
Evolutionary model building under streaming data
for classification tasks: opportunities and challenges

Malcolm I. Heywood

Received: 17 February 2014 / Revised: 23 October 2014 / Published online: 14 November 2014

� Springer Science+Business Media New York 2014

Abstract Streaming data analysis potentially represents a significant shift in

emphasis from schemes historically pursued for offline (batch) approaches to the

classification task. In particular, a streaming data application implies that: (1) the

data itself has no formal ‘start’ or ‘end’; (2) the properties of the process generating

the data are non-stationary, thus models that function correctly for some part(s) of a

stream may be ineffective elsewhere; (3) constraints on the time to produce a

response, potentially implying an anytime operational requirement; and (4) given

the prohibitive cost of employing an oracle to label a stream, a finite labelling

budget is necessary. The scope of this article is to provide a survey of developments

for model building under streaming environments from the perspective of both

evolutionary and non-evolutionary frameworks. In doing so, we bring attention to

the challenges and opportunities that developing solutions to streaming data clas-

sification tasks are likely to face using evolutionary approaches.

Keywords Streaming data � Non-stationary processes � Dynamic environment �
Imbalanced data � Task decomposition � Ensemble learning � Active learning �
Evolvability � Diversity � Memory

1 Introduction

Model based evolutionary computation (EC) is taken to to be synonymous with

supervised learning, i.e., finding a mapping from a typically higher dimensional

Una-May O’Reilly as Area Editor for Data Analytics and Knowledge Discovery in the standard way.

M. I. Heywood (&)

Faculty of Computer Science, Dalhousie University, Halifax, NS, Canada

e-mail: mheywood@cs.dal.ca

123

Genet Program Evolvable Mach (2015) 16:283–326

DOI 10.1007/s10710-014-9236-y

http://crossmark.crossref.org/dialog/?doi=10.1007/s10710-014-9236-y&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s10710-014-9236-y&domain=pdf

independent variable, x, to a typically lower dimensional dependent variable, y, with

credit assignment performed relative to label information. The goal of this article is

to articulate the challenges and opportunities that follow for model based EC as we

increasingly encounter the phenomena of streaming data. A shortlist of properties

that make machine learning (ML) under the streaming task more of a challenge than

when encountered under a non-streaming setting potentially includes some

combination of the following:

• the underlying process creating the data might well be non-stationary/dynamic,

implying that the dataset is subject to concept shift/drift. A classifier effective on

one part of a stream is therefore not necessarily useful elsewhere. Conversely,

the majority of ‘offline’ supervised learning frameworks assume that data is

independent and identically distributed (e.g., [59]). This is the basis for building

models from a static sample (the training partition), validating against an

independent sample of data, and testing for the generalization of trained models

to a third independent partition.

• datasets are not necessarily finite, or at the very least, they are sufficiently large

to preclude multiple passes, implying that a single pass constraint has to be

assumed. When combined with the non-stationary nature of the stream this

implies that learning needs to be a continuous ‘online’ activity, with solutions

available at anytime during the progression of the stream.

• the cost of labelling the data implies that only a fraction of the data can be

labelled. This places an additional requirement on the model to also detect

change in the stream, and/or actively request label information on demand or

make use of unlabelled data cf. online semi-supervised learning;

• the continuously evolving nature of stream content has implications for learning

under class imbalance, as it is generally not possible to a priori ‘stratify’ the dataset.

Previous reviews or monographs have typically considered the streaming data task

from the specific perspective of ‘classical’ ML without considering how features

from model based EC might be applicable [17, 76, 77, 154]. Conversely, several

monographs in evolutionary computation have surveyed the issue of EC in

‘dynamic environments’ (e.g., [51, 140]), but make little reference to parallel

developments from ML or the streaming task in particular. The goal of this work is

to attempt to provide some perspective on what can be gained from drawing on the

rich literature available from both sources of study with respect to evolving model

based solutions to streaming data tasks.

The following survey assumes two distinctions. Firstly, we draw a distinction

between the goal of frameworks for model based EC (such as genetic programming

(GP), learning classifier systems (LCS) or neuro-evolution) and optimization (as in,

say, evolutionary strategies). In particular, the availability of gradient information

and a closer coupling between representation space and search/error space provide

additional information for evolutionary optimization (under dynamic environments)

that do not exist under model based EC. Hence, the action of variation operators

(acting on the representation space) can have a wide range of effects on the search

space in GP (e.g., [115]), whereas the real-valued representations assumed under

284 Genet Program Evolvable Mach (2015) 16:283–326

123

optimization tasks ensure a much closer coupling. Moreover, optimization tasks

focus on the accurate ‘tracking’ of optima and place little emphasis on testing

against unseen data or generalization.

Secondly, most of the research in machine learning for streaming data is

associated with classification as opposed to function approximation/regression.

This, on the face of it, is quite surprising. There is a long tradition of using model

based EC for forecasting/prediction. However, the goal of forecasting is to predict

the next instance of a sequence of data, after each prediction it is assumed that the

true value for the dependent variable is known, and the process iterates.1 Streaming

data scenarios frequently do not conform to this mode of operation because a

labelling budget is generally enforced, thus raising the issue of when to request label

information. Having made this distinction, we will make reference to contributions

from evolutionary optimization and (symbolic) regression when they directly

contribute to streaming data issues as characterized above.

In order to develop the concept of model based EC for streaming data, a generic

characterization for the streaming data task is introduced (Sect. 2), where this also

leads to a discussion of the implications of streaming data on the bias–variance

tradeoff. Section 3 introduces at a high-level various considerations pertinent to the

task of model building under streaming data from three standpoints: general ML

requirements, ensemble ML requirements, and generic EC requirements. Section 4

presents benchmarking issues specific to the streaming data context, divided into

two broad themes: evaluation methodologies and benchmarking datasets. Section 5

reviews progress to date vis-à-vis advances in streaming data algorithms in general

and opportunities for using model based EC. A concluding discussion with

recommendations for future research follows in Sects. 6 and 7 respectively.

2 Characterizing the streaming data task

Several distinct approaches have been taken to characterizing the nature of

streaming data. The first attempts to place constraints on the relationship between

training and test partitions, or identify the necessary conditions under which model

building and generalization can take place (Sect. 2.1). This has been a particular

concern of classical ML. Conversely, the focus of EC has (historically) been more

associated with characterizing the types of change, with the goal of then establishing

what properties the EC framework for model building under dynamic environments

should retain (Sect. 2.2). A final subsection reviews the implications of concept

change on the bias–variance dilemma frequently used to characterize properties of

credit assignment in ML model building (Sect. 2.3).

2.1 Statistical frameworks

The independent (vector of inputs) and dependent discrete class labels—or x and y

respectively—are frequently characterized using a statistical model (e.g., [81]).

1 Multi-step prediction implies that several predictions are made before the true values are known.

Genet Program Evolvable Mach (2015) 16:283–326 285

123

Thus, the data stream is defined as a continuous sequence of ðxðtÞ; yðtÞÞ pairs.
However, label information (the dependent variable) is typically only provided by

engaging an ‘oracle’ (e.g., human expert), in which case the stream is characterized

by xðtÞ alone with yðtÞ being available for a subset of t. Moreover, it is assumed that

the ‘training’ and ‘test’ data correspond to consecutive finite length sequences. Such

an assumption leads to the shared distribution assumption, i.e., both training and

test partitions need to be generated by the same distribution, pðx; yÞ, for

generalization to take place.

The shared distribution assumption implies that the underlying process respon-

sible for creating the data has the form:

pðx; yÞ ¼ PðyjxÞ � pðxÞ ð1Þ

where pðxÞ denotes the distribution of input data, as in attributes/features. Thus,

feature change can be stationary or non-stationary and when non-stationary the

transitions might be smooth (implying multiple processes are simultaneously

present) or abrupt. PðyjxÞ denotes the conditional dependencies between input and

label distributions. Conditional changes imply that the label switches for the same

input as the stream progresses. Dual changes imply that both pðxÞ and PðyjxÞ
undergo variation (as the stream progresses).

The shared distribution assumption comes from the constraint that training and

test distributions are still assumed to be suitably similar or ptrðx; yÞ and ptsðx; yÞ are
statistically equivalent. This is not to say that all stream behaviours will fit this

framework, just that for the purposes of defining a basis for measuring

generalization, such a constraint is adopted. Not all frameworks for learning under

streaming data contexts subscribe to this constraint. Indeed, should two consecutive

sequences of data not conform to this constraint, we have a requirement for ‘change’

or ‘novelty’ detection.

The shared distribution framework—or more generally a Bayesian causal

framework—provides the basis for identifying six reasons for a shift between

training and test distributions [166]:

• Simple covariance shift: change solely due to temporal variation in the input

distribution, pðxÞ.
• Prior probability shift: for the same distribution of inputs, pðxÞ, the probability

of labels, PðyÞ, vary. The implication of this is that (some subset of) data that

was at one time labelled as say class 0, is associated with a different class label.

• Sample selection bias: represents a pre-processing or measurement bias. For

example, user surveys as collected from a single medium (e.g., twitter) potentially

result in a bias towards collecting information from a specific demographic. Thus,

any prediction based on such a survey (the training partition) would likely not

reflect the overall opinion of a voting public (the test partition).

• Imbalanced data: is a form of ‘‘data shift by design’’. That is to say, minor/major

classes are intensionally over/under sampled in order to increase/decrease the

sensitivity of a classifier to specific classes. However, the relative frequency of

each class may vary over the course of a stream. The implication being that any

286 Genet Program Evolvable Mach (2015) 16:283–326

123

sample will not necessarily represent all classes. This is also referred to as

skewed data (Sect. 5.6).

• Domain shift: case of variation due to a lack of ‘object invariances’ in the

original input attributes x. Examples of this might be sensitivity to lighting

intensity or more generally a requirement for movement invariant attributes.

• Source component shift: the same concept might be described from multiple

sources (as in sensor fusion). However, the differing sources might result in the

same concept being described at different points in time using different subsets

of attributes.

2.2 Types of change

Under a general EC setting, multiple authors have characterized the types of change

that a non-stationary task might assume [1, 25, 48, 51, 140, 170]. Three distinct

scenarios appear, as summarized by Table 1. In the case of an underlying process

described by random changes, the point at which a change takes place is unrelated to

the observed variable, pðxÞ, or a previous change, pðy; xÞ. Processes of this type

might represent sources of breakdown, such as motor or sensor failure. At the other

extreme (bottom row, Table 1), the underlying property describing the stream is a

stationary function of the current (and possibly previous) instance(s) of the observed

variable, pðxÞ. Thus, variation in observed or dependent variables are entirely

predictable and possibly of a cyclic nature. Conversely, the second scenario

corresponds to processes that are ‘complex’. Thus, there is an underlying

relationship between changes pðy; xÞ, and previous states, pðxÞ, but the relation is

too complex to identify, i.e., chaotic systems. Hence, as the parameters describing a

complex systems vary, then periods of predictable behaviour may exist before a

phase change takes place and the environment essentially becomes non-stationary.

Naturally, it might be possible to make predictions about complex processes, but

only over relatively short predictive horizons, e.g., as in weather forecasting. We

also note that the three categories of this table are essentially extremes sampled

from a continuum of processes. Delimiting when one process categorization

‘morphs’ into another is likely to be quite subjective.

Morrison and Branke also emphasize the relative size and frequency of change

[25, 140]. Both properties have implications for the stability versus plasticity

tradeoff (Sect. 3), where from the perspective of model based evolution, this is

Table 1 Types of change to the underlying process

Type of change Characteristics

Stochasic process changes that are independent of previous state or change

Complex process non-random but subject to multiple feedback paths

within the process (i.e., chaotic)

Deterministic process non-random and predictable change

Adapted from [51]

Genet Program Evolvable Mach (2015) 16:283–326 287

123

related to the balance between exploitation and exploration in credit assignment.

Abbass et al. [1] emphasize a binary categorization in which sources of change are

either ‘model boundary’ changes or sample changes. Model boundary changes are

associated with changes to the underlying process responsible for generating the

data (e.g., cyclic or stochastic variation in the generating process), whereas sample

changes are associated with biases introduced by issues unrelated to the underlying

data generation process [e.g., noise, class distribution/skew (within a finite sampling

period)] or factors associated with the ML interface to the data stream.

2.3 Bias–variance tradeoff

Setting aside the online versus batch concept of data access/credit assignment,

streaming data scenarios can be considered an example of learning from a ‘large’

dataset. The bias/variance characterization of error from a machine learning

algorithm in general are summarized as follows (e.g., [59, 128]):

• Error variance: measures the sensitivity of a model to a particular subset of data

or, equivalently, the sensitivity to the underlying model complexity. Thus, under

classification tasks, variance characterizes how much decision boundaries

change as a function of data/model initialization.

• Error bias: measures the degree to which the typical response of a model (i.e.,

w.r.t. all data) varies from the desired value. Thus, bias is associated with basic

topology (of a model) and variance characterizes a specific parameterization.

