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Abstract Combing a genetic algorithm (GA) with a local search method produces

a type of evolutionary algorithm known as a memetic algorithm (MA). Combining a

GA with a learning automaton (LA) produces an MA named GALA, where the LA

provides the local search function. GALA represents chromosomes as object

migration automata (OMAs), whose states represent the history of the local search

process. Each state in an OMA has two attributes: the value of the gene (allele), and

the degree of association with those values. The local search changes the degree of

association between genes and their values. In GALA a chromosome’s fitness is

computed using only the value of the genes. GALA is a Lamarckian learning model

as it passes on the learned traits acquired by its local search method to offspring by a

modification of the genotype. Herein we introduce a modified GALA (MGALA) that

behaves according to a Baldwinian learning model. In MGALA the fitness function is

computed using a chromosome’s fitness and the history of the local search recorded

by the OMA states. In addition, in MGALA the learned traits are not passed to the

offspring. Unlike GALA, MGALA uses all the information recorded in an OMA

representation of the chromosome, i.e., the degree of association between genes and

their alleles, and the value of a gene, to compute the fitness of genes. We used

MGALA to solve two problems: object partitioning and graph isomorphism.

MGALA outperformed GALA, a canonical MA, and an OMA-based method using

computer simulations, in terms of solution quality and rate of convergence.
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1 Introduction

Exploration and exploitation are two main search goals. Exploration is important

for ensuring global reliability: the whole of search space needs to be searched to

provide a trustworthy estimate of the global optimum. Exploitation is important,

because it focuses the search effort around the best solutions by searching their

neighborhoods to find more accurate solutions [1]. Many search algorithms use a

combination of a global search method and a local search method to achieve their

goal. These algorithms are known as hybrid methods. The combination of a

traditional genetic algorithm (GA) with local search methods that incorporate

local improvement procedures can improve the performance of GAs. These

hybrid methods are commonly known as memetic algorithms (MAs), or

Baldwinian [2] or Lamarckian [3] evolutionary algorithms (EA). The particular

local search method employed is the important aspect of these algorithms. In the

Lamarckian approach the local search method is used as a refinement genetic

operator that modifies the genetic structure of an individual and places it back in

the genetic population [4]. Lamarckian evolution can increase the speed of search

processes in genetic algorithms. However, it can damage schema processing by

changing the genetic structure of individuals, which may lead to premature

convergence [5, 6].

The Baldwinian learning approach improves the fitness of an individual by

applying a local search, however, individual genotypes remain unchanged. Thus, it

increases the individual’s chances of remaining in subsequent generations. Similar

to natural evolution, Baldwinian learning does not modify the genetic structure of an

individual; but it does increase its chances of survival. Unlike the Lamarckian

learning model, the Baldwinian approach does not allow parents to transfer what

they have learned to their children [6]. The local search method is used as a part of

the individual’s evaluation process in the Baldwinian approach. The local search

method uses local knowledge to create a new fitness that can be used by the global

genetic operators to improve an individual’s capability. In this method one or more

individuals of a population that are similar in genotype gain similar fitness. These

individuals, are probably near to each other in search space, and are equal in fitness

after applying the local search. Therefore, the new search space will be a smooth

surface, and will cover many of the local minima of the new search space. This

fitness modification is known as the smoothing effect. The Baldwinian learning

approach can be more effective, albeit slower, than Lamarckian approaches, since it

does not alter the global search process of GAs [5].

Learning automata (LAs) are based on the general schemes of reinforcement

learning algorithms. LAs enable agents to learn their interaction with an

environment. They select actions via a stochastic process and apply them on a

random, unknown environment. They can learn the best action by iteratively
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performing and receiving stochastic reinforcement signals from the unknown

environment. These stochastic responses from the environment show the favorabil-

ity of the selected actions, and the LAs change their action selecting mechanism in

favor of the most promising actions according to responses from the environment [7,

8].

GALA is a type of MA first reported by Rezapoor and Meybodi [9]. GALA

combines a GA, used for its global search function (Exploration), with an LA, used

for its local search function (Exploitation). Object migration automata (OMAs)

represent chromosomes in GALA. Each state in an OMA has two attributes: the

value of the gene, and the degree of association with its value. Information about the

past history of the local search process shows the degree of association between

genes and their values. GALA performs according to a Lamarckian learning model,

because it modifies the genotype and only uses a chromosome’s fitness to fitness

function computation.

We present a new version of GALA, called modified GALA (MGALA), in the

first part of this paper. MGALA behaves according to a Baldwinian learning

model. Unlike GALA, which only uses the value of genes for fitness computation,

MGALA uses all the information in the OMA representation of the chromosome

(i.e., the degree of association between genes and their alleles, and the value of

genes) to compute the fitness function. In the second part of the paper MGALA is

used to solve two optimization problems: object partitioning and graph isomor-

phism. Computer simulations show that MGALA outperforms GALA, a canonical

MA, and an OMA-based method, in terms of solution quality and in the rate of

convergence.

Overall our paper is organized as follows: after this introduction Sect. 2 briefly

describes learning automata and object migrating automata. GALA and its applica-

tions are described in Sect. 3. MGALA is introduced in Sect. 4. Two MGALA

applications, those of solving the object partitioning problem and the graph

isomorphism problem (GIP), are explained in Sects. 5 and 6, respectively. These

two sections include implementation considerations, simulation results, and compar-

isons with other algorithms, which highlights MGALA’s contributions to the field.

Section 7 is the conclusion.

2 Learning automata and object migrating automata

2.1 Learning automata

A learning automaton (LA) [5] is an adaptive decision-making unit. It can be

described as determination of an optimal action from a set of actions through

repeated interactions with an unknown random environment. It selects an action

based on a probability distribution at each instant and applies it on a random

environment. The environment sends a reinforcement signal to automata after

evaluating the input action. The learning automata process the response of

environment and update its action probability vector. By repeating this process, the

automaton learns to choose the optimal action so that the average penalty obtained
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from the environment is minimized. The environment is represented by a triple

\a; b; c[ . a ¼ fa1; . . .; arg is the finite set of the inputs, b ¼ f0; 1g is the set of

outputs that can be taken by the reinforcement signal, and c ¼ fc1; . . .; crg is the set

of the penalty probabilities, where each element ci of c is corresponds to one input

action ai. The input a(n) to the environment belongs to a and may be considered to

be applied to the environment at discrete time t ¼ n ðn ¼ 0; 1; 2; . . .Þ. The output

b(n) of the environment belongs to b and can take on one of two values 0 and 1. An

b(n) = 1 is identified with a failure or an unfavorable response and b(n) = 0 with a

success or favorable response of the environment. The element ci of c which

characterizes the environment may then be defined by pr bðnÞ ¼ 1jaðnÞ ¼ aið Þ ¼
ci ði ¼ 1; 2; . . .; rÞ. When the penalty probabilities are constant, the random

environment is said a stationary random environment. It is called a non stationary

environment, if they vary with time. Figure 1 shows the relationship between the

LA and the random environment.

There are two main families of learning automata [6]: fixed structure learning

automata and variable structure learning automata. First, we formally define fixed

structure learning automata and then some of the fixed structures learning automata

such as Tsetline, Krinsky, and Krylov automata are described.

A fixed structure LA is represented by a quintuple \a;U;b;F;G[ . where:

• a ¼ fa1; . . .; arg is the set of actions that it must choose from.

• U ¼ fu1; . . .;usg is the set of internal states.

• b ¼ f0; 1g is the set of inputs where 1 represents a penalty and 0 represents a

reward.

• F : U � b ! U is a function that maps the current state and current input into the

next state.

• G : U ! a is a function that maps the current state into the current output. In

other words, G determines the action taken by the automaton.

The operation of fixed learning automata could be described as follows: At the

first step, the selected action aðnÞ ¼ G½UðnÞ� serves as the input to the environment,

which in turn emits a stochastic response b(n) at the time n. b(n) is an element of

b ¼ f0; 1g and is the feedback response of the environment to the automaton. In the

Random Environment

Learning Automata

( )nα

( )nβ

Fig. 1 The relationship between the LA and random environment
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second step, the environment penalize (i.e., b(n) = 1) the automaton with the

penalty probability ci, which is the action dependent. On the basis of the response

b(n), the state of automaton is updated by Uðnþ 1Þ ¼ F½UðnÞ; bðnÞ�. This process

continues until the desired result is obtained.

In the following paragraphs, we describe some of the fixed structure learning

automata such as Tsetline, Krinsky, and Krylov automata.

2.1.1 The two-state automata (L2,2)

This automaton has two states, u1 and u2 and two actions a1 and a2. The automaton

accepts input from a set of {0,1} and switches its states upon encountering an input

1 (unfavorable response) and remains in the same state on receiving an input 0

(favorable response). An automaton that uses this strategy is refereed as L2,2 where

the first subscript refers to the number of states and second subscript to the number

of actions.

2.1.2 The Tsetline automata (the two-action automata with memory L2N,2)

Tsetline suggested a modification of L2,2 denoted by L2N,2. This automaton has

2 N states and two actions and attempts to incorporate the past behavior of the

system in its decision rule for choosing the sequence of actions. While the

automaton L2,2 switches from one action to another on receiving a failure response

from environment, L2N,2 keeps an account of the number of success and failures

received for each action. It is only when the number of failures exceeds the number

of successes, or some maximum value N; the automaton switches from one action to

another. The procedure described above is one convenient method of keeping track

of performance of the actions a1 and a2. As such, N is called depth of memory

associated with each action, and automaton is said to have a total memory of 2N.

For every favorable response, the state of automaton moves deeper into the memory

of corresponding action, and for an unfavorable response, moves out of it. This

automaton can be extended to multiple action automata. The state transition graph

of L2N,2 automaton is shown in Fig. 2.

1 2 N-1 N 2N N+2 N+1

Favorable Response

1 2 N- 1 N 2N N+2 N+1

Unfavorable Response

(β = 0)

(β = 1)

Fig. 2 The state transition graph for L2N,2 (Tsetline automaton)
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2.1.3 The Krinsky automata

This automaton behaves exactly like L2N,2 automaton when the response of the

environment is unfavorable, but for favorable response, any state ui (for i = 1,…,N)

passes to the state u1 and any state ui (i = N ? 1, 2N) passes to the state uNþ1.

This implies that a string of N consecutive unfavorable responses are needed to

change from one action to another. The state transition graph of Krinsky automaton

is shown in Fig. 3.

2.1.4 The Krylov automata

This automaton has state transitions that are identical to the L2N,2 automaton when

the output of the environment is favorable. However when the response of the

environment is unfavorable, a state ui ði 6¼ 1;N;N þ 1; 2NÞ passes to a state uiþ1

with probability 1/2 and to state ui�1 with probability 1/2, as shown in Fig. 4. When

i = 1 or N ? 1, ui stays in the same state with probability 1/2 and moves to uiþ1

with the same probability. When i = N, uN moves to uN�1 and u2N each with

probability 1/2 and similarly, When i = 2 N, u2N moves to u2N�1 and uN each with

probability 1/2. The state transition graph of Krylov automaton is shown in Fig. 4.

Object migration automaton (OMA) that is an example of fixed structure learning

automata is described in the next section. Learning automata have a vast variety of

applications in combinatorial optimization problems [8–10], computer networks

[10–13], queuing theory [14, 15], signal processing [16, 17], information retrieval

1 N  2N N +1 

Favorable Response (β = 0) 

1 N  2N N +1 

Unfavorable Response (β = 1)

Fig. 3 The state transition graph for Krinsky automaton

1 2 N - 1 N 2N N + 2 N + 1 
F a v o r a b l e  R e s p o n s e     ( β  =  0 )

1 2 N - 1 N 2N N + 2 N + 1 

U n f a v o r a b l e  R e s p o n s e     ( β  =  1 )

½ ½  ½ ½  ½  ½½ ½ ½

Fig. 4 The state transition graph for Krylov automaton
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[18, 19], adaptive control [20–22], neural networks engineering [23, 24] and pattern

recognition [25–27].

2.2 Object migration automata

Object migration automata were first proposed by Oommen and Ma [10]. OMAs are

a type of fixed structure learning automata, and are defined by a quintuple

\a;U; b;F;G[ .a ¼ fa1; . . .; arg. is the set of allowed actions for the automaton.

For each action ak, there is a set of states fu k�1ð ÞNþ1; . . .;ukNg, where N is the depth

of memory. The states u k�1ð ÞNþ1 and ukN are the most internal state and the

boundary state of action ak, respectively. The set of all states is represented by

U ¼ fu1; . . .;usg, where s ¼ N � r. b ¼ f0; 1g is the set of inputs, where 1

represents an unfavorable response, and 0 represents a favorable response. F :

U � b ! U is a function that maps the current state and current input into the next

state, and G : U ! a is a function that maps the current state into the current output.

In other words, G determines the action taken by the automaton. W objects are

assigned to actions in an OMA and moved around the states of the automaton, as

opposed to general learning automata, in which the automaton can move from one

action to another by environmental response. The state of objects is changed on the

basis of the feedback response from the environment. If the object wi is assigned to

action ak (i.e., wi is in state ni, where ni 2 u k�1ð ÞNþ1; . . .;ukN

n o
), and the feedback

response from the environment is 0, ak is rewarded, and wi is moved toward the

most internal state ðu k�1ð ÞNþ1Þ of that action. If the feedback from the environment

is 1, then ak is penalized, and wi is moved toward the boundary state (ukN) of action

ak. The variable ck denotes the reverse of the state number of the object assigned to

action ak (i.e., degree of association between action ak and its assigned object). By

rewarding an action, the degree of association between that action and its assigned

object will be increased. Conversely, penalizing an action causes the degree of

association between that action and its assigned object to be decreased. An object

associated with state u k�1ð ÞNþ1 has the most degree of association with action ak,
and an object associated with state ukN has the least degree of association with

action ak.

3 GALA

GALA, which is a hybrid model based on a GA and an LA, was introduced for the

first time by Rezapoor and Meybodi [9]. Chromosomes are represented by OMAs in

this model. In the OMA-based representation, there are n actions in each automaton

corresponding to n genes in each chromosome. Furthermore, for each action, there

are a fixed number of states N. The value of each gene, as a migratory object in the

automata, is selected from the set W = {w1,…,wm} and assigned to states of

corresponding action. After applying a local search, if the assignment of an object to

the states of an action is promising, then the automaton is rewarded and the assigned
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object moves toward the most internal state of that action; otherwise, the automaton

is penalized and the assigned object moves toward the boundary state of that action.

The rewarding and penalizing of an action changes the degree of association

between an object and its action. Figure 5 shows a representation of chromosome

‘‘dfabec’’ using the Tsetline automaton-based OMA with six actions and a depth of

memory of five.

In Fig. 5 there are six actions (genes), denoted by a1, a2, a3, a4, a5, and a6. Genes

1, 2, and 6 possess values ‘d,’ ‘f,’ and ‘c,’ located at internal states 2, 3, and 4 of

their actions, respectively. The value of genes 3 and 5 are ‘a’ and ‘e’ respectively,

and both of them are located at the boundary states of their actions. Consequently,

there is a minimum degree of association between these actions and their

corresponding object. The remaining action, gene 4, has a value of ‘b’ and is located

at the most internal state of its action. That is, it has the maximum degree of

association with action 4. Representation of chromosomes based on other fixed

structure learning automata is also possible. In a Krinsky-based OMA representa-

tion, as shown in Fig. 3, the object will be associated with the most internal state

(i.e., it gets the highest degree of association with the corresponding action) when it

is rewarded, and moves according to the Tsetline automaton-based OMA when it is

penalized. In the representation of a Krylov OMA shown in Fig. 4, the object moves

either toward the most internal state, or toward the boundary state, with a

probability 0.5 toward penalty, and moves according to the Tsetline automaton-

based OMA upon reward.

d

ae

b

f
c

1

5
6

10

11

1520

16

21

25

30

26 1α

2α

3α

4α

5α

6α

Fig. 5 The state transition graph of a Tsetline-based OMA
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3.1 Global search in GALA

The global search in GALA is based on a traditional genetic algorithm. A population of

chromosomes is represented by an OMA. Chromosome i is denoted by CRi =

[(CRi.Action(1), CRi.Object(1), CRi.State(1)),…,(CRi.Action(n), CRi.Object(n), CRi.

State(n))], where CRi.Action(k) is the kth action of CRi, CRi.Object(k) is the object

assigned to the kth action (the value of the kth gene), and CRi.State(k) is the state of the

object assigned to the kth action (the degree of association between gene k and

its value), specifying 1 B kBn, 1 B CRi.Object(k) B m, and (k - 1)N ? 1BCRi.

State(k) B kN. The initial population is created randomly and objects are located at the

boundary state of their actions. At the beginning of each generation the best

chromosome from the previous generation is moved to the population of the current

generation. Next, the crossover operator is applied to the parent chromosomes at rate rc
(parents are selected according to the chromosome’s fitness using a tournament

mechanism), and then the mutation operator is applied at rate rm.

3.2 Crossover operator

The crossover operator in GALA is applied as follows: Two chromosomes, CR1 and

CR2, are selected by the selection mechanism as parent chromosomes. Two actions,

r1 and r2, are also randomly selected from CR1 and CR2, respectively. Then for each

action in the range of [r1,r2] of CR1, the assigned object is exchanged with an

assigned object of the same action in chromosome CR2. In the crossover operator,

the previous states of the selected actions in CR1 and CR2 are transferred to the child

chromosomes. The pseudo code for the crossover operator is shown in Fig. 6.

Figure 7 illustrates an example of a crossover operator. First, two actions are

randomly selected in the parent chromosomes (e.g. actions 2 and 4 here), and then

objects are assigned to all actions in the range of [2,4] in CR1, and are exchanged

with the objects of the corresponding actions in CR2.

3.3 Mutation operator

The mutation operator is the same as in a traditional genetic algorithm. Two actions

are selected randomly in the parent chromosome, and then their assigned objects are

exchanged. The previous states of selected actions in the parent chromosome are

transferred to the child chromosomes in this operator. Pseudo code for the mutation

operator is shown in Fig. 8.

Fig. 6 Pseudo code for a crossover operator
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Figure 9 illustrates an example of a mutation operator. First two actions in the

parent chromosome are randomly selected (e.g. actions 1 and 2 here). The mutation

operator exchanges both the state and the object assigned to action 1 with the state

and the object assigned to action 2.

3.4 Local learning in GALA

Local learning in GALA is done using OMA representations of chromosomes. If the

objects assigned to an action are the same before and after applying a given local

Fig. 7 An example of crossover operator

Fig. 8 Pseudo code for a mutation operator
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search, then that action will be rewarded; otherwise, it will be penalized. It is worth

noting that a local search only changes the state of the actions (according to the

OMA connections), not the objects assigned to the actions (i.e., the action associated

with an object will not change). By rewarding an action, the state of that action will

move toward the most internal state according to the OMA connection. This causes

the degree of association between an object, and its corresponding action, to be

increased. The state of an action remains unchanged, if the object is located at its

most internal state, such as the state of object D in action 4, shown in Fig. 11.

Figure 10 provides pseudo code for rewarding an action. Figure 11 illustrates an

example of rewarding an action.

Penalizing an action causes the degree of association between an object and its

corresponding action to be decreased. If an object is not in the boundary state of its

action, then penalizing causes the object assigned to the action to move toward the

boundary state. This means that the degree of association between the action and the

corresponding object will be decreased (Fig. 12). If an object is in the boundary

state of its action, then penalizing the action causes the object assigned to that action

to change, and results in the creation of a new chromosome. How a new

chromosome is created depends on the application. A new chromosome is always

created in such a way that its fitness becomes greater than the fitness of the old

chromosome. Figure 13 shows the effect of the penalty function on action 3 of a

sample chromosome (assuming that chromosome ‘‘cbadfe’’ has better fitness than

chromosome ‘‘cbedfa’’). Pseudo code for the penalty function is shown in Fig. 14.

The pseudo code for GALA is shown in Fig. 15.

Fig. 9 A sample of mutation operator

Procedure Reward( CR, u )
     If (CR.State(u)-1) mod N <> 0 then
          Dec(CR.State(u)); //Decrement the state number of action (the state of action move toward the most internal 
state)
     End If
End Reward

Fig. 10 Pseudo code for a reward function
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3.5 Applications of GALA

GALA has been used in a variety of applications, including the GIP [11], join

ordering problems in database queries [12–15], the traveling salesman problem
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Fig. 11 An example of a reward function
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Fig. 12 An example of a penalty function
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Fig. 13 Another example of a penalty function
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[16–18], the Hamiltonian cycles problem [19], sorting problems in graphs [20], the

graph bandwidth minimization problem [21–23], software clustering problems [24,

25], the single machine total weighted tardiness scheduling problem [26], data

allocation problems in distributed database systems [27, 28], and the task graph

scheduling problem [29, 30].

4 Modified GALA (MGALA)

Modified GALA (MGALA) is a new version of GALA. Like GALA each

chromosome is represented by an object migration automaton (OMA) whose states

keep information about the past history of the local search process. Each state in the

OMA has two attributes: the value of the corresponding gene, and the degree of

association of the gene with its value. In MGALA the fitness function is computed

using the past history of the local search kept in the OMA states, as well as the

chromosome’s fitness. Unlike GALA, which only uses the value of the genes for

Fig. 14 Pseudo code for the penalty function

Fig. 15 Pseudo code for GALA
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fitness computation, MGALA uses all the information in the OMA representation of

the chromosome (i.e., the degree of association between genes and their values) to

compute the fitness function. Hence, unlike GALA, which behaves according to a

Lamarckian learning model it behaves according to a Baldwinian learning model.

MGALA’s various components will be described in the remainder of this section.

4.1 Fitness function

The fitness function in MGALA is not only dependent on genotype information, but

also on phenotype information. We use the fitness function f
0 ðCRÞ ¼

Pn
i¼1 fið1þciÞ

for maximization problems, and f
0 ðCRÞ ¼

Pn
i¼1 fið1 � ciÞ for minimization prob-

lems in the selection of chromosomes. In these functions fi is the fitness of the ith

gene, and ci is the degree of association between action ai and its assigned object.

The depth of memory is N, so we have 1
N
� ci � 1. The parent chromosomes and the

chromosomes of the next generation are selected based on the defined fitness

function using a tournament mechanism.

4.2 Mutation operator

Depending on whether the state of the selected actions changes or not, we define

two types of mutation operators in MGALA. In the first type the states of the

selected actions remain unchanged (i.e., the degree of association between actions

and their assigned objects are saved). In second class the states of the selected

actions are changed (i.e., the degree of association between actions and their

assigned objects are lost).

MGALA has three mutation operators defined in this paper: SS-Mutation, XS-

Mutation, and LS-Mutation. Specifically:

• The mutation operator in which the previous state of selected actions can be

saved is referred to as the SS-Mutation.

• The mutation operator in which the previous state of selected actions can be

exchanged is referred to as the XS-Mutation.

• The mutation operator in which the previous state of selected actions can be lost

is referred to as the LS-Mutation.

The SS-Mutation and XS-Mutation are examples of the first type of mutation

operator described above, and the LS-Mutation is an example of the second type.

These mutation operators are described in more detail below.

4.2.1 SS-Mutation

Assuming actions 1 and 2 are the selected actions, the SS-Mutation exchanges the

objects assigned to the states of actions 1 and 2. Figure 16 shows an example of an

SS-Mutation. Pseudo code for our SS-Mutation is shown in Fig. 17.
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4.2.2 XS-Mutation

The XS-Mutation is the same as the mutation that GALA uses. The states of the

actions, along with their assigned objects, are exchanged. Figure 18 shows an

example of an XS-Mutation. Assuming actions 1 and 2 are the selected actions, the

XS-Mutation exchanges the object and the state of action 1 with those of action 2.

Pseudo code for our XS-Mutation is shown in Fig. 19.

4.2.3 LS-Mutation

The LS-Mutation is the same as that used in GALA, except that the state of each

action is changed to become its corresponding boundary state. Figure 20 shows an

example of an LS-Mutation operator. Assuming that actions 1 and 2 are the selected

actions, the LS-Mutation operator causes: 1) The object assigned to the state of

action 1 is exchanged with the assigned object of the action; and 2) The state of each

action changes to become its corresponding boundary state. Pseudo code for our LS-

Mutation operator is given in Fig. 21.

4.3 Crossover operator

Similar to the mutation operators, we define two different types of crossover

operators for MGALA. In the first type, the states of selected actions remain

unchanged, and in the second type the states of the actions change to the boundary

states.

Fig. 16 An example of an SS-Mutation

Fig. 17 Pseudo code for the SS-Mutation
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Fig. 18 An example of an XS-Mutation

Fig. 19 Pseudo code for the XS-Mutation

Fig. 20 An example of an LS-Mutation

Fig. 21 Pseudo code for the LS-Mutation
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Three crossover operators, SS-Crossover, XS-Crossover, and LS-Crossover, are

defined in MGALA:

• The crossover operator in which the previous state of selected actions can be

saved is referred to as the SS-Crossover.

• The crossover operator in which the previous state of selected actions can be

exchanged is referred to as the XS-Crossover.

• The crossover operator in which the previous state of selected actions can be lost

is referred to as the LS-Crossover.

The SS-Crossover and XS-Crossover are examples of crossover operators of the

first type, and the LS-Crossover is an example of the second type. These crossover

operators are described in further detail below.

4.3.1 SS-Crossover

Figure 22 shows an example of an SS-Crossover. Assuming actions 2 and 4 are

selected randomly from the parent chromosomes, the SS-Crossover exchanges the

Fig. 22 An example of an SS-Crossover
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assigned object of each action in the range of [2,4] of CR1, with the assigned object

of the same action in the range of [2,4] of CR2. Note that in the SS-Crossover the

states of the actions remain unchanged. Pseudo code for the SS-Crossover is shown

in Fig. 23.

4.3.2 XS-Crossover

The XS-Crossover is the same as the crossover used in GALA. Figure 24 shows an

example of an XS-Crossover. Assuming actions 2 and 4 are selected randomly from

the parent chromosomes, the XS-Crossover exchanges both the assigned object and

the state of each action in the range of [2,4] of CR1, with the assigned object and the

state of the same action in the range of [2,4] of CR2. Figure 25 shows the pseudo

code for the XS-Crossover.

4.3.3 LS-Crossover

The LS-Crossover is the same as the crossover used in GALA, except that the state

of each action is changed to become its corresponding boundary state. Figure 26

shows an example of an LS-Crossover. Assume that actions 2 and 4 are randomly

selected in the parent chromosomes, then the LS-Crossover causes: (1) Each object

assigned to the actions in the range of [2,4] of CR1 is exchanged with the assigned

object of the same action in the range of [2,4] of CR2; and (2) The state of each

action changes to become its boundary state. Figure 27 shows the pseudo code of

the LS-Crossover.

5 The equipartitioning problem

Let A ¼ fA1; . . .;AWg be a set of W objects. We want to partition A into R classes

{P1,…,PR} such that the objects used more frequently are located together in the

same class. We assume that the joint access probabilities of the objects are

unknown. This problem is called the object partitioning problem. A special case of

the object partitioning problem, referred to as the equal partitioning problem (EPP),

is where the objects are equipartitioned. In an EPP each class has exactly M = W/

R objects. For solving the EPP with MGALA we define a chromosome to have

Procedure SS-Crossover ( CR1, CR2 )
       Generate two random numbers r1 and r2 in [1,n] where r1 < r2;
       For i = r1 to r2 do
                 Swap(CR1.Object(CR1.Action(i)), CR2.Object(CR2.Action(i)));
       End For
End SS-Crossover

Fig. 23 Pseudo code for the SS-Crossover
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W genes (actions) and the value of the genes are selected from a set of classes

{P1,…,PR} (as migratory objects in the OMA) such that each class is assigned to W/

R of genes (actions). Objects are initially assigned to the boundary state of actions.

Figure 28 shows a chromosome based on a Tsetline OMA representation for 6

objects and 2 classes (called class a and class b) with N = 5. In this figure objects 1,

3, and 4 are assigned to class a, and objects 2, 5, and 6 are assigned to class b.

Fig. 24 An example of an XS-Crossover

Fig. 25 Pseudo code for the XS-Crossover
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5.1 Local search for EPP

Suppose a query [which is a pair of objects (Ai, Aj)] has been accessed. If the

assigned objects of actions ai and aj are the same, then both actions ai and aj are

rewarded and their states change according to OMA connections. If the assigned

objects of actions ai and aj are different, then they are penalized and their states

change according to OMA connections. Pseudo code for our local search of the EPP

is shown in Fig. 29.

Fig. 26 An example of an LS-Crossover

Procedure LS-Crossover ( CR1, CR2 )
       Generate two random numbers r1 and r2 in [1,n] where r1 < r2;
       For i = r1 to r2 do
                 Swap(CR1.Object(CR1.Action(i)), CR2.Object(CR2.Action(i)));
                 CR.State(CR.Action(i)) = CR.Action(i)*N; //the state of action changed to the boundary state
       End For
End LS-Crossover

Fig. 27 Pseudo code for the LS-Crossover
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5.2 Experimental results

We studied the efficiency of our MGALA algorithm in solving the EPP by

comparing its results to those obtained for an OMA method reported in [10] and to

the GALA algorithm. Queries were chosen randomly from a pool of queries for all

experiments. The pool of queries was generated in such a way that the sum of

probabilities that object Ai in partition pi is jointly accessed with other objects in

partition pi is p, and with objects in partition pj (j = i) is 1 - p, that is:
X
Aj2pi

Pr Ai;Aj accessed together
� �

¼ p ð1Þ

Therefore, if p = 1, then queries will only involve objects in the same partition.

As the value of p decreases, the queries will become decreasingly informative about

the solution of the EPP [10]. For all experiments an initial population of

chromosomes of size 1 was randomly created, the size of each chromosome was set

equal to the number of objects, the mutation rate was 0.05, the selection mechanism

was (1,1), p was 0.9, and the depth of memory was 2. The algorithm terminates

when all the objects in only chromosome are located in the most internal state of
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Fig. 28 A chromosome representation of the EPP with W = 6, R = 2, and N = 5

Genet Program Evolvable Mach (2015) 16:399–453 419

123



their actions. For all experiments a Tsetline-based OMA was used for chromosome

representation. Each reported result was averaged over 30 runs. We performed a

parametric test (T test) and two non-parametric tests (wilcoxon rank sum test and

permutation test) at the 95 % significance level to provide statistical confidence.

The T tests were performed after ensuring that the data followed a normal

distribution (by using the Kolmogorov–Smirnov test).

5.2.1 Experiment 1

In this experiment we compared the results obtained from MGALA with the results

of two other algorithms, an OMA-based algorithm reported in [10] and the GALA

version of the algorithm, for the EPP, in terms of the number of iterations (number

of accessed queries) required by the algorithm. MGALA was tested with three

different mutation operators: SS-Mutation, XS-Mutation, and LS-Mutation.

Table 1 presents the results of the different algorithms for 14 different cases with

respect to the average number of iterations and their standard deviation. From the

results reported in Table 1 we report the following:

• The MGALA algorithm outperforms both the OMA and GALA algorithms.

• For cases (W = 9 and R = 3), (W = 12 and R = 2) and (W = 8 and R = 2),

MGALA using the LS-Mutation performs the best, and for the other cases

MGALA with the SS-Mutation displays the best performance.

• The OMA algorithm displays the worst performance compared with the GALA

and MGALA algorithms.

• As the number of classes (R) decreases, the number of iterations required by all

algorithms increase. This is because a low value for R means a higher number of

objects will be placed in each class, leading to a situation where more actions

have the same class number (migratory objects). This causes the probability that

a mutation operator swaps two objects between two actions to decrease.

• MGALA with the XS-Mutation displays the same performance as GALA. This

is because: (1) In the MGALA and GALA algorithms, the selection mechanism

is considered to be (1,1), that is, MGALA, like GALA, has no selection

Fig. 29 Pseudo code for our local search of the EPP
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mechanism in this mode; and (2) the XS-Mutation operator used by MGALA is

the same as the mutation operator used by GALA.

Table 2 shows the p values of the two-tailed T test, the p values of the two-tailed

wilcoxon rank sum test and the p values of the two-tailed permutation test. From the

results reported in Table 2 we report the following:

• For all three kinds of statistical tests (wilcoxon, permutation and T test), the

difference between the performance of the OMA and the performance of the

other algorithms is statistically significant (p value\0.05) in most cases.

5.2.2 Experiment 2

This experiment’s goal was to evaluate the accuracy of the solution produced by

MGALA. Before we introduce the concept of accuracy for MGALA, we will

provide some preliminaries. For this purpose we use an example of equipartitioning

with the 4 objects A1, A2, A3, and A4, and two classes, a and b. A Tsetline based on

an OMA with a depth of memory 2 will be used for the chromosome representation

shown in Fig. 30. We also assume that the initial population is of size one, and that

the only chromosome in the initial population is created randomly, and has its

migratory objects in the boundary state of the actions.

For this example there are the three possible object equipartitioning schemes

specified below:

• aabb: Objects A1, A2 are in class a and objects A3, A4 are in class b.

• abab: Objects A1, A3 are in class a and objects A2, A4 are in class b.

• abba: Objects A1, A4 are in class a and objects A2, A3 are in class b.

The chromosome in Fig. 30 can be also represented by ð�aab�bÞ which

corresponds to the following situation:

• Object A1 is in partition a and the migratory object is located in the boundary

state of action 1.

• Object A2 is in partition a and the migratory object is located in the internal state

of action 2.

• Object A3 is in partition b and the migratory object is located in the internal state

of action 3.

• Object A4 is in partition b and the migratory object is located in the boundary

state of action 4.

Each possible equipartitioning scheme may correspond to any of the 16 possible

chromosomes out of all 48 possible chromosomes. For example chromosomes ð�a�a�b�bÞ,
ð�a�a�bbÞ, ð�a�ab�bÞ, ð�a�abbÞ, ð�ab�b�bÞ, ð�aa�bbÞ, ð�aab�bÞ, ð�aabbÞ, ða�a�b�bÞ, ða�a�bbÞ,
ða�ab�bÞ,ða�abbÞ, ðaa�b�bÞ, ðaa�bbÞ, ðaab�bÞ, and ðaabbÞ show the equipartitioning aabb.
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We group chromosomes corresponding to a given equipartitioning into two

different sets: a converged chromosomes set (CCS), and a non-converged chromo-

somes set (NCCS). The CCS includes all the chromosomes for which all objects of

class a or class b are in the internal states. All other chromosomes are in the NCCS. For

example, chromosomes ð�a�a�b�bÞ, ð�a�a�bbÞ, ð�a�ab�bÞ, ð�aa�b�bÞ, ð�aa�bbÞ, ð�aab�bÞ, ða�a�b�bÞ,
ða�a�bbÞ, and ða�ab�bÞ, of equipartitioning aabb, are in the NCCS of equipartitioning

aabb, and ð�a�abbÞ, ð�aabbÞ, ða�abbÞ, ðaa�b�bÞ, ðaa�bbÞ, ðaab�bÞ, and ðaabbÞ are in the

CCS of equipartitioning aabb. MGALA converges to one of the following six sets:

either the NCCS of equipartitioning aabb, or the CCS of equipartitioning aabb, or the

NCCS of equipartitioning abab, or the CCS of equipartitioning abab, or the NCCS of

equipartitioning abba, or the CCS of equipartitioning abba. Let p1, p2, p3, p4, p5, and

p6 be the probabilities of the current chromosome to be in one of the above-mentioned

sets, respectively. Furthermore, assume that eighty percent of the queries accessed

from the pool of queries are (A1, A2) or (A3, A4). For MGALA to produce the correct

solution it must generate a population containing one of following chromosomes:

ð�a�a�b�bÞ, ð�a�a�bbÞ, ð�a�ab�bÞ, ð�a�abbÞ, ð�aa�b�bÞ, ð�aa�bbÞ, ð�aab�bÞ, ð�aabbÞ, ða�a�b�bÞ, ða�a�bbÞ,
ða�ab�bÞ,ða�abbÞ, ðaa�b�bÞ, ðaa�bbÞ, ðaab�bÞ, and ðaabbÞ. So, MGALA must converge to

one of the sets of NCCS of equipartitioning, or to one of the sets of CCS of

equipartitioning aabb. The algorithm is more accurate if the probability of converging

to a set of NCCS of equipartitioning, or to a set of CCS of equipartitioningaabb (that is

p1 ? p2) are higher than 0.8.

Next we undertook the experimentation phase of the study. Input queries were

generated in such a way that eighty percent of the queries accessed from the pool of

queries were (A1, A2) or (A3, A4). Note that the initial population is considered to be

of size one, that the only chromosome in the initial population is created randomly,

and that it has its migratory objects at the boundary state of the actions. That is

chromosome ð�a�a�b�bÞ, which belongs to the NCCS of equipartitioning aabb, or

ð�a�b�a�bÞ, which belongs to the NCCS of equipartitioning abab, or ð�a�b�b�aÞ, which

belongs to the NCCS of equipartitioning abba are the only options. Therefore,

α

β

β

1α

3α

4α

α

2α

Fig. 30 A representation of the
EPP with W = 4, R = 2, and
N = 2
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initial values for p1, p3, and p5 are considered to be zero, and initial values for p2, p4,

and p6 are considered to be 1/3. Figure 31a–c show the evolution of p1, p2, p3, p4,

p5, and p6 for the three different mutation operators SS-Mutation, XS-Mutation, and

LS-Mutation.

These figures show that p1 ? p2 approaches a value close to 0.9 for all mutation

operators. That is, when eighty percent of the queries accessed from the pool of

queries are A1, A2 or A3, A4, MGALA converges to the correct equipartitioning

(aabb) with a probability close to 0.9. The mutation rate was set to 0.05 for this

experiment.

Table 3 presents the MGALA algorithm results for different mutation operators

and different query percentages (accessed from the pool of queries) being (A1, A2) or

(A3, A4), with respect to the accuracy of the solution and its standard deviation. The

percentage varies from 40 to 100 by increments of 10 in Table 3. From these results

we conclude the following:

• For all mutation operators the accuracy of the solution generated by MGALA

increases as the percentage of queries (A1, A2) or (A3, A4) in the input increases.

• MGALA has the highest accuracy when the LS-Mutation operator is used.

Table 4 shows the results of statistical tests. From the results reported in Table 4

we report the following:

• For all three kinds of statistical tests (wilcoxon, permutation and T test), the

difference between the performance of the MGALA algorithm when it uses the

LS-Mutation operator and the performance of the MGALA algorithm when it

uses other mutation operators is not statistically significant (p value[0.05).

5.2.3 Experiment 3

The goal of this experiment was to study the impact of the parameter N (depth of

memory) on the number of iterations required by the MGALA algorithm to find

optimal equipartitioning. The depth of memory was varied from 2 to 10 by

increments of 2. MGALA was tested with three different mutation operators.

Tables 5, 6 and 7 show the results obtained for the MGALA algorithm with the SS-

Mutation, XS-Mutation, and LS-Mutation for 14 different cases, with respect to the

average number of iterations required and their standard deviation.

• For lower values of R MGALA requires a higher number of iterations to

converge to optimal equipartitioning.

• For higher values of W/R MGALA requires a higher number of iterations to

converge to optimal equipartitioning.

• For higher values of W/R MGALA requires a higher depth of memory to

converge to optimal equipartitioning.

• The MGALA algorithm with a depth of memory N = 2 performs better than

MGALA with a depth of memory of N = 2.
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These conclusions are because higher values of W/R mean a higher number of

objects are placed in each class. This leads to a situation where more actions have

the same class number (migratory objects), and also decreases the probability that a

mutation operator swaps two objects between two actions.

Tables 8, 9 and 10 show the p values of the two-tailed T test, the p values of the

two-tailed wilcoxon rank sum test and the p values of the two-tailed permutation

test for MGALA algorithm with SS-Mutation, XS-Mutation and LS-Mutation

respectively. From the results reported in these tables we report the following:

• For all three kinds of statistical tests (wilcoxon, permutation and T test), the

difference between the performance of the MGALA algorithm with depth of

memory N = 2 and the performance of the MGALA algorithm with a depth of

memory of N = 2 is statistically significant (p value\0.05) in most cases for all

three types of operators.

Table 3 Accuracy of MGALA with respect to percentage of queries (A1, A2) or (A3, A4) and mutation

operators

The percentage of

queries (A1, A2)

or (A3, A4)

SS-Mutation XS-Mutation LS-Mutation

Avg. Std. Avg. Std. Avg. Std.

40 0.41 5.10E-02 0.42 4.10E-02 0.42 4.40E-02

50 0.54 7.20E-02 0.56 4.20E-02 0.56 3.30E-02

60 0.69 7.70E-02 0.7 5.50E-02 0.69 6.50E-02

70 0.8 7.80E-02 0.81 6.70E-02 0.8 6.90E-02

80 0.9 6.50E-02 0.91 6.30E-02 0.9 7.80E-02

90 0.92 6.60E-02 0.94 7.20E-02 0.92 8.50E-02

100 0.95 7.20E-02 0.96 6.50E-02 0.94 5.60E-02

Table 4 The results of statistical tests for MGALA algorithm with LS-Mutation operator vs. MGALA

algorithm with SS-Mutation and XS-Mutation operators with respect to percentage of queries (A1, A2) or

(A3, A4)

The percentage of

queries (A1, A2)

or (A3, A4)

SS-Mutation XS-Mutation

P value P value

T test Permutation Wilcoxon T test Permutation Wilcoxon

40 4.09E-01 5.19E-01 4.46E-01 1.00E?00 7.35E-01 8.65E-01

50 1.99E-01 3.44E-01 6.90E-01 1.00E?00 6.23E-01 5.69E-01

60 5.67E-01 1.31E-01 1.91E-01 5.25E-01 7.50E-02 9.05E-02

70 5.98E-01 7.15E-01 8.13E-01 5.73E-01 1.88E-01 3.67E-01

80 5.50E-01 2.99E-01 3.75E-01 5.89E-01 4.60E-02 6.79E-02

90 2.71E-01 3.49E-01 2.01E-01 3.34E-01 2.69E-01 3.55E-01

100 5.77E-01 7.28E-01 4.87E-01 2.12E-01 3.29E-01 2.52E-01
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6 The graph isomorphism problem

A graph is described by G = (E, V) where V is the set of vertices and E � V � V is

the set of edges. Two graphs G = (E1, V1) and H = (E2, V2) are isomorphic if, and

only if, their adjacency matrices M(G) and M(H) differ only by permutations of

rows and columns, i.e., M(G) and M(H) are related with a permutation r, according

to Eq. (2).

MðHÞ ¼ P �MðGÞ � PT ! P �MðGÞ � PT
� �

i;j
¼ ½MðHÞ�r ið Þ;rðjÞ; ð2Þ

where P is the permutation matrix of r. If we define the difference between two

graph as

JðrÞ ¼ MðHÞ � P �MðGÞ � PT
�� ���� ��; ð3Þ

where jj � jj is the matrix norm, defined as Mj jj j ¼
P

i

P
j jmijj, the GIP can then be

formulated as a search optimization problem in searching for a permutation r that

minimizes J(r).

The mapping error of vertex k in graph G to vertex r(k) in graph H is defined as

JkðrÞ ¼
Xn
m¼1

½MðHÞ�k;m � MðGÞ½ �rðkÞ;rðmÞ
���

���þ
Xn
m¼1

½MðHÞ�m;k � ½MðHÞ�rðmÞ;rðkÞ
���

���; ð4Þ

where n is the number of vertices of G and H. For undirected graphs the mapping

error can be computed according to Eq. (5), as given below:

Jk rð Þ ¼ 2 �
Xn
m¼1

½M Hð Þ�k;m � ½M Hð Þ�r kð Þ;r mð Þ

���
��� ð5Þ

Consequently, the mapping error of graphsG andH can be computed using Eq. (6).

J rð Þ ¼
Xn
k¼1

Jk rð Þ ð6Þ

In this paper we use fg ¼ Cmax � J rð Þ as genetic fitness, where Cmax is the maxi-

mum of J(r) [31].

6.1 The local search in the graph isomorphism problem

If two graphs are isomorphic to each other, then the weight and the number of input

and output edges of isomorphic vertices must be equal. This is taken into

consideration in the design of the local search procedure [31]. Pseudo code for our

local search method is given in Fig. 32. This local search method consists of the

following steps:

1. The vertices are partitioned into a number of subsets of equal weight.

2. The worst gene of the current chromosome is selected (line 2 of Fig. 32).
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3. The value of the selected gene is swapped with the value of a random gene

selected from the same subset (lines 3 and 4 of Fig. 32).

6.2 Experimental results

In this section, several experiments are described that studied the effect of different

MGALA parameters on the performance of the GIP. For this purpose we used a

database with 10,000 coupled pairs of isomorphic graphs with different sizes [32].

We classified these graphs into three groups: small graphs (n\ 50), medium graphs

(50 B n\ 100), and large graphs (100 B n\ 200). MGALA results are compared

with the results obtained from an algorithm based on a GA [31], an algorithm

reported by Ullmann [33], and the VF and VF2 algorithms [34]. The source codes for

these algorithms are available at http://amalfi.dis.unina.it/graph. Every result

reported is the average of 30 runs. For all experiments an initial population of size

100 was created randomly, the chromosome size was set equal to the size of the

graph, the mutation rate and crossover rate were both set to 0.05, and the selection

mechanism was (l ? k). Each algorithm terminates when either solution has been

found or the number of generations exceeds 10,000. A Tsetline-based OMA is used

for all experiments to represent chromosomes. We use RT to refer to running time,

FE to refer to the number of fitness evaluations for the runs converged to the solution,

and NR to refer to the number of runs not converged to the solution. All experiments

were performed on three classes of graphs: small graphs (SG), medium graphs (MG)

and large graphs (LG). We performed a parametric test (T test) and two non-para-

metric tests (wilcoxon rank sum test and permutation test) at the 95 % significance

level to provide statistical confidence. The T tests were performed after ensuring that

the data followed a normal distribution (by using the Kolmogorov–Smirnov test).

6.2.1 Experiment 1

Experiment 1 aimed to find the optimal memory depth for different classes of graphs

for the MGALA algorithm. For this purpose we studied the effect of parameter

N (depth of memory) on the FE, RT, and NR. The MGALA results were then

compared with the results obtained for the Canonical Memetic Algorithm (CMA).

Note that MGALA is equivalent to the CMA when N = 0. For this experiment the

graph density was set to 0.5, and weights for vertices and edges were chosen from

1. Procedure LocalSearch( CR )
2. g1 = Worst Gene(CR);
3. g2 = Select a Random Gene From Same Subset(g1);
4. Swap(CR(g1), CR(g2));
5. End LocalSearch;

Fig. 32 Pseudo code for the local search in the GIP
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[0,100]. Table 11 lists the RT, FE, NR, and the standard deviation for the different

depths of memory employed. From the results we conclude the following:

• For all classes of graphs the minimum value for RT and FE are obtained when

N = 0,

• For all classes of graphs the maximum value for NR is obtained when N = 0,

and

• For all classes of graphs the NR is inversely proportional to depth of memory.

Table 12 shows that, according to results of wilcoxon test, permutation test and

T test, the MGALA algorithm with a memory depth of N = 2 performs better than

the MGALA algorithm for N = 2 for large graphs (LG).

Figure 33 shows the impact of the depth of memory on the FE and NR for

different classes of graphs. Changes in the FE are minor for a depth of memory

greater than 4 in all classes of graphs. Also, this figure shows that for all classes of

graphs, a depth of memory greater than 10 causes convergence (NR = 0) in all runs.

6.2.2 Experiment 2

This experiment investigated the effect of graph edge and vertex weights on

MGALA performance. We studied the effect of weights on the FE, RT, and NR for

different classes of graphs using MGALA and CMA (MGALA when N = 0). For

this experiment the density of all graphs was set to 0.5 and N was set to 10. The

experiment was repeated for five different weight ranges: [0,20], [0,40], [0,60],

[0,80], and [0,100]. The experiment was also repeated with unweighted graphs

(graphs whose edge weights are chosen from {0,1}, and whose nodes have no

weights). Table 13 gives the RT, FE, NR, and standard deviation for the different

weight parameters.
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memory for different classes of graphs
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From these experimental results we conclude the following for MGALA:

• For all classes of graphs RT and FE are minimized when the weights for vertices

and edges are chosen from [0,100] and are maximized for the unweighted graph.

This is because GIP only uses the properties of local search method. If the

weights of the graph have higher values, then the vertices of the graph are

partitioned into a higher number of subsets with a lesser number of members.

The effect of this is to cause just the vertices of the subset, which have same

weight as the worst gene, to have a chance for exchanging with the worst gene in

the local search method. Consequently, the local search selects an alternative

vertex accurately in weighted graphs.

• For all classes of graphs the NR is inversely proportional to the weights of the

vertices and edges.

• For all classes of graphs the maximum value of NR is obtained when CMA is

used.

Table 14 shows that, for all three kinds of statistical tests (wilcoxon, permutation

and T test), the difference between the performance of the MGALA algorithm when

weights for vertices and edges are chosen from [0,100], and the performance of the

MGALA algorithm when it uses other weight parameter values that are statistically

significant (p value\0.05) for most graphs.

Figure 34 shows the FE for different graph classes and weights. The FE for all

classes of graphs when the weights are chosen from ranges greater than [0,20] are

almost the same. Figure 34 also shows that with all graph classes the NR is equal to

zero when the weights are chosen from ranges greater than [0,60]. Consequently, the

FE and NR are both minimized when the weights are chosen from ranges greater

than [0,60] (ranges [0,80] or [0,100]).
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parameter for different classes of graphs
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6.2.3 Experiment 3

Experiment 3 studied the effect of graph density (D) on MGALA performance. The

density of a graph is defined as ¼ 2jEj
Vj jð Vj j�1Þ, which is the probability of the existence

of an edge between any two vertices. For this experiment the weights of vertices and

edges were chosen from [0,100], and N was set to 10. The impact of graph density

on the FE, RT, NR, and the standard deviation for different classes of graphs using

both MGALA and CMA are reported in Table 15. From these results we conclude

the following:

• For all classes of graph RT and FE are minimized when the graph density is 1.

• For all classes of graphs NR decreases as the graph density increases.

• For all classes of graphs a maximum value for NR is obtained when CMA is

used.

Table 16 shows that, for all three kinds of statistical tests (wilcoxon, permutation

and T test), the difference between the performance of the MGALA algorithm when

the density is 1, and the performance of the MGALA algorithm when it uses other

density parameter values, is statistically significant (p value\0.05) for most graphs.

Figure 35 shows the impact of graph density on the FE for different classes of

graphs. The FE remains almost fixed for graph densities [0.5 for all classes of

graphs. Figure 35 also shows that for all classes of graphs, all runs converge (NR) to

zero when the graph density is[0.6.

6.2.4 Experiment 4

The experimental goal here was to study the impact of different mutation and

crossover operators on MGALA performance. For this experiment the density of all
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Fig. 35 Number of fitness evaluations (FE) and number of non-converged runs (NR) vs. density of graph
for different classes of graphs
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graphs was set to 0.5, and the depth of memory was set to 10. Weights for vertices and

edges were selected from [0,100]. Table 17 lists the RT, FE, NR, and the standard

deviations from different mutation and crossover operators. These results lead us to

conclude the following:

• For all classes of graphs a minimum NR value is obtained when the LS-Mutation

and LS-Crossover operators are used.

• For large size graphs (LG), with respect to the FE and RT, MGALA with the SS-

Mutation and SS-Crossover operators outperforms both MGALA with the XS-

Mutation and XS-Crossover operators, as well as MGALA with the LS-Mutation

and LS-Crossover operators.

• For medium size graphs (MG), with respect to FE and RT, MGALA with the

LS-Mutation and LS-Crossover operators outperforms both MGALA with the

SS-Mutation and SS-Crossover operators, as well as MGALA with the XS-

Mutation and XS-Crossover operators.

• For small size graphs (SG), with respect to FE and RT, MGALA with the XS-

Mutation and XS-Crossover operators outperforms both MGALA with the SS-

Mutation and SS-Crossover operators, as well as MGALA with the LS-Mutation

and LS-Crossover operators.

• For all classes of graphs the maximum value for NR is obtained when CMA is

used.

According to Table 18, the MGALA algorithm with the SS-Mutation and SS-

Crossover operators performs better than the MGALA algorithm with other

mutation operators for large graphs.

6.2.5 Experiment 5

MGALA was compared with five other algorithms in this experiment (GA [31],

Ullmann [33], VF and VF2 [34], and GALA [11] ) for the GIP, in terms of the

number of fitness evaluations required. The result of this experiment is shown in
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Fig. 36. Each result was the average of 30 runs. The graph size was varied from

10 to 200 by an increment of 10. The results clearly show the superiority of

MGALA.

7 Conclusions

A new memetic algorithm called MGALA is proposed for optimization purposes in

this paper. MGALA, which is a newly revised version of GALA, is obtained from a

combination of a GA and an LA, in which the LA plays the role of providing the

local search. Unlike GALA, which uses Lamarckian learning, MGALA uses a

Baldwinian learning model to improve its convergence rate and the quality of its

solution. In this model, chromosomes are represented by OMAs, and the OMA

states keep information about the history of the local search process. Each state in

the OMA has two attributes: the value of the gene (allele), and the degree of

association with the value of the gene. The local search changes the degree of

association between genes and their values. Unlike GALA, which only uses the

value of the genes for its fitness computation, MGALA uses all the information

recorded in the OMA representation of the chromosome (i.e., the degree of

association between genes and their allele, and the values of the genes) to compute

the fitness of genes. In other words, MGALA’s fitness function is computed using a

chromosome’s fitness (as genotype information) and the history of the local search

kept in the states of the OMA (as phenotype information). The EPP and GIP

applications were used to investigate the performance of MGALA. MGALA was

also compared with some other well-known algorithms for the EPP and GIP

application. Our experimental results showed the superiority of the proposed

algorithm in terms of quality of solution and in the rate of convergence. This line of

research could be extended in several directions, such as in applying GALA and/or

MGALA in solving optimization problems where the environment is dynamic.

Extension examples include the dynamic shortest path problem and the dynamic

traveling salesman problem, improving the proposed algorithms by designing new

mutation or crossover operators, and designing new object migrating automata to be

used for chromosome representation. Another direction that may be pursued is the

development of a mathematical framework for analyzing the proposed algorithm.
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