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Abstract Dispatching rules are often the method of choice for solving various

scheduling problems, especially since they are applicable in dynamic scheduling

environments. Unfortunately, dispatching rules are hard to design and are also

unable to deliver results which are of equal quality as results achieved by different

metaheuristic methods. As a consequence, genetic programming is commonly used

in order to automatically design dispatching rules. Furthermore, a great amount of

research with different genetic programming methods is done to increase the per-

formance of the generated dispatching rules. In order to additionally improve the

effectiveness of the evolved dispatching rules, in this paper the use of several

different ensemble learning algorithms is proposed to create ensembles of dis-

patching rules for the dynamic scheduling problem in the unrelated machines

environment. Four different ensemble learning approaches will be considered,

which will be used in order to create ensembles of dispatching rules: simple

ensemble combination (proposed in this paper), BagGP, BoostGP and cooperative

coevolution. Additionally, the effectiveness of these algorithms is analysed based on

some ensemble learning parameters. Finally, an additional search method, which

finds the optimal combinations of dispatching rules to form the ensembles, is pro-

posed and applied. The obtained results show that by using the aforementioned

ensemble learning approaches it is possible to significantly increase the performance

of the generated dispatching rules.
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1 Introduction

Scheduling can be defined as a decision making process concerned with the

allocation of tasks to scarce resources with the intention of optimising one or more

user defined scheduling objectives [40]. Although different approaches have been

defined for solving various scheduling problems, dispatching rules represent the

methods of choice when dealing with dynamic scheduling problems. Dispatching

rules (DRs) usually represent a simple function which determines the priorities of

jobs that need to be scheduled, and based on those priorities decides which job

should be scheduled. They are very popular methods for solving scheduling

problems since they can be designed to optimise various scheduling criteria, and can

be used for different scheduling environments and conditions. Since designing good

DRs usually represents a lengthy trial and error process, researchers have focused on

defining procedures which could automatically design new dispatching rules.

In order to deal with the problem of manual design of DRs, many different

machine learning methods were used in order to automatically create DRs [5]. One

of the most commonly used procedures in the automatic development of DRs is

genetic programming (GP) [24, 41]. By using GP it is possible to create DRs for a

wide variety of different scheduling conditions and scheduling objectives. This

feature becomes even more important when there is a need to design DRs for

arbitrary user defined criteria, since DRs for such criteria might not even exist.

Additionally, DRs generated by GP have in most cases been able to outperform

manually designed DRs. Because GP is able to generate good DRs efficiently, in

recent years a lot of research has been undertaken in order to apply GP for

generating DRs for a wide variety of scheduling problems, as well as to improve the

performance of the generated DRs.

This paper analyses if the performance of DRs generated by GP can be improved

by using different ensemble learning approaches. The motivation for using

ensemble learning approaches comes from the fact that, in the machine learning

field, ensemble learning approaches have shown to improve the results achieved for

various classification problems [42]. Four ensemble learning approaches will be

considered: simple ensemble combination, BagGP, BoostGP and cooperative

coevolution. For each of the considered approaches the influence of the ensemble

size and the ensemble combination method on the results will be analysed.

Additionally, for all the aforementioned approaches a further step, which tries to

find a better subset of DRs that should form the ensemble, is introduced.

The remainder of this paper is organised as follows. Section 2 gives a short

literature overview concerned with the automatic creation of DRs with GP. The

unrelated machines environment is described in Sect. 3. Section 4 describes the GP

procedure used in order to automatically create DRs, while Sect. 5 describes the

ensemble learning approaches used in this paper. The results achieved by the

ensemble learning approaches are outlined in Sect. 6. In Sect. 7 a short discussion

about the achieved results is given. Finally, Sect. 8 gives a short conclusion and

outlines possibilities for future work.
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2 Literature overview

Since it is able to evolve quite complex expressions and functions, GP has been used

in the field of hyper-heuristics quite often [7, 8]. Consequentially, GP is also used in

order to evolve new DRs for different scheduling problems. One of the first uses of

GP in scheduling was in order to generate a sequence in which existing DRs need to

be applied in order to create the schedule [9]. Miyashita later evolved DRs for the

job-shop environment by using GP with a terminal set that contained several job

properties [25]. In his work, Miyashita considered the scheduling environment as a

multi agent system where each machine represented an individual agent. Based on

that he proposed three different models: the homogeneous model, the distinct agent

model and the mixed agent model. The homogeneous model generated a single DR

for all machines in the scheduling environment. On the other hand, the distinct agent

model generated a distinct DR for each machine in the scheduling environment.

Finally, the mixed agent model combines the two aforementioned models in a way

that two DRs are evolved, first of which will be used by bottleneck machines, while

the second will be used by all other machines. Although the mixed agent model

achieved the best results among the three multi-agent models, it comes with an

obvious disadvantage, which is that the knowledge about which machines are

bottlenecks needs to be known before the system starts with its execution. In their

work, Jakobović et al. propose a GP model which extends the mixed agent model

from Miyashita. Their GP approach generates three expressions instead of one. Two

of those expressions represent regular DRs, while the third expression represents a

decision function which determines which of the two DRs will be used for a

concrete machine. In that way there is no need to have prior knowledge about which

machines represent bottleneck resources, but this can rather be determined during

the system execution using the decision function. Apart from its application in the

single machine and job-shop environments, GP was also used to create new DRs in

the parallel machines environment with good results [22].

Unlike in the aforementioned works, where only a single optimisation criterion

was considered, Tay and Ho have used GP to generate DRs which were designed to

optimise three criteria at the same time [45]. Hildebrandt et al. have performed an

extensive analysis on creating DRs for the job-shop environment [16]. Jakobović

and Marasović have further investigated the creation of DRs for the single machine

and job-shop environments [23]. In their work they analysed the influence of the GP

parameters on the quality of the evolved DRs. Apart from that they also analysed

scheduling in the single machine environment under various constraints like set-up

times and precedence constraints, and have also shown that GP was able to achieve

better results than some standard DRs. Gene expression programming [11], a

method similar to GP, was also used in order to evolve DRs for both the single

machine environment [35] and job-shop environment [34]. The problem of global

perspective of DRs and how GP can be used in order to evolve DRs with a better

global perspective was analysed in [18]. In a study by Hunt et al. it was shown that

GP is able to evolve optimal DRs for the static two machine job-shop environment,

which demonstrates that with the right parameters GP is able to evolve optimal DRs.
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Different representations in GP were analysed by Nguyen et al. and it was shown

that the representation used for evolving DRs influences the quality of the generated

DRs [30]. A new GP approach which evolved iterative dispatching rules (IDRs) was

proposed by Nguyen et al. [32]. Although the aforementioned approach was able to

achieve better results than GP which evolves standard DRs, IDRs can only be used

in the static environment in which information about the scheduling environment is

known beforehand. Ðurasevic et al. have compared several GP approaches for

creating DRs in the unrelated scheduling environment, including GEP, IDRs and

dimensionally aware GP [10]. Apart from generating DRs for the standard

scheduling problems GP has also been applied in order to generate DRs for the order

and acceptance (OAS) scheduling problem [26, 27, 37]. In the OAS problem, aside

from scheduling jobs on machines, the system needs to decide which jobs will be

accepted for scheduling. The generated DRs have also shown to be better than the

standard DRs for the OAS problem, which shows that GP can generate DRs even for

other forms of scheduling problems.

GPwas also used in order to generate complete scheduling procedures (SPs), which

consist of both DRs and due-date assignment rules (DDARs) [28, 33]. Those

approaches used the cooperative coevolution procedure in order to generate two

expressions (one of which represents a DR, while the other represents a DDAR)which

together form a SP. The SPs evolved by GP have shown to be able to outperform some

standard SPs from the literature. Nguyen et al. have used GP in order to generate DRs

for optimising five scheduling criteria simultaneously and have shown that GP was

able to evolve efficient DRs for the considered multi-objective criteria [29, 31]. A

more in depth review of creating DRs by using GP can be found in [5].

Ensemble learning is often used in order to improve the performance of classifier

systems [42]. Although ensemble learning approaches like bagging [6] or boosting

[14] are commonly used in the machine learning community, ensemble learning

approaches have not been as extensively used together with GP in order to improve

its performance. Some notable applications of GP ensembles in the literature

include classification with unbalanced data [3, 4], pattern classification [13] and

intrusion detection [12]. GP ensemble learning approaches have been used for

creating ensembles of DRs in only few occasions. In their work Park et al. [38] used

the cooperative coevolution approach in order to create ensembles of DRs, and it

was shown that such an approach achieves better results than standard GP.

Unfortunately, in their work they only considered the static scheduling environment

and did not additionally consider dynamic scheduling. Hart and Sim [15] propose a

new hyper-heuristic called NELLI-GP which was used to solve static job-shop

scheduling problems. This method creates an ensemble of DRs where each DR in

the ensemble tries to adapt to a certain subset of problem instances.

3 Unrelated machines environment

The unrelated machines environment can be defined as a scheduling environment

which consists of n jobs that need to be scheduled on one of the m available

machines. Each machine can only execute one job at a time, and similarly, each job
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can only be executed by one machine. Preemption is not allowed, meaning that

when a job starts executing on a given machine, it will execute until it is completed,

after which a new job can be scheduled on the machine. Additionally, if release

times are defined for jobs, then no job can start with execution before its respective

release time. In this environment each job consists of several parameters:

● processing time pij—defines the time needed for job with the index j to be

executed on machine with the index i
● release time rj—defines the time in which the job with the index j becomes

available

● due date dj—defines the point in time until which the job with the index j should
finish with its execution, otherwise a certain loss will be incurred

● weight wj—defines the weight (importance) of the job with index j

After constructing the entire schedule, certain metrics are calculated for each job:

● Cj—finishing time of job j
● Fj—flowtime of job j:

Fj ¼ Cj � rj: ð1Þ

● Tj—tardiness of job j:

Tj ¼ maxfCj � dj; 0g: ð2Þ

● Uj—flag if job is tardy or not:

Uj ¼ 1: Tj [ 0

0: Tj ¼ 0

�
: ð3Þ

Based on the previously defined job metrics, many different scheduling criteria

can be defined [1, 2]. This study will focus on optimising the following four

scheduling criteria:

● Twt—total weighted tardiness:

Twt ¼
X
j

wjTj; ð4Þ

● Nwt—weighted number of tardy jobs:

Nwt ¼
X
j

wjUj: ð5Þ

● Ft—total flowtime:
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Ft ¼
X
j

Fj; ð6Þ

● Cmax—maximum finish time of all jobs:

Cmax ¼ max
j
fCjg: ð7Þ

Apart from the scheduling criteria which are optimised, it is also important to

outline under which scheduling conditions the problem is solved. If all job

parameters are available before the system starts with its execution, then this type of

scheduling is called static scheduling. As a consequence, search-based methods

(like genetic algorithms or ant colony optimisation) can be used in order to construct

the schedule before the start of the system execution. On the other hand, if job

parameters become available only as the jobs are released into the system, and no

knowledge about their values is available beforehand, then this type of scheduling is

called dynamic scheduling. Since there is a need to quickly adapt to the changing

scheduling conditions, search-based methods most often cannot be used for this type

of scheduling. Because of that reason, DRs are the most commonly used methods

for creating schedules in dynamic environments, since they can quickly react to the

changing environment. In this paper the dynamic scheduling environment is

considered, in which job parameters become available only when the job is released,

and the schedule is constructed together with the execution of the system. Therefore,

since the schedule is constructed in parallel with the execution of the system it is

important that the scheduling decision can be performed quickly in order to not

incur any additional delay.

4 Creating DRs with GP

DRs which are constructed in this study can be divided into two parts: a meta-

algorithm and a priority function (PF). The meta-algorithm defines a procedure

which is used in order to create the entire schedule incrementally. Although the

meta-algorithm defines a global scheduling procedure, it still needs to use a concrete

PF which is used to calculate priority values for jobs and machines. These priority

values are then used by the meta-algorithm in order to determine which job should

be scheduled on which machine and in which order. Algorithm 1 represents the

meta-algorithm which is used in this study. This procedure tries to find the best

mapping between a job and a machine. If the machine on which the chosen job

should be scheduled is available, then the job is immediately scheduled on that

machine. On the other hand if the machine is currently busy and executing another

job, then the job will not be scheduled, but the scheduling decision will be

postponed to a later moment in time.
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Unlike the meta-algorithm, which is manually defined, the PFs used by it are

evolved by GP. However, in order for GP to be able to evolve quality DRs, relevant

information about the scheduling environment and its current state, which will be

available to GP in the evolution process, needs to be defined. This is done by

specifying a set of terminal nodes which will be used by GP in the construction of

DRs. Table 1 represents the set of selected terminal nodes which will be used in the

evolution process. The time variable, which appears in the description of some

terminal nodes, represents the current time of the system. Terminals pt, dd and

w represent given properties of the jobs. The pmin and pavg terminals are included

in order to give DRs the ability to determine whether the currently considered

Table 1 Terminal nodes

Node name Description

pt Processing time of job j on the machine i (pij)

pmin The minimal job processing time on all machines: minfpijg8i
pavg The average processing time on all machines

TFMA Time until fastest machine available—the amount of time until the machine

with the minimal processing time for the current job will be available

TMR Time until machine is ready—the amount of time until the current

machine becomes available

age The time that the job spent in the system: time� rj

Terminals used only for due date related criteria (tardiness and number of tardy jobs)

dd Due date (dj)

w Weight (wj)

SL Positive slack: maxfdj � pij � time; 0g
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processing time belongs to faster or slower processing times of the job (which

depends on the machine). The SL terminal is included since it is commonly used in

some standard DRs, as well as a terminal in many other studies. The remaining two

terminals are more machine-centric, with TMR allowing us to determine how soon

the considered machine will be available, and TFMA how soon the machine with the

shortest processing time will be available. The latter is useful since jobs will quite

often be scheduled on the machine with the fastest processing time. Therefore the

inclusion of such a terminal has proven useful.

Apart from the terminal nodes, it is also mandatory to define a set of functional

nodes which are used by GP in order to combine the terminal nodes into meaningful

expressions. Table 2 represents the set of functional nodes which were used in this

paper. These operators were chosen based on the results obtained in a previous study

[10]. The basic arithmetic operators were chosen since they denote the minimal set

needed to represent basic mathematical expressions. The POS node was included

since it is also quite often used in certain standard DRs, and since it achieved better

results than when using just the absolute value. Other functional nodes, like

branching nodes (ifgt) or more sophisticated mathematical nodes (min and max)
were also tried out, but unfortunately they did not lead to any significant

improvements of the generated DRs. During the evolution process, GP uses both the

functional and terminal nodes in order to generate expressions which represent

priority functions in the DR. An example of such a priority function is given with

the following expression:

p ¼ pos
posðw � SLÞ � ðSLþ pminÞ

w � pavg
� �

� ðposðw � ptÞ þ ðw � ageÞÞ

� pmin

w
� ðTMR� ageÞ þ ðdd � ptÞ þ ðpminþ pavgÞÞ

� �
:

5 Ensemble learning methods for GP

In this section the four ensemble learning approaches, which were used in order to

create ensembles of DRs, will be shortly described. But before the ensemble

learning approaches can be described, first it must be defined in which ways the

Table 2 Functional nodes

Node name Description

+ Binary addition operator

− Binary subtraction operator

* Binary multiplication operator

/ Secure binary division: =ða; bÞ ¼
1; if jbj\0:000001
a

b
; else

(

POS Unary operator: POSðaÞ ¼ maxfa; 0g
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evolved ensembles will be combined into a single DR. For this task two simple

ensemble combination methods will be used: sum and vote. The sum combination

method will simply sum the priority values of all DRs in the ensemble to get a

priority value which will be used to schedule jobs (in the same way as shown in

Algorithm 1). On the other hand, the vote method functions a bit differently, as

shown in Algorithm 2. For each machine the vote method will first determine which

job received the most votes, and then it will choose the one with most votes in a

pairwise comparison. Naturally, it is possible that ties occur for both of the

ensemble combination methods (although it is more probable that they occur for the

vote method). If such a situation occurs, then the job with the earlier release time

will be scheduled first.

The implementations of the algorithms described in this section have been done

using the evolutionary computation framework (ECF) [20].

5.1 Simple ensemble combinations

In this section the simple ensemble combination (SEC) approach will be described.

The motivation for this approach comes from the fact that GP is usually executed

several times, because of its stochastic nature, in order to obtain good DRs. Thus, it

makes sense to see if maybe a combination of the generated DRs could provide

better results than a single DR. The idea behind this approach is, therefore, to first

evolve several DRs by using a standard GP approach. Following that, an optimal

ensemble is determined by trying out various subsets of these DRs, be it by

exhaustive search, random search, or some heuristic search method. This approach

can be considered similar to some portfolio approaches which combine several

metaheuristic methods in order to achieve better results [39, 46].

After obtaining a starting set of DRs by simply repeating the standard GP

approach, various subsets of given size will be evaluated as ensembles. In this paper

the limit of 20,000 ensemble combinations, which was determined based on initially
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conducted experiments, will be used. If for the given ensemble size there are less

possible combinations of DRs than the limit (i.e. for smaller ensembles), then

exhaustive search is used in order to determine the optimal ensemble. Otherwise,

20,000 different ensembles are randomly generated and the one with the best fitness

value is chosen. Naturally, there is a possibility that when randomly generating

ensembles the same ensemble could be generated several times, but due to the sheer

amount of combinations this is very unlikely. Also, creating random combinations

of decision makers has previously proven to perform better than ensembles created

by using high quality decision makers [17].

The main advantage of this approach is that no new DRs need to be evolved, but

rather existing DRs which were evolved beforehand can be used and combined into

ensembles. On the other hand, this approach needs an additional problem instance

set which must be used in order to determine the set of DRs which form the optimal

ensemble. The only parameters of this approach are the size of the ensemble and the

ensemble combination method.

5.2 BagGP

BagGP is an ensemble learning approach which applies bagging to GP [19]. This

approach evolves DRs in a way that each DR is evolved on a different training set,

which is constructed by sampling with repetition from the original training set. The

evolved DRs are then combined to form an ensemble. This approach, in addition to

the ensemble size and combination method, has an additional parameter which

determines the size of the training set used to evolve the DRs. The size of the newly

sampled training set can be set to an almost arbitrary value which can be smaller,

larger or equal to the original training set size.

5.3 BoostGP

BoostGP is an approach which applies the AdaBoost [14] algorithm in GP [36, 44].

This ensemble learning approach evolves several DRs so that it weights the training

set instances in a way that instances that were solved poorly in previous GP runs get

a higher importance in the following GP runs, and that newly evolved DRs focus

more on solving such problematic instances. Algorithm 3 denotes the BoostGP

approach. The approach is mostly the same as the ones denoted in the literature with

one notable difference. Since this algorithm is adapted from the regression problem

in which the fitness is usually calculated as the difference between the value which

was achieved by the individual and the expected value jfi � yij, there is a need to

adapt it to the case of evolving DRs where there does not exist an explicit expected

value which needs to be achieved, but rather a certain criterion is minimised.

Nevertheless, since neither of the criteria tested in this paper can have a value lower

than zero, the approach is adjusted to treat zero as the expected values for each

criteria.
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In order to combine the DRs into a single ensemble, four different combination

methods are used. The first two methods are the sum and vote methods described

previously. The other two methods represent the weighted sum and vote methods

which use the confidences obtained for each DR as the weights which will be used

to multiply the vote of the DR in the voting method, and the priority value of the DR

in the sum method. In addition to the combination method, the second parameter of

this approach is the size of the ensemble which needs to be generated.

5.4 Cooperative coevolution

The cooperative coevolution approach is an evolutionary algorithm approach which

divides the optimisation problem into several sub-problems which are then solved

independently in order to solve the original problem [43]. Each sub-problem is

solved by one sub-population in the evolutionary algorithm, and the only interaction

between individuals from different sub-populations is when they are combined for

evaluation. Naturally, it is not possible to combine one individual with all

individuals from the other sub-populations and calculate its fitness for all the

combinations, since this would be too time consuming. For that reason, there

usually exists a list which contains a representative from each sub-population. An

individual is then evaluated in combination with the representative individuals from

other sub-populations. This approach can also easily be used in order to evolve

ensembles of DRs in a way that each sub-population evolves a single DR which is

then combined with DRs from other sub-populations in order to form an ensemble.

The ensemble size and ensemble combination approach are the only parameters

which need to be defined for this approach.

5.5 Ensemble subset search

In order to additionally improve the performance of the ensemble learning

approaches (SEC, BagGP, BoostGP and cooperative coevolution) after the learning

process, an additional search can be performed in order to determine the optimal
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subset of the DRs which form the ensemble. The intuition behind this approach is

that the ensemble which is evolved by the ensemble learning approaches does not

have to be optimal, and that it is possible to construct a better ensemble by using

only a subset of the DRs contained in the original ensemble. This is especially

possible when using approaches where the DRs of the ensemble are evolved

independently of each other, like in BagGP or BoostGP. In those approaches the

DRs forming the ensemble are evolved in independent GP runs, after which they are

collected to form the ensemble. Therefore it is possible that the ensemble contains

DRs that do not positively contribute to the quality of the ensemble. In order to

remedy this, the original ensemble can be modified by removing the unnecessary

DRs from the ensemble and consequentially improving the cumulative performance.

By reducing the size of the ensemble, the execution speed and interpretability of the

ensemble can also be improved.

This approach takes the ensemble evolved by one of the ensemble learning

approaches and uses the DRs that formed the original ensemble in order to build

ensembles of smaller sizes. Since the largest ensemble evolved in this paper is of

size ten, it is possible to try out all ensemble combinations of smaller sizes in a

reasonable amount of time, and therefore to determine the optimal ensemble subset.

Therefore, if this approach is applied to an ensemble of size ten, all ensemble

combinations of sizes between two and nine will be evaluated. Then either the best

overall ensemble subset, or the best ensemble subset of a concrete size can be

selected. From the description it can be seen that ESS is similar to the SEC

approach, with the differences being that it is applied on an existing ensemble of

DRs, and that it constructs ensembles of different sizes (smaller than the original

ensemble), unlike the SEC approach which creates ensembles of a predefined size

only.

With this approach it is possible not only to decrease the ensemble size but also

improve its performance. However, for this step an additional problem instance set

needs to be defined, on which the optimal combination of DRs, that will form the

ensemble subset, can be determined. After the optimal ensemble combination is

determined, it is then used to solve unseen scheduling problems.

6 Results

6.1 Benchmark setup and evaluation

In order to be able to evolve and evaluate DRs and ensembles of DRs, an extensive

set of 180 scheduling problem instances has been defined. In order to be able to

evolve DRs which are applicable on problems of different sizes, problem instances

containing 12, 25, 50 or 100 jobs, and 3, 6 or 10 machines have been generated. The

detailed procedure of how the problem instances were generated can be found at the

project web site [21].

The set of 180 problem instances was divided into three sets, each containing a

third of the problem instances. The first set is the training set, which is used by all

the approaches in order to evolve the DRs. The second set is the test set, which is
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used in order to evaluate the effectiveness of the evolved ensembles. The third set,

called the validation set, is an additional problem set which is used by some

approaches to determine the optimal combination of DRs to form the ensemble. In

this paper, the validation set will be used by the SEC approach and ESS. The SEC

approach will use the validation set in order to determine the optimal combination

of previously evolved DRs, which will form the ensemble. In the ESS the validation

set will be used in order to determine the optimal subset of DRs to form the

ensemble.

The total fitness of an individual for a certain criterion is calculated as the sum of

the criterion values on each of the individual problem instances. Since it was already

mentioned that the instances in a single set can have different characteristics, all

objective values were additionally normalised in order for them to have similar

values on different problem instances. Additionally, in order to obtain statistically

significant results, each experiment was run 30 times and the minimum, median and

maximum values were calculated based on those 30 runs. In the SEC approach, one

run denotes performing 20,000 random combinations of DRs, and choosing the best

one of them (evolving DRs by GP is not considered to be a part of a run since they

are evolved up front). On the other hand, in one run of BoostGP and BagGP

approaches, the underlying GP method is run once for each ensemble element that

needs to be generated. Finally, in the cooperative coevolution approach, one run

denotes performing one GP run that simultaneously evolves all the elements of the

ensemble. The Mann–Whitney statistical test was used in order to determine if a

statistically significant difference between two obtained results exists. The results

are considered statistically significant if the obtained p value is smaller than 0.05.

The parameters which were used for the standard GP and by the GP which was

used by all ensemble learning approaches are shown in Table 3. The table denotes

only those parameters which are shared between all the approaches, while the

parameters specific to the ensemble learning approaches will be denoted for each

experiment individually. The parameters denoted in the table were obtained through

an extensive parameter optimisation procedure for the standard GP. An additional

Table 3 Parameters for the GP

Parameter Value

Population size 1000

Termination criteria Maximum number of evaluations (80,000)

Selection Steady state GP using tournament selection

Tournament size 3

Initialization Ramped half-and-half

Mutation probability 0.3

Maximal tree depth 5

Crossover operators Subtree, uniform, context-preserving, size-fair

Mutation operators Subtree, Gauss, hoist, node complement,

node replacement, permutation, shrink
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point which needs to be addressed here is the fact that the ensemble learning

approaches will perform e*80,000 function evaluations, where e denotes the size of
the ensemble, while the standard GP will perform only 80,000. Although this may

seem to lead to an unfair comparison, the standard GP has shown no improvement

in the results when increasing the number of evaluations beyond 80,000. Rather, the

results were starting to deteriorate, which means that GP started to overfit on the

training set.

The next four sections will present the results obtained on the test set for each

ensemble learning approach individually, and the influence of the ensemble

parameters on them. For the experiments it was chosen to evolve ensembles

between sizes two and ten. Larger ensembles were not used since they did not show

to improve the results significantly. Additionally, larger ensembles also need more

time to perform the decision about what job should be scheduled next, which could

be undesirable in dynamic environments, where scheduling decisions need to be

performed quickly. In those experiments only the weighted tardiness criterion will

be optimised. The baseline values to which all the experiments in the following four

sections will be compared to are the ones achieved by the standard GP denoted in

Table 4. In the tables the results which are significantly better (tested with the

Mann–Whitney statistical test) than those achieved by the standard GP will be

underlined, while on the other hand the overall best results for each column will be

shown in bold. Additionally, where possible, it was tested if there is a statistical

difference between ensembles of sizes two, five and ten when not using ESS, and

sizes of two, five and nine when using ESS. The last section compares the best

results achieved by all the approaches with the standard GP for the weighted

tardiness criterion, and the other three criteria mentioned earlier in the paper.

6.2 Results for SEC

This subsection will present the results achieved for the SEC approach. Table 5

represents the results which were achieved by this approach for the sum and vote

combination methods and various ensemble sizes. For each size and ensemble

combination method, 20,000 random subsets of 50 DRs evolved by a standard GP

approach were tried out, and the best found ensemble was saved. This subset

generation procedure was repeated 30 times in order to obtain statistically

significant results. Since for the ensemble sizes of two and three the number of

possible combinations is less then 20,000, it was possible to perform an exhaustive

search and find the best possible ensemble on the validation set. In order to

eliminate the need for another problem instance set which would be used by ESS,

the same validation set is also used by ESS in order to find the ensemble subset.

Table 4 Weighted tardiness values achieved by the standard GP approach

Min Med Max

15.23 15.94 17.59
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The sum method has achieved better results than the vote method for all

ensemble sizes. Both ensemble combination methods obtained the best results for

the ensemble size of five (the sum method a value of 14.84, and the vote method a

value of 14.91). Furthermore, when compared to the standard GP, it can be seen that

the sum combination method achieved statistically better results for all ensemble

sizes larger than three, while the vote combination method achieves statistically

better results for ensemble sizes larger than five. The sum combination method has

shown to additionally improve the median values by 2.5–5.5% and maximum values

by around 10% when compared to the standard GP. For the minimum values

improvements up to 2.5% were achieved. Based on the results it can be concluded

that this approach is much more stable and more likely to achieve better results than

standard GP. When comparing ensembles of sizes five and ten it was shown that for

the sum method statistically better results were achieved when using ensembles of

size five.

Now, ESS will be applied to the ensembles found by the SEC approach. Here we

will try out ESS with ensembles of sizes five (for which the SEC approach achieved

the best results) and ten (which offers the most subset combinations). Table 6

represents the results achieved for ESS on the ensemble of size five. Here ESS was

unable to find subsets which achieve a better minimum value than that of the entire

ensemble in all but one occasion for the ESS of size four. Additionally, it can be

seen that, except for the vote combination method with ensemble size of two DRs,

in all other experiments significantly better results are achieved than those of

standard GP. For example, the ensemble of size four attained by the sum

combination method achieved an improvement over the standard GP by 5% for the

minimum, 4% for the median, and 10% for the maximum value.

Table 7 represents the results achieved by ESS for the ensemble size of ten DRs.

For the sum combination method, all results are significantly better than those of the

standard GP. On the other hand, for the vote combination method all results were

significantly better except for ensemble sizes of two and seven. The improvements

on the median values amount to around 2.5–4% for the sum method, and 1–2.5% for

the vote method, therefore the sum method has proven to again outperform the vote

Table 5 Results for the SEC

approach
Ensemble size Sum Vote

Min Med Max Min Med Max

2 15.17 – – 15.23 – –

3 15.59 – – 15.86 – –

4 14.92 15.18 15.93 15.20 15.87 16.23

5 14.84 15.12 15.76 14.91 15.81 16.32

6 14.89 15.55 15.89 15.17 15.70 16.04

7 14.94 15.30 15.84 15.14 15.55 15.92

8 14.88 15.37 15.86 15.02 15.81 16.43

9 15.18 15.32 15.70 15.20 15.54 16.06

10 15.10 15.29 16.07 15.15 15.65 16.35
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combination method. However, ESS was not able to achieve significantly better

results than SEC of the same ensemble size. Regarding the ensemble sizes, here it

was shown that there is no significant difference between ensembles of sizes two,

five and nine for the sum combination method. On the other hand, for the vote

combination method it was shown that ensembles of five and nine achieve

significantly better results than ensembles of size two.

6.3 Results for BagGP

In this section the results obtained for the BagGP approach will be presented. Apart

from testing the influence of the ensemble size and ensemble combination method

on the procedure, the influence of the sampled data set size (bag size) will also be

analysed. The results for this approach are shown in Table 8.

Depending on the bag size the best results for the sum combination method were

achieved by ensembles of different sizes. On the other hand, for the vote

combination method, the best results are usually achieved by the larger ensembles

(from seven to ten) for most of the bag sizes. This is also backed up by the fact that

for the sum method there was no statistical difference between ensembles of sizes

two, five and ten for any of the bag sizes which were used. On the other hand, when

using the vote combination method, it was shown that ensembles of sizes five and

ten always achieve significantly better results than ensembles of size two. When

Table 6 Results for the SEC approach of size five with ESS

Ensemble subset size Sum Vote

Min Med Max Min Med Max

2 15.00 15.25 16.57 15.42 16.20 17.31

3 14.88 15.21 15.99 15.33 15.69 16.10

4 14.49 15.25 15.76 15.17 15.63 16.25

Table 7 Results for the SEC approach of size ten with ESS

Ensemble subset size Sum Vote

Min Med Max Min Med Max

2 15.17 15.46 15.83 15.23 16.22 16.95

3 14.86 15.57 15.80 15.03 15.69 15.90

4 14.89 15.36 15.80 15.27 15.58 16.15

5 15.06 15.34 16.00 15.07 15.73 16.17

6 15.08 15.30 16.00 15.03 15.75 16.34

7 15.14 15.28 15.98 15.14 15.80 16.24

8 15.10 15.29 15.93 15.12 15.71 16.16

9 15.13 15.30 16.07 15.21 15.70 16.28
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comparing ensembles of sizes five and ten, it was shown that for bag sizes of 30, 50

and 80, ensembles of size ten achieved significantly better results. The overall best

result achieved by the sum method was for the bag size of 40 instances and

ensemble of size nine (a value of 14.77), while for the vote method the best

achieved result was for the bag size of 70 instances and ensemble of size nine (a

value of 14.88).

By comparing the two ensemble combination methods with each other, it can be

seen that the sum combination method achieves better minimum values for bag

sizes of 40 and 80, while for the other sizes the minimum values the two methods

achieve similar values. On the other hand, the median values of the evolved

ensembles are consistently better when using the vote combination method. Based

on the minimum and maximum values the methods achieved, it is evident that the

vote combination method achieves less dispersed results, and is thus more stable.

When compared to the standard GP, the ensembles were in most cases able to either

find solutions which were better or of the same quality as the best solution found by

the standard GP. Nevertheless, there were a few experiments in which the best

found solution by BagGP was worse then the best found solution from the standard

GP (usually for a smaller ensemble size). Regarding the median values, the sum

method usually achieved values which were worse than the median value achieved

by the standard GP, while the vote method usually achieved better ones or values

comparable to the one achieved by standard GP. The statistical test shows that the

sum method did not achieve even one result which is better than the standard GP.

However, the vote combination method consistently achieved significantly better

results for larger ensemble sizes (of size seven and larger). For the vote combination

method, the BagGP approach was able to achieve improvements over the standard

GP for the minimum value by 2.4% and median by 3.3%. Out of the results which

are significantly better than those of the standard GP, the biggest improvements for

the median values were achieved when using the bag size of 50 and 80 problem

instances, in both cases for the ensemble of size nine.

The standard BagGP approach will additionally be enhanced with ESS described

earlier. It was chosen to apply ESS only on the ensemble of size ten. Since the

number of subsets of ten DRs is not large, an exhaustive search was performed in

order to be able to find the optimal ensemble subset for each ensemble obtained

from the 30 runs of the BagGP approach. The results obtained for this enhancement

are shown in Table 9. The vote method achieves a better median value on the 30

runs for larger ensemble sizes, while for smaller ensemble sizes the sum

combination method achieves a better median value. Additionally, the vote method

has also shown to be more stable than the sum method, which can be seen from the

fact the difference between the minimum and maximum values is smaller when

using the sum combination method. The best result achieved by the sum method

was when using the bag size of 30 problem instances and ensemble subset size of

four (a value of 14.41). On the other hand the best result for the vote method was

achieved in two situations, one for the ensemble subset size of four and the bag size

of 40 problem instances, and the other for the ensemble subset size 9 and bag size 70

problem instances (a value of 14.85). By comparing the results with the standard GP

it can be noticed that the sum combination method now achieves significantly better
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results for larger bag sizes and smaller to medium ensemble sizes. In addition to

achieving significantly better results for larger ensemble sizes, the vote combination

method now also achieves significantly better results even for smaller and medium

sized ensembles, when using larger bag sizes. The improvements over the standard

GP for the vote method are mostly the same as without using ESS. The sum method

achieved improvements up to 2.8% for the minimum value and 3.4% for the

median. The largest improvements for the median value were achieved by using the

bag size of 80, for both combination methods.

By comparing the results of ESS and the results achieved without it, it was shown

that, when using the sum combination method, in 70% of experiments ESS was able

to achieve significantly better results than the original ensemble which was

generated by BagGP. On the other hand, for the vote combination method, the

number of significantly better results achieved by ESS was only 24%. Both methods

achieved the best overall result when additionally using ESS. Based on all the

previously outlined points it is possible to conclude that ESS should be used with

the sum method since it can lead to significantly better results, but can also be used

with the vote method since it also leads to improvements in the results.

6.4 Results for BoostGP

This section presents the results obtained for the BoostGP approach. Table 10

represents the results achieved by the unweighted BoostGP approach. The vote

combination method achieves better minimum and median values for all ensemble

sizes except for size two. When using the sum combination method there was no

significant difference for the results achieved between ensembles of sizes two, five

and ten. On the other hand, for the vote method it was shown that ensembles of sizes

five and ten achieved significantly better results than the ensembles of size two. For

the sum method the best result was achieved for the ensemble of size nine (a value

of 15.09), while the sum method achieved the best result for the ensemble of size

five (a value of 14.93). By comparing the results with the standard GP it can be seen

Table 10 Results for the

unweighted BoostGP approach
Ensemble size Sum Vote

Min Med Max Min Med Max

1 15.12 16.00 18.13 15.12 16.00 18.13

2 15.26 15.82 17.33 15.27 16.02 18.01

3 15.28 15.74 17.45 15.02 15.72 16.42

4 15.22 15.86 17.45 15.09 15.67 16.52

5 15.37 15.89 17.52 14.93 15.50 16.11

6 15.16 15.86 17.81 15.08 15.65 16.14

7 15.14 15.84 16.42 14.99 15.59 16.00

8 15.14 15.86 16.42 15.15 15.62 16.05

9 15.09 15.86 16.76 15.10 15.52 16.49

10 15.14 15.85 16.78 15.08 15.54 16.24
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that the sum combination method was not able to achieve significantly better results,

while the vote combination method achieved significantly better results in all cases

except for the two smallest ensemble sizes. The improvements which the vote

method can achieve over the standard GP reach up to 2% for the minimum and 2.8%

for the median value, which were obtained by using an ensemble of size five.

After obtaining results for the BoostGP approach, ESS is used in order to find

optimal subsets of DRs to form an ensemble. These results are shown in Table 11.

The vote method achieved better median values for larger ensembles, while the sum

method for smaller ensembles. Between ensemble sizes of two, five and nine there

was no significant difference for the sum combination method. For the vote method,

as previously, ensembles of sizes five and nine achieved significantly better results

than ensembles of size two. The sum method was able to achieve significantly better

results than standard GP for ensemble sizes of three and four, while the vote method

achieved significantly better results for all ensemble sizes except for the smallest.

The largest improvements, for both methods, over the standard GP were around 3%

for the minimum value and 2.8% for the median. When compared to the results

achieved by BoostGP, ESS was able to significantly improve the results only for the

sum method with ensemble sizes of four, five and six.

Table 12 represents the results obtained when using confidences as weights in the

sum and vote combination methods. Once again the vote method achieves better

median values for larger values, while the sum method achieves better results for

smaller ensembles. By comparing these results to the ones achieved by the

unweighted approach, it can be seen that the overall best solution was achieved

when using the weighted approach. For the sum combination method there was no

significant difference between the results achieved by ensembles of sizes two, five

and ten. On the other hand, for the vote method ensembles of size ten achieved

significantly better results than ensembles of size five. The weighted BoostGP

approach achieved significantly better results than standard GP when using the vote

combination method and for ensemble sizes larger than three. The achieved

Table 11 Results for the unweighted BoostGP approach with ESS

Ensemble subset size Sum Vote

Min Med Max Min Med Max

2 15.09 15.83 17.19 15.10 16.04 16.82

3 15.03 15.67 16.27 15.02 15.67 16.63

4 14.81 15.56 17.07 15.15 15.67 16.19

5 15.05 15.77 17.15 14.78 15.63 16.13

6 14.89 15.80 17.15 14.93 15.66 16.25

7 14.92 15.76 17.19 14.98 15.60 16.34

8 15.20 15.78 17.30 15.03 15.62 16.49

9 15.16 15.80 17.26 14.99 15.54 16.11
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improvements over the standard GP are roughly the same as without using the

weights.

Finally, the weighted BoostGP approach will be used with ESS to further

improve the results. Table 13 represents the results achieved for the weighted

BoostGP approach by additionally using ESS. With ESS, BoostGP has achieved

significantly better results in six out of eight experiments for both the sum and vote

methods. The improvements over the standard GP are the same when using ESS

without the weights. ESS was able to significantly improve results for the sum

method when using ensmbles of sizes three, four and five. For the vote method it

was only able to improve the result for the ensemble of size three.

6.5 Results for cooperative coevolution

In this section the results obtained by the cooperative coevolution approach will be

presented. For this approach two configurations depending on the termination

criterion are used. The first configuration uses a termination criterion which depends

on the number of DRs that are evolved for the ensemble, namely

Table 12 Results for the

weighted BoostGP approach
Ensemble size Sum Vote

Min Med Max Min Med Max

1 15.12 16.00 18.13 15.12 16.00 18.13

2 15.39 15.85 17.01 15.16 15.93 18.28

3 15.30 15.77 17.91 15.10 15.90 17.93

4 15.16 15.91 17.45 14.83 15.61 16.47

5 15.05 15.90 17.61 14.87 15.66 16.48

6 15.05 15.96 17.63 15.14 15.71 16.30

7 14.95 15.79 16.42 14.96 15.56 16.35

8 15.19 15.81 16.54 15.09 15.57 16.66

9 15.05 15.89 16.54 15.02 15.53 16.50

10 15.15 15.82 16.54 14.96 15.54 16.45

Table 13 Results for the

weighted BoostGP approach

with ESS

Ensemble size Sum Vote

Min Med Max Min Med Max

2 14.77 15.75 16.66 15.10 16.01 16.63

3 15.13 15.71 17.00 15.11 15.73 16.14

4 14.92 15.66 16.43 15.09 15.82 16.71

5 14.94 15.74 16.80 14.99 15.63 16.01

6 15.05 15.71 16.59 14.97 15.52 16.38

7 15.02 15.71 16.59 15.10 15.58 16.61

8 15.02 15.72 17.31 15.02 15.44 16.29

9 14.97 15.79 16.42 14.94 15.62 16.50
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80,000*e evaluations, where e represents the number of DRs in the ensemble. On

the other hand, the second configuration will use 80,000 evaluations. Thus, with

larger ensembles, the GP will have less iterations on its disposal to evolve a good

solution. The idea behind the second configuration is to speed up the entire

procedure, since the first configuration can take quite some time to evolve the

ensembles, especially for those of larger sizes.

Table 14 represents the results obtained by the first configuration. Immediately it

can be seen that only the sum method, with the ensemble size of two DRs, was able

to achieve a better solution than the standard DR. For the sum method, it was

observed that the quality of ensembles deteriorates as the number of DRs in them

increases, thus the best results are achieved for smaller ensembles. This is backed up

with statistical tests which show that ensembles of size two achieve significantly

better results than ensembles of sizes five and ten, and also that ensembles of size

five achieve significantly better results than ensembles of size ten. For the vote

method the situation is the same, with ensembles of smaller sizes achieving

significantly better results.

In no occasion did this method achieve significantly better results when

compared to the standard GP. Through statistical tests it was shown that when using

the sum method with ensembles of sizes two and three, there was no significant

difference between the standard GP and the cooperative coevolution approach.

However, in all other experiments it was shown that the cooperative coevolution

achieved significantly worse results than the standard GP.

The results obtained by the second configuration, which uses only 80,000

evaluations, are shown in Table 15. The overall best solution was obtained by the

vote method for the ensemble size of three DRs. For both methods it was shown that

ensembles of size two achieved significantly better results than those of ensemble

sizes five and ten. Once again neither of the experiments achieved better results than

the standard GP. The statistical tests have again shown that the achieved results are

worse than those achieved by the standard GP.

By comparing the two configurations with each other, it is possible to determine

the influence of the termination criterion on the results of the cooperative

Table 14 Results for the

coevolution approach with the

first configuration

Ensemble size Sum Vote

Min Med Max Min Med Max

2 15.11 15.98 16.43 15.45 16.25 16.95

3 15.35 15.99 16.95 15.44 16.37 18.37

4 15.64 16.54 18.16 15.59 16.81 20.57

5 15.61 16.60 18.53 15.47 16.71 18.48

6 15.72 17.10 18.31 15.39 17.11 25.49

7 15.52 16.68 17.86 15.52 17.54 20.01

8 16.38 17.35 20.92 16.00 16.88 20.62

9 15.77 18.33 23.26 15.50 17.01 18.77

10 16.51 17.52 21.27 15.56 17.26 19.49
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coevolution approach. It can be seen that neither configuration has consistently

achieved better results over the other. Therefore, the first configuration does not

offer any advantage over the second, even though it uses a larger number of

evaluations.

Finally, Table 16 represents the results obtained for the first configuration by

using ESS on the ensemble of size ten. ESS was unable to improve the results which

can be seen from the fact that none of the experiments were able to achieve

significantly better results than standard GP. In addition to that, ESS was also unable

to significantly improve the results when compared to the original results of

cooperative coevolution.

Table 17 represents the results for applying ESS on the second configuration. For

both methods it was shown that significantly better results were achieved by

ensembles of sizes five and nine when compared to ensembles of size two. As in the

previous case, ESS was unable to improve the results over the standard GP or the

cooperative coevolution method.

Table 15 Results for the

coevolution approach with the

second configuration

Ensemble size Sum Vote

Min Med Max Min Med Max

2 15.21 16.09 23.39 15.33 16.30 17.53

3 15.18 16.43 18.80 15.14 15.97 16.96

4 15.49 16.73 22.57 15.23 16.27 18.50

5 15.83 17.35 23.39 15.76 16.49 18.79

6 15.67 16.78 23.68 15.30 16.60 19.26

7 15.37 17.19 22.55 15.70 16.64 19.79

8 15.83 17.13 25.74 15.62 17.30 18.93

9 15.50 17.33 26.23 16.24 17.59 20.18

10 16.13 17.57 19.66 15.81 16.90 17.86

Table 16 Results for the coevolution approach with ESS (first configuration)

Ensemble subset size Sum Vote

Min Med Max Min Med Max

2 16.52 20.41 33.34 16.62 18.72 24.15

3 15.77 18.10 22.66 16.24 17.91 23.39

4 15.75 17.56 19.91 15.23 17.64 22.18

5 15.78 17.39 21.04 16.14 17.39 21.20

6 15.74 17.52 19.90 15.51 17.14 22.46

7 15.75 16.77 20.69 15.80 16.92 19.23

8 15.75 17.47 20.68 15.57 17.01 19.60

9 14.98 17.31 21.74 15.58 17.12 21.49
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6.6 Comparison of ensemble learning approaches

This section will compare the performances between the different ensemble learning

approaches on four scheduling criteria. For the Twt criterion the results which were

displayed in the last four subsections will be aggregated. On the other hand, the

results for the other three criteria were not as fine tuned as for the Twt criterion.

Therefore better results could very likely be achieved if the parameters were further

optimised for each given criterion.

Before analysing the results, the nomenclature of the approaches must first be

described. The number alongside each approach will denote the size of the ensemble

which was used. The ESS flag denotes that ESS was used to find a subset of

ensembles and the size of the subset is denoted alongside the flag. The B flag in the

BagGP approach denotes the bag size of problem instances which was used for

evolving ensembles. This flag will only be denoted for the Twt criterion, since for

the other criteria a bag size of 40 was used for all experiments. The C flag denotes

that the confidences are used as weights in the BoostGP approach. Finally, the con1

and con2 flags denote that the first or the second configuration is used with the

coevolution approach. Additionally, this table includes a column denoted with p,
which represents the p value obtained by the Mann–Whitney statistical test. The

tests were performed in order to test whether there is a statistical difference between

the ensemble learning approaches and the results obtained by the standard DRs.

Some values are denoted with “\0.001” which means that a value less than 0.001

was obtained for the p value.

First the approaches will be compared by using the Twt criterion. Table 18

represents the best results from the tested approaches, which were aggregated from

the previous four subsections. With the optimised parameters, each one of the tested

ensemble learning approaches was able to find a better solution than the standard

GP. The best result, with a value of 14.41, was achieved by the BagGP approach

with the addition of ESS. This represents an improvement of 5.4% over the best

result achieved by the standard GP. The best results were generally achieved by the

Table 17 Results for the coevolution approach with ESS (second configuration)

Ensemble subset size Sum Vote

Min Med Max Min Med Max

2 15.80 19.87 34.80 15.60 18.17 22.80

3 15.86 18.16 28.44 16.28 17.33 19.62

4 15.86 17.90 21.31 15.76 17.29 20.34

5 15.86 17.31 20.54 15.50 16.89 19.64

6 15.81 17.57 20.54 15.39 16.75 18.55

7 16.10 17.59 20.28 15.75 16.75 19.11

8 16.10 17.71 19.52 15.43 16.76 19.46

9 16.10 17.58 20.71 15.50 16.79 19.29
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BagGP and SEC approaches, while the BoostGP also achieved good results, but not

to such a great extent. The greatest improvement over the standard GP in the median

value, amounting to 5.4%, was achieved by the SEC approach. The cooperative

coevolution procedure has achieved the worst results of all the ensemble learning

approaches. Figure 1 represents a box plot representation of the achieved results (in

order to stand out, the results for standard GP have been coloured with a specific

pattern). The box plot outlines several interesting characteristics of the tested

approaches for this criterion. First of all, the SEC approach with the sum

combination method achieves solutions which are least dispersed among all the

approaches. The solutions found by BagGP are largely dispersed when using the

sum combination method, but by using the vote combination method the dispersion

is reduced. Additionally, for the vote combination method the solutions of most

ensemble learning approaches tend to be less dispersed than when using the sum

combination method. Regarding the statistical difference between the ensemble

learning approaches and the standard DRs, it can be seen that in most cases there is a

statistically significant difference (which is especially evident when using the vote

combination method). It is interesting to note that although the BagGP-10 ESS-4

B30 approach achieved the single best solution, there seems to be no significant

difference when comparing all the results achieved by this approach with the results

achieved by the standard GP.

Table 18 Result comparison

for the Twt criterion
Approach Min Med Max p

Standard GP 15.23 15.94 17.59 –

Sum ensemble construction

SEC-5 14.84 15.12 15.76 \0.001

SEC-5 ESS-4 14.49 15.25 15.76 0.001

BagGP-9 B40 14.77 16.15 17.84 0.040

BagGP-10 ESS-4 B30 14.41 16.06 17.54 0.183

BoostGP-9 15.09 15.89 16.76 0.669

BoostGP-10 ESS-4 14.81 15.56 17.07 0.015

BoostGP-7 C 14.95 15.79 16.42 0.279

BoostGP-10 C ESS-2 14.77 15.75 16.66 0.026

Coevolution-2 con1 15.11 15.98 16.43 0.669

Vote ensemble construction

SEC-5 14.91 15.81 16.32 0.024

SEC-10 ESS-3 15.03 15.69 15.90 \0.001

BagGP-9 B70 14.88 15.59 16.24 \0.001

BagGP-10 ESS-4 B40 14.85 15.85 16.73 0.330

BoostGP-5 14.93 15.50 16.11 \0.001

BoostGP-10 ESS-5 14.78 15.63 16.13 \0.001

BoostGP-4 C 14.83 15.61 16.47 0.005

BoostGP-10 C ESS-9 14.94 15.62 16.50 0.001

Coevolution-3 con2 15.14 15.97 16.96 0.355
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Fig. 1 Box plot representation
of results for the Twt criterion
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Table 19 represents the results the ensemble approaches achieved for the Nwt

criterion. Here the best result, with a value of 7.435, was achieved by the BoostGP

approach with ESS. When compared to the best result achieved by the standard GP,

this represents an improvement of 3.1%. Even though an exhaustive parameter

optimisation was not performed for this criterion, most of the ensemble learning

approaches were able to outperform the standard GP, to a larger or smaller extent.

The Coevolution-2 approach with the sum combination method achieved one of the

better results among all the approaches, unlike for the Twt criterion where it did not

achieve significantly better results than the standard GP. Figure 2 represents the box

plot representation of the results achieved for the Nwt criterion. Out of all the

approaches, the SEC approach with the vote combination method achieved the

smallest dispersion out of the results, while the BagGP has achieved the largest

dispersion of the results. It is also noticeable that the ensemble learning approaches

achieved less dispersed solutions when using the vote combination method. From

the table it is also interesting to note that only in one occasion, for the BagGP-10

approach, there is no significant difference between the results obtained by the

ensemble methods and by the standard DRs.

Table 20 represents the results achieved for the Ft criterion. Here the best result

of 157.1 was achieved by two approaches, and it represents an improvement of

around 0.7% when compared to the best result of the standard GP. The BagGP and

Table 19 Result comparison

for the Nwt criterion
Approach Min Med Max p

Standard GP 7.674 8.107 8.669 –

Sum ensemble construction

SEC-5 7.556 8.064 8.276 0.008

SEC-5 ESS-4 7.556 8.064 8.276 0.016

BagGP-10 7.621 8.284 9.105 0.210

BagGP-10 ESS-6 7.601 8.001 8.827 0.002

BoostGP-10 7.616 7.949 8.455 0.001

BoostGP-10 ESS-2 7.435 7.989 8.694 0.003

BoostGP-10 C 7.516 7.995 8.472 0.005

BoostGP-10 C ESS-3 7.536 7.921 8.399 \0.001

Coevolution-2 con1 7.505 7.980 8.196 \0.001

Vote ensemble construction

SEC-5 7.699 7.946 8.212 \0.001

SEC-5 ESS-3 7.476 7.834 8.287 \0.001

BagGP-10 7.496 7.917 8.582 \0.001

BagGP-10 ESS-8 7.505 7.946 8.579 \0.001

BoostGP-6 7.560 7.979 8.195 \0.001

BoostGP ESS-4 7.497 7.912 8.257 \0.001

BoostGP-7 C 7.606 7.962 8.253 \0.001

BoostGP-10 C ESS-3 7.528 7.918 8.215 \0.001

Coevolution-3 con2 7.671 8.062 8.272 0.023
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Fig. 2 Box plot representation
of results for the Nwt criterion
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BoostGP approaches were again those which achieved the best results, while the

cooperative coevolution approach has achieved the worst results, even worse than

those of the standard GP for the vote combination method. Figure 3 represents the

box plot representation of the results achieved for the Ft criterion. This time the least

dispersed solutions are achieved by using the BoostGP approach with the vote

combination method, while the most dispersed solutions were achieved by the

BagGP approach. Even for this criterion it can be seen that less dispersed solutions

are mostly achieved when using the vote combination method. By examining the

statistical difference between the ensemble learning approaches and the standard

DRs, it can be seen that there is a certain amount of cases in which there is no

significant difference between those approaches. However, such a result is expected

since the improvement by the ensemble learning approaches for this criterion was

not that significant.

Table 21 represents the results achieved for the last criterion, the makespan. The

best result was achieved by the BoostGP which uses confidences as weights. The

criterion value achieved by this approach is 38.20, which represents an improve-

ment of only 0.3% in comparison to the best result achieved by the standard GP. For

this criterion most ensemble learning approaches were struggling to outperform the

best result achieved by the standard GP, with some approaches even achieving

worse results when compared to the standard GP. Figure 4 shows the box plot

Table 20 Result comparison

for the Ft criterion
Approach Min Med Max p

Standard GP 158.1 159.3 161.6 –

Sum ensemble construction

SEC-5 157.6 158.7 160.3 \0.001

SEC-5 ESS-4 157.1 158.6 159.8 \0.001

BagGP-9 158.1 160.0 163.5 \0.001

BagGP-10 ESS-5 157.1 159.2 162.1 0.261

BoostGP-3 157.8 159.6 161.7 0.335

BoostGP-10 ESS-7 157.2 159.4 160.6 0.777

BoostGP-5 C 157.5 159.5 161.7 0.585

BoostGP-10 C ESS-6 157.3 159.1 160.1 0.183

Coevolution-2 con1 158.1 159.4 160.3 0.842

Vote ensemble construction

SEC-5 157.6 158.5 159.4 \0.001

SEC-5 ESS-3 157.8 158.8 159.7 0.001

BagGP-5 158.0 159.7 161.1 0.192

BagGP-10 ESS-2 157.5 159.8 161.4 0.032

BoostGP-9 157.7 158.8 159.8 \0.001

BoostGP-10 ESS-8 157.2 158.8 159.9 \0.001

BoostGP-6 C 157.5 158.7 160.3 0.002

BoostGP-10 C ESS-2 157.1 159.3 160.7 0.355

Coevolution-3 con2 158.4 160.0 161.6 0.003
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Fig. 3 Box plot representation
of results for the Ft criterion
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representation of the results achieved for the Cmax criterion. The SEC approach

once again achieves the least dispersed solutions. On the other hand, BagGP has

again shown to achieve the most dispersed solutions. Even for this criterion the

approach achieved less dispersed solution when the vote combination method was

used. The statistical tests have shown that in several cases there was no significant

difference between the results obtained by the ensemble learning approaches and the

results obtained by the standard GP (which is especially evident when using the sum

combination method), but as with the Ft criterion such a behaviour is expected

because of the smaller improvements achieved for this criterion.

7 Discussion

This section gives a short discussion on the results achieved by all the tested

ensemble learning approaches. First, each approach will be discussed individually,

after which all the approaches will be compared with each another.

Table 21 Result comparison

for the Cmax criterion
Approach Min Med Max p

Standard GP 38.29 38.70 39.45 –

Sum ensemble construction

SEC-5 38.34 38.51 38.73 \0.001

SEC-5 ESS-2 38.31 38.45 38.77 \0.001

BagGP-9 38.27 38.83 39.86 0.101

BagGP-10 ESS-9 38.27 38.75 39.64 0.874

BoostGP-5 38.35 38.65 39.02 0.054

BoostGP-10 ESS-4 38.33 38.62 38.93 \0.001

BoostGP-4 C 38.28 38.69 38.99 0.126

BoostGP-10 C ESS-8 38.27 38.62 38.90 0.003

Coevolution-2 con1 38.34 38.76 38.99 0.648

Vote ensemble construction

SEC-5 38.28 38.37 38.71 \0.001

SEC-5 ESS-3 38.22 38.40 38.83 \0.001

BagGP-7 38.24 38.58 38.92 \0.001

BagGP-10 ESS-5 38.27 38.59 39.04 \0.001

BoostGP-7 38.23 38.59 39.04 \0.001

BoostGP-10 ESS-4 38.30 38.58 38.90 \0.001

BoostGP-7 C 38.20 38.61 39.02 \0.001

BoostGP-10 C ESS-6 38.22 38.61 38.91 0.008

Coevolution-3 con2 38.33 38.71 39.10 0.713
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Fig. 4 Box plot representation
of results for the Cmax criterion
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7.1 SEC

Although it is quite a simple approach, the SEC approach has nevertheless shown to

be able to outperform the best result from the standard GP in most of the

experiments. Regarding the combination method, we can conclude that the sum

combination method is more effective since it consistently achieved better results.

Also it was shown that the SEC approach achieves the best results when using an

ensemble of moderate size (from around four to eight DRs). This is probably a

consequence of the fact that smaller ensembles do not have the expressive value of

the medium and larger sized ensembles, while on the other hand it is much more

difficult to find a good ensemble combination for larger ensemble sizes because of

the random choice of DRs which form the ensemble.

The most obvious benefit of this approach is that it can be used with already

existing DRs, and thus it can eliminate the need for evolving new rules. But, even if

new DRs need to be evolved, the time needed for that is significantly smaller then

when evolving entire ensembles by some of the other three approaches. One

additional benefit of this approach, which became evident after analysing the results,

is that it achieves solutions with results which are less dispersed than the results

achieved by other approaches. This means that the approach has a higher probability

of achieving good solutions. Therefore the second benefit of this approach is its

speed and the possibility to quickly create ensembles of DRs which are not greatly

dispersed. The main drawback is that it requires an additional problem set on which

it will determine the DRs that form the ensemble, since using the same set which

was used for evolving DRs could possibly lead to overfitting.

7.2 BagGP

The results achieved for the BagGP offer some interesting conclusions about the

approach. Namely, it was demonstrated that the sum combination method did not

achieve any results which were significantly better than that of standard GP.

However, by using the vote method, this approach did manage to achieve

significantly better results only for larger ensemble sizes. This approach also

introduces an additional parameter into the GP approach, namely the bag size. In the

experiments it was shown that the quality of the achieved results heavily depends on

the value of this parameter, thus demonstrating the need to find an optimal value for

it. Since the execution time of the procedure also depends on the bag size, the entire

approach can be sped up by using smaller bag sizes. When using the bag size of 60

instances the execution speed is comparable to the execution speed of the BoostGP

approach. Another benefit of this approach is that the evolved DRs which form the

ensemble are completely independent. This makes it possible to run this approach in

parallel on several computers and thus speeding up the entire process (for example if

an ensemble of 10 DRs is evolved, the approach can be run once to evolve all ten

DRs, or ten instances can be run in parallel where each instance evolves one DR).

Although the experiments were performed with bag sizes from those smaller than

the standard problem set to those which were larger, the experiments did not give a
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conclusive answer as to which bag sizes were preferable by the procedure.

However, on the average better results were achieved when using larger bag sizes.

Through the experiments one disadvantage for the BagGP approach was

discovered. Namely the approach usually achieved the biggest dispersion among the

solutions it found. This behaviour could prove to be problematic since this means

that the approach will achieve solutions of variable quality.

7.3 BoostGP

Since the BoostGP approach offers additional information for each DR it evolves,

namely its confidence, it was tested whether the inclusion of this information in the

sum and vote combination methods improves the performance of this approach.

Through the experiments it was shown that in almost all cases better results could be

obtained when including the information about the confidences obtained by the

BoostGP approach (especially when additionally using ESS). For both the weighted

and unweighted approach it was shown that the sum method was unable to achieve

significantly better results than the standard GP, while with the vote combination

method this was possible for all tested ensembles of medium and larger sizes.

Although this approach achieves good results, it has several disadvantages. First

of all this is the most complex approach when compared to the other approaches

which were used. Secondly, unlike with the BagGP approach, the DRs which form

one ensemble cannot be evolved in parallel. Although there is no direct dependency

between the different DRs which are evolved, when one DR is evolved it will

influence the weights which are used to determine the importance of the training

instances when learning the new DR. Therefore, in this approach the rules need to

be evolved sequentially one after another.

7.4 Cooperative coevolution

Although it was expected that the cooperative coevolution procedure would achieve

good results, considering that it evolves DRs in dependence to other DRs that form

the ensemble, the approach has achieved quite disappointing results for all criteria

except the Nwt criterion. One possible explanation for such a behaviour could be

that the procedure overfitted on the training set. This assumption is backed up by the

fact that the cooperative coevolution approach achieves better results on the test set

then the standard GP. Even trying out different termination criteria did not manage

to improve the results significantly, thus in the future some other methods of

preventing overfitting should be tried out in order to determine if this could improve

the performance of the approach. Additionally, the few good results obtained by this

approach were achieved mostly when using smaller ensemble sizes, which also

suggests that the procedure struggles in evolving good DRs which complement the

other DRs in the ensemble. This was especially evident for the vote combination

method, where in certain situations the ensemble consisted of several rules which

together made suboptimal choices. However, when one of those rules would be

replaced, the effectiveness of the ensemble would deteriorate even further, therefore

the algorithm would be stuck in a local optimum. Because of that reason, the
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procedure should be extended with mechanisms that could prevent such occurrences

or correct them (for example by reinitialising the ensemble with random DRs).

The cooperative coevolution copes with another important problem, and that is

its execution time. Namely, the execution time of this procedure heavily depends on

the number of ensembles it evolves, but to a much greater extent than any of the

aforementioned procedures. This is a consequence of the fact that in each iteration

the cooperative coevolution approach has to evaluate an ensemble of DRs, thus

prolonging the evaluation process, whereas the other procedures only evaluated

individuals by themselves. This results in slower execution times especially for

larger ensemble sizes.

Since the cooperative coevolution approach wasn’t able to evolve bigger

ensembles of good quality, the best subsets found by ESS were usually not better

than the best solution found by the cooperative coevolution approach. Even by using

ESS it was not possible to achieve results which would be significantly better than

those of standard GP.

7.5 ESS

ESS has shown to be very promising in improving the results of the ensemble

learning approaches. Naturally, ESS was not able to find a subset with a better

quality than the original ensemble in every single occasion, but in many cases it was

able to determine an ensemble subset which significantly improved the results when

compared to the original ensemble. ESS has especially proven useful when being

used with ensemble learning approaches which independently evolve the DRs that

form the ensemble (BagGP and BoostGP). For SEC it was not able to significantly

improve the results, since that approach is already similar to ESS. For cooperative

coevolution ESS also did not achieve any improvements, however this could be due

to the fact that in this approach DRs are much more interdependent than in other

approaches (since the DRs are all evolved simultaneously). The best minimum

values for all criteria, except the Cmax criterion, have been achieved by using ESS.

There are several benefits of using ESS. First of all it tries not only to find a better

ensemble, but also to find an ensemble of a smaller size. As the experiments have

shown, ESS was in many occasions able to find a better subset which significantly

reduced the size of the original ensemble used by ESS. Secondly, it was shown that

this approach is applicable to any of the tried out ensemble learning approaches, and

that for some approaches (BagGP and BoostGP) it will be able to additionally

improve their performances. Lastly, the execution time of this approach is fast even

when performing an exhaustive search for ensembles of size ten. Naturally, with

bigger ensembles the execution time of ESS would grow drastically, however it is

questionable if there is even a need to evolve larger ensembles than the ones

considered in this paper. Nevertheless, even if there would be a need to evolve

larger ensembles, the execution time of ESS can be improved by not using an

extensive search for the subsets of ensembles, but rather a random search or a search

guided by some heuristic method.
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Based on all the previous outlined characteristics, it is safe to conclude that ESS

represents a good addition to ensemble learning approaches in order to improve its

results and decrease the ensemble size.

7.6 Comparison of all approaches

This section gives a discussion on the complete results achieved by all the

approaches. The cooperative coevolution approach has achieved the overall worst

results, while the other approaches achieved good results depending on the

considered criterion and algorithm parameters. The proposed SEC approach has

demonstrated to be very effective and has achieved the best results for the Twt

criterion. On the other criteria it also achieved results which were significantly

better than those of standard GP. BagGP and BoostGP have shown to produce more

dispersed results which in the end lead to the situation that for certain parameter

combinations the two approaches are unable to find significantly better results than

the standard GP. The cause for such dispersed results comes from the fact that the

ensemble is formed by independently evolved and selected DRs. In order to try and

increase the performance of the evolved ensembles, the ESS method was used. This

method has shown to be able to improve the results of the BagGP and BoostGP

approaches, while for the other two approaches it did not have a significant effect.

By comparing the vote and sum combination methods which were used by the

ensemble learning approaches, it is hard to determine which of those two methods

would be better. For the Twt and Nwt criteria the best overall results were achieved

when using the sum combination method, for the Cmax criterion the best overall

result was achieved when using the vote combination method, while for the Ft

criterion both methods achieved the same best result. On the other hand, it was

shown that in most cases when the ensemble learning approaches were using the

vote combination method, they were able to achieve less dispersed results, than

when using the sum combination method.

Regarding the ensemble sizes, it is hard to determine which of the ensemble sizes

produces the best results, as this heavily depends both on the approach and the

optimised criterion. If the cooperative coevolution approach is excluded (because of

the problems it has with larger ensembles), most approaches usually achieve the

best results when using ensembles of medium and large sizes. Therefore it seems to

be advisable to use these approaches with such ensemble sizes. In addition to that, it

was shown that the vote combination method performed better when using

ensembles of larger sizes, while the sum combination method preferred smaller

ensemble sizes.

8 Conclusion

This paper analysed the application of different ensemble learning approaches for

creating ensembles of DRs: SEC, BagGP, BoostGP and cooperative coevolution.

Through the carried out experiments it was shown that, by using the aforementioned

ensemble learning approaches, it is possible to create ensembles of DRs which can
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significantly outperform the result obtained by the standard GP method. The best

results were usually achieved by the SEC, BagGP and BoostGP approaches

(depending on the criterion and ensemble size), while the worst results were clearly

achieved by the cooperative coevolution approach. The proposed SEC approach has

shown to be even more efficient than the BagGP and BoostGP methods, achieving

not only better results, but also being able to create the ensembles much faster if

previously generated DRs are available.

Furthermore, it was shown that it is possible to improve the results even further

by using ESS to find the optimal subset of DRs to form the ensemble. The benefit of

using ESS is not only in achieving better results, but also in reducing the ensemble

size, which can improve interpretability, and speed up the dispatching process since

a smaller number of DRs needs to be calculated. With the application of ESS it was

possible to significantly improve results of BoostGP and BagGP, thus demonstrating

the effectiveness of this approach. Therefore this approach represents a viable

addition to the existing ensemble learning approaches.

In future studies the application of ensemble learning for creating ensembles of

DRs will be studied further. One possible direction is to investigate what other

ensemble learning approaches could be adapted and used for solving this problem. It

would also be interesting to see if some other ensemble combination methods could

be used, and how their results could compare to the results of the sum and vote

combination methods. For the SEC approach it would be interesting to design

heuristics which could be used for finding the optimal combination of ensembles

(and maybe even the optimal size), rather than by using the random search used in

this paper. Finally, it would also be interesting to try out the described procedures in

the job-shop and other machine environments.
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20. D. Jakobović, Evolutionary computation framework. http://gp.zemris.fer.hr/ecf
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