With these definitions in mind, most ML algorithms have concentrated on variance

reduction [23], particularly given that in the case of classification tasks the bias–

variance tradeoff is multiplicative and non-linear [59]. Thus, classification using

Naive Bayes is known to emphasize variance reduction alone, whereas methods for

combining multiple weak learners are potentially effective at both variance and bias

reduction [23, 128]. Over a series of benchmarks, Brain and Webb demonstrate that

the overall contribution of error variance under classification tasks decreases as the

size of the dataset increases, whereas the contribution of bias terms may actually

increase [23]. Gama notes that such a finding may also be significant to the context

of model building under streaming data [76, 77]. However, this does not imply that

variance reduction should be ignored. Indeed, given that streaming data implies that

it is necessary to construct models from small subsets of the data (e.g., a sliding

window), then variance reduction is still the principal objective of recent ML

approaches to streaming data classification (e.g., [199]).

2.4 Discussion

Naturally, the above characterizations are independent of the approach to model

building. However, given the much tighter coupling between representation and

credit assignment assumed in the case of classical ML, and the increasing incidence

of Bayesian frameworks, it is not surprising that a conditional probability model lies

at the centre of ML characterizations for the streaming task. Conversely, EC as

288 Genet Program Evolvable Mach (2015) 16:283–326

123

applied to dynamic environments has placed more emphasis on the types of change.

Taken purely from a historical perspective, most benchmarking results to date

assume two basic characterizations of the concept shift task: discrete switches

between different underlying processes or some form of continuous variation in the

underlying process.

One area that is often an oversight in the characterization of concept drift in the

streaming data task is that of variation in attribute support. On the face of it, this is

implicit in the concept of, say, change as applied to the independent variable, x. In
practice, most benchmarking assumes that all attributes are employed, whereas

associating different subsets of attributes with different generating processes results

in multiple forms of the curse of dimensionality [111, 192]. Recently an e-greedy
approach was proposed with linear classifiers in which new samples were taken

from the stream in order to periodically resample the attribute space [185]. We note

that GP will naturally support stochastic resampling of the attribute space as part of

the training cycle.

3 Identifying generic ML properties for the stream learning task

The properties considered appropriate to the task of model identification under

streaming data have been developed independently by the generic ML versus EC

communities. We again begin by establishing two ML perspectives—generic ML

issues and somewhat more specific issues relative to ensemble methods—before

reviewing properties pertinent to EC model building under streaming data.

3.1 Generic ML perspective

Relative to offline (or batch) model identification, as performed against a single

training–validation–test partition, the streaming data task presents various additional

generic challenges summarized as follows [57, 76, 80]:

Computational: both time and memory efficiency should be constant (and

preferably linear) with respect to the data throughput of the stream. Assuming that

the stream is labelled, this has at least two interpretations: continuous/online

updating (e.g., [70, 147]) versus some form a batch/incremental update policy (e.g.,

[136, 152]). Batch update policies are only likely to approach this objective ‘on

average’. However, depending on the data rate of a streaming application, this may

be perfectly acceptable. Conversely, if the stream is not labelled, then credit

assignment is potentially limited to the rate at which labels are provided.2 Section

5.3 investigates this issue further in the case of change detection without the aid of

labels. We also recognize that not all attributes necessarily carry an equal evaluation

cost. Anytime interruptible ML algorithms attempt to incrementally construct a

model given prior a computational budget for attribute evaluation [66]. Thus, a

decision tree representation might be assumed on account of the ability to build

2 A caveat being semi-supervised learning under streaming data, Sect. 5.4.

Genet Program Evolvable Mach (2015) 16:283–326 289

123

models without necessarily utilizing all attributes.3 Indeed, attribute evaluation costs

as well as model accuracy are used to bias tree construction.

Single pass: given that data is being received on a continuous basis, a model can

only index data over some finite interval relative to the current time step, t. This is

generally taken to imply that either a sliding window or consecutive blocks of non-

overlapping data characterize the interface to the stream. Once there is a shift in the

location of the sliding window/data block, it is not possible to revisit data previously

encountered. An exception to this is when the learning algorithm introduces a finite

archive of data that is in some way pertinent to the identification of useful models

(e.g., active learning). A tradeoff naturally exists in terms of: (1) archive size versus

real-time operation; and (2) the ‘age’ versus diversity of exemplars retained in such

an archive. This topic will be discussed more explicitly within the context of EC

methods in Sects. 3.3 and 5.1.2.

Anytime operation: independent from the process of model identification

(continuous or batch), the ML framework must be able to provide estimates for the

dependent variable, y, at any point in the stream. From an EC perspective this implies

that a ‘champion’ individual/ensemble must always be available. This naturally raises

questions regarding how such a champion is identified, given that a convenient

definition for a validation partition might not be readily apparent (Sect. 3.3.3).

Generalization: is relative to the point in the stream that a prediction is made.

Depending on the type of stream, various forms of generalization might be

applicable. In the case of a stationary process, the single pass constraint would imply

that we might desire generalization (under test) to approach that of batch learning

with the same computational cost. Conversely, for non-stationary streams it might be

expected that model accuracy should be maintained until a ‘significant’ change in the

stream is detected, i.e., the shared stationary distribution assumption of Sect. 2.1 is

suitably well maintained. After a significant change is detected, updates to the model

should be performed before a new solution can be identified and operation resumed.

Stability versus plasticity: relates to the tradeoff in balancing the capacity to react to

change versus losing the capability to generalize to the underlying process, i.e., the

balance between new and prior knowledge. Thus, distinctions need to be made

regardingwhat of previousmodel(s) should be retained versus introducing completely

new model(s) [65, 88]. From a streaming data perspective the limited/incremental

nature inwhich data is presented results in virtual concept drift4 (necessitating updates

to current knowledge) versus ‘actual’ concept drift in which case replacing previous

knowledge is more appropriate [65, 190]. Several authors note that there may also be

an inherent correlation with the stability–plasticity dilemma and the rate at which

credit assignment is performed [65, 84, 137]. Thus,MLalgorithms based on exemplar-

wise updating tend to emphasize plasticity over stability, whereas algorithms which

update relative to a batch/chunk of data tend to emphasize stability.5

3 See model building with embedded versus wrapper or filter frameworks for attribute selection [113].
4 See also ‘sample selection bias’, Sect. 2.1.
5 We note that this in itself is a function of assumptions made regarding parameterization. At some point

decreasing the size of data chunks will result in performance approaching that of exemplar-wise updating.

Observations of this type have informed the use of differing pairwise sliding window durations (Sect.

5.1.1) and evolved temporal features, e.g., [125, 184].

290 Genet Program Evolvable Mach (2015) 16:283–326

123

3.2 Ensemble ML perspective

Ensemble methods represent a framework for combining the predictions from

multiple base learners into a single decision [128]. Indeed, both bagging and

boosting represent an obvious starting point for developing ensembles under

streaming contexts [147, 150]. The motivation for applying ensembles to streaming

data (in addition to the stronger performance of ensemble based learning) is that

changes can more easily be accommodated through the addition or removal of

ensemble members than through incremental refinement to a single model, i.e.,

incremental refinements to a single model might be more sensitive to epistatic

interactions. An early characterization of ensemble methods as applied to streaming

data assumed three categories of which only one category reflected addition/

subtraction of ensemble members [112]. However, recent research has concentrated

on approaches that actively grow/replace ensemble membership. Moreover, it may

even be possible to maintain multiple ensembles in order to: (1) react to cyclic

behaviours in the stream [158]; or (2) explicitly maintain multiple ensembles with

different diversity properties [138]. A summary of potential design decisions

associated with ensembles as applied to streaming data might therefore include:

• Ensemble base learner diversity: Different base learners or mixtures of base

learners comprising the ensemble might be considered depending on the type of

stream [65, 102].

• Incremental change to current knowledge (e.g., [107, 158]) as opposed to the

outright dropping of previous knowledge (e.g., [68, 167]);

• Adapting the weight associated with learners versus no weighting: Weight

adaptation represents an intermediate level of refinement in which the models

denoting the ensemble remain unchanged but their relative contribution to the

voting is modified [2, 90, 152]. Conversely, weightless frameworks emphasize

plasticity and tend to drop weaker ensemble members immediately (e.g., [81,

167]);

• Classifier weight adaption versus data instance based weight adaptation: The

weighing of votes from an ensemble is generally a function of either classifier

performance [54, 65, 152] or of the data from which a member of the ensemble

was constructed (e.g., [20, 150]);

• Identification of ensemble member for replacement: Various heuristics have

been proposed for targeting the ensemble member for replacement when

performance as a whole is deemed to be poor, e.g., replace the oldest [167] or

member with least ‘contribution’ [107, 171].

• Role of diversity on ensembles: Within an environment undergoing change,

diversity provides faster reaction times to a change, but does not necessarily

facilitate fast convergence to the new concept [137, 165]. One implication of

this might be that the amount of diversity/plasticity needs to in some way

‘match’ the amount of concept drift/shift in the stream. This result mirrors the

scenario in GP where conflicts can appear between fitness improvement and

maintaining population diversity (e.g., [64]).

Genet Program Evolvable Mach (2015) 16:283–326 291

123

• Change detection is now potentially a property of the behaviour of the ensemble:

With different models sensitive to different properties of a stream, analysis of

variance has been proposed as a mechanism by which members of an ensemble

can be targeted for replacement [199].

• Separation of duties: Different aspects of the decision making process can be

distributed to specialist parts of a wider framework, potentially resulting in

hybrid architectures. For example, the combination of entropy based change

detection (relative to sliding window content) with random forest style

ensembles [2] or the pairing of ensembles based on Hoeffding decision trees

with Kalman filter style change detection [18].

• Hybrid frameworks: If labels are freely available or available at a sufficiently

low cost, it becomes feasible to pursue the incremental refinement of all

classifiers currently available as well as test for the introduction of an entirely

new classifier to the ensemble [27]. Adopting such a dual strategy has the

advantage of providing the ability to accurately track concept drift as well as

reacting to concept shift (gradual versus sudden change).

Table 2 summarizes the role of different design decisions when constructing an

ensemble. Various redundancies are apparent, in that several different design

decisions might have the same effect. There has been little work on identifying best

practices for ensemble design in streaming data, in part due to the lack of formal

results (discussed further below). However, there is also a potential opportunity for

deploying hyper-heuristics for the purpose of more explicitly searching the space of

algorithms for ensemble design (see Sect. 7).

Many open issues remain, not least regarding appropriate metrics for quantifying

ensemble diversity, thus making it difficult to answer questions regarding credit

assignment. Some results exist for static tasks, including the role of ensemble voting

margins in determining generalization error [157]. Moreover, the ensemble

misclassification rate can be expressed in terms error associated with individual

members and a diversity term. The diversity term can be characterized as being

‘good’ or ‘bad’ [26], a result that has a corresponding observation in EC [187].

Table 2 Basic design decisions for ML ensembles under streaming data

Task Parameters

Constructing new ensemble member Diversity of base learner [65, 102]

Sample stream data using Boosting versus Bagging [147, 150]

Identify ensemble member for

replacement

Age based heuristics [167]

Performance based heuristics [107, 171]

Class imbalance Effect of sampling biases [34, 55, 86, 186]

Drift management Incremental updating of current models [107, 158]

Adapt voting weights [2, 90, 152]

Shift management Outright replacement of one or more ensemble member [68, 81,

167]

Diversity management Impact on capacity for change [26, 137, 165]

292 Genet Program Evolvable Mach (2015) 16:283–326

123

Under non-stationary data, it has been established that reducing the absolute value

for the ensemble margin produces an equivalent increase in diversity [165].

A second open question is in regard to the method assumed for combining the

outcome from multiple models under a non-stationary task. Specifically, bounds on

the expected loss associated with different ensemble frameworks are only available

for the training partition (e.g., Adaboost [75]), whereas concept shift/drift will likely

invalidate such an estimate. Various constraints have been proposed in an effort to

identify ‘‘well behaved’’ loss functions, e.g., convex versus non-convex. However,

attempts to provide formulations for ensemble methods under non-stationary data

currently lack transparency [56]. Finally, we note that once a change is detected, the

issue of whether to retain in whole or in part the material from the current ensemble,

versus dropping all models and retraining from scratch, can potentially be addressed

by maintaining multiple ensembles with different diversity properties [138].

Maintaining such diversity under label budgets remains an open question.

3.3 Generic model-based EC perspective

In adopting an evolutionary approach to model building a frequently made

observation is that we need to resist the tendency for the population to ‘converge’

while also introducing mechanisms that explicitly promote the capacity to react to

change. Such a statement comes from general ML observations regarding ‘stability

versus plasticity’ of ensemble methods as applied to online learning tasks with

concept drift [137], experiences from evolutionary methods as applied to dynamic

optimization tasks [22, 51], and empirical studies from related tasks such as neural

evolution under partially observable non-Markovian reinforcement learning tasks

[134, 164]. With this in mind, three basic properties will be adopted for the purposes

of the following discussion: evolvability/plasticity, memory, and diversity.

Evolvability/plasticity characterizes the efficiency by which ‘useful’ phenotypic

variation is generated, given the current state of the environment. As pointed out in

the introduction, unlike ML or EC as applied to (dynamic) optimization tasks, the

mapping between representation and search spaces is not tightly coupled under GP.

Thus, it is not generally possible to provide an ordering of the representation space

(as is possible under real-valued representations) [115]. Instead evolvability is

related to the development of neutrality, support for evolving the genotypic to

phenotypic mapping, and modularity (Sect. 3.3.1). Modularity, for example, enables

model based evolution to delimit the scope of variation operators, thus clarifying

credit assignment [67]. Moreover, when changes to the task have structure (as

opposed to random variation) then support for modularity facilitates faster rates of

adaptation [149].

We recognize two potential sources of memory: the (population of) candidate

models and the (subset of) task instances from which models are evolved. Thus, as

EC maintains multiple solutions in parallel, the potential exists for switching

between different candidate solutions during the stream. We note that in the case of

slowly changing environments, the population as a whole acts as a source of

genotypic memory [182]; especially if the form of variation is limited to past

instances of the environment or combinations thereof. Conversely, success under

Genet Program Evolvable Mach (2015) 16:283–326 293

123

rapidly changing environments implies that a population is capable of adapting to

multiple environments simultaneously [182].

Supporting such a capability implies that appropriate mechanisms will be

required to ‘manage’ such complexity. In the following we explicitly note

contributions from diversity maintenance, modularity (cf., evolvability) or multiple

forms of reward [187]. Reward is related to both the organism and the

environmental context. From the perspective of streaming data, the latter represents

the subset of data against which evolution is performed, i.e., not all exemplars are

equally informative. In the following survey we highlight the role of active learning

(cf. coevolution) in identifying useful instances of data from the stream to learn

from. The implication being that both candidate solution and task instance receive

some form of reward (Sect. 3.3.2).

3.3.1 Evolvability

A working definition for evolvability was recently proposed as ‘‘the capability of a

system to generate adaptive phenotypic variation under certain environmental

conditions and to transmit it via an evolutionary process’’ [94, 96]. Turney

characterizes this in terms of two equally fit individuals, A and B [172]. If the

children of A are likely to be fitter than children of B, then individual A is more

‘evolvable’ than that of B. This implies that evolvability is not a direct function of

fitness (as in performance) based selection, but rather a function of other genotypic

properties, e.g., neutrality, the genotypic-to-phenotypic mapping, or the inherent

plasticity of a representation (Baldwin effect).

Wang and Wineberg [187] build on Turney’s observations and propose to

characterize evolvability through: (1) the ability to improve fitness (as opposed to

the absolute value of fitness, or an EC perspective); and (2) the amount of genotypic

variation (a biological perspective). With this in mind a three-population model is

adopted in which each population assumes a different performance metric: (1)

absolute scalar fitness (core population), (2) offspring outperforming their parents

(fitness change; subpopulation), and (3) offspring which are most genotypically

distinct (genotypic change; subpopulation). In doing so, the authors are explicitly

rewarding evolvability as well as absolute fitness. Moreover, the authors demon-

strate that diversity is maintained through evolvability and not diversity for

diversity’s sake. Wang and Wineberg also make use of Price’s equation to adapt the

size of the two secondary populations, where adaption of population size in dynamic

environments is a recurring theme. Specifically, adapting population size in order to

maintain a constant rate of genotypic substitution potentially represents a

mechanism for adapting to a slowly changing environment in GP [95, 178].

Hu and Banzhaf [94] make the observation that a continuous background level of

neutrality in GP facilitates ‘bursts’ of (phenotypic) variability once the environment

undergoes a change. Neutrality can also be viewed as a memory mechanism by

which previously useful or entirely new genotypic material can be switched in and

out of the phenotype. Wagner et al. [184] utilize such a mechanism in a GP

framework for forecasting. Sources of phenotypic variation are potentially related to

294 Genet Program Evolvable Mach (2015) 16:283–326

123

the plasticity of the genotype-to-phenotype mapping [183] and might therefore be

characterized in terms of the amount of: variability and neutrality.

Providing explicit support for genotype-to-phenotype mappings in EC in general

may then have beneficial properties under dynamic environments [61]. The GE2

framework provides a scheme for evolving pairs of genotypes, one to specify a

‘meta grammar’ and the second a ‘solution grammar’ [146]; the latter defining

specific GP solutions in terms of the meta grammar. Naturally, the use of a meta

grammar introduces additional paths through which the same ultimate phenotype

can be discovered. Moreover, additional paths also exist for the introduction of

neutral genetic material or gene duplication. Later work extended the solution

grammar to provide a much stronger representation for evolving constants, a

characteristic frequently overlooked in GP, and demonstrated to provide significant

advantages under stock trading tasks [50]. Open questions include defining the most

effective scheme for coevolving meta grammar and the individuals using an

instance of the meta grammar. Other researchers have also demonstrated the utility

of GP with genotypic-to-phenotypic mappings under dynamic environments, this

time with an emphasis on identifying the most appropriate instruction types [191].

The capacity to support modularity represents one of the earliest factors

explicitly articulated as pertinent to model building under dynamic task domains

[161]. However, for such modularity to demonstrate more than a mere sum of its

parts, it is necessary for there to be non-trivial interdependencies between modules

or ‘near decomposibility’ [188]. This then has implications for the type of search

process that are capable of efficiently manipulating modules. Watson and Pollack

make the case for multiple levels of selection [188]. Recently, the (neuro-) evolution

of modularity itself was demonstrated when the cost of ‘connectivity’ was also

included in the reward scheme [36]. Moreover, when the properties of the

environment (goals) undergo structural variation, then the rate of evolutionary

variation when the representation supports modularity has been shown to be

significantly faster than with non-modular representations [103]. Further schemes

explicitly reporting on the utility of modularity in dynamic environments include:

gene-duplication under neuro-evolution [30], and a role for automatically defined

functions [14].

3.3.2 Memory

Memory—relative to evolution of models—for the most part is associated with

maintaining multiple candidate solutions simultaneously. Dempsey et al. [51]

recognize two forms: implicit and explicit. Typically, explicit memory mechanisms

are related to reusing previously evolved individuals as seeds when events are

encountered that trigger the archiving of individuals for later use [63]. This brings

us back to evolvability, i.e., sufficiently strong parents give rise to offspring with

even better adaptations. Moreover, explicit memory mechanisms also imply a need

for memory management to protect the development of potentially useful genetic

material for later use.

Genet Program Evolvable Mach (2015) 16:283–326 295

123

Multiple works based on genetic algorithms assume some form of distance metric

based on genotypic similarity (e.g., [139, 194]). From the perspective of EC both

genotypic and phenotypic measures of diversity appear to be sensitive to the

application on which they are applied [28]. Related research with ensemble

algorithms under streaming data indicates that the explicit maintenance of diversity

across multiple models is beneficial, although caveats apply (Sect. 3.2). Conversely,

several forms of neuro-evolution applied to non-Markovian policy discovery tasks

have been able to make explicit use of genotypic metrics for diversity maintenance

(e.g., speciation in [134, 164]); however, evaluation under streaming data tasks has

not to date been performed. Mechanisms for explicitly maintaining diversity will be

discussed further in Sect. 3.3.3.

Implicit memory mechanisms relate to memory through genotypic redundancy.

Under the guise of genetic algorithms, a lot of attention has been paid to diploid

representations [120, 174, 194]. Again, these have not tended to carry over to the

case of GP. Part of this is likely due to the widespread abundance of code bloat

(introns) in GP [24, 115]. As such, introns6 can act as an alternative mechanism by

which previously functional code are reintroduced (see also neutrality under

‘Evolvability’, Sect. 3.3.1). Such an implicit memory mechanism has been shown to

be effective under GP applied to dynamic time series forecasting [184]. Indeed,

Dempsey et al. note that such alternative implicit memory mechanisms have the

additional advantage of avoiding the need to introduce suitable ‘dominance

functions’ to define under what conditions to switch between the dominant versus

recessive material. A third form of implicit memory is also available in the form of

the population model itself [153] (i.e., multiple individuals retain the same ‘building

blocks’), albeit configured in different ways—thus, searching multiple parts of the

search space simultaneously. However, this is only useful if suitable mechanisms

can be found for maintaining population plasticity and/or diversity (see Sects. 3.3.1

and 3.3.3 respectively).

Finally, memory has more recently been conceived of from the perspective of

data archiving, where this represents a form of active learning (Fig. 2). In this case,

model building is performed against the content of the data archive (DSðiÞ, Fig. 2) as
opposed to all the stream content (SWðtÞ, Fig. 2). Under an active learning context

the goal is to solve the dual learning task of caching what is most informative to

learn from, as opposed to merely treating all data as equally relevant (see also

‘scaffolding’ [65]). More pragmatically, the data archive serves to decouple the rate

at which evolution is performed from the rate at which stream content updates. This

is particularly important given that the cost of model construction might preclude

operation at the rate data passes through the stream. Updates to the data archive

content (DSðiÞ, Fig. 2) can potentially be decoupled from the rate at which new

material enters the sliding window (or SWðtÞ, Fig. 2). Moreover, from a streaming

data perspective, the data archive can also provide a mechanism for addressing the

issue of class-imbalance (skewed data). For example, all classes might be

6 Introns, although non-coding for proteins in biology, appear to describe RNA that play an important

role in gene regulation in eukaryotes [35]. In the case of GP, there is generally little or no distinction

between genotype and phenotype, and more non-functional code observed than functional code [24, 115].

296 Genet Program Evolvable Mach (2015) 16:283–326

123

represented in the data archive with equal frequency, whereas there is no guarantee

that all classes appear in the stream with equal frequency.

Finally, we note that at all points in time, a model is available for suggesting data

labels, but such models can also be used as the basis for potentially requesting label

information. This implies feedback loops exist between the population of models,

data archive, and interface to the stream. In effect bootstrapping is being performed

relative to the certainty with which a model provides label information and/or data

sampling is performed. Such an approach is potentially distinct from that typically

assumed by ML approaches to streaming data. Specifically, it is generally assumed

that the cost of incremental refinement of models using ML is sufficiently low and/

or entirely new models are constructed when changes are detected relative to the

most recent sample of data from the stream. These topics will be developed further

in Sect. 5.3.1.

3.3.3 Diversity

The convergence property of schema theory explicitly points to the loss of diversity

in population based frameworks (e.g., [115]), whereas sufficient diversity needs

maintaining in order to provide the basis for reacting to changes [137, 138]. With

this in mind we adopt the two categories of diversity maintenance as initially

proposed by Dempsey et al. [51] and revisit from the explicit perspective of

evolutionary model building under dynamic tasks:

Reactive: approaches imply that decreases in fitness are associated with a need to

increase the rate of mutation [37]. This naturally implies that some measure of

fitness is readily available (possibly implying that the stream is labelled) or that

label free change detection is possible (see Sect. 5.3). Moreover, on detecting a

change, evolving the entire population from a completely new initialization might

be appropriate [125, 191], whereas in other applications an incremental reseeding of

a new population using material from the previous population is recommended [49,

184].

Continuous maintenance: implies that schemes are introduced that attempt to

maintain the diversity of the population on a continuous basis. Grefenstette’s

concept of ‘random immigrants’ [87] introduces a fixed number of randomly

initialized individuals at each generation and as such is sufficiently generic to be

applicable to GP, albeit lacking efficiency (most offspring are likely to be replaced).

More interesting is the concept of age biases. Under genetic algorithms, age biases

have demonstrated their utility in dynamic [85] and static (multimodal) environ-

ments [93]. Under dynamic environments, an age bias was introduced to prefer the

‘middle aged’ over the young or old.7 Conversely, under static environments the

role of aging was to ensure a fair competition between similarly ‘developed’

individuals in combination with the continuous introduction of new offspring

through stochastic sampling alone. More recently, aging and fitness sharing metrics

have been compared under streaming classification tasks [6, 7]. Both appear to be

effective, with a preference for fitness sharing under Markov style environments,

7 Younger/older individuals should only be maintained if they were suitably fit.

Genet Program Evolvable Mach (2015) 16:283–326 297

123

whereas a combination of aging and fitness sharing appears to be more effective

when the underlying task is subject to gradual variation. However, fitness sharing

again assumes that a suitable performance metric is available, e.g., a labelled

stream.

The introduction of evolutionary multi-objective (EMO) fitness functions in GP

has also resulted the adoption of explicit mechanisms for maintaining diversity [15,

133]. This is particularly relevant in the case of unbalanced data in which solutions

take the form of multiple GP individuals. Thus, diversity is useful in ensuring that

when constructing ensembles of classifiers, each classifier complements the

performance achieved to so far (e.g., [131]). Without this, performance on

infrequent classes is potentially penalized in favour of performance on dominant

classes. Indeed, recent results indicate that the development of GP models under

streaming data identify classifiers for the most frequent classes first and only later

add the less frequent classes as the stream progresses [8].

Finally, frameworks for maintaining diversity through the use of multiple

populations have been proposed, albeit not specifically with respect to streaming

data (e.g., [74]). Thus, different populations have access to different partitions of the

dataset, as in ensemble boosting methodologies (Sect. 3.2). The restricted

partitioning and distribution of the data as seen by different populations helps

maintain diversity and therefore increases the likelihood of building ensembles from

uncorrelated errors [100]. Combining with appropriate pruning heuristics may help

maintain the relevancy of independent populations [15], although achieving this

under the constraints enforced by the streaming data context is still an open

question.

3.4 Discussion

The interrelated nature of evolvability, memory, and diversity points to the evidence

of multiple feedback loops that potentially impact the quality of solutions

discovered by model based EC (Sect. 3.3). Moreover, it is apparent from the

number of directions presently taken by ensemble based ML (Sect. 3.2), that there

are multiple (possibly redundant) dimensions to the ‘design space’ associated with

streaming algorithm design. This then makes the design of systems for streaming

data tasks especially challenging. One potential path for addressing this, albeit not

yet considered in the wider literature, is through evolving hyper-heuristics (or the

evolution of the evolutionary algorithms), e.g., [148]. Current research has not

considered this avenue, so we revisit the opportunity in the context of future

research (Sect. 7).

4 Benchmarking issues

As noted in the introduction, frameworks for streaming data have been dominated

by application scenarios associated with classification style tasks. The following

discussion of evaluation methodologies and datasets will reflect this bias.

298 Genet Program Evolvable Mach (2015) 16:283–326

123

4.1 Evaluation

Performance metrics employed under the streaming data scenario also face a set of

unique challenges [17, 79, 80]. Thus, performance is not a static concept, but

relative to the point in the stream at which the evaluation is performed. Hence rather

than just being interested in some overall measure of accuracy, we might also be

interested in the time taken to adapt to a change. The following shortlist specific

scenarios have been reported in the literature:

• Online ‘running’ average of each exemplar before updating the model [12]. This

leads to the concept of prequential error [46], or given a suitable loss function,

Lð�; �Þ, the model’s prediction, ŷt and the actual label, yt:

p0 ¼
Xn

t¼1
Lðŷt; ytÞ ð2Þ

Sensitivity to specific positions within the stream can be further reinforced

through estimating over a sliding window (as opposed to the entire stream) or

introducing an exponential weighting term (fading factors) [79, 80]. Equiva-

lences have been demonstrated between (batch) Bayesian error estimation and

(weighted) prequential error [79].

• Performance of the model classifier is evaluated relative to a ‘block’ of the

future or both future and past exemplars from the stream (e.g., [137, 158]). The

goal of such a dual performance metric is to assess the degree of forgetting and/

or model specificity that has taken place between concept shifts in the stream.

Such metrics are naturally most informative in the case of streams with an

abrupt transition between concepts.

• Evaluate against streaming data not seen during model construction (e.g., [107,

167]). For example, training could actually be performed relative to a sample

taken from the data stream, with test performed against the entire stream content

or that not explicitly sampled [7].

Naturally, the use of accuracy style metrics implies that the drawbacks common to

evaluation under static non-streaming scenarios will be apparent [101]. In the case

of streaming data as applied to classification tasks, the Kappa statistic is of

particular relevance, in which case performance of the proposed algorithm is

evaluated relative to that of a suitable naive model of classification:

j ¼ p0 � pc

1� pc
ð3Þ

where p0 is the aforementioned prequential error of the proposed model, and pc is

the probability that the naive model makes a correct prediction. As j! 1, the

proposed model approaches the ideal, whereas j! 0 implies that the proposed

model’s predictions increasingly coincide with that of the naive model.

Under classification tasks Bifet et al. [21] note that assuming, say, a Naive Bayes

classifier or even a simple majority class ‘coin toss’, would be informative for the

case of data conforming to the i.i.d. assumption. However, as noted in the preceding

Genet Program Evolvable Mach (2015) 16:283–326 299

123

sections, streaming data does not conform to such an assumption. Indeed, streaming

data might well demonstrate periods with a common trend. From a class label

perspective this means that ‘periods’ can appear with sequential exemplars having

the same label. Under such conditions a ‘no-change’ or autocorrelation rule

represents a much more effective basis for a naive classifier under streaming data,

i.e., given a class label yt ¼ c, assume all following exemplars are class c until there

is a change in class label, then update the naive classifier’s ‘prediction’ to reflect the

new class. Such a heuristic was observed to perform better than many streaming

classification algorithms on the widely used Electricity benchmark dataset [21].

Finally, we present the following comments regarding streaming data evaluation

under class imbalance. A prequential error estimator, PeðtÞ, as estimated across all

sequence history (e.g., [79]) has the form:

PeðtÞ
eðtÞ þ ðt � 1Þ � Peðt � 1Þ

t
ð4Þ

where t is the sequence index, Peðt ¼ 0Þ ¼ 0, and eðtÞ is the error on exemplar t.

Naturally, given such a definition, prequential error will weight all classes

equally resulting in an accuracy style metric. Unfortunately accuracy style metrics

are not particularly informative when the distribution of class labels are imbalanced,

whereas ‘rate’ style metrics might be much more appropriate [101]. For instance,

taking the specific case of detection rate, the following definition might be assumed

for streaming data contexts [176]:

DRcðtÞ ¼
tpcðtÞ

fpcðtÞ þ tpcðtÞ
ð5Þ

where tpcðtÞ and fpcðtÞ are the corresponding true positive and false positive counts

w.r.t. class c up to exemplar t in the stream.

Likewise the corresponding overall (average) detection rate takes the form

DRðtÞ ¼ 1
C

P
c2C DRcðtÞ, i.e., only when all classes are correctly classified (relative

to point t in the stream) will DRðtÞ ¼ 1. Thus, a degenerate classifier that labels the

entire stream as the majority class has a detection rate of 1
C
. Such a formulation

naturally assumes that the number of classes is known a priori, implying that a

suitable heuristic would need adopting when additional classes are encountered

[176]. In short, the average detection rate, DRðtÞ, can be estimated incrementally

through the course of the stream and, unlike the prequential error estimator, reflects

a model’s sensitivity to class imbalance.

4.2 Datasets

There are three broad categories of dataset employed for benchmarking machine

algorithms as applied to streaming tasks: artificial, real-world time varying, and

artificially modified real-world datasets. The following discussion summarizes the

sources and basic motivations for each case.

300 Genet Program Evolvable Mach (2015) 16:283–326

123

4.2.1 Artificial datasets

Purely artificial datasets represent the most widely occurring scenario employed for

empirical benchmarking purposes. Naturally, the principle motivation is that

specific forms of variation can be introduced to test particular aspects of a ML

algorithm. The potential drawback is that there is no guarantee that real-world

datasets should necessarily be limited or place the same emphasis on the properties

appearing in the artificial datasets.

Twogeneric schemes have for themost part been adopted, either change as a gradual

drift or as a sudden shift [195]. However, as established in Sect. 2.2, categorizing the

types of change is in itself amultifaceted task, thus artificially generated datasets should

reflect more than one aspect. The library provided byMinku et al. [135, 137] provides

broad coverage in terms of facets included within an artificial dataset. Specifically, in

developing a set of datasets for benchmarking different aspects associatedwith the task

of learning under dynamic environments, Minku et al. [137] propose a separation of

properties that characterize different aspects of drift generation:

Isolated properties distinguish between two micro properties associated with drift

generation:

1. Severity: that is the amount of change (in magnitude terms), and can be

associated with either the dependent or independent variable. Some authors

associate concept drift with gradual changes and concept shift with abrupt

changes to the underlying process (e.g., [195]).

2. Speed: describes the time taken for replacement of one generating process by

another.

Group properties distinguish between processes used to compose an isolated drift

into a sequence or wider pattern of behaviour. Three properties are identified:

1. Predictability: is taken to imply that sequences of the generating process are

either random or follow a specific pattern.

2. Frequency: determines whether a drift/shift is periodic or not.

3. Recurrence: establishes whether previously encountered drifts/shifts are

possible, and if so whether they are cyclic or not.

Thus, a total of six task types are described (essentially reflecting the different

distributions of the process generating the data) and subject to nine different types of

drift (three severities and three speeds). In addition, in the case of the planar dataset,

labels were corrupted and irrelevant attributes were included. More recently,

datasets have been proposed which incorporate loss of classes as well as drift, shift

and cyclic behaviours [65, 151].

4.2.2 Real-world, time varying datasets

Various application domains are believed to possess non-stationary or time varying

properties and potentially of interest as a benchmark. Naturally, little can be

Genet Program Evolvable Mach (2015) 16:283–326 301

123

explicitly said regarding the specific non-stationary properties embedded in real-

world datasets. However, benchmarking with such data validates both: (1) how

appropriate proposed models are under real-world scenarios, as well as, (2)

confirming how appropriate the properties explicitly embedded in artificial datasets

are for validating model capabilities. This is particularly important, as for example,

benchmarking of early ML approaches to batch (as opposed to streaming)

classification tasks indicated that simple attribute thresholding was more robust

than ML models as evaluated under real-world datasets, resulting in the

development of more appropriate ML algorithms and evaluation practices [92].

Table 3 represents a summary of the most frequently used real-world datasets for

streaming data analysis. In general, we note that most datasets have a binary

outcome, reflecting a fail/not failed characterization of the task outcome. Thus, in

the case of the ‘Airline delay’ task the goal is to predict whether a flight will be

delayed or not, whereas under the credit card dataset the goal is to predict a default

on paying the minimum balance on the account. Both tasks are ‘dynamic’ as the

likelihood of airline delays reflect weather conditions or dependencies between

flights and credit defaulting is a function of the wider economic situation.

We also note that different tasks may or may not benefit from deriving

conclusions from data sequencing properties (implicit in the stream) versus the

prediction associated each data instance being a self contained property of the

current input attributes alone. Thus, in the case of the poker hands dataset, each card

is represented as a pair of integers denoting suite and numerical face value.

However, dealt cards can appear in any permutation, implying that recognition of a

specific hand for say, three of a kind or two pairs would need to be invariant to card

location. Indeed, this also raises the issue of whether attributes representing a hand

Table 3 Example real-world classification datasets with non-stationary properties

Task domain No. classes Repository

Airline delays 2 [99]a

Churn prediction 2 [179]b,c,d

Credit card default 2 [84, 141]e

Electricity market 2 [21, 89]f

Poker hands 10 [10]g

Spam filtering 2 [13, 69]h

Weather prediction 2 [65, 173]i

a http://kt.ijs.si/elena_ikonomovska/data.html
b www.fuqua.duke.edu/centers/ccrm/datasets/download.html
c www.kddcup-orange.com
d www.sgi.com/tech/mlc/db
e http://sede.neurotech.com.br:443/PAKDD2009/
f http://moa.cms.waikato.ac.nz/datasets/
g http://archive.ics.uci.edu/ml/datasets/Poker?Hand
h http://www.esi.uem.es/*jmgomez/spam/index.html
i http://users.rowan.edu/*polikar/research/NSE/

302 Genet Program Evolvable Mach (2015) 16:283–326

123

http://kt.ijs.si/elena_ikonomovska/data.html
http://www.fuqua.duke.edu/centers/ccrm/datasets/download.html
http://www.kddcup-orange.com
http://www.sgi.com/tech/mlc/db
http://sede.neurotech.com.br:443/PAKDD2009/
http://moa.cms.waikato.ac.nz/datasets/
http://archive.ics.uci.edu/ml/datasets/Poker%2bHand
http://www.esi.uem.es/~jmgomez/spam/index.html
http://users.rowan.edu/~polikar/research/NSE/

are presented as a vector or as a sequence. Although learning from attribute

sequences is more difficult, it can also lead to more general results. For example, as

in the case of evolving solutions for the generalized parity task [98].

4.2.3 Artificially modified real-world datasets

Various repositories already exist for benchmarking datasets (e.g., the UCI database

[10]), but for the most part consist of datasets with stationary properties.8 Evaluating

streaming algorithms on such datasets has the potential to confirm to what degree

performance is impacted by the assumptions used to develop the streaming

algorithm (see for example [8, 107]). Conversely, the original dataset can be

modified to introduce properties associated with concept drift/shift. In so doing,

users are again in a position to verify the types of adaptive behaviour that respond to

particular instances of concept change.

In one such approach, the original dataset is divided into a series of partitions

consisting of an equal number of exemplars, sampled with uniform probability

[137]. The first partition reflects the original allocation of labels to exemplars.

Thereafter, for each partition, pairs of labels are interchanged potentially resulting

in multiple changes between partitions. Table 4 summarizes such a process in the

case of the well known ‘Iris’ dataset [10]. Note that by introducing a ‘dummy’ class

label it is possible to mimic different classes dropping out during a partition. Gao

et al. [81] take a similar approach to make small benchmark out of a larger dataset.

Yang et al. [195] adopt a probabilistic framework for describing the probability

of transitioning between different classes. This results in a sequence of classes from

which corresponding exemplars are then selected. The opportunity then exists to

change the transition probabilities over the duration of a sequence.

One final approach is to take a suitably large dataset and order it relative to one

specific attribute. Thus, in the case of the frequently employed ‘forest cover type’

dataset, the elevation attribute has been employed to ‘order’ the sequence [203].

Unlike the above forms of modification, this results in a gradual drift in concept as

opposed to shift. Given that the dataset describes a multi-class task with significant

amounts of class imbalance, from a streaming perspective, it is still capable of

posing difficulty especially when evaluated against a naive base classifier as

Table 4 Example of

introducing drift into a static

dataset

Example adopted from [137]

Overall label distribution Partition

Original Shift #1 Shift #2

Setosa (33.3 %) 1 4 4

Versicolour (33.3 %) 2 1 2

Virginica (33.3 %) 3 3 3

Dummy class (0 %) 4 2 1

8 The majority of datasets employed to date for benchmarking purposes on account of their temporal

properties are distributed across multiple repositories (Sect. 4.2.2).

Genet Program Evolvable Mach (2015) 16:283–326 303

123

discussed in Sect. 4.1. The same authors also describe the modification of multi-

class datasets to binary categorization in which the set(s) of classes from the original

dataset associated with an in-class classification are varied over the course of the

dataset, i.e., concept shift. Such a practice was applied to datasets that originally

represented a database of movie genre9 and document categorization [119].

5 Progress to date

In the following, developments tomodel building under streaming data are considered

from six different perspectives: stream interfacing, temporal feature construction,

label free change detection, semi-supervised learning, learning classifier systems, and

class imbalance. The general goal of which is to identify the key themes and highlight

remaining unresolved issues. Table 5 provides a ‘snap shot’ of the association

between research themes and approaches pursued to date whereas Table 2 (Sect. 3.2)

provides a similar characterization in the case of ensemble methods.

5.1 Stream interfaces

The slidingwindow represents an initial interface to the streamingdata that delimits how

much data a model can access at any point in time. Implicitly, constraints are enforced

regardinghowmuchhistorical information is present versuswhat sample rate to assume,

i.e., window length versus sample interval or tap period (Fig. 1). Two scenarios are

recognized: windows of a fixed prior parameterization versus sliding windows with an

evolved parameterization (Sect. 5.1.1). A second related issue takes the form of

archiving specific data instances for use beyond the durationof the slidingwindow (Sect.

5.1.2). In essence, this addresses questions regarding what to learn from. For maximum

reactiveness, models might only be evolved against the content of the current sliding

window location. However, most of the content of a sliding window location might be

highly correlated with the previous, potentially implying that there is not a lot of new

material to learn from. Introducing a sampling algorithm between sliding window and a

subset set of data against which evolutionarymodel building is performed addresses this

issue and leads to mechanisms for label decoupling (discussed in Sect. 5.3.1).

Finally, we note that some researchers adopt a stream interface that is limited to

the current exemplar, xðtÞ, alone. Models applied under such a limitation assume

that labels are available for all the stream [84, 107]. Such models are purely pattern

recognizers as opposed to incorporating spatio-temporal information. Moreover, a

greater emphasis is placed on reacting to label information, as opposed to say

detecting change and then reacting. Exceptions to this would be a model that is

capable of recording internal state (e.g., neural representations with recurrent

connectivity or GP with indexable memory) or ensemble approaches in which each

different model responds to different probability distributions. In this latter case an

ensemble could potentially capture the transition between different probability

distributions (i.e., a spatio-temporal relation).

9 http://meka.sourceforge.net/.

304 Genet Program Evolvable Mach (2015) 16:283–326

123

http://meka.sourceforge.net/

5.1.1 Sliding windows

Sliding windows assume a first-in, first-out style of operation in which the oldest

samples are shifted out as new samples are recorded. Parameters define the number

of samples retained and interval between samples (also referred to as tap or skip

length, Fig. 1).10

Fixed window parameterization and attribute selection: The parameterization of

a sliding window defines the length of the window and the interval between the

Table 5 Characterization of research themes and approaches introduced in the course of this survey

Theme Approach

Evolvability/modularity (3.3.1) GA: [172, 174, 183, 187, 194]

GP: [14, 61, 63, 146, 188, 191]

Environment: [30, 36, 67, 103, 149]

Selection/replacement (3.3.1,

3.3.3)

GA: [85, 87, 93, 120, 140]

GP: [7, 8, 94, 95, 175, 178, 184]

Memory (3.3.2) GA: [120, 174, 194]

GP: [63, 184]

Distance metrics (3.3.2) GA: [22, 139, 194]

GP: [28, 64]

Sliding window (5.1.1, 5.2) Evolve: [29, 49, 52, 125, 184]

Non-evolve: [9, 18, 19, 45]

Feature construction (2.4, 5.2,

5.3.1)

Evolve: [3, 71, 125, 143, 159]

Non-evolve: [169, 185, 192]

Class imbalance (3.3.3, 5.6) Evolve: [7, 8, 155, 175]

Non-evolve: [84, 142]

Active learning (5.1.2) Evolve: [7, 8, 175]

Non-evolve: [86, 97, 127, 199, 202, 203]

Change detection (5.3) Input: [4, 19, 44, 53, 73, 105, 160, 169, 181]

Model (GP): [125, 155]

Model (non-GP): [12, 38, 78, 117, 118, 123, 124, 144, 199, 201–

203]

Label budgets (5.3) Evolve: [13, 175]

Non-evolve: [121, 123, 124, 203]

Semi-supervised (5.4) Evolve (non-streaming): [5, 41]

Non-evolve: [54, 60]

Prototype based (5.5) LCS: [1, 13, 32, 43]

Non-evolve: [177, 193]

Broad distinctions are made in terms of evolutionary versus non-evolutionary. Some theme specific or

GA/GP/LCS distinctions are also employed where appropriate. Section referencing is provided in order to

facilitate identification of the appropriate commentary. See Table 2 for a characterization of research

themes in (non-evolutionary) ML ensembles

10 In addition non-overlapping windows have been used, in particular with ensemble methods, with

different members of the ensemble being constructed with each new ensemble location (see Sect. 3.2).

Genet Program Evolvable Mach (2015) 16:283–326 305

123

consecutive samples (sampling interval). Any such characterization is task specific.

Moreover, there is a tradeoff between longer and shorter windows (and

corresponding decreased/increased sample resolution) [9, 45]. Thus, a short high

resolution window and a longer low resolution window are often applied together.

Indeed, GP as applied to multi-step prediction has been reported with multiple

window resolutions [31] as do streaming approaches to decision tree induction, see

Sect. 5.3.1.

Variable window lengths: if the underlying process is non-stationary, then

assuming a window size optimized relative to some historical ‘training partition’

will at some point result in a deterioration in performance. The continuous re-

parameterization of such windows therefore becomes important. However, it might

be useful to retain the capability to make use of previously evolved windows and/or

models from the perspective of getting a ‘head-start’ on the construction of a new

model. The DynFor algorithm [184] begins with a pair of candidate sliding window

lengths n and nþ 1 and selects a solution window length relative to the current

training partition. The process repeats with new sliding window lengths chosen

relative to the ‘direction’ of improvement. Moreover, the authors note that for a

stationary process the window size is likely to undergo incremental increases,

whereas during a transition between different underlying processes, the window size

is likely to decrease [184]. The process although capable of tuning the size of the

sliding window assumes that the stream is appropriately labelled to facilitate

continuous evolution. That said, similar assumptions are also central to the ADWIN

algorithm employed with online decision tree induction (e.g., [19]). However, as

will become apparent within the context of label free change detection (Sect. 5.3),

various frameworks have recently been proposed to address online learning under

limited label budgets that are compatible with broad classes of ML and EC.

Fig. 1 Generic sliding window (SW). In this example a SW parameterization is assumed in which a
window length of 9 samples is employed, spanning a historical interval of 24 consecutive records,
sampled at a resolution of every 3rd instance. The following evolutionary model builder is limited to the
set of 9 samples xi; i 2 f0; . . .; 8g. Each sample is potentially a vector of attributes, e.g., sensor values.
The resulting model need not explicitly index all samples/sensor values

306 Genet Program Evolvable Mach (2015) 16:283–326

123

5.1.2 Sampling

Following from the immediate interface to the stream (i.e., some form of sliding

window) the machine learning algorithm might act directly on the sliding window

content alone, or more generally, a decision is made regarding what to retain from

the immediate content of the current sliding window location, SWðtÞ, for retention
within a finite size sample (Fig. 2). Such schemes have been widely deployed under

classical stationary offline learning algorithms in order to decouple the original

training partition cardinality from that of the training ‘sample’, i.e., an EC

generation is only performed relative to the content of the data subset, DSðiÞ (Fig.
2). Active learning represents one of the most widespread examples of such a

methodology in which performance of the model is fed back to bias the selection of

exemplars as used for the next round of model construction [39].

Under the context of active learning as applied to streaming data, we note that

two sets of policies are necessary: a Sampling policy or how much to sample from

the current sliding window location; and an Archiving policy or what data currently

in the data subset is replaced between EC generations (Fig. 2). With this in mind,

there are two parameters that are significant to evolution under streaming data: (1)

rate of data subset updates, freqðiÞ, versus rate of sliding window shift, freqðtÞ; and
(2) the amount of data transferred between the sliding window and the data sample,

Gap. The interaction between the proportion of the sliding window content

transferred, Gap, and the frequency of sliding window shifts freqðtÞ defines the

Fig. 2 Relationship between sliding window (SW) and data subset (DS) identified through active
learning. SWðtÞ location of sliding window at shift location t. Sampling policy defines how a Gap sample
of data from SWðtÞ is identified, where Gap 2 fSWðtÞg and jGapj � jSWj and jGapj � jDSj. Update rates
for the stream and Gap need not be the same or freqðtÞ 6¼ freqðiÞ. DSðiÞ is the data subset against which
generation, i, of EC is performed. Data Archiving policy defines how jDSj � jGapj samples are identified
for replacement from the Data subset before the next EC generation is performed. Illustration adopted
from [6, 175]

Genet Program Evolvable Mach (2015) 16:283–326 307

123

labelling requirement. As long as freqðiÞ and/or jGapj are less than the

corresponding sliding window parameters (freqðtÞ and jSW j) then there is a

reduction in the proportion of the stream requiring labels. Naturally, credit

assignment is only performed at the frequency of subset updates, freqðiÞ.
Probabilistic sampling: represents one of the earliest schemes for introducing

biases into the selection of exemplars for decoupling fitness evaluation from the

cardinality of the data. Gathercole and Ross compared pure random sampling to a

scheme in which both exemplar difficulty and exemplar age biased the selection of

exemplars to the subset of exemplars actually employed for fitness evaluation [83].

Extensions included hierarchical ‘cache friendly’ frameworks [163] and their use

for supporting model building through stacked generalization [42]. Other biases

frequently employed include those for representing each class equally—where this

is correlated with maximizing the AUC, as opposed to sampling exemplars with

equal probability which is correlated with maximizing the accuracy metric [189].

Naturally, streaming data implies that no revisiting can take place. Thus,

probabilistic methods as discussed here are limited to constructing statistics from

the current content of the sliding window. How many of the previously mentioned

results, which are known to be sufficient for the case of static datasets, carry over to

the case of streaming data, is for the most part unknown.

Pareto archiving: provides a formal scheme for characterizing which subset of

exemplars to retain through the concepts of distinctions and Pareto dominance. In

particular, the goal of (archived) exemplars is to distinguish between different

models, and the non-dominated models in particular [47, 72, 145]. One potential

drawback of the approach is that the exemplar archives might grow considerably.

However, enforcing a finite archive through the introduction of diversity measures

(such as fitness sharing) has been empirically shown to be effective for efficiently

decoupling fitness evaluation from training partition cardinality under batch

(offline) learning [132, 133]. The extension to sliding window interfaces and single

pass constraints for online learning indicate that it is possible to match the

performance of multi-pass batch algorithms when there is no labelling error [8].

Moreover, it may also be appropriate to tune the heuristic used to maintain a finite

archive size depending on whether the stream is subject to sudden changes or

continuous gradual changes [6, 7].

Scaffolding: is a concept from psychology used to express the role of tutoring

during development which has been widely used in the context of incremental

evolution in robotics (e.g., [200]). Elwell and Polikar cite the scaffolding concept as

the motivation for the approach taken to selecting ‘batches’ of streaming data to re-

evaluate and potentially modify their neural network based ensemble algorithm [65].

In particular, they relate scaffolding to drift detection and redundancy prevention.

5.2 Evolved temporal features

Sliding (or non-overlapping) windows represent the initial mechanism for

delimiting how much data to present an evolutionary model building framework.

The next obvious question is how to explicitly capture temporal properties from the

window. We identify to generic themes:

308 Genet Program Evolvable Mach (2015) 16:283–326

123

1. Apply an a priori set of features—Candidates might include wavelet and

Fourier coefficients11 versus assuming an indexing pattern relative to the sliding

window definition. In either case, the use of evolutionary methods capable of

attribute identification (as in, say, GP) could result in the discovery of further

application specific refinements. Thus, given a pre-specified window length and

sampling rate, GP is capable of refining this further to determine which subset

of taps to utilize (e.g., [163]). In addition, application domains might well have

built up a set of primitives for capturing temporal properties deemed

appropriate for a specific task, for example, as in the role of technical

indicators in financial data analysis (price channel breakout, relative strength

indexes etc.). An evolutionary model builder would then identify what

combination of such primitives to utilize in the model (e.g., [52]).

2. Let the evolutionary method design temporal features directly—In this case a

mathematical expression is designed as a function of time and attributes.

Specific examples include differential, rational or integral transforms (e.g., [3]),

primitives based on some form of moving average,12 trigonometric functions,

higher order statistics (e.g., [159]) or polynomials [143]. Implicit in this

approach is the adoption of an axiomatic approach to (temporal) feature

construction where prior knowledge regarding the task domain is used to

identify a suitable kernel for constructing future temporal features.

In both cases, the resulting temporal features are evolved relative to the prior

parameterization of the sliding window (only data within the sliding window

contributes to the outcome from temporal features). Naturally, adopting the first

approach implies that model building can take place immediately, whereas temporal

feature construction would then require a second independent process to identify the

classification or regression model. Several authors have proposed schemes for

feature construction under a batch training context (e.g., [11, 110]), whereas

temporal feature construction is synonymous with the design of technical indicators

(TI) under financial applications. As such, evolutionary methods have been

proposed for the construction of TI with prior decision trees13 [29], as well as the

coevolution of both TI and partnering decision tree [125].

5.3 Label free change detection

Change or drift detection implies that shifts in the underlying process driving stream

content should ideally be detected without recourse to labels. The ‘change

detection’ and ‘label budget’ rows of Table 5 provides a summary of algorithms that

attempt to address this issue. In the following we distinguish between two specific

scenarios. Section 5.3.1 considers the case of universal statistical measures used to

‘re-trigger’ model building. Section 5.3.2 introduces scenarios that make use of

11 Denoting how much of a specific spatio-temporal basis function are present.
12 For example, as in parameterizing specific technical indicators for feature construction in finance [71].
13 The decision tree defines the condition under which an action is applied, say, as in sell, buy or hold.

Genet Program Evolvable Mach (2015) 16:283–326 309

123

secondary ‘behavioural’ properties that, depending on the application, may be

available to re-trigger model construction at appropriate points in the stream.

5.3.1 Universal measures of change detection

Klinkenberg and Renz previously proposed the following three properties by which

a statistical characterization of change can trigger model reconstruction. In all cases,

general statistics are collected and compared using statistical tests [106]:

Properties of the classification model: implies that measurements are made of the

behaviour of the classifier as it operates on the stream, and a statistical comparison

made against a reference behaviour. Such an approach has been widely used for

characterizing the behaviour of leaf nodes in decision trees. Thus, frequency

statistics or expected loss metrics have both been proposed [68, 97]. Under fuzzy/

neural models of classification, metrics for conflict and ignorance with respect to a

model’s antecedent decision boundaries have been proposed as a mechanism for

triggering requests for label information [127].

Properties in the input data or pðxÞ: implies that a statistical characterization is

made of a reference (sliding) window and comparisons made with the current

sliding window content using various statistics such as: entropy [4, 44, 181],

Chernoff bounds [105], Kullback–Leibler divergence [160], Hoeffding bounds [19],

Fractal correlation dimension [73] or Hellinger divergence metric [53]. A significant

drawback of such methods however, can be a need for class labels. Finding schemes

for decoupling from the labelling requirement represents an on going line of

research (e.g., [73]). Moreover, input based statistics can be sensitive to the

dimensionality of the input space, with various aspects of the curse of dimension-

ality reducing the effectiveness of distance metrics as the number of attributes

increases [111, 192]. One approach for addressing this is to assume increasingly

application specific solutions. Thus, thresholding word frequencies represented an

early approach proposed for the specific case of change detection under text mining

applications [169].

Properties in the label space or PðyjxÞ: attempt to characterize variation in the

classifier output. Assuming that labels are available at some fraction of the stream

throughput, then requesting labels randomly (i.e., independently from any other

source of information) has been shown to be surprisingly effective [199]. Attempts

to make more explicit use of the classifier properties include using information

regarding class boundaries to prioritize the request for labels [123, 202] or

information about variation in classifiers from an ensemble as a proxy for change

detection [199]. Specifically, statistical tests have been used to make use of classifier

confidence. Thus, changes are detected when either classifier certainty drops below

some prior threshold [124] or the number of confident predictions undergoes a

significant change [117]. One of the additional favourable properties of this

approach to change detection is that they are potentially applicable to a wide range

of machine learning algorithms, including GP [155].

Naturally, if a previously encountered input instance, x, is associated with more

than one class label during the course of a stream, then additional measures are

necessary. A recent work by Žliobait _e et al. [203] considered this case from the

310 Genet Program Evolvable Mach (2015) 16:283–326

123

perspective of a limited budget active learning framework. Specifically, given a

finite labelling budget, the authors show that a combination of stochastic sampling

and initiating classifier ‘boundary biased’ sampling provide an effective means for

detecting unique shifts in PðyjxÞ.

5.3.2 Task specific change detection

Certain task domains, such as decision making under (currency or stock) market

trading environments, do not need to rely on labels to characterize performance.

That is to say, although the decision maker being evolved provides one of a finite set

of actions (sell, buy, hold), there is no capacity for providing an ‘ideal’ sell–buy–

stay decision at each time step. Instead, performance is characterized in terms of

alternative behavioural properties, such as the amount of acceptable loss (per time

step) or number of consecutive losses. A change is detected when the policy of the

decision maker steps outside of the predefined performance criteria [125, 126]. An

open research question is as to whether other research domains can be approached in

a similar way (e.g., see [179]) or for that matter through reinforcement learning style

formulations as used in learning classifier systems (Sect. 5.5).

5.4 Semi-supervised learning

Semi-supervised learning algorithms attempt to make use of unlabelled data as well

as labelled data during model construction (e.g., [33]) and as such have an intuitive

relevance to online streaming data. Two basic formulations exist: inductive and

transductive. The typical starting point is a batch of labelled data,

ðxðiÞ; yðiÞÞ; i 2 f0; . . .; tg, and a batch of unlabelled data, xðjÞ; j 2 ft þ 1; . . .; lg.
Inductive approaches attempt to use both labelled and unlabelled data to build a

model with better predictions for xðkÞ; k[l, whereas transductive approaches use

both batches of data to improve performance on the unlabelled interval t\j� l.

From the perspective of streaming data analysis, Zhang et al. [197] benchmark a

semi-supervised SVM with data including concept drift, and later describe an

approach for updating ensembles using semi-supervised learning [198]. Few works

attempt an explicitly evolutionary model based approach to semi-supervised

learning, and then do so under stationary tasks [5].

More recently, an extreme case is described where, following an initial batch of

data with labels, the stream provides no further label information. Thus, feedback

during the stream is limited to the input variables, x, alone [60]. The approach is

based on constructing classifiers using the initial label information such that class

conditional distributions are identified to define a tight envelope around data for

each class, or the ‘core’ support. Such regions are then used as the basis for

modelling (the stream) and thereafter updated without label information. In this

regard, the approach is an example of classification through novelty detection as

opposed to discrimination, where this is widely used in one-class classification [129,

130] or under GP [41, 133]. Moreover, [60] explicitly emphasize the significance of

exemplars contributing to updating the core of class distributions as opposed to the

boundary conditions; the latter representing the typical emphasis of both active

Genet Program Evolvable Mach (2015) 16:283–326 311

123

learning and the ‘passive–aggressive’ classes of algorithms for online classification

[40]. One limitation of the approach is that it is presently specific to drift as opposed

to shift.

5.5 Learning classifier systems and prototype methods

Learning classifier systems (LCS) in general use a GA to manage a population of

rules (antecedent–consequent pairs) and reinforcement learning to guide credit

assignment, with the latter typically associated with accuracy-based LCS or XCS

[109]. Given a subset of rules with antecedents matching the current environmental

condition, the ‘winning’ action can be selected deterministically (exploitation) or

stochastically (exploration), with the latter used to promote non-greedy evaluation

of state–action pairs.

Damet al. [43] use a real-valued variant of themultiplexer benchmark to introduce a

time varying property into the task. Specifically, the threshold determining when an

input is considered a ‘zero’ or ‘one’ is controlled by a time varying process. Various

experiments are performed with different step changes to the threshold, with and

without noise. The standard formulation for XCS is found to have a recovery time

proportional to the magnitude of the change in threshold. Moreover, a distinct ‘sweet

spot’ existswith the amount of noise thatXCS is able to operate effectively under.Dam

et al. take this as an indication thatXCS is unable to reuse individuals fromapopulation

to accelerate evolution during a change in the underlying concept. Instead evolution

from scratch is more effective. Several recommendations are then made:

• Adapt the learning rate such that it decreases under ‘noisy’ environments and

increases under concept shift.

• Concept shift is equated with increases in error over a window of consecutive

exemplars (implying that the stream is labelled). Specifically, thresholds for

error and a minimum number of covering rules are employed to recognize a

concept shift.

• On detecting a concept shift various learning parameters are reinitialized versus

reinitializing the entire population.

Under streams with concept shift alone, the case of reinitializing population content

is the most effective. However, the ability to trigger population re-initialization is a

function of prior knowledge regarding what constitutes a ‘good’ threshold.

Behdad and French [13] note that under batch learning scenarios, LCS are first

deployed under a purely exploratory setting and then under a purely exploitative

setting. Such a separation might not be appropriate in the case of online learning.

Instead, the online setting it taken to require that XCS first classify (exploit) and

then receive feedback (explore). Some balance needs maintaining in the ratio of

explore to exploit cycles. Behdad and French assume that more exploit (classifi-

cation) cycles are performed over explore cycles (stochastic updates) in much the

same way that classical algorithms for reinforcement learning mix greedy

exploitation (say Sarsa or Q-learning) with e-greedy exploration [168]. The ‘delay’

concept appears when a batch model of updating is reintroduced. Specifically, a

312 Genet Program Evolvable Mach (2015) 16:283–326

123

delay of s is taken to represent the number of exemplars per ‘batch’ of data.

However, unlike the regular model for applying XCS to classification tasks, first

XCS is deployed to label the data (exploitation) and then in an independent pass

through the same data, the exploration phase is performed. Finally, the case of

‘partial’ feedback is considered. That is to say, in the case of some exemplars there

might be no feedback, limiting exploration to only those cases with the feedback.

The authors formulate probabilistic heuristics in an attempt to ‘fill in’ the gaps so

that feedback under no label confirmation is possible [13].

Prototype approaches are frequently employed in clustering algorithms for

characterizing cluster location (i.e., medoid as opposed to centroid style clustering)

and have been considered for online learning under streaming data scenarios (e.g.,

[177]). Indeed, learning vector quantization (LVQ) represents a family of

algorithms that add label based credit assignment to turn Kohonen’s Self Organizing

Feature Map into a classifier. Moreover, LVQ has itself been adapted to the case of

online learning [193]. Cervantes et al. propose a framework for managing a set of

prototypes incrementally using concepts from particle swarm optimization [32].

Thus, momentum is added to the clusters representing classes and therefore non-

stationary properties in the stream can potentially be tracked. In addition, clusters

with the same class label are grouped using mechanisms from online LVQ [193].

The approach taken to establishing groups is based on link maintenance and LVQ

neighbourhoods. Links are subject to aging and therefore decay if a prototype no

longer classifies data. A total of 8 parameters are necessary to characterize

coefficients for aging, memory, inertia etc., with coefficient selection having an

impact on the memory requirements and degree of adaptability of the algorithm.

A less widely investigated approach is to assume that models can be constructed

a priori for a set of concept drifts, where this implies that it should be much easier to

react to changes with a minimal labelling requirement during the course of the

stream [162]. Naturally, various assumptions need to be made regarding the type of

concept drift likely to appear, however, the payoff is that the cost of training during

the stream can be significantly reduced relative to models that have no access to

appropriate prior training. At some level this can also be interpreted in terms of

models designed to react to repeating or cyclic properties.

5.6 Class imbalance

Building classification models under class imbalance or skewed data is a relatively

mature—although by no means ‘solved’—topic in the machine learning literature

(e.g., [91]) and GP [11, 15, 133]. In part, this interest is driven by the observation

that most real-world datasets are not ‘balanced’, a tendency that increases as multi-

class classification is encountered.14 In general, there are three approaches pursued

for addressing the class imbalance problem, albeit with the assumption that the data

is stationary:

14 Attempts to cast a multi-class classification problem into at least C � 1 binary classification problems

merely emphasizes this effect. Thus, even if the C classes appear with equal frequency, each binary

classification task represents an unequal partition of one class versus the rest.

Genet Program Evolvable Mach (2015) 16:283–326 313

123

• Perform model identification over some sample from the training partition. The

scheme pursued for sampling might include feedback from the model during

training (e.g., active learning [83, 163]) or enforce some prior heuristic for

under/over sampling of specific classes. From the perspective of evolutionary

computation this represents a test case for learning what to learn from, or

competitive coevolution (e.g., [47]). Under the specific context of regression

tasks, schemes have been proposed in which data uniqueness is first used to

recursively eliminate all but the most ‘meaningful’ exemplars from the training

partition after which model building is pursued [180].

• Introduce penalties into the cost function. The basic assumption here is that

exemplars are weighted differently depending on their class. Specific examples

include reformulations of the fitness function to reflect prior knowledge of class

frequency or cost (e.g., [16, 114]), performance on exemplars (e.g., [62]) or

Pareto multi-objective formulations (e.g., [15]).

• Combined approaches in which both schemes are pursued together. Such hybrid

schemes have the added advantage of decoupling the cost of fitness evaluation

from the cardinality of the original training partition [58, 122, 133].

In contrast, comparatively little appears with respect to class imbalance under

streaming data. Processing data in batches (e.g., non-overlapping sliding windows)

provides one avenue for addressing class imbalance under streaming data scenarios.

That is to say, the distribution of classes represented in the batch can be artificially

balanced with less frequently occurring classes relying on historical samples,

whereas the most frequently occurring classes assume the most recent samples (e.g.,

[82]). Various schemes have been proposed for prioritizing retention of minor class

exemplars within the batch used to construct classifiers, with k-NN algorithms

frequently appearing for this purpose [34, 86]. Conversely, Ditzler and Polikar [55]

propose to employ oversampling or data rebalancing with ensemble methods, but

not without incurring computational overheads that might limit the applicability to

streaming data. However, one implication of holding on to minority class data for

longer periods of time [relative to the major class(es)] is that minor class(es) will

increasingly be characterized as stationary [55]. This is an example of a sample bias

issue to which any form of resampling can potentially lead to models with

unforeseen classification properties.15

Attempting to address class imbalance under strictly ‘online’ conditions is

potentially more challenging. One approach proposed assumes that labels are

freely available. Thus, if all the streaming data can be labelled at no cost, then

approaches might be assumed in which the model is made as reactive as

possible. Class imbalance is addressed by applying different costs for each class,

either under an a priori fixed cost or by adapting the costs online [84]. An

alternative approach is to assume that the stream is sampled. The default being a

fixed sample rate [142].

Various schemes have been proposed that attempt to maintain estimates for the

frequency of different classes while conforming to a strictly online model of

15 For a general discussion of this topic (albeit under a non-streaming scenario) see for example

Chapter 9 from [59].

314 Genet Program Evolvable Mach (2015) 16:283–326

123

deployment [186]. To date, the principle drawback is that label information is still

necessary, implying that only through subsampling can there be any reduction in the

rate at which labels are produced. Possible schemes for avoiding this require on

some form of label free change detection (see Sect. 5.3), i.e., a sampling bias

associated with data mapped to the decision boundary in the less frequent class(es).

6 Conclusion

The field of streaming data analysis has been reviewed from a broad perspective to

identify several current key themes which are equally applicable to EC model

building:

• Ensemble methods have been widely utilized to address issues of incremental

model refinement versus generating entirely new models. From the perspective

of evolutionary computation there are potentially several lessons that can be

learnt from ensemble methods regarding diversity maintenance (synonymous

with population diversity) and ensemble composition (synonymous with

teaming in GP).

• A wide range of benchmarking datasets and evaluation metrics are already

available providing a large repository of previous results and established

methodologies for evaluation.

• Several generic schemes have been proposed for decoupling the labelling

requirement and/or change detection under streaming data. Such algorithms are

equally applicable to evolutionary methods as they are to more classical forms

of ML.

Properties of model based evolutionary paradigms that potentially make them

appropriate to streaming data tasks have been reviewed from the perspective of

evolvability, diversity maintenance and memory mechanisms. Differences between

approaches originally promoted under genetic algorithms versus their utility under

GP were highlighted. With respect to challenges we anticipate in the near future we

highlight the following:

• Model building under an open versus closed world assumption: Supervised

learning as classically deployed makes a closed world assumption, i.e., the

training partition is sufficient to provide a complete description of the underlying

task. Conversely, learning under a non-stationary stream implies that what can

be inferred from any part of the stream is incomplete. Distinctions need to be

made between the known (what the model is explicitly capable of) and the

unknown (what explicitly lies outside the capability of a current model). This

represents a general requirement for novelty detection as opposed to discrim-

ination [129, 130]. To date, there have been a few GP frameworks proposed that

operate under a closed world assumption—for example, by making use of a

Gaussian rather than a Sigmoid style membership function [41, 131, 133, 196].

However, little is known about their operation under streaming data conditions.

Genet Program Evolvable Mach (2015) 16:283–326 315

123

• Local versus global search: Concept drift is characterized by gradual variation

in the underlying structure pertaining to a model. Many classical ML approaches

naturally assume a greedy credit assignment scheme, thus can readily lend

themselves to tracking gradual changes associated with concept drift. Equivalent

formulations for model based evolutionary methods might take the form of

specific types of variation operator, applied relative to a previously identified

genome. Deciding when to employ such operators might be motivated by

frameworks proposed by ensemble methods or change detection.

• Forecasting/regression tasks under streaming data: To date, research in

symbolic regression has tended to concentrate on improving model accuracy

and trustworthiness. The latter particularly with respect to regression models as

applied to system identification, in which case the problem might be too little

data as opposed to too much (e.g., [180]). Moreover, there is little emphasis

placed on online operation with a labelling budget. That said, interesting

datasets certainly exist that might provide the basis for the development of

appropriate regression tasks for benchmarking. For example, forecasting

benchmarks are often based on chaotic attractors (e.g., [156]) thus uncertainty

regarding concept shift/drift. Likewise, some of the most challenging regression

tasks include a ‘switch’ between different model generating processes and

dummy attributes [108]. Indeed, similar challenges exist in related fields, such as

regime switching in econometrics (e.g., [116]). To date, however, there has not

been much emphasis placed on performance under reduced labelling budgets,

where this remains a key requirement for streaming data scenarios.

• Evolvability versus diversity: Historically a significant effort has been placed on

the role of diversity maintenance (Sect. 3.3.3). However, more recently the type

of diversity has been questioned from both the perspective of EC (e.g., [187])

and ensemble learning (e.g., [26]). As a consequence, diversity maintenance is

increasingly being seen as a byproduct of other underlying properties associated

with evolvability (Sect. 3.3.1). We anticipate that mechanisms for supporting

evolvability and, possibly more importantly, the identification of appropriate

feedback loops between environment and evolvability to continue to be a

significant challenge for future research.

Finally, we characterize the differences in approach between model building using

EC versus ML in general as follows:

• Level of prescription: Ensemble based ML currently requires specific a priori

decisions to be made regarding the types of ensembles to be maintained, or

whether to drop ML learners after change detection. Conversely, EC

frameworks have the potential to evolve either scenario from the same

population by adopting suitable schemes for diversity/evolvability. On the one

hand this leaves the ability to discover the relevant transition between models.

On the other, there is potentially less certainty that such a discovery will be

made.

• Computational: EC model building requires multiple passes through the training

partition; a requirement that is potentially in conflict with the open-ended/non-

316 Genet Program Evolvable Mach (2015) 16:283–326

123

stationary component of the stream itself. ML more often than not assumes some

form of greedy credit assignment, making them more ‘naturally’ online/reactive

(although achieving this under label budgets is still an open question). One

approach for addressing this issue is by assuming some form of active learning

from the outset (e.g., the data subset of Fig. 2). In addition, the cost of model

construction through EC itself can often be reduced by assuming representations

that are less costly to evolve. For example, dropping support for double

precision arithmetic. One framework adopting such an approach conducts 1,000

generations on the last 1,000 exemplars from the stream with a population size

of 100 individuals in as little as 5 seconds on a regular desktop computer [126].

Depending on the type of stream, this might in itself be sufficient for real-time

operation.

• Type of design decision: We maintain that many design decisions are not

specific to adopting EC versus ML approaches to model building. Thus,

decisions regarding the stream interface, detecting change or operating under

label budgets are potentially appropriate for model building under either EC or

ML. However, an ML practitioner might consider having to make decisions

pertaining to population diversity, evolvability and memory as not providing

sufficient control over the properties of the resulting model. This naturally

relates to the ‘level of prescription’ in framework design as discussed above.

7 Future research

In the following we motivate a longer term research agenda16 through two themes:

evolutionary hyper heuristics and local versus global search:

• Evolutionary hyper heuristics: GP as heuristic/algorithm generator implies that

GP operates on a search space of algorithm components [148]. From a streaming

data perspective the opportunity then exists for continuous adaptation of the

functional components (e.g., elements of and/or relation between the modules in

Fig. 2). Potentially, GP as an algorithm generator would be able to tune between

a spectrum of streaming algorithms, say semi-supervised to/from active

learning—Dyer et al. [60] note that active learning and semi-supervised

learning are quite close algorithmically—or compose ensembles of learners.

Indeed, the wide range of approaches to ensemble learning point to the ‘‘design

space’’ of algorithms for streaming data being both rich and most likely being

open to meta-heuristic search processes. Moreover, navigating the redundancies

that appear to exist in the multiple combinations of ensemble solutions

potentially points to automated algorithm design providing a more effective

scheme for rationalizing what properties of an ensemble are most effective for

16 Potential short term research goals having been noted in the conclusion (Sect. 6).

Genet Program Evolvable Mach (2015) 16:283–326 317

123

addressing specific features of the streaming data task. The principle challenge,

of course, is managing to do so in a computationally feasible manner.

• Local versus global search: Frameworks in which GP is used to find

‘projections’ from the original attribute space to a new ‘feature space’ are

beginning to appear [11, 104]. The benefit of adopting such an approach from a

streaming data perspective is that the behaviour of the stream can be analyzed in

the new feature space and we are free to design properties useful for stream

analysis into the feature space. Moreover, whereas construction of the mapping

between attribute and feature spaces might be non-linear, the mapping from

feature space to label space could be pursued using linear models, e.g., Naive

Bayes or Linear Discriminant Functions. Within the context of streaming data, it

has recently been proposed that the task of ‘adaptive preprocessing’ the stream

data is significantly more difficult than that of constructing a streaming classifier

[204]. We see the adaptive preprocessing step as being synonymous with

mapping from the original attribute space to that of a new more convenient

feature space and a natural role for model based EC. Conversely, any number of

(greedy) ML algorithms for streaming might be applicable to mapping from

feature to label space. Naturally, the update rates for each stage need not be the

same.

Acknowledgments The author would like to thank the reviewers for their constructive feedback on this

article resulting in significant improvements on earlier drafts. Support through the NSERC CRD Grant

program and RUAG Schweiz AG is readily acknowledged.

References

1. H.A. Abbass, J. Bacardit, M.V. Butz, X. Llora, Online adaptation in learning classifier systems:

stream data mining. Technical report IlliGAL report no. 2004031, Illinois Genetic Algorithms

Laboratory, University of Illinois at Urbana-Champaign (2004)

2. H. Abdulsalam, D.B. Skillicorn, P. Martin, Classification using streaming random forests. IEEE

Trans. Knowl. Data Eng. 23(1), 22–36 (2012)

3. A. Agapitos, M. Dyson, J. Kovalchuk, S.M. Lucus. On the genetic programming of time-series

predictors for supply chain management, in ACM Genetic and Evolutionary Computation Con-

ference, (2008), pp. 1163–1160

4. C. Alippi, G. Boracchi, M. Roveri, Just-in-time classifiers for recurrent concepts. IEEE Trans.

Neural. Netw. Learn. Syst. 24(4), 620–634 (2013)

5. F.L. Arcanjo, G.L. Pappa, P.V. Bicalho, W. Meira, A.S. de Silva, Semi-supervised genetic pro-

gramming for classification, in ACM Genetic and Evolutionary Computation Conference, (2011),

pp. 1259–1266

6. A. Atwater, Towards coevolutionary genetic programming with Pareto archiving under streaming

data. Master’s thesis, Faculty of Computer Science (2013)

7. A. Atwater, M.I. Heywood, Benchmarking Pareto archiving heuristics in the presence of concept

drift: diversity versus age, in ACM Genetic and Evolutionary Computation Conference, (2013),

pp. 885–892

8. A. Atwater, M.I. Heywood, A.N. Zincir-Heywood, GP under streaming data constraints: a case for

Pareto archiving? in ACM Genetic and Evolutionary Computation Conference, (2012), pp. 703–710

9. B. Babcock, M. Datar, R. Motwani, Sampling from a moving window over streaming data, in ACM-

SIAM Symposium on Discrete Algorithms, (2002), pp. 633–634

318 Genet Program Evolvable Mach (2015) 16:283–326

123

10. K. Bache, M. Lichman, UCI machine learning repository (University of California, Irvine, School

of Information and Computer Sciences, 2013), http://archive.ics.uci.edu/ml

11. K. Badran, P. Rockett, Multi-class pattern classification using single, multi-dimensional feature-

space feature extraction evolved by multi-objective genetic programming and its application to

network intrusion detection. Genet. Program Evolvable Mach. 13(1), 33–63 (2012)

12. M. Baena-Garcı̀a, J. Del Campo-Àvila, R. Fidalgo, A. Bifet, Early drift detection method, in ECML

PKDD International Workshop on Knowledge Discovery from Data Streams, (2006) pp. 77–86

13. M. Behdad, T. French, Online learning classifiers in dynamic environments with incomplete

feedback, in IEEE Congress on Evolutionary Computation, (2013), pp. 1786–1793

14. T.V. Belle, D.H. Ackley, Code factoring and the evolution of evolvability. in Proceedings of the

Genetic and Evolutionary Computation Conference, (Morgan Kaufmann, 2002), pp. 1383–1390

15. U. Bhowan, M. Johnson, M. Zhang, X. Yao, Evolving diverse ensembles using genetic program-

ming for classification with unbalanced data. IEEE Trans. Evol. Comput. 17(3), 368–386 (2013)

16. U. Bhowan, M. Zhang, M. Johnson, Genetic programming for classification with unbalanced data,

in European Conference on Genetic Programming, volume 6021 of LNCS, (2010), pp. 1–12

17. A. Bifet, Adaptive Stream Mining: Pattern Learning and Mining from Evolving Data Streams,

volume 207 of Frontiers in Artificial Intelligence and Applications, (IOS Press, Amsterdam, The

Netherlands, 2010)

18. A. Bifet, E. Frank, G. Holmes, B. Pfahringer, Accurate ensembles for data streams: combining

restricted hoeffding trees using stacking, in Proceedings of the Asian Conference on Machine

Learning, (2010), pp. 1–16

19. A. Bifet, R. Gavalda, Learning from time-changing data with adaptive windowing, in SIAM

International Conference on Data Mining, (2007), pp. 443–448

20. A. Bifet, G. Holmes, B. Pfahringer, R. Kirkby, R. Gavaldà, New ensemble methods for evolving

data streams, in ACM International Conference on Knowledge Discovery and Data Engineering,

(2009), pp. 139–148

21. A. Bifet, I. Žliobait _e, B. Pfahringer, G. Holmes, Pitfalls in benchmarking data stream classification

and how to avoid them, inMachine Learning and Knowledge Discovery in Databases, volume 8188

of LNCS, (2013), pp. 465–479

22. T. Blackwell, J. Branke, Multiswarms, exclusion, and anti-convergence in dynamic environments.

IEEE Trans. Evol. Comput. 10(4), 459–472 (2006)

23. D. Brain, G.I. Webb, The need for low bias algorithms in classification learning from large data sets,

in Principles of Knowledge Discovery and Datamining, volume 2431 of LNCS, (2002), pp. 62–73

24. M. Brameier, W. Banzhaf, Linear Genetic Programming (Springer, Berlin, 2007)

25. J. Branke, E. Salihoğlu, Ş. Uyar, Towards an analysis of dynamic environments, in Proceedings of

the ACM Genetic and Evolutionary Computation Conference, (2005), pp. 1433–1440

26. G. Brown, L.I. Kuncheva, ‘‘Good’’ and ‘‘bad’’ diversity in majority vote ensembles, in Multiple

Classifier Systems, volume 5997 of LNCS, (2010), pp. 124–133

27. D. Brzezinski, J. Stefanowski, Reacting to different types of concept drift: the accuracy updated

ensemble algorithm. IEEE Trans. Neural Netw. Learn. Syst. 25(1), 81–94 (2014)

28. E.K. Burke, S. Gustafson, G. Kendall, Diversity in genetic programming: an analysis of measures

and correlation with fitness. IEEE Trans. Evol. Comput. 8(1), 47–62 (2004)

29. M. Butler, D. Kazakov, A learning adaptive Bollinger band system, in IEEE Conference on

Computational Intelligence on Financial Engineering and Economics, (2012), pp. 1–8

30. R. Calabretta, S. Nolfi, D. Parisi, G.P. Wagner, Duplication of modules facilitates the evolution of

functional specialization. Artif. Life 6(1), 69–84 (2000)

31. E. Carreño Jara, Long memory time series forecasting by using genetic programming. Genet.

Program Evolvable Mach. 12(3), 429–456 (2011)

32. A. Cervantes, P. Isasi, C. Gagné, M. Parizeau, Learning from non-stationary data using a growing

network of prototypes, in IEEE Congress on Evolutionary Computation, (2013), pp. 2634–2641

33. O. Chapelle, B. Scholkopf, A. Zien, Semi-Supervised Learning (MIT Press, Cambridge, MA, 2006)

34. S. Chen, H. He, Towards incremental learning of non-stationary imbalanced data stream: a multiple

selectively recursive approach. Evol. Syst. 2(1), 35–50 (2011)

35. M. Chorev, L. Carmel, The function of introns. Front. Genet. 3(55) (2012). doi:10.3389/fgene.2012.
00055

36. J. Clune, J.-B. Mouret, H. Lipson, The evolutionary origins of modularity. Proc. R. Soc. B Biol. Sci.

280(20122863), 1–9 (2013)

Genet Program Evolvable Mach (2015) 16:283–326 319

123

http://archive.ics.uci.edu/ml
http://dx.doi.org/10.3389/fgene.2012.00055
http://dx.doi.org/10.3389/fgene.2012.00055

37. H.G. Cobb, An investigation into the use of hypermutation as an adaptive operator in genetic

algorithms having continuous, time-dependent non-stationary environments. Technical report AIC-

90-001, Naval Research Laboratory, Washington, USA, (1990)

38. L. Cohen, G. Avrahami-Bakish, M. Last, A. Kandel, O. Kipersztok, Real-time data mining of non-

stationary data streams from sensor networks. Inf. Fusion 9(3), 344–353 (2008)

39. D. Cohn, L. Atlas, R. Ladner, Improving generalization with active learning. Mach. Learn. 15(2),
201–221 (1994)

40. K. Crammer, O. Dekel, J. Keshet, S. Shalev-Shwartz, Y. Singer, Online passive-aggressive algo-

rithms. J. Mach. Learn. Res. 7, 551–585 (2006)

41. R. Curry, M. I. Heywood, One-class genetic programming, in European Conference on Genetic

Programming, volume 5481 of LNCS, (2009), pp. 1–12

42. R. Curry, P. Lichodzijewski, M.I. Heywood, Scaling genetic programming to large datasets using

hierarchical dynamic subset selection. IEEE Trans. Syst. Man Cybern. B 37(4), 1065–1073 (2007)

43. H.H. Dam, C. Lokan, H.A. Abbass, Evolutionary online data mining: an investigation in a dynamic

environment, in Studies in Computational Intelligence, vol 51, chapter 7, (Springer, 2007),

pp. 153–178

44. T. Dasu, S. Krishnan, S. Venkatasubramanian, K. Yi, An information-theoretic approach to

detecting changes in multi-dimensional data streams, in Proceedings of the Symposium on the

Interface of Statistics, (2006)

45. M. Datar, A. Gionis, P. Indyk, R. Motwani, Maintaining stream statistics over sliding windows, in

ACM-SIAM Symposium on Discrete Algorithms, (2002), pp. 635–644

46. A.P. Dawid, Statistical theory: the prequential approach. J. R. Stat. Soci. A 147, 278–292 (1984)

47. E.D. de Jong, A monotonic archive for pareto-coevolution. Evol. Comput. 15(1), 61–94 (2007)

48. K. A. de Jong, Evolving in a changing world, in Proceedings of the International Symposium on

Foundations of Intelligent Systems, (Springer, 1999), pp. 512–519

49. I. Dempsey, M. O’Neill, A. Brabazon, Adaptive trading with grammatical evolution, in IEEE

Congress on Evolutionary Computation, (2006), pp. 2587–2592

50. I. Dempsey, M. O’Neill, A. Brabazon, Foundations in Grammatical Evolution for Dynamic

Environments, volume 194 of Studies in Computational Intelligence (Springer, 2009)

51. I. Dempsey, M. O’Neill, A. Brabazon, Survey of EC in dynamic environments, chapter 3, (2009),

pp. 25–54. In [50]

52. M.A.H. Dempster, C.M. Jones, A real-time adaptive trading system using genetic programming.

Quant. Financ. 1, 397–413 (2001)

53. G. Ditzler, R. Polikar, Hellinger distance based drift detection for non-stationary environments, in

IEEE Symposium on Computational Intelligence in Dynamic and Uncertain Environments, (2011),

pp. 41–48

54. G. Ditzler, R. Polikar, Semi-supervised learning in non-stationary environments, in IEEE-INNS

International Joint Conference on Neural Networks, (2011), pp. 1–8

55. G. Ditzler, R. Polikar, Incremental learning of concept drift from streaming imbalanced data. IEEE

Trans. Knowl. Data Eng. 25(10), 2283–2301 (2013)

56. G. Ditzler, G. Rosen, R. Polikar, Discounted expert weighting for concept drift, in IEEE Symposium

on Computational Intelligence in Dynamic and Uncertain Environments, (2013), pp. 61–66

57. P. Domingos, G. Hulten, Catching up with the data: research issues in mining data streams, in

Workshop on Research Issues in Data Mining and Knowledge Discovery, (2001)

58. J. Doucette, M. I. Heywood, GP classification under imbalanced data sets: active sub-sampling

AUC approximation, in European Conference on Genetic Programming, volume 4971 of LNCS,

(2008)

59. R.O. Duda, P.E. Hart, D.G. Stork, Pattern Classification, 2nd edn. (Wiley, New York, 2001)

60. K. Dyer, R. Capo, R. Polikar, COMPOSE: a semi-supervised learning framework for initially

labeled non-stationary streaming data. IEEE Trans. Neural Netw. Learn. Syst. 25(1), 12–26 (2014)

61. M. Ebner, M. Shackleton, R. Shipman, How neutral networks influence evolvability. Complexity

7(2), 19–33 (2002)

62. J. Eggermont, A.E. Eiben, J.I. van Hemert, Adapting the fitness function in GP for data mining, in

European Conference on Genetic Programming, volume 1598 of LNCS, (1999), pp. 195–204

63. J. Eggermont, T. Lenaerts, S. Poyhonen, A. Termier, Raising the dead: extending evolutionary

algorithms with a case-based memory, in European Conference on Genetic Programming, volume

2038 of LNCS, (2001), pp. 280–290

320 Genet Program Evolvable Mach (2015) 16:283–326

123

64. A. Ekárt, S. Németh, Maintaining the diversity of genetic programming, in European Conference on

Genetic Programming, volume 2278 of LNCS, (2002), pp. 162–171

65. R. Elwell, R. Polikar, Incremental learning of concept drift in non-stationary environments. IEEE

Trans. Neural Netw. 22(10), 1517–1531 (2011)

66. S. Esmeir, S. Markovitch, Anytime learning of any cost classifiers. Mach. Learn. 82, 445–473
(2011)

67. C. Espinosa-Soto, A. Wagner, Specialization can drive the evolution of modularity. PLoS Comput.

Biol. 6, e1000719:1–10, (2010)
68. W. Fan, Y. Huang, H. Wang, P.S. Yu, Active mining of data streams, in Proceedings of SIAM

International Conference on Data Mining, (2004), pp. 457–461

69. T. Fawcett, ‘‘In vivo’’ spam filtering: a challenge problem for KDD. ACM SIGKDD Explor. 5(2),
140–198 (2003)

70. A. Fern, R. Givan, Online ensemble learning: an empirical study. Mach. Learn. 53, 71–109 (2003)

71. P. Fernandez-Blanco, D. Bosdas-Sego, F. Soltero, J.I. Hidalgo, Technical market indicators opti-

mization using evolutionary algorithms, in ACM Genetic and Evolutionary Computation Confer-

ence—ARC-FEC Workshop, (2008), pp. 1851–1858

72. S.G. Ficici, J.B. Pollack, Pareto optimality in coevolutionary learning, in European Conference on

Artificial Life, (2001), pp. 286–297

73. G. Folino, G. Papuzzo, Handling different categories of concept drift in data streams using dis-

tributed GP, in European Conference on Genetic Programming, volume 6021 of LNCS, (2010),

pp. 74–85

74. G. Folino, C. Pizzuti, G. Spezzano, Training distributed GP ensemble with a selection algorithm

based on clustering and pruning for pattern classification. IEEE Trans. Evol. Comput. 12(4),
458–468 (2008)

75. Y. Freund, R. Shapire, A decision-theoretic generalization of online learning and an application to

boosting. J. Comput. Syst. Sci. 55, 119–139 (1997)

76. J. Gama, Knowledge Discovery from Data Streams (CRC Press, Boca Raton, 2010)

77. J. Gama, A survey on learning from data streams: current and future trends. Prog. