 3 103
−8 4 12 err 4 1,000,000
6.5 −2 8.5 −1.99 −2 0.01
Total: 27.5 Total: 1,000,103.01

The generalist has similar error values across all training cases while the spe-
cialist has a near zero error on one training case but high errors on the other train-
ing cases. On an actual problem with many training cases, a specialist will likely 
perform well on a subset of the training cases, not just one of them. Notice that the 
specialist in this example has received a penalty error of one million on the second 
training case because it could not be evaluated on the given set of inputs.

The total error of the specialist is drastically higher than the generalist. However, 
the generalist was not able to achieve a near zero error on any of the training cases. 
In an evolutionary population that is ranked by total error, the generalists will tend 
to have lower rank than the specialists. On the other hand, the specialist may have 
discovered something truly useful about solving the problem as indicated by its one 
(or more with real problems) nearly perfect output, and might be worth selecting to 
pass on its genetics to the next generation.

4 � Experimental design

In Sect. 1 we described a single run that featured an individual in the bottom quartile 
of the population (when sorted by total error) that was the parent of 45 solution pro-
grams. Later, in Sect. 6 we will show that specialists make up large portions of the 
individuals selected by lexicase selection compared to tournament selection. Still, 
this does not answer the question of whether selecting specialists is an important 
component to lexicase selection’s improved performance compared to tournament 
selection and other selection methods, or whether it is a side effect that has little 
bearing on the trajectory of evolution.

Does lexicase selection perform well because it selects specialists, or can it 
maintain good performance without selecting individuals with poor total error? We 
hypothesize that lexicase selection’s ability to select specialist individuals allows 
it to more effectively explore the search space than if it were limited to selecting 
individuals with good performance when measured by total error. We do not expect 
tournament selection to exhibit similar decreases in performance when limited to 
selecting individuals with good total error, since it does not often select individuals 
with poor total error. Additionally, we expect that limiting lexicase selection to indi-
viduals with better total error will decrease population diversity.

To test our hypotheses, we have designed and conducted an experiment in which we 
do not allow parent selection to select individuals with poor total error relative to the 
population. We implemented this restriction by adding a new survival selection step 
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that is run before parent selection called elitist survival selection. During elitist sur-
vival selection, we sort the population by total error and only allow the best X% of the 
population to “survive” to be available to make children. We call the percent of the 
population that survives this step the elitist survival rate. We then conduct parent selec-
tion using this reduced population as normal. With 100% elitist survival we would keep 
the entire population (i.e. no individuals are removed); 30% elitist survival would keep 
only the best 300 individuals sorted by total error (out of a population of 1000) to be 
available for parent selection. If our hypothesis holds, we would expect lower levels of 
elitist survival rate to produce decreased performance with lexicase selection but not 
with tournament selection.

4.1 � Benchmark problems

The problems used in the experiments described here were taken from a benchmark 
suite of software synthesis problems, which were derived from exercises in introduc-
tory computer science textbooks [16]. These problems require general-purpose pro-
gramming tools to solve, such as multiple data types (strings, integers, floats, Booleans, 
vectors, etc.) and various control flow structures. These problems have been addressed 
in several studies, using multiple genetic programming systems including PushGP 
[10–13, 16, 27], grammar guided GP [6–9], grammatical evolution [19, 23], and tag-
based linear GP [5, 20], as well as by at least one non-evolutionary program synthesis 
technique [33].

We selected 8 out of the 29 benchmark problems to use in this study to reflect a wide 
range of requirements and difficulties. The specific problems addressed in this study 
are Last Index of Zero, Mirror Image, Negative to Zero, Replace Space with Newline, 
String Lengths Backwards, Syllables, Vector Average, and X-Word Lines. Some of 
these problems have been solved with genetic programming using lexicase selection 
over 75% of the time out of 100 runs, while others have success rates around 25%.

In this study, we follow the guidance published with the benchmark suite about how 
to determine whether a run is successful or not [16]. Each GP run uses a different ran-
domly-generated set of training cases, as well as a larger set of unseen test cases used to 
assess generalization. Once a program has evolved that passes all of the training cases, 
we stop evolution and test it on the unseen test set—if it passes those as well, it counts 
as a solution. If the program that passes the training cases does not pass the test set, it 
counts as a failed run, just like runs that reach the maximum allowed generations. In 
this paper we additionally automatically simplify the programs that pass the training 
data before testing them for generalization, a process that shrinks program size without 
changing the behavior of the program on the training set. Previous work has shown 
that automatic simplification effectively increases generalization on these benchmark 
problems [10].

