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Abstract Combing a genetic algorithm (GA) with a local search method produces
a type of evolutionary algorithm known as a memetic algorithm (MA). Combining a
GA with a learning automaton (LA) produces an MA named GALA, where the LA
provides the local search function. GALA represents chromosomes as object
migration automata (OMAs), whose states represent the history of the local search
process. Each state in an OMA has two attributes: the value of the gene (allele), and
the degree of association with those values. The local search changes the degree of
association between genes and their values. In GALA a chromosome’s fitness is
computed using only the value of the genes. GALA is a Lamarckian learning model
as it passes on the learned traits acquired by its local search method to offspring by a
modification of the genotype. Herein we introduce a modified GALA (MGALA) that
behaves according to a Baldwinian learning model. In MGALA the fitness function is
computed using a chromosome’s fitness and the history of the local search recorded
by the OMA states. In addition, in MGALA the learned traits are not passed to the
offspring. Unlike GALA, MGALA uses all the information recorded in an OMA
representation of the chromosome, i.e., the degree of association between genes and
their alleles, and the value of a gene, to compute the fitness of genes. We used
MGALA to solve two problems: object partitioning and graph isomorphism.
MGALA outperformed GALA, a canonical MA, and an OMA-based method using
computer simulations, in terms of solution quality and rate of convergence.
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1 Introduction

Exploration and exploitation are two main search goals. Exploration is important
for ensuring global reliability: the whole of search space needs to be searched to
provide a trustworthy estimate of the global optimum. Exploitation is important,
because it focuses the search effort around the best solutions by searching their
neighborhoods to find more accurate solutions [1]. Many search algorithms use a
combination of a global search method and a local search method to achieve their
goal. These algorithms are known as hybrid methods. The combination of a
traditional genetic algorithm (GA) with local search methods that incorporate
local improvement procedures can improve the performance of GAs. These
hybrid methods are commonly known as memetic algorithms (MAs), or
Baldwinian [2] or Lamarckian [3] evolutionary algorithms (EA). The particular
local search method employed is the important aspect of these algorithms. In the
Lamarckian approach the local search method is used as a refinement genetic
operator that modifies the genetic structure of an individual and places it back in
the genetic population [4]. Lamarckian evolution can increase the speed of search
processes in genetic algorithms. However, it can damage schema processing by
changing the genetic structure of individuals, which may lead to premature
convergence [5, 6].

The Baldwinian learning approach improves the fitness of an individual by
applying a local search, however, individual genotypes remain unchanged. Thus, it
increases the individual’s chances of remaining in subsequent generations. Similar
to natural evolution, Baldwinian learning does not modify the genetic structure of an
individual; but it does increase its chances of survival. Unlike the Lamarckian
learning model, the Baldwinian approach does not allow parents to transfer what
they have learned to their children [6]. The local search method is used as a part of
the individual’s evaluation process in the Baldwinian approach. The local search
method uses local knowledge to create a new fitness that can be used by the global
genetic operators to improve an individual’s capability. In this method one or more
individuals of a population that are similar in genotype gain similar fitness. These
individuals, are probably near to each other in search space, and are equal in fitness
after applying the local search. Therefore, the new search space will be a smooth
surface, and will cover many of the local minima of the new search space. This
fitness modification is known as the smoothing effect. The Baldwinian learning
approach can be more effective, albeit slower, than Lamarckian approaches, since it
does not alter the global search process of GAs [5].

Learning automata (LAs) are based on the general schemes of reinforcement
learning algorithms. LAs enable agents to learn their interaction with an
environment. They select actions via a stochastic process and apply them on a
random, unknown environment. They can learn the best action by iteratively
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performing and receiving stochastic reinforcement signals from the unknown
environment. These stochastic responses from the environment show the favorabil-
ity of the selected actions, and the LAs change their action selecting mechanism in
favor of the most promising actions according to responses from the environment [7,
8].

GALA is a type of MA first reported by Rezapoor and Meybodi [9]. GALA
combines a GA, used for its global search function (Exploration), with an LA, used
for its local search function (Exploitation). Object migration automata (OMAs)
represent chromosomes in GALA. Each state in an OMA has two attributes: the
value of the gene, and the degree of association with its value. Information about the
past history of the local search process shows the degree of association between
genes and their values. GALA performs according to a Lamarckian learning model,
because it modifies the genotype and only uses a chromosome’s fitness to fitness
function computation.

We present a new version of GALA, called modified GALA (MGALA), in the
first part of this paper. MGALA behaves according to a Baldwinian learning
model. Unlike GALA, which only uses the value of genes for fitness computation,
MGALA uses all the information in the OMA representation of the chromosome
(i.e., the degree of association between genes and their alleles, and the value of
genes) to compute the fitness function. In the second part of the paper MGALA is
used to solve two optimization problems: object partitioning and graph isomor-
phism. Computer simulations show that MGALA outperforms GALA, a canonical
MA, and an OMA-based method, in terms of solution quality and in the rate of
convergence.

Overall our paper is organized as follows: after this introduction Sect. 2 briefly
describes learning automata and object migrating automata. GALA and its applica-
tions are described in Sect. 3. MGALA is introduced in Sect. 4. Two MGALA
applications, those of solving the object partitioning problem and the graph
isomorphism problem (GIP), are explained in Sects. 5 and 6, respectively. These
two sections include implementation considerations, simulation results, and compar-
isons with other algorithms, which highlights MGALA’s contributions to the field.
Section 7 is the conclusion.

2 Learning automata and object migrating automata
2.1 Learning automata

A learning automaton (LA) [5] is an adaptive decision-making unit. It can be
described as determination of an optimal action from a set of actions through
repeated interactions with an unknown random environment. It selects an action
based on a probability distribution at each instant and applies it on a random
environment. The environment sends a reinforcement signal to automata after
evaluating the input action. The learning automata process the response of
environment and update its action probability vector. By repeating this process, the
automaton learns to choose the optimal action so that the average penalty obtained
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from the environment is minimized. The environment is represented by a triple
<a,f,c>.o={oy,...,a} is the finite set of the inputs, f = {0, 1} is the set of
outputs that can be taken by the reinforcement signal, and ¢ = {cy, . ..,c,} is the set
of the penalty probabilities, where each element c; of ¢ is corresponds to one input
action o;. The input «(n) to the environment belongs to o and may be considered to
be applied to the environment at discrete time r =n(n =0,1,2,...). The output
f(n) of the environment belongs to 5 and can take on one of two values 0 and 1. An
p(n) = 1 is identified with a failure or an unfavorable response and fi(n) = 0 with a
success or favorable response of the environment. The element c; of ¢ which
characterizes the environment may then be defined by pr(f(n) = l|a(n) = o;) =
¢; (i=1,2,...,r). When the penalty probabilities are constant, the random
environment is said a stationary random environment. It is called a non stationary
environment, if they vary with time. Figure 1 shows the relationship between the
LA and the random environment.

There are two main families of learning automata [6]: fixed structure learning
automata and variable structure learning automata. First, we formally define fixed
structure learning automata and then some of the fixed structures learning automata
such as Tsetline, Krinsky, and Krylov automata are described.

A fixed structure LA is represented by a quintuple <o, @, 8, F,G > . where:

e a={o,...,0} is the set of actions that it must choose from.

e &={p,,..., 0} is the set of internal states.

e [ ={0,1} is the set of inputs where 1 represents a penalty and O represents a
reward.