4.2 � Push and PushGP

The experiments conducted in this study were run using a PushGP genetic pro-
gramming system, which evolves stack-based programs expressed in the Push 
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programming language [35, 37]. The key feature of Push for the experiments pre-
sented here is its multi-stack architecture, which includes a stack for each data type 
and instructions that always take their arguments from the correct stacks and push 
their results to the correct stacks. This facilitates the evolution of programs that use 
multiple, nontrivial data types and control structures, making it suitable for solv-
ing the benchmark problems described above. In addition, a wealth of prior data on 
the performance of PushGP on these problems can provide context for the results 
obtained in different experimental conditions [10–13, 27]. We use the Clojure 
implementation of PushGP3, which was also used in the aforementioned studies.

The parameters and configurations of the PushGP system that we used for the 
experiments here are the same as those described in the original benchmark descrip-
tion [16]. Table  1 presents the key parameters, and the code used for our experi-
ments is available on GitHub.4

5 � Specialists under tournament selection

Tournament selection tends to select generalists because it uses an aggregate error 
metric, such as root mean square error, classification accuracy, or total error. To 
compute these kinds of error metrics, an individual’s errors on all training cases 
must be considered. If an individual performs particularly poorly on any subset of 
training cases, its aggregated error will be high relative to the population and its 
probability of getting selected will be low. Methods such as implicit fitness sharing 

Table 1   PushGP system parameters and the usage rates of genetic operators

Parameter Value

Population size 1000
Max number of generations 300
Tournament size for tournament selection 7

Genetic operator rates Prob

Alternation 0.2
Uniform mutation 0.2
Uniform close mutation 0.1
Alternation followed by uniform mutation 0.5

Genetic operator parameters Prob

Alternation rate 0.01
Alternation alignment deviation 10
Uniform mutation rate 0.01

3  https​://githu​b.com/lspec​tor/Cloju​sh.
4  https​://git.io/Je8BR​.

https://github.com/lspector/Clojush
https://git.io/Je8BR
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have been proposed to help alleviate this problem, though such methods still use a 
single aggregate fitness value that still punishes individuals that perform particu-
larly poorly on a subset of training cases. While implicit fitness sharing gives some 
improvement over tournament selection, it has performed significantly worse than 
lexicase selection on a variety of problems [16, 17].

With tournament selection, the number of times an individual can be selected is 
limited by the number of tournaments in which it participates. If the best member of 
the population participates in 1% of the tournaments for a given generation, it will 
be selected 1% of the time that generation, but no more. Since the expected number 
of tournaments in which each individual participates is constant for a particular pop-
ulation size P and tournament size t, the probability of an individual being selected 
by tournament selection is entirely determined by its rank in the population. In par-
ticular, Bäck [2, 3] shows that the probability of selecting an individual with rank 
i ∈ [1,P] , with i = 1 being the best rank, is

assuming no two individuals have the same fitness. With ties in the rankings, this 
equation does not hold exactly, but is approximately correct unless there are many 
tied individuals. We plot this probability mass function in Fig. 1.

Table 2 shows that tournament selection rarely selects poor-ranking individuals. 
For example, it only selects individuals in the worst 50% of the population (by total 
error) 0.78% of the time. In our experiments without elitist survival (the same ones 
discussed in Sect. 6), tournament selection selected individuals in the worst 50% of 
the population at a rate of 3.3%. This is greater than the 0.78% predicted by the theo-
retical probability of selection due to the selected benchmark problems producing a 
high numbers of ties in total error. Still, with only 3.3% of selections going to such 
individuals, those with error worse than the median will have very little influence on 
evolution. Both theoretical and empirical evidence suggest that tournament selec-
tion will almost never select specialists. Thus, the elitist survival filtering should 
not have a strong impact on tournament selection’s ability to find solution programs, 
which we test empirically in Sect. 6.4.

6 � Specialists under lexicase selection

By considering training cases one at a time, lexicase selection often selects an indi-
vidual without considering all of the training cases; this idea explicitly influenced 
the design of lexicase selection. When halting before seeing all of the training cases, 
the lexicase algorithm will ignore the error values on all other training cases, regard-
less of whether they are relatively good or relatively poor compared to the rest of the 
population. Lexicase selection therefore has the ability to select specialist individu-
als that perform extremely well on some cases while having very poor error on other 
cases.

(1)p(i) =
(P − i + 1)t − (P − i)t

Pt
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Fig. 1   Probability mass function of selecting individual with rank i out of a population of 1000 individu-
als using tournament selection with tournament size 7, assuming no two individuals have the same rank. 
This plots Eq. 1

Table 2   Theoretical probability 
of tournament selection with 
tournament size 7 selecting 
an individual that would be 
removed by X% elitist survival

For example, the probability of selecting an individual removed by 
50% elitist survival is 0.00781, meaning that individuals with total 
error worse than the median make up less than 0.8% of the parents 
when using tournament selection

% Elitist survival Probability of 
selecting a removed 
individual

10 0.47829
20 0.20971
30 0.08235
40 0.02799
50 0.00781
60 0.00163
70 0.00021
80 0.00001
90 0.0000001
100 0
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However, just because it is possible for lexicase selection to select specialist indi-
viduals does not mean that it happens often or has an effect on lexicase selection’s 
performance. In this section, we will provide evidence showing that lexicase selec-
tion can select specialists, that it selects them relatively often, and that selecting spe-
cialists is important for its performance.

6.1 � Lexicase case usage

Figure  2 plots histograms of the number of training cases used in each selec-
tion event across each problem. It should be noted that this statistic clearly var-
ies between problems and that these results assume the optional pre-selection step 
described in Sect. 2; otherwise, any time multiple individuals have the same error 
vector, 100% of the training cases would be used, since none of them would differ-
entiate the individuals.

Figure 2 shows that, in practice, lexicase selection rarely considers more than 25 
training cases, and often less than 10; in comparison, each of these problems has 
100 or more training cases. These measurements agree with the empirical results on 
a different set of benchmarks obtained in a previous study [32]. These results pro-
vide evidence that many of lexicase’s selections ignore more than 75% of the train-
ing cases; it is certainly possible that some of these selected individuals achieved 
poor errors on some of the ignored training cases.

6.2 � Individuals remaining

Each step of the lexicase selection algorithm considers a new training case and fil-
ters the pool of candidates to include only those individuals with the best error on 
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Fig. 2   Each histogram shows the distribution of the number of training cases used across all lexicase 
selection events for each problem. With the exception of the Mirror Image problem, lexicase selection 
almost never considers more than 50 training cases
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that case. After each step, fewer individuals remain in contention to be selected. Fig-
ure 3 gives the number of individuals remaining after every step of lexicase selec-
tion, across all parent selections in every run for each problem. We plot the median, 
75th percentile, and 90th percentile of numbers of individuals remaining. Note that 
after lexicase selection has reduced the candidate pool down to 1 individual (say, at 
step N), that selection is considered to have 1 individual remaining for every step 
> N for these calculations.

We see that for many of these problems (each of which features 100+ training 
cases), most selections have reduced the pool of candidates to 10 or fewer individu-
als after considering a small number of cases. This indicates that even if a selection 
requires many more cases to decide, for the majority of the algorithm, only a small 
number of individuals are in consideration. Note that the Mirror Image problem, 
which has by far the most individuals remaining at every step, is a boolean out-
put problem, meaning that every program is either correct or incorrect, unlike other 
problems which have varying degrees of incorrectness.

These results indicate that any individual that is selected by lexicase selection 
must not only be good at however many cases it takes for lexicase selection to prefer 
it to any other individual, but also that it is one of a few individuals that are best 
in the population on the first few cases that lexicase considers. Thus the individual 
must specialize in those cases compared to the population, in the sense that only a 
few other individuals in the population perform as well on those cases. This mean-
ing of “specialization” is subtly different from (but related to) our definition in the 
rest of the paper of “performing very well on a subset of cases while performing 
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Fig. 3   The number of individuals remaining after each step of lexicase selection (i.e. each training case 
considered) across all selections in 100 runs using lexicase selection. Percentiles are taken from every 
selection event in all runs at that number of steps. Hence 50th represents the median number of individu-
als remaining at that step, etc. Note the log-scale y-axis
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poorly on another subset.” That said, it adds to the evidence that lexicase selection 
selects specialists.

6.3 � Ranks of selected individuals

Across all problems, lexicase selection selects individuals in the worst 50% of the 
population (by total error) at a rate of 7.9%. Although this may seem low, it is more 
than twice the rate of tournament selection, as discussed in Sect. 5.

Figure 4 shows how the median rank (when sorted by total error) of individu-
als selected by lexicase selection changes throughout evolution. Lexicase selection 
begins evolution by selecting individuals with higher (i.e. worse) rank than tourna-
ment selection on most problems. As evolution searches the space, the median rank 
of individuals selected by lexicase selection dips lower than the median empirically 
recorded rank of individuals selected by tournament selection on some problems. 
This is due to the low levels of semantic and behavioral diversity produced by tour-
nament selection leading to many individuals with equal total error [11]. Individu-
als with equal total error are ranked arbitrarily, yet tournament selection will select 
between them with equal probability, which inflates the observed median rank. 
The red horizontal line in Fig. 4 shows the theoretical expected rank of individuals 
selected by tournament selection assuming each individual’s total error is unique. 
Lexicase selection rarely selects individuals having a lower rank than the expected 
rank of tournament selection.

For many of the problems in Fig. 4, the median rank of individuals selected by 
lexicase slowly decreases throughout evolution. This indicates that lexicase selec-
tion turns more toward low-rank (better individuals with lower total error) individu-
als later in runs. While we are not sure exactly what causes this phenomenon, we 
hypothesize that, in many cases, lexicase selection has concentrated on one part of 
the search space, attempting to refine one or more promising programs into solutions 
(and likely often doing so). Additionally, many runs of lexicase terminate when find-
ing solution programs before the maximum number of generations, meaning that 
the remaining runs that have not finished are the only ones factoring into the upper 
plots. Once many runs have finished, the remaining runs may not be representative 
of what a larger sample of runs would show, which is clearly the case for the Mirror 
Image problem.

Since lexicase selection only retains individuals with elite errors on the first test 
case it considers, every selected individual is elite on a subset of the training cases. 
In combination with the observed tendency to select individuals with high total error 
ranks compared to tournament selection, it can be concluded that lexicase selection 
is definitively selecting specialists at a much higher rate than tournament selection.

6.4 � Importance of selecting specialists with lexicase selection

In Sect. 4, we presented the hypothesis that lexicase selection’s ability to select 
specialist individuals with poor total error improves its performance compared to 
the setting in which it is limited to selecting individuals with good total error. To 
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test this hypothesis, we conduct runs of PushGP using elitist survival with elitist 
survival rates of 10–100% in increments of 10. By using elitist survival, we can 
force selection (lexicase or tournament) to not select individuals with total error 
worse than some percent of the population. Thus, for example, if it is important 
for lexicase to select specialist individuals with rank (when sorted by total error) 
worse than 60% of the population, then we would expect lexicase selection with 
60% elitist survival to perform worse than with 100% survival of the population.

Fig. 4   The median rank of individuals selected at each generation by lexicase selection and tournament 
selection. The colored regions surrounding the median lines show the range between the first and third 
quartiles. The red horizontal lines show the expected median rank of individuals selected by tournament 
selection assuming all individuals have a unique total error. The small line plots below each problem 
show the number of unfinished runs at each generation with lexicase selection. These plots show that as 
runs finish due to candidate solutions being found, the aggregate measurements over the later generations 
become less representative
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Based on Eq. 1, we can calculate how often we would expect tournament selec-
tion to select the individuals excluded by elitist survival.5 The probabilities of tour-
nament selection choosing an individual removed by elitist survival at different rates 
are given in Table 2. Tournament selection would select a decent proportion of the 
individuals removed by 30% elitist survival, at around 0.08. We can see that most 
of those individuals have ranks between 30% and 50%, since tournament selection 
selects individuals worse than the median with probability of only about 0.0078. 
Thus, we would not expect 50% survival elitism to affect the performance of tourna-
ment selection, and certainly not 70% survival elitism. Even 20% survival elitism 
may have negligible effects.

Figure  5 gives the number of successful runs on 8 benchmark problems using 
elitist survival rates of 10–90% in increments of 10 with lexicase and tournament 
selection. We also include 100% elitist survival, which is equivalent to not using elit-
ist survival, since the entire population is kept. We plot a linear regression line for 
each problem, and use an F-test at the 0.05 level to determine if there is a relation-
ship between the elitist survival rate and the number of solutions for each method.

On all 8 of the problems, there is a significant relationship between the elitist 
survival rate and the number of solutions found by lexicase selection, indicating that 
lexicase performs significantly worse when limited to smaller elite proportions of 
the population. On the other hand, when using tournament selection, only two of 

string−lengths−backwards syllables vector−average x−word−lines

last−index−of−zero mirror−image negative−to−zero replace−space−with−newline

0.2 0.4 0.6 0.8 1.0 0.2 0.4 0.6 0.8 1.0 0.2 0.4 0.6 0.8 1.0 0.2 0.4 0.6 0.8 1.0

0.00

0.25

0.50

0.75

0.00

0.25

0.50

0.75

Elitist Survival Rate

S
uc

ce
ss

 R
at

e

Problem lexicase tournament

Fig. 5   The impact of elitist survival filtering on the ability of lexicase selection and tournament selection 
to find generalizing solution programs. As the elitist survival rate increases, lexicase selection tends to 
find more solutions, while tournament selection does not

5  Figure 1, which plots the probability distribution defined by Eq. 1, is useful to visualize these cumula-
tive probabilities.
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the problems (Mirror Image and Negative to Zero) showed a significant relation-
ship between elitist survival rate and number of solutions. As predicted by the small 
effects of lower-rank individuals on tournament selection (as discussed in Sect. 5), 
removing those lower-rank individuals has little effect on the performance of tour-
nament selection. In fact, limiting tournament selection to only the top 10% of the 
population by total error gave numbers of successes insignificantly different from 
using the entire population on every problem except for Negative to Zero (using a 
chi-squared test).

The behavioral diversity of a population is the proportion of distinct behavior 
vectors that are present in a population, where a behavior vector is simply the out-
puts of a program when run on the training cases [21]. The behavior vector is some-
times called the semantics of the program [26], as in geometric-semantic genetic 
programming [31]. We plot the population behavioral diversity of lexicase selection 
in Fig. 6. We do not present the diversities of populations under tournament selec-
tion, which were very low for every problem and every elitist survival rate, mirror-
ing to previous studies comparing the behavioral diversity of lexicase and tourna-
ment selection [11, 12]. This result is consistent with the unchanged performance 
of tournament selection with elitist survival, both of which can be explained by the 
small portion of selections affected by elitist survival.

For most problems in Fig. 6, the behavioral diversity of runs using lexicase selec-
tion decreases as the number of individuals removed by elitist survival increases. 
We see this decrease across all problems besides Vector Average, though the impact 
varies per problem. On the Replace Space With Newline problem, lexicase selection 
with elitist survival rates below 80% grow in diversity early, but then lose diversity 
and finish the remainder of the run with low levels of diversity. On many of the 
other problems, the lower rates of elitist survival have similar curves to the higher 
rates, just at lower levels.

One interesting finding here is that for the Vector Average problem, removing the 
worst individuals increases behavioral diversity, down to 30% elitist survival. This 
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strange pattern says that if lexicase selection is given fewer individuals to select, the 
resulting populations will be more diverse. Despite the higher levels of diversity, 
Vector Average followed a similar pattern of poorer performance with low levels of 
elitist survival, as shown in Fig. 5.

These results provide evidence supporting our hypothesis that lexicase selection 
makes use of specialist individuals with poor total error relative to the rest of the 
population—individuals that presumably have poor errors on some training cases 
but good errors on others. Lexicase selection shows clear correlation between elitist 
survival and success rate on every problem, performing better when able to select 
from the worst individuals when sorted by total error. As discussed earlier, indi-
viduals selected by lexicase must be elite on a subset of the training cases; those that 
also have poor total error are therefore specialists. Lexicase selection performs bet-
ter when allowed to select these specialists, which clearly help drive the direction of 
evolution toward more solutions.

Our plots show that behavioral diversity in lexicase selection runs decreases, 
sometimes significantly, as we decrease the number of individuals that survive elit-
ist survival. These plots support our hypothesis that the high diversity seen in runs 
using lexicase selection is influenced by lexicase selection’s ability to select individ-
uals with relatively poor total error. Selecting specialists thus allows lexicase selec-
tion to better explore the search space, likely contributing to its better performance. 
The decreased diversity in runs using lower rates of elitist survival likely contributes 
to the corresponding decreases in performance observed in Fig. 5.

As expected, tournament selection was not significantly affected by elitist sur-
vival selection at any level, even when removing 90% of the population, on 6 out of 
8 problems. As we saw in Table 2, tournament selection simply does not often select 
specialist parents from the bottom ranks of the population. Instead, it concentrates 
on the individuals with the best total error, and mostly selects from the top 20% of 
the population, with more than half of selections coming from individuals in the top 
10% of the population. Tournament selection’s tendency to select individuals in the 
top ranks of the population, ignoring specialist individuals with worse total error, 
explains at least part of the difference in performance between it and lexicase selec-
tion seen in previous studies [16, 17].

6.5 � Lexicase selection and UMAD

Our original experiments, described above and in [15], use the combination of 
genetic operators given in Table 1. Alternation is a crossover operator that copies 
stretches of each parent at a time; uniform mutation replaces individual instructions 
with some probability; and uniform close mutation changes the position of paren-
theses in the Push programs [18]. Since running those experiments, we have started 
using the new genetic operator “uniform mutation with addition and deletion” 
(UMAD) [14]. UMAD performs quite well when using PushGP on the program 
synthesis problems explored here, and in fact has produced the best results of any 
genetic operators to date, despite only consisting of single-parent mutation. As such, 
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we decided to replicate the elitist survival rate experiment, this time with UMAD as 
the only genetic operator and lexicase for parent selection.

We use size-neutral UMAD as the only genetic operator, with an addition rate of 
0.09, as recommended in [14]. This means that each gene has a probability of 0.09 
of having a new random gene inserted before or after it, and then every gene has a 
corresponding probability of being deleted, such that the child genome is the same 
size as the parent on average.

In Fig. 7, “lexicase-umad” gives results using UMAD along with lexicase selec-
tion. As expected, PushGP with UMAD found many more solution programs, no 
matter what the elitist survival rate. We see that for three problems (Last Index of 
Zero, Mirror Image, and Syllables), decreasing the elitist survival rate has little to 
no effect on the success rate, leading to regression lines that are essentially flat. For 
all five other problems there is a significant relationship between elitist survival rate 
and success rate, indicating the importance of selecting specialists for those prob-
lems when using UMAD. Thus for some, but not all, problems, the importance of 
lexicase selecting specialists also is evident when using UMAD as the genetic oper-
ator, but this relationship isn’t as strong as when using our previous set of genetic 
operators.

7 � Specialists under subsampled training case selection

To give further evidence for the importance of selecting specialist individuals, 
we devised a new parent selection scheme that makes modifications to standard 
tournament selection in a way that makes it more likely to select specialists. Our 

string−lengths−backwards syllables vector−average x−word−lines

last−index−of−zero mirror−image negative−to−zero replace−space−with−newline

0.2 0.4 0.6 0.8 1.0 0.2 0.4 0.6 0.8 1.0 0.2 0.4 0.6 0.8 1.0 0.2 0.4 0.6 0.8 1.0

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

Elitist Survival Rate

S
uc

ce
ss

 R
at

e

Problem lexicase lexicase−umad tournament

Fig. 7   The impact of elitist survival filtering on the ability of lexicase selection with UMAD as the only 
genetic operator (lexicase-umad) to find generalizing solution programs. We include lexicase and tourna-
ment selection with the original genetic operators (as in Fig. 5) for comparison
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goal is to investigate the importance of selecting specialists beyond the details 
of the lexicase algorithm. To be clear, this new selection method is not devised 
because we think it will compare favorably with methods like lexicase selection, 
but instead because it will show how a selection method similar to tournament 
selection but with more emphasis on specialists can create improvements com-
pared to tournament selection.

The new parent selection method, which we call subsampled training case selec-
tion, has two major differences from tournament selection. First, for each selection 
event, we use a subsample of the training cases and select the individual with the 
best summed total error on the subsample. To allow for a range of sizes of subsam-
ples, we choose subsample size by sampling a normal distribution, rounding to the 
nearest integer and forcing a minimum of 1 and a maximum of the number of cases. 
After deciding on the subsample size, we sample that number of cases at random.

Second, we make the “tournament set” contain every individual in the popula-
tion, instead of only consisting of a small subset of the population. Thus, we select 
the best individual in the population on the subsample of training cases, with ties 
broken at random.

We created subsampled training case selection because it allows specialist indi-
viduals, which perform well on some training cases and poorly on others, the chance 
to be selected when the cases that they specialize in are in the random subsample of 
cases. While it has this in common with lexicase selection, it does not randomize 
the relative importance of cases as lexicase selection does, and thus in some sense 
shares similarities with both lexicase and tournament selection. The use of the entire 
population instead of a tournament set ensures that a specialist will be considered 
when its best cases are used in a selection event.

We conducted a set of GP runs with subsampled training case selection. In these 
runs, we tested two different settings of � (mean percent of cases used) and � (stand-
ard deviation) for sampling the rounded normal distribution for subsample sizes. 
The values for these settings were inspired by the numbers of cases typically used 
in lexicase selection (see Sect. 6.1). One setting used � = 0.1 and � = 0.05 , and the 
other used � = 0.2 and � = 0.1 . As the success rate of GP when using � = 0.1 and 
� = 0.05 was better on 10 of the 11 problems we tested, those will be the settings 
used in our results here.

Table 3 gives the number of successful runs out of 100 comparing tournament, 
subsampled training case, and lexicase selection. These runs used UMAD as the 
only genetic operator, as in Sect. 6.5. Subsampled training case selection achieved 
significantly better results than tournament selection on 8 of the 11 problems, while 
lexicase selection was significantly better than tournament on 10 of the problems. 
Additionally, lexicase selection outperformed subsampled training case selection on 
4 out of 11 problems.

The differences in success rates show how subsampled training case selection’s 
ability to select individuals that specialize in a subset of the training cases dramati-
cally improves performance compared to tournament selection without incorporat-
ing lexicase selection’s randomly-ordered importance of cases. That said, lexicase’s 
random shuffling of cases does seem to play some role in its success, as it proved 
significantly better than subsampled training case selection on four problems.
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More generally, these results provide evidence that tournament selection’s 
method of only considering a small portion of the population in the tournament set 
is detrimental to solving problems. Both lexicase selection and subsampled training 
case selection consider the entire population for each selection event, meaning that 
they select whichever individual in the population best fulfills their requirements 
(case ordering for lexicase and total error on the subsample for subsampled training 
case). These methods allow specialist individuals to be selected when the cases at 
which they excel arise, instead of randomly being left out of contention as in tourna-
ment selection.

In fact, we conducted a set of subsampled training case selection runs using a 
tournament size of 7 instead of the entire population. We found the results indistin-
guishable from tournament selection—not significantly different from tournament 
selection on any problem and significantly worse than subsampled training case 
selection without a tournament set on the same 8 problems. Thus allowing sub-
sampled training case selection to select from the entire population is critical to its 
improvement over tournament selection.

8 � Discussion: what makes lexicase selection work?

We have made the argument that specialists are important for lexicase selec-
tion’s success, and for successful parent selection more generally. Others have 
noted this as well: the importance of specialists in lexicase selection was one of 
the stated motivations for the development of batch tournament selection, which 
has also shown good performance by selecting specialists [4]. However, lexi-
case selection has other traits that may also contribute to its good performance. 
Here we will consider other work that has aimed to better understand lexicase 

Table 3   Number of successful 
runs out of 100 for tournament, 
subsampled training case (STC), 
and lexicase selection

Bold results are significantly better than tournament, and underline 
means significantly better than STC. No set of STC runs were sig-
nificantly better than lexicase. Significance was determined using a 
pairwise chi-squared test with � = 0.05 and Holm correction

Problem Tournament STC Lexicase

Compare string lengths 3 45 32
Double letters 0 10 19
Last index of zero 30 63 62
Mirror image 100 100 100
Negative to zero 30 50 80
Replace space with newline 41 88 87
Scrabble score 0 5 13
String lengths backwards 27 62 94
Syllables 2 46 38
Vector average 32 72 88
X-word lines 0 1 61
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selection in order to develop a more comprehensive picture about how it works. 
We will also suggest future work that could contribute to understanding it better.

One of lexicase selection’s key algorithmic ideas is that it considers cases in a 
new random order for each selection event. The importance of each case for any 
particular selection event is determined by this randomly-ordered sequence of 
cases, which is processed lexicographically (hence lexi-case). The cases encoun-
tered by individuals in a single lexicase selection event can be thought of as ran-
dom challenges faced by each individual, until an individual proves itself bet-
ter than the others on those random challenges [36]. While subsampled training 
case selection can select specialists and outperformed tournament selection (see 
Sect. 7), it does not place any emphasis on performing best on any given training 
case in its subsample. Thus, as discussed further in [36], it seems that the ran-
dom lexicographic ordering of cases contributes to lexicase selection’s success.

Previous studies have shown lexicase selection to be capable of producing 
and maintaining diverse populations compared to tournament selection and 
other selection methods [11, 12, 30]. Such diversity tends to correlate with 
problem-solving performance, as having high population diversity can indicate 
good exploration of the search space. However, increased diversity has not been 
shown to cause improved performance. Indeed, some parent selection methods 
(in particular novelty search) have demonstrated higher levels of diversity than 
lexicase selection while achieving significantly worse problem-solving perfor-
mance [22]. Additionally, some lexicase selection variants produced higher 
diversity along with worse performance compared to standard lexicase selec-
tion in an evolutionary robotics setting [30]. Thus it seems that while lexicase 
selection causes increases in both problem-solving performance and diversity, 
the diversity itself is not directly responsible for the improved performance, but 
instead is indicative of the exploration that lexicase produces while effectively 
searching for a solution program.

Populations evolving by lexicase selection have often exhibited hyperselec-
tion, in which single individuals in one generation are selected as parents for 
many, and sometimes nearly all, of the children in the next generation. Earlier 
work showed that while lexicase selection hyperselects individuals at high rates, 
this hyperselection does not significantly impact the performance of GP using 
lexicase selection [13]. Thus hyperselection seems to be a benign side effect of 
lexicase selection, neither benefiting or hindering its performance.

That said, this earlier work only considered the hyperselection of single indi-
viduals, but not the hyperselection of groups of individuals with identical error 
vectors. We know that individuals with identical error vectors frequently receive 
selections, and it is possible that such semantically-equivalent individuals 
undergo semantic hyperselection. With semantic hyperselection, it is possible 
that one error vector has an outsized influence on the next generation without 
giving many selections to a single individual. Studying semantic hyperselection 
could tell us more about this phenomenon and its effects on lexicase selection.
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9 � Conclusions

Numerous demonstrations of lexicase selection’s search performance have con-
cluded it is superior to tournament selection on a variety of tasks. Previous 
attempts to explain this behavior have observed increases in population diversity, 
guarantees of non-dominated selections, and the possibility of selecting indi-
viduals with high total error. This paper formalizes the hypothesis that lexicase 
selection’s performance is in part due to its tendency to select specialists over 
generalists, especially compared to tournament selection. These specialists, with 
excellent errors on some training cases yet poor total error, receive little attention 
from most other parent selection methods, which aggregate performance into a 
single fitness metric.

This paper presents theory explaining the exceedingly low probability of tour-
nament selection selecting specialists, along with empirical results that support 
this theory. In contrast, we observe the comparatively high rate at which lexicase 
selection selects specialists. We additionally provide evidence of test case usage 
during lexicase selection, indicating that few test cases are typically used in any 
one parent selection event, showing how lexicase can select specialists by ignor-
ing training cases on which the specialist performed poorly.

To support the hypothesis that the selection of specialists is a key component 
of lexicase selection’s search performance, an elitist survival filter was applied 
with various degrees of strictness before conducting parent selection. This filter-
ing removed all potential specialists and forced lexicase selection to select among 
more generalist individuals, which have better total error. The filter significantly 
reduced the number of solutions evolution was able to find, implying that the 
presence of specialists was crucial to lexicase selection’s performance. Further-
more, tournament selection was not significantly impacted by elitist survival 
filtering. Additionally, we discussed the effects of specialists on a population’s 
diversity under lexicase selection, finding that specialists typically contribute to 
lexicase selection’s ability to maintain high rates of population diversity. We also 
designed subsampled training case selection, which selects the individual from 
the population that performs best on a random subset of the training cases, allow-
ing it to select specialists. It too outperformed tournament selection (though not 
lexicase selection), giving more evidence for the importance of specialists.

These findings suggest that future work to improve parent selection tech-
niques should consider their ability to select specialist individuals, which pro-
vided significant benefits to lexicase selection in this study. Additionally, we 
solely focused on the automatic program synthesis domain here; programs in this 
domain can use control flow structures to act in different modalities for different 
inputs [34], potentially leading to the development and importance of specialists. 
It could prove informative to replicate this study using genetic programming in 
other domains, especially ones with relatively small instruction sets such as sym-
bolic regression.

How does selecting specialists lead to solving problems? How are the skills 
of specialists adapted or combined into better individuals? These questions go 
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beyond the selection of parents and depend on how the GP system generates chil-
dren from specialist parents. A solution program must by definition be a general-
ist, since it perfectly passes all of the test cases. Future work should consider how 
generalists are constructed from specialists, and if there are better ways of doing 
so.

The specialists selected by lexicase selection here were subjected to the same 
genetic operators used in other studies with PushGP. However, we could imagine 
designing genetic operators with specialists in mind to better make use of their novel 
abilities. For example, when combining two specialists, should we use a differ-
ent recombination operator than when combining two generalists, to have a better 
chance at reaping the benefits of both parents? We could imagine such operators 
increasing the efficiency of evolution as it combines the specializations of individu-
als until it finds a general solution.
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