* F:®xf — &isafunction that maps the current state and current input into the
next state.

e G:® — o is a function that maps the current state into the current output. In
other words, G determines the action taken by the automaton.

The operation of fixed learning automata could be described as follows: At the
first step, the selected action a(n) = G[@(n)] serves as the input to the environment,
which in turn emits a stochastic response f(n) at the time n. (n) is an element of
p = {0, 1} and is the feedback response of the environment to the automaton. In the

o(n)

Random Environment

Learning Automata

B(n)

Fig. 1 The relationship between the LA and random environment
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second step, the environment penalize (i.e., f(n) = 1) the automaton with the
penalty probability c¢;, which is the action dependent. On the basis of the response
p(n), the state of automaton is updated by ®(n + 1) = F[®@(n), f(n)]. This process
continues until the desired result is obtained.

In the following paragraphs, we describe some of the fixed structure learning
automata such as Tsetline, Krinsky, and Krylov automata.

2.1.1 The two-state automata (L, ;)

This automaton has two states, ¢, and ¢, and two actions «; and o,. The automaton
accepts input from a set of {0,1} and switches its states upon encountering an input
1 (unfavorable response) and remains in the same state on receiving an input O
(favorable response). An automaton that uses this strategy is refereed as L, , where
the first subscript refers to the number of states and second subscript to the number
of actions.

2.1.2 The Tsetline automata (the two-action automata with memory Lyy 5)

Tsetline suggested a modification of L,, denoted by L,y,. This automaton has
2 N states and two actions and attempts to incorporate the past behavior of the
system in its decision rule for choosing the sequence of actions. While the
automaton L, , switches from one action to another on receiving a failure response
from environment, L,y keeps an account of the number of success and failures
received for each action. It is only when the number of failures exceeds the number
of successes, or some maximum value N; the automaton switches from one action to
another. The procedure described above is one convenient method of keeping track
of performance of the actions o; and o,. As such, N is called depth of memory
associated with each action, and automaton is said to have a total memory of 2N.
For every favorable response, the state of automaton moves deeper into the memory
of corresponding action, and for an unfavorable response, moves out of it. This
automaton can be extended to multiple action automata. The state transition graph
of Ly, automaton is shown in Fig. 2.

; 1 2 N-1 N 2N N+2  N+1 i

Favorable Response (B =0)

0—>—0——0—3>0
1 2 N-1 N 2N N+2 N+l
Unfavorable Response (B =1)

Fig. 2 The state transition graph for L,y, (Tsetline automaton)
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2.1.3 The Krinsky automata

This automaton behaves exactly like L,y, automaton when the response of the
environment is unfavorable, but for favorable response, any state ¢; (fori = 1,...,N)
passes to the state ¢; and any state @; (i = N + I, 2N) passes to the state ¢y, .
This implies that a string of N consecutive unfavorable responses are needed to
change from one action to another. The state transition graph of Krinsky automaton
is shown in Fig. 3.

2.1.4 The Krylov automata

This automaton has state transitions that are identical to the L,y automaton when
the output of the environment is favorable. However when the response of the
environment is unfavorable, a state @, (i # 1,N,N + 1,2N) passes to a state ¢,
with probability 1/2 and to state ¢;_; with probability 1/2, as shown in Fig. 4. When
i =1or N+ I, g; stays in the same state with probability 1/2 and moves to ¢,
with the same probability. When i = N, ¢y moves to ¢y_; and ¢,y each with
probability 1/2 and similarly, When i = 2 N, ¢,y moves to ¢,y_; and ¢, each with
probability 1/2. The state transition graph of Krylov automaton is shown in Fig. 4.

Object migration automaton (OMA) that is an example of fixed structure learning
automata is described in the next section. Learning automata have a vast variety of
applications in combinatorial optimization problems [8—10], computer networks
[10-13], queuing theory [14, 15], signal processing [16, 17], information retrieval

/ﬂ ;
; 1 N 2N N+1

Favorable Response ( = 0)

1 N ; 2N N+1

Unfavorable Response (B = 1)

Fig. 3 The state transition graph for Krinsky automaton

;1ZZZN-IZN;2N; ;N+2;N+1j

Unfavorable Response (B=1)

Fig. 4 The state transition graph for Krylov automaton
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[18, 19], adaptive control [20-22], neural networks engineering [23, 24] and pattern
recognition [25-27].

2.2 Object migration automata

Object migration automata were first proposed by Oommen and Ma [10]. OMAs are
a type of fixed structure learning automata, and are defined by a quintuple
<o,P,5,F,G> .a={o,...,0.}. is the set of allowed actions for the automaton.
For each action oy, there is a set of states {¢_)y41, - - - Py }» Where N is the depth
of memory. The states ¢ _jy,; and ¢y are the most internal state and the
boundary state of action oy, respectively. The set of all states is represented by
@ ={¢y,..., 0}, where s=Nx*r. f={0,1} is the set of inputs, where 1
represents an unfavorable response, and O represents a favorable response. F :
@ x f — @ is a function that maps the current state and current input into the next
state, and G : @ — o is a function that maps the current state into the current output.
In other words, G determines the action taken by the automaton. W objects are
assigned to actions in an OMA and moved around the states of the automaton, as
opposed to general learning automata, in which the automaton can move from one
action to another by environmental response. The state of objects is changed on the
basis of the feedback response from the environment. If the object w; is assigned to

action oy (i.e., w; is in state &;, where &; € {(p<k71)N+1, R (pkN}), and the feedback

response from the environment is 0, oy is rewarded, and w; is moved toward the
most internal state (¢_jyy-) of that action. If the feedback from the environment
is 1, then oy is penalized, and w; is moved toward the boundary state (¢;,) of action
o The variable y, denotes the reverse of the state number of the object assigned to
action oy (i.e., degree of association between action o, and its assigned object). By
rewarding an action, the degree of association between that action and its assigned
object will be increased. Conversely, penalizing an action causes the degree of
association between that action and its assigned object to be decreased. An object
associated with state ¢(;_;)y4; has the most degree of association with action o,
and an object associated with state ¢,y has the least degree of association with
action oy.

3 GALA

GALA, which is a hybrid model based on a GA and an LA, was introduced for the
first time by Rezapoor and Meybodi [9]. Chromosomes are represented by OMAs in
this model. In the OMA-based representation, there are n actions in each automaton
corresponding to n genes in each chromosome. Furthermore, for each action, there
are a fixed number of states N. The value of each gene, as a migratory object in the
automata, is selected from the set W = {wj,...,w,,} and assigned to states of
corresponding action. After applying a local search, if the assignment of an object to
the states of an action is promising, then the automaton is rewarded and the assigned
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Fig. 5 The state transition graph of a Tsetline-based OMA

object moves toward the most internal state of that action; otherwise, the automaton
is penalized and the assigned object moves toward the boundary state of that action.
The rewarding and penalizing of an action changes the degree of association
between an object and its action. Figure 5 shows a representation of chromosome
“dfabec” using the Tsetline automaton-based OMA with six actions and a depth of
memory of five.

In Fig. 5 there are six actions (genes), denoted by o, ay, o3, 04, &5, and os. Genes
1, 2, and 6 possess values ‘d,” ‘f,” and ‘c,” located at internal states 2, 3, and 4 of
their actions, respectively. The value of genes 3 and 5 are ‘a’ and ‘e’ respectively,
and both of them are located at the boundary states of their actions. Consequently,
there is a minimum degree of association between these actions and their
corresponding object. The remaining action, gene 4, has a value of ‘b’ and is located
at the most internal state of its action. That is, it has the maximum degree of
association with action 4. Representation of chromosomes based on other fixed
structure learning automata is also possible. In a Krinsky-based OMA representa-
tion, as shown in Fig. 3, the object will be associated with the most internal state
(i.e., it gets the highest degree of association with the corresponding action) when it
is rewarded, and moves according to the Tsetline automaton-based OMA when it is
penalized. In the representation of a Krylov OMA shown in Fig. 4, the object moves
either toward the most internal state, or toward the boundary state, with a
probability 0.5 toward penalty, and moves according to the Tsetline automaton-
based OMA upon reward.
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3.1 Global search in GALA

The global search in GALA is based on a traditional genetic algorithm. A population of
chromosomes is represented by an OMA. Chromosome i is denoted by CR; =
[(CR.Action(I), CR.Object(1), CR;.State(1)),...,(CR.Action(n), CR;.Object(n), CR,.
State(n))], where CR;.Action(k) is the kth action of CR;, CR;.Object(k) is the object
assigned to the k,;, action (the value of the kth gene), and CR;.State(k) is the state of the
object assigned to the k,, action (the degree of association between gene k and
its value), specifying 1 < k<n, 1 < CR,.Object(k) < m, and (k — 1)N + 1<CR,.
State(k) < kN.The initial population is created randomly and objects are located at the
boundary state of their actions. At the beginning of each generation the best
chromosome from the previous generation is moved to the population of the current
generation. Next, the crossover operator is applied to the parent chromosomes at rate r,.
(parents are selected according to the chromosome’s fitness using a tournament
mechanism), and then the mutation operator is applied at rate r,,,.

3.2 Crossover operator

The crossover operator in GALA is applied as follows: Two chromosomes, CR; and
CR,, are selected by the selection mechanism as parent chromosomes. Two actions,
1, and r,, are also randomly selected from CR; and CR,, respectively. Then for each
action in the range of [r,r,] of CR;, the assigned object is exchanged with an
assigned object of the same action in chromosome CR,. In the crossover operator,
the previous states of the selected actions in CR; and CR, are transferred to the child
chromosomes. The pseudo code for the crossover operator is shown in Fig. 6.

Figure 7 illustrates an example of a crossover operator. First, two actions are
randomly selected in the parent chromosomes (e.g. actions 2 and 4 here), and then
objects are assigned to all actions in the range of [2,4] in CR,, and are exchanged
with the objects of the corresponding actions in CR;.

3.3 Mutation operator

The mutation operator is the same as in a traditional genetic algorithm. Two actions
are selected randomly in the parent chromosome, and then their assigned objects are
exchanged. The previous states of selected actions in the parent chromosome are
transferred to the child chromosomes in this operator. Pseudo code for the mutation
operator is shown in Fig. 8.

Procedure Crossover (CRy, CR;)
Generate two random numbers r; and 7, in [1, N] where r; < 15,
Fori=r tor, do
Swap(CR;.Object(CR,.Action(i)), CR,.Object(CR,.Action(i)));
Swap(CR,.State(CR,.Action(i)), CR,.State(CR,.Action(i)));
End For
End Crossover

Fig. 6 Pseudo code for a crossover operator
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Crossover
Selected actions: 2,4

Fig. 7 An example of crossover operator

Procedure Mutation (CR)
Generate two random numbers 7, and r; in /1,n] where r; < 1>,
Swap(CR.Object(CR.Action(r;)), CR.Object(CR.Action(r,)));
Swap(CR.State(CR.Action(r;)), CR.State(CR.Action(r)));
End Mutation

Fig. 8 Pseudo code for a mutation operator

Figure 9 illustrates an example of a mutation operator. First two actions in the
parent chromosome are randomly selected (e.g. actions 1 and 2 here). The mutation
operator exchanges both the state and the object assigned to action 1 with the state
and the object assigned to action 2.

3.4 Local learning in GALA

Local learning in GALA is done using OMA representations of chromosomes. If the
objects assigned to an action are the same before and after applying a given local
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Mutation
selected actions: 1,2
c—b

Fig. 9 A sample of mutation operator

Procedure Reward( CR, u )
If (CR.State(u)-1) mod N <> 0 then
Dec(CR.State(u)); //Decrement the state number of action (the state of action move toward the most internal
state)
End If
End Reward

Fig. 10 Pseudo code for a reward function

search, then that action will be rewarded; otherwise, it will be penalized. It is worth
noting that a local search only changes the state of the actions (according to the
OMA connections), not the objects assigned to the actions (i.e., the action associated
with an object will not change). By rewarding an action, the state of that action will
move toward the most internal state according to the OMA connection. This causes
the degree of association between an object, and its corresponding action, to be
increased. The state of an action remains unchanged, if the object is located at its
most internal state, such as the state of object D in action 4, shown in Fig. 11.

Figure 10 provides pseudo code for rewarding an action. Figure 11 illustrates an
example of rewarding an action.

Penalizing an action causes the degree of association between an object and its
corresponding action to be decreased. If an object is not in the boundary state of its
action, then penalizing causes the object assigned to the action to move toward the
boundary state. This means that the degree of association between the action and the
corresponding object will be decreased (Fig. 12). If an object is in the boundary
state of its action, then penalizing the action causes the object assigned to that action
to change, and results in the creation of a new chromosome. How a new
chromosome is created depends on the application. A new chromosome is always
created in such a way that its fitness becomes greater than the fitness of the old
chromosome. Figure 13 shows the effect of the penalty function on action 3 of a
sample chromosome (assuming that chromosome “cbadfe” has better fitness than
chromosome “cbedfa”). Pseudo code for the penalty function is shown in Fig. 14.
The pseudo code for GALA is shown in Fig. 15.
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reward (action: 2)

penalty (action: 1)

penalty (action: 3)

movea to boundary state

Fig. 13 Another example of a penalty function

3.5 Applications of GALA

GALA has been used in a variety of applications, including the GIP [11], join
ordering problems in database queries [12—15], the traveling salesman problem
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Procedure Penalize( CR, u )
If (CR.State(u)) mod N <> 0 then
Inc(CR.State(u)); //Increment the state number of action (the state of action move toward the boundary state)
Else
Find action U of chromosome CR in such a way that swapping the object assigned to u and object assigned to U
causes the fitness of CR be minimized.
CR.State(U) = CR.Action(U)*N; //the state of action changed to the boundary state
CR.State(u) = CR.Action(u) *N; //the state of action changed to the boundary state
Swap(CR.Object(CR.Action(u)), CR.Object(CR.Action(U)));
End If
End Penalize

Fig. 14 Pseudo code for the penalty function

Function GALA
t <0
Init population P(#) with size ps; //Create an initial population P(0) of chromosomes P(0).CR; ... P(0).CR,;
EvaluateFitness (); // Evaluate fitness of all chromosomes of initial population
‘While (while termination criteria is not satisfied) do
P(t+1).CR; < Best chromosome of P(%); //the best chromosome move to population of next generation
Fori=2to psdo
Select parents CR;, CR,based on tournament mechanism from P(?);
NewCR«—Crossover(CR;, CR>);
NewCR«—Mutation(NewCR);
TempCR«—LocalSearch(NewCR);
For j=1ton do
If (TempCR.Object(TempCR.Action (j)) = NewCR.Object (NewCR.Action (j))) then
Reward(NewCR, NewCR.Action (j));
Else
Penalize(NewCR, NewCR.Action (j));
End If
P(t+1).CRi < NewCR;
End For
End For
tt+1;
End While
End GALA

Fig. 15 Pseudo code for GALA

[16-18], the Hamiltonian cycles problem [19], sorting problems in graphs [20], the
graph bandwidth minimization problem [21-23], software clustering problems [24,
25], the single machine total weighted tardiness scheduling problem [26], data
allocation problems in distributed database systems [27, 28], and the task graph
scheduling problem [29, 30].

4 Modified GALA (MGALA)

Modified GALA (MGALA) is a new version of GALA. Like GALA each
chromosome is represented by an object migration automaton (OMA) whose states
keep information about the past history of the local search process. Each state in the
OMA has two attributes: the value of the corresponding gene, and the degree of
association of the gene with its value. In MGALA the fitness function is computed
using the past history of the local search kept in the OMA states, as well as the
chromosome’s fitness. Unlike GALA, which only uses the value of the genes for
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fitness computation, MGALA uses all the information in the OMA representation of
the chromosome (i.e., the degree of association between genes and their values) to
compute the fitness function. Hence, unlike GALA, which behaves according to a
Lamarckian learning model it behaves according to a Baldwinian learning model.
MGALA'’s various components will be described in the remainder of this section.

4.1 Fitness function

The fitness function in MGALA is not only dependent on genotype information, but
also on phenotype information. We use the fitness function f (CR) = "7, fi(1+7;)
for maximization problems, and f (CR) = "7, fi(1 — y;) for minimization prob-
lems in the selection of chromosomes. In these functions f; is the fitness of the ith
gene, and y; is the degree of association between action o; and its assigned object.
The depth of memory is N, so we have % <; < 1. The parent chromosomes and the
chromosomes of the next generation are selected based on the defined fitness
function using a tournament mechanism.

4.2 Mutation operator

Depending on whether the state of the selected actions changes or not, we define
two types of mutation operators in MGALA. In the first type the states of the
selected actions remain unchanged (i.e., the degree of association between actions
and their assigned objects are saved). In second class the states of the selected
actions are changed (i.e., the degree of association between actions and their
assigned objects are lost).

MGALA has three mutation operators defined in this paper: SS-Mutation, XS-
Mutation, and LS-Mutation. Specifically:

e The mutation operator in which the previous state of selected actions can be
saved is referred to as the SS-Mutation.

e The mutation operator in which the previous state of selected actions can be
exchanged is referred to as the XS-Mutation.

e The mutation operator in which the previous state of selected actions can be lost
is referred to as the LS-Mutation.

The SS-Mutation and XS-Mutation are examples of the first type of mutation

operator described above, and the LS-Mutation is an example of the second type.
These mutation operators are described in more detail below.

4.2.1 SS-Mutation
Assuming actions 1 and 2 are the selected actions, the SS-Mutation exchanges the

objects assigned to the states of actions 1 and 2. Figure 16 shows an example of an
SS-Mutation. Pseudo code for our SS-Mutation is shown in Fig. 17.
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SS-Mutation
selected actions: 1,2
cb)

Fig. 16 An example of an SS-Mutation

Procedure SS-Mutation (CR)
Generate two random numbers #; and 7, in [1,n] where r; < 1>,
Swap(CR.Object(CR.Action(r;)), CR.Object(CR.Action(r,)));
End SS-Mutation

Fig. 17 Pseudo code for the SS-Mutation

4.2.2 XS-Mutation

The XS-Mutation is the same as the mutation that GALA uses. The states of the
actions, along with their assigned objects, are exchanged. Figure 18 shows an
example of an XS-Mutation. Assuming actions 1 and 2 are the selected actions, the
XS-Mutation exchanges the object and the state of action 1 with those of action 2.
Pseudo code for our XS-Mutation is shown in Fig. 19.

4.2.3 LS-Mutation

The LS-Mutation is the same as that used in GALA, except that the state of each
action is changed to become its corresponding boundary state. Figure 20 shows an
example of an LS-Mutation operator. Assuming that actions 1 and 2 are the selected
actions, the LS-Mutation operator causes: 1) The object assigned to the state of
action 1 is exchanged with the assigned object of the action; and 2) The state of each
action changes to become its corresponding boundary state. Pseudo code for our LS-
Mutation operator is given in Fig. 21.

4.3 Crossover operator
Similar to the mutation operators, we define two different types of crossover
operators for MGALA. In the first type, the states of selected actions remain

unchanged, and in the second type the states of the actions change to the boundary
states.
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XS-Mutation

selected actions: 1,2
cob)

Fig. 18 An example of an XS-Mutation

Procedure XS-Mutation (CR)
Generate two random numbers 7; and 7, in /1,n] where r; < 5,
Swap(CR.Object(CR.Action(r;)), CR.Object(CR.Action(r,))),
Swap(CR.State(CR.Action(r;)), CR.State(CR.Action(r;)));
End XS-Mutation

Fig. 19 Pseudo code for the XS-Mutation

LS-Mutation
selected actions: 1,2
cob)

Fig. 20 An example of an LS-Mutation

Procedure LS-Mutation (CR)
Generate two random numbers ; and 7, in [1,n] where r; <75,
Swap(CR.Object(CR.Action(r;)), CR.Object(CR.Action(r)));
CR.State(CR.Action(r;)) = CR.Action(r;) *N; //the state of action changed to the boundary state
CR.State(CR.Action(r2)) = CR.Action(r2)*N; //the state of action changed to the boundary state
End LS-Mutation

Fig. 21 Pseudo code for the LS-Mutation
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Three crossover operators, SS-Crossover, XS-Crossover, and LS-Crossover, are
defined in MGALA:

e The crossover operator in which the previous state of selected actions can be
saved is referred to as the SS-Crossover.

e The crossover operator in which the previous state of selected actions can be
exchanged is referred to as the XS-Crossover.

e The crossover operator in which the previous state of selected actions can be lost
is referred to as the LS-Crossover.

The SS-Crossover and XS-Crossover are examples of crossover operators of the
first type, and the LS-Crossover is an example of the second type. These crossover
operators are described in further detail below.

4.3.1 SS-Crossover

Figure 22 shows an example of an SS-Crossover. Assuming actions 2 and 4 are
selected randomly from the parent chromosomes, the SS-Crossover exchanges the

SS-Crossover
Selected actions: 2,4

Fig. 22 An example of an SS-Crossover
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Procedure SS-Crossover ( CR;, CR;)
Generate two random numbers 7; and 7, in /1,n] where r; < 7.
Fori=r;tor;do
Swap(CR;.Object(CR;.Action(i)), CR,.Object(CR,.Action(i)));
End For
End SS-Crossover

Fig. 23 Pseudo code for the SS-Crossover

assigned object of each action in the range of [2,4] of CR,, with the assigned object
of the same action in the range of [2,4] of CR,. Note that in the SS-Crossover the
states of the actions remain unchanged. Pseudo code for the SS-Crossover is shown
in Fig. 23.

4.3.2 XS-Crossover

The XS-Crossover is the same as the crossover used in GALA. Figure 24 shows an
example of an XS-Crossover. Assuming actions 2 and 4 are selected randomly from
the parent chromosomes, the XS-Crossover exchanges both the assigned object and
the state of each action in the range of [2,4] of CR;, with the assigned object and the
state of the same action in the range of [2,4] of CR,. Figure 25 shows the pseudo
code for the XS-Crossover.

4.3.3 LS-Crossover

The LS-Crossover is the same as the crossover used in GALA, except that the state
of each action is changed to become its corresponding boundary state. Figure 26
shows an example of an LS-Crossover. Assume that actions 2 and 4 are randomly
selected in the parent chromosomes, then the LS-Crossover causes: (1) Each object
assigned to the actions in the range of [2,4] of CR; is exchanged with the assigned
object of the same action in the range of [2,4] of CR,; and (2) The state of each
action changes to become its boundary state. Figure 27 shows the pseudo code of
the LS-Crossover.

5 The equipartitioning problem

Let A= {A,...,Ay} be a set of W objects. We want to partition A into R classes
{P1,...,Pr} such that the objects used more frequently are located together in the
same class. We assume that the joint access probabilities of the objects are
unknown. This problem is called the object partitioning problem. A special case of
the object partitioning problem, referred to as the equal partitioning problem (EPP),
is where the objects are equipartitioned. In an EPP each class has exactly M = W/
R objects. For solving the EPP with MGALA we define a chromosome to have
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XS-Crossover
Selected actions: 2,4

Fig. 24 An example of an XS-Crossover

Procedure XS-Crossover ( CR;, CR,)
Generate two random numbers 7; and r; in [/,n] where r; <7,
Fori=r;tor,do
Swap(CR;.Object(CR,;.Action(i)), CR,.Object(CR,.Action(i)));
Swap(CR,.State(CR;.Action(i)), CR,.State(CR,.Action(i)));
End For
End XS-Crossover

Fig. 25 Pseudo code for the XS-Crossover

W genes (actions) and the value of the genes are selected from a set of classes
{P1,...,Pr} (as migratory objects in the OMA) such that each class is assigned to W/
R of genes (actions). Objects are initially assigned to the boundary state of actions.
Figure 28 shows a chromosome based on a Tsetline OMA representation for 6
objects and 2 classes (called class o and class §) with N = 5. In this figure objects 1,
3, and 4 are assigned to class o, and objects 2, 5, and 6 are assigned to class f5.
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LS-Crossover
Selected actions: 2,4

Fig. 26 An example of an LS-Crossover

Procedure LS-Crossover ( CR;, CR;)
Generate two random numbers r; and r, in [1,n] where r; < >,
Fori=r;tor;do
Swap(CR,.Object(CR.Action(i)), CR,.Object(CR,.Action(i)));
CR.State(CR.Action(i)) = CR.Action(i) *N, //the state of action changed to the boundary state
End For
End LS-Crossover

Fig. 27 Pseudo code for the LS-Crossover

5.1 Local search for EPP

Suppose a query [which is a pair of objects (A;, A;)] has been accessed. If the
assigned objects of actions o; and «; are the same, then both actions &; and o; are
rewarded and their states change according to OMA connections. If the assigned
objects of actions o; and o; are different, then they are penalized and their states
change according to OMA connections. Pseudo code for our local search of the EPP
is shown in Fig. 29.
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Fig. 28 A chromosome representation of the EPP with W =6, R =2,and N =5

5.2 Experimental results

We studied the efficiency of our MGALA algorithm in solving the EPP by
comparing its results to those obtained for an OMA method reported in [10] and to
the GALA algorithm. Queries were chosen randomly from a pool of queries for all
experiments. The pool of queries was generated in such a way that the sum of
probabilities that object A; in partition 7; is jointly accessed with other objects in
partition 7; is p, and with objects in partition 7; (j # i) is 1 — p, that is:

Z Pr[A;, A; accessed together] = p (1)

Ajem;

Therefore, if p = 1, then queries will only involve objects in the same partition.
As the value of p decreases, the queries will become decreasingly informative about
the solution of the EPP [10]. For all experiments an initial population of
chromosomes of size 1 was randomly created, the size of each chromosome was set
equal to the number of objects, the mutation rate was 0.05, the selection mechanism
was (1,1), p was 0.9, and the depth of memory was 2. The algorithm terminates
when all the objects in only chromosome are located in the most internal state of
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Procedure LocalSearch( CR )
Access query (4;, A;) from the pool of queries;
If ( CR.Object(CR.Action(i)) = CR.Object(CR.Action(j)) )
Reward(CR, CR.Action(i));
Reward(CR, CR.Action(j));
Else
Penalty(CR, CR.Action(i));
Penalty(CR, CR.Action(j));
End if
End LocalSearch;

Fig. 29 Pseudo code for our local search of the EPP

their actions. For all experiments a Tsetline-based OMA was used for chromosome
representation. Each reported result was averaged over 30 runs. We performed a
parametric test (7 test) and two non-parametric tests (wilcoxon rank sum test and
permutation test) at the 95 % significance level to provide statistical confidence.
The T tests were performed after ensuring that the data followed a normal
distribution (by using the Kolmogorov—Smirnov test).

5.2.1 Experiment 1

In this experiment we compared the results obtained from MGALA with the results
of two other algorithms, an OMA-based algorithm reported in [10] and the GALA
version of the algorithm, for the EPP, in terms of the number of iterations (number
of accessed queries) required by the algorithm. MGALA was tested with three
different mutation operators: SS-Mutation, XS-Mutation, and LS-Mutation.

Table 1 presents the results of the different algorithms for 14 different cases with
respect to the average number of iterations and their standard deviation. From the
results reported in Table 1 we report the following:

The MGALA algorithm outperforms both the OMA and GALA algorithms.
For cases (W=9and R=3), (W=12and R =2) and (W = 8 and R = 2),
MGALA using the LS-Mutation performs the best, and for the other cases
MGALA with the SS-Mutation displays the best performance.

e The OMA algorithm displays the worst performance compared with the GALA
and MGALA algorithms.

e As the number of classes (R) decreases, the number of iterations required by all
algorithms increase. This is because a low value for R means a higher number of
objects will be placed in each class, leading to a situation where more actions
have the same class number (migratory objects). This causes the probability that
a mutation operator swaps two objects between two actions to decrease.

e MGALA with the XS-Mutation displays the same performance as GALA. This
is because: (1) In the MGALA and GALA algorithms, the selection mechanism
is considered to be (1,1), that is, MGALA, like GALA, has no selection
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mechanism in this mode; and (2) the XS-Mutation operator used by MGALA is
the same as the mutation operator used by GALA.

Table 2 shows the p values of the two-tailed T test, the p values of the two-tailed
wilcoxon rank sum test and the p values of the two-tailed permutation test. From the
results reported in Table 2 we report the following:

e For all three kinds of statistical tests (wilcoxon, permutation and T test), the
difference between the performance of the OMA and the performance of the
other algorithms is statistically significant (p value <0.05) in most cases.

5.2.2 Experiment 2

This experiment’s goal was to evaluate the accuracy of the solution produced by
MGALA. Before we introduce the concept of accuracy for MGALA, we will
provide some preliminaries. For this purpose we use an example of equipartitioning
with the 4 objects A, A, Az, and A4, and two classes, o and f5. A Tsetline based on
an OMA with a depth of memory 2 will be used for the chromosome representation
shown in Fig. 30. We also assume that the initial population is of size one, and that
the only chromosome in the initial population is created randomly, and has its
migratory objects in the boundary state of the actions.

For this example there are the three possible object equipartitioning schemes
specified below:

e aafifi: Objects Ay, A, are in class o and objects Az, A4 are in class f5.
o ofuafi: Objects Aj, Az are in class o and objects A,, A4 are in class f5.
e ofifa: Objects A, A4 are in class o and objects A,, A3 are in class f5.

The chromosome in Fig. 30 can be also represented by (:Ygﬁ/?) which
corresponds to the following situation:

e Object A; is in partition o and the migratory object is located in the boundary
state of action 1.

e Object A, is in partition  and the migratory object is located in the internal state
of action 2.

e Object A; is in partition f§ and the migratory object is located in the internal state
of action 3.

e Object Ay is in partition  and the migratory object is located in the boundary
state of action 4.

Each possible equipartitioning scheme may correspond to any of the 16 possible
chromosomes out of all 48 possible chromosomes. For example chromosomes (&%f),

(@app), (aapp), (aapp). (appp). (axpp), (aapp). (aapp), (xapp), («app),
(go‘cﬁﬁ),(go‘cﬁ), (aBP), (otoc[?ﬁ) (aaﬁﬁ) and (xB) show the equipartitioning coe35.
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Fig. 30 A representation of the
EPP with W =4, R = 2, and
N=2

We group chromosomes corresponding to a given equipartitioning into two
different sets: a converged chromosomes set (CCS), and a non-converged chromo-
somes set (NCCS). The CCS includes all the chromosomes for which all objects of
class o or class ff are in the internal states. All other chromosomes are in the NCCS. For
example, chromosomes (&xff), (&&ﬁﬁ), (&&Eﬁ), (aaBp), (&gﬁﬁ), (&gﬁﬁ), (aBp),
(aBP), and (axBP), of equipartitioning xap, are in the NCCS of equipartitioning

xaff. and (zzBp). (32p). (23BB). (22BP). (22p). (22BB). and (azBp) are in the
CCS of equipartitioning aoff. MGALA converges to one of the following six sets:
either the NCCS of equipartitioning aof3f5, or the CCS of equipartitioning aaf3 3, or the
NCCS of equipartitioning o o3, or the CCS of equipartitioning a5af3, or the NCCS of
equipartitioning of} o, or the CCS of equipartitioning «ffffo. Letpl, p2, p3, p4, p5, and
p6 be the probabilities of the current chromosome to be in one of the above-mentioned
sets, respectively. Furthermore, assume that eighty percent of the queries accessed
from the pool of queries are (A, A,) or (A3, Ay). For MGALA to produce the correct
solution it must generate a population containing one of following chromosomes:
(@), (aapp). (acpp), (aapp). (axBp). (22pp). (2app), (aapp). (aapp). (aapp),
(aiBPB),(2aBp), (xaBp), (xxBp), (x2Bf), and (axBp). So, MGALA must converge to
one of the sets of NCCS of equipartitioning, or to one of the sets of CCS of
equipartitioning o3 5. The algorithm is more accurate if the probability of converging
to a set of NCCS of equipartitioning, or to a set of CCS of equipartitioning o3 (that is
p1 + p») are higher than 0.8.

Next we undertook the experimentation phase of the study. Input queries were
generated in such a way that eighty percent of the queries accessed from the pool of
queries were (A, A) or (A3, A4). Note that the initial population is considered to be
of size one, that the only chromosome in the initial population is created randomly,
and that it has its migratory objects at the boundary state of the actions. That is
chromosome (&%), which belongs to the NCCS of equipartitioning oaff, or
(apap), which belongs to the NCCS of equipartitioning afuf, or (&ff%), which
belongs to the NCCS of equipartitioning offffo. are the only options. Therefore,
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initial values for p;, p3, and ps are considered to be zero, and initial values for p,, p4,
and pg are considered to be 1/3. Figure 31a—c show the evolution of p;, p,, p3, P4
ps, and pg for the three different mutation operators SS-Mutation, XS-Mutation, and
LS-Mutation.

These figures show that p; + p, approaches a value close to 0.9 for all mutation
operators. That is, when eighty percent of the queries accessed from the pool of
queries are A;, A, or Az, A4, MGALA converges to the correct equipartitioning
(xafB) with a probability close to 0.9. The mutation rate was set to 0.05 for this
experiment.

Table 3 presents the MGALA algorithm results for different mutation operators
and different query percentages (accessed from the pool of queries) being (A, A,) or
(A3, Ay), with respect to the accuracy of the solution and its standard deviation. The
percentage varies from 40 to 100 by increments of 10 in Table 3. From these results
we conclude the following:

e For all mutation operators the accuracy of the solution generated by MGALA
increases as the percentage of queries (A, A,) or (As, A4) in the input increases.
e MGALA has the highest accuracy when the LS-Mutation operator is used.

Table 4 shows the results of statistical tests. From the results reported in Table 4
we report the following:

e For all three kinds of statistical tests (wilcoxon, permutation and T test), the
difference between the performance of the MGALA algorithm when it uses the
LS-Mutation operator and the performance of the MGALA algorithm when it
uses other mutation operators is not statistically significant (p value >0.05).

5.2.3 Experiment 3

The goal of this experiment was to study the impact of the parameter N (depth of
memory) on the number of iterations required by the MGALA algorithm to find
optimal equipartitioning. The depth of memory was varied from 2 to 10 by
increments of 2. MGALA was tested with three different mutation operators.
Tables 5, 6 and 7 show the results obtained for the MGALA algorithm with the SS-
Mutation, XS-Mutation, and LS-Mutation for 14 different cases, with respect to the
average number of iterations required and their standard deviation.

e For lower values of R MGALA requires a higher number of iterations to
converge to optimal equipartitioning.

e For higher values of W/R MGALA requires a higher number of iterations to
converge to optimal equipartitioning.

e For higher values of W/R MGALA requires a higher depth of memory to
converge to optimal equipartitioning.

e The MGALA algorithm with a depth of memory N = 2 performs better than
MGALA with a depth of memory of N # 2.
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Fig. 31 The evolution of p;, p, p3, p4. ps, and ps in MGALA with W = 4, R = 2, and N = 2, for the
SS-Mutation (a), XS-Mutation (b), and LS-Mutation (c) operator for the EPP
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Table 3 Accuracy of MGALA with respect to percentage of queries (A;, A,) or (As, A4) and mutation
operators

The percentage of SS-Mutation XS-Mutation LS-Mutation

queries (A, As)

or (As, Ag) Avg. Std. Avg. Std. Avg. Std.

40 0.41 5.10E—02 0.42 4.10E—-02 0.42 4.40E—-02
50 0.54 7.20E—02 0.56 420E—02 0.56 3.30E—-02
60 0.69 7.70E—02 0.7 5.50E—02 0.69 6.50E—02
70 0.8 7.80E—02 0.81 6.70E—02 0.8 6.90E—02
80 0.9 6.50E—02 0.91 6.30E—02 0.9 7.80E—02
90 0.92 6.60E—02 0.94 7.20E—02 0.92 8.50E—02
100 0.95 7.20E—-02 0.96 6.50E—02 0.94 5.60E—02

Table 4 The results of statistical tests for MGALA algorithm with LS-Mutation operator vs. MGALA
algorithm with SS-Mutation and XS-Mutation operators with respect to percentage of queries (A, A,) or
(A3, Ag)

The percentage of ~ SS-Mutation XS-Mutation
queries (A, A,)
or (A3, Ag) P value P value

T test Permutation ~ Wilcoxon T test Permutation ~ Wilcoxon
40 4.09E-01 5.19E—-01 446E—-01 1.00E+00 7.35E—01 8.65E—01
50 1.99E—-01 3.44E-01 6.90E—01 1.00E4+00 6.23E—01 5.69E—-01
60 5.67E-01 1.31E-01 191E-01 525E-01 7.50E—02 9.05E—02
70 5.98E-01 7.15E-01 8.13E—01 5.73E—01 1.88E—01 3.67E-01
80 5.50E—-01 2.99E-01 3.75E—01 5.89E—-01 4.60E—02 6.79E—02
90 2.71E-01 3.49E-01 2.01E—-01 3.34E-01 2.69E—01 3.55E-01
100 5.77TE-01  7.28E—01 4.87E—-01 2.12E—-01 3.29E-01 2.52E—01

These conclusions are because higher values of W/R mean a higher number of
objects are placed in each class. This leads to a situation where more actions have
the same class number (migratory objects), and also decreases the probability that a
mutation operator swaps two objects between two actions.

Tables 8, 9 and 10 show the p values of the two-tailed T test, the p values of the
two-tailed wilcoxon rank sum test and the p values of the two-tailed permutation
test for MGALA algorithm with SS-Mutation, XS-Mutation and LS-Mutation
respectively. From the results reported in these tables we report the following:

e For all three kinds of statistical tests (wilcoxon, permutation and T test), the
difference between the performance of the MGALA algorithm with depth of
memory N = 2 and the performance of the MGALA algorithm with a depth of
memory of N # 2 is statistically significant (p value <0.05) in most cases for all
three types of operators.

@ Springer
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6 The graph isomorphism problem

A graph is described by G = (E, V) where V is the set of vertices and E C V * V is
the set of edges. Two graphs G = (Ey, V) and H = (E,, V,) are isomorphic if, and
only if, their adjacency matrices M(G) and M(H) differ only by permutations of
rows and columns, i.e., M(G) and M(H) are related with a permutation &, according
to Eq. (2).

M(H) = P+ M(G) x P" — [P x M(G) x P"], = [M(H)] (1 ;) (2)

where P is the permutation matrix of . If we define the difference between two
graph as
J(o) = ||M(H) — P« M(G) = P"|], (3)

where || - || is the matrix norm, defined as [|M|[ = >, >, [my], the GIP can then be

formulated as a search optimization problem in searching for a permutation G that
minimizes J(o).
The mapping error of vertex k in graph G to vertex o(k) in graph H is defined as

n

Ji(0)=>"

m=1

M, — (G | + S M) = M) ] @
m=1

where n is the number of vertices of G and H. For undirected graphs the mapping
error can be computed according to Eq. (5), as given below:

n

Je(o) =2%)"

m=1

[M(H)]k,m - [M(H)]J(k),a(m) (5)
Consequently, the mapping error of graphs G and H can be computed using Eq. (6).
J(0) = (o) (6)

k=1

In this paper we use f, = Cpuy — J(0) as genetic fitness, where C,,,, is the maxi-
mum of J(o) [31].

6.1 The local search in the graph isomorphism problem

If two graphs are isomorphic to each other, then the weight and the number of input
and output edges of isomorphic vertices must be equal. This is taken into
consideration in the design of the local search procedure [31]. Pseudo code for our
local search method is given in Fig. 32. This local search method consists of the
following steps:

1. The vertices are partitioned into a number of subsets of equal weight.
2. The worst gene of the current chromosome is selected (line 2 of Fig. 32).

@ Springer
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Procedure LocalSearch( CR )

gl = Worst Gene(CR);

g2 = Select a Random Gene From Same Subset(g/);
Swap(CR(g1), CR(g2));

End LocalSearch;

nhkwwbh =

Fig. 32 Pseudo code for the local search in the GIP

3. The value of the selected gene is swapped with the value of a random gene
selected from the same subset (lines 3 and 4 of Fig. 32).

6.2 Experimental results

In this section, several experiments are described that studied the effect of different
MGALA parameters on the performance of the GIP. For this purpose we used a
database with 10,000 coupled pairs of isomorphic graphs with different sizes [32].
We classified these graphs into three groups: small graphs (n < 50), medium graphs
(50 < n < 100), and large graphs (100 < n < 200). MGALA results are compared
with the results obtained from an algorithm based on a GA [31], an algorithm
reported by Ullmann [33], and the VF and VF2 algorithms [34]. The source codes for
these algorithms are available at http://amalfi.dis.unina.it/graph. Every result
reported is the average of 30 runs. For all experiments an initial population of size
100 was created randomly, the chromosome size was set equal to the size of the
graph, the mutation rate and crossover rate were both set to 0.05, and the selection
mechanism was (i + A). Each algorithm terminates when either solution has been
found or the number of generations exceeds 10,000. A Tsetline-based OMA is used
for all experiments to represent chromosomes. We use RT to refer to running time,
FE to refer to the number of fitness evaluations for the runs converged to the solution,
and NR to refer to the number of runs not converged to the solution. All experiments
were performed on three classes of graphs: small graphs (SG), medium graphs (MG)
and large graphs (LG). We performed a parametric test (7 test) and two non-para-
metric tests (wilcoxon rank sum test and permutation test) at the 95 % significance
level to provide statistical confidence. The T tests were performed after ensuring that
the data followed a normal distribution (by using the Kolmogorov—Smirnov test).

6.2.1 Experiment 1

Experiment 1 aimed to find the optimal memory depth for different classes of graphs
for the MGALA algorithm. For this purpose we studied the effect of parameter
N (depth of memory) on the FE, RT, and NR. The MGALA results were then
compared with the results obtained for the Canonical Memetic Algorithm (CMA).
Note that MGALA is equivalent to the CMA when N = 0. For this experiment the
graph density was set to 0.5, and weights for vertices and edges were chosen from
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Fig. 33 Number of fitness evaluations (FE) and number of non-converged runs (NR) vs. depth of
memory for different classes of graphs

[0,100]. Table 11 lists the RT, FE, NR, and the standard deviation for the different
depths of memory employed. From the results we conclude the following:

e For all classes of graphs the minimum value for RT and FE are obtained when
N =0,

e For all classes of graphs the maximum value for NR is obtained when N = 0,
and

e For all classes of graphs the NR is inversely proportional to depth of memory.

Table 12 shows that, according to results of wilcoxon test, permutation test and
T test, the MGALA algorithm with a memory depth of N = 2 performs better than
the MGALA algorithm for N # 2 for large graphs (LG).

Figure 33 shows the impact of the depth of memory on the FE and NR for
different classes of graphs. Changes in the FE are minor for a depth of memory
greater than 4 in all classes of graphs. Also, this figure shows that for all classes of
graphs, a depth of memory greater than 10 causes convergence (NR = 0) in all runs.

6.2.2 Experiment 2

This experiment investigated the effect of graph edge and vertex weights on
MGALA performance. We studied the effect of weights on the FE, RT, and NR for
different classes of graphs using MGALA and CMA (MGALA when N = 0). For
this experiment the density of all graphs was set to 0.5 and N was set to 10. The
experiment was repeated for five different weight ranges: [0,20], [0,40], [0,60],
[0,80], and [0,100]. The experiment was also repeated with unweighted graphs
(graphs whose edge weights are chosen from {0,1}, and whose nodes have no
weights). Table 13 gives the RT, FE, NR, and standard deviation for the different
weight parameters.
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From these experimental results we conclude the following for MGALA:

For all classes of graphs RT and FE are minimized when the weights for vertices
and edges are chosen from [0,100] and are maximized for the unweighted graph.
This is because GIP only uses the properties of local search method. If the
weights of the graph have higher values, then the vertices of the graph are
partitioned into a higher number of subsets with a lesser number of members.
The effect of this is to cause just the vertices of the subset, which have same
weight as the worst gene, to have a chance for exchanging with the worst gene in
the local search method. Consequently, the local search selects an alternative
vertex accurately in weighted graphs.

For all classes of graphs the NR is inversely proportional to the weights of the
vertices and edges.

For all classes of graphs the maximum value of NR is obtained when CMA is
used.

Table 14 shows that, for all three kinds of statistical tests (wilcoxon, permutation

and T test), the difference between the performance of the MGALA algorithm when
weights for vertices and edges are chosen from [0,100], and the performance of the
MGALA algorithm when it uses other weight parameter values that are statistically
significant (p value <0.05) for most graphs.

Figure 34 shows the FE for different graph classes and weights. The FE for all

classes of graphs when the weights are chosen from ranges greater than [0,20] are
almost the same. Figure 34 also shows that with all graph classes the NR is equal to
zero when the weights are chosen from ranges greater than [0,60]. Consequently, the
FE and NR are both minimized when the weights are chosen from ranges greater
than [0,60] (ranges [0,80] or [0,100]).

Number of fitness evaluations

—e— FE(SG) —@— FE(MG) —a— FE(LG) --%- NR(SG) --%-- NR(MG) NR(LG)
12000 30 F
A 2
10000 25 o
()]
0
8000 20 ¢
X S
6000 1 / 15 S
AN N <)
N < =
4000 X — —— 0
5000 NS s 3
0 — ey % 0o 2
100(CMA) 1 20 40 60 80 100 Weight
/
(MGALA)

Fig. 34 Number of fitness evaluations (FE) and number of non-converged runs (NR) vs. the weight
parameter for different classes of graphs
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6.2.3 Experiment 3

Experiment 3 studied the effect of graph density (D) on MGALA performance. The
— _ 2|E]
— viqvi=1y

of an edge between any two vertices. For this experiment the weights of vertices and
edges were chosen from [0,100], and N was set to 10. The impact of graph density
on the FE, RT, NR, and the standard deviation for different classes of graphs using
both MGALA and CMA are reported in Table 15. From these results we conclude
the following:

density of a graph is defined as which is the probability of the existence

e For all classes of graph RT and FE are minimized when the graph density is 1.
For all classes of graphs NR decreases as the graph density increases.
For all classes of graphs a maximum value for NR is obtained when CMA is
used.

Table 16 shows that, for all three kinds of statistical tests (wilcoxon, permutation
and T test), the difference between the performance of the MGALA algorithm when
the density is 1, and the performance of the MGALA algorithm when it uses other
density parameter values, is statistically significant (p value <0.05) for most graphs.

Figure 35 shows the impact of graph density on the FE for different classes of
graphs. The FE remains almost fixed for graph densities >0.5 for all classes of
graphs. Figure 35 also shows that for all classes of graphs, all runs converge (NR) to
zero when the graph density is >0.6.

6.2.4 Experiment 4

The experimental goal here was to study the impact of different mutation and
crossover operators on MGALA performance. For this experiment the density of all

—o— FE(SG) —@— FE(MG) —A— FE(LG) --%- NR(SG) --%-- NR(MG) --®-- NR(LG)

2 14000 30 £
o o
& 12000 +* /A\ L 25 @
© N —
> — [
5 10000 ; / \ P
¢ 8000 +—A—H 8
£ YA 15 s
£ 6000 e — 2
5 / \ , 10 5
g 4000 B ~N— A5, a ]
£ W - 3
E 2000 1 x 0= 0= rS £
2 \ 2
0 A ———t— S—t 0
05 01 02 03 04 05 06 07 08 09 1  pensity
(cMA) N\ _/
—~
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Fig. 35 Number of fitness evaluations (FE) and number of non-converged runs (NR) vs. density of graph
for different classes of graphs
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Fig. 36  Number of fitness evaluations vs. graph size for different algorithms

graphs was set to 0.5, and the depth of memory was set to 10. Weights for vertices and
edges were selected from [0,100]. Table 17 lists the RT, FE, NR, and the standard
deviations from different mutation and crossover operators. These results lead us to
conclude the following:

e For all classes of graphs a minimum NR value is obtained when the LS-Mutation
and LS-Crossover operators are used.

e For large size graphs (LG), with respect to the FE and RT, MGALA with the SS-
Mutation and SS-Crossover operators outperforms both MGALA with the XS-
Mutation and XS-Crossover operators, as well as MGALA with the LS-Mutation
and LS-Crossover operators.

e For medium size graphs (MG), with respect to FE and RT, MGALA with the
LS-Mutation and LS-Crossover operators outperforms both MGALA with the
SS-Mutation and SS-Crossover operators, as well as MGALA with the XS-
Mutation and XS-Crossover operators.

e For small size graphs (SG), with respect to FE and RT, MGALA with the XS-
Mutation and XS-Crossover operators outperforms both MGALA with the SS-
Mutation and SS-Crossover operators, as well as MGALA with the LS-Mutation
and LS-Crossover operators.

e For all classes of graphs the maximum value for NR is obtained when CMA is
used.

According to Table 18, the MGALA algorithm with the SS-Mutation and SS-
Crossover operators performs better than the MGALA algorithm with other
mutation operators for large graphs.

6.2.5 Experiment 5
MGALA was compared with five other algorithms in this experiment (GA [31],

Ullmann [33], VF and VF2 [34], and GALA [11] ) for the GIP, in terms of the
number of fitness evaluations required. The result of this experiment is shown in
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Fig. 36. Each result was the average of 30 runs. The graph size was varied from
10 to 200 by an increment of 10. The results clearly show the superiority of
MGALA.

7 Conclusions

A new memetic algorithm called MGALA is proposed for optimization purposes in
this paper. MGALA, which is a newly revised version of GALA, is obtained from a
combination of a GA and an LA, in which the LA plays the role of providing the
local search. Unlike GALA, which uses Lamarckian learning, MGALA uses a
Baldwinian learning model to improve its convergence rate and the quality of its
solution. In this model, chromosomes are represented by OMAs, and the OMA
states keep information about the history of the local search process. Each state in
the OMA has two attributes: the value of the gene (allele), and the degree of
association with the value of the gene. The local search changes the degree of
association between genes and their values. Unlike GALA, which only uses the
value of the genes for its fitness computation, MGALA uses all the information
recorded in the OMA representation of the chromosome (i.e., the degree of
association between genes and their allele, and the values of the genes) to compute
the fitness of genes. In other words, MGALA'’s fitness function is computed using a
chromosome’s fitness (as genotype information) and the history of the local search
kept in the states of the OMA (as phenotype information). The EPP and GIP
applications were used to investigate the performance of MGALA. MGALA was
also compared with some other well-known algorithms for the EPP and GIP
application. Our experimental results showed the superiority of the proposed
algorithm in terms of quality of solution and in the rate of convergence. This line of
research could be extended in several directions, such as in applying GALA and/or
MGALA in solving optimization problems where the environment is dynamic.
Extension examples include the dynamic shortest path problem and the dynamic
traveling salesman problem, improving the proposed algorithms by designing new
mutation or crossover operators, and designing new object migrating automata to be
used for chromosome representation. Another direction that may be pursued is the
development of a mathematical framework for analyzing the proposed algorithm.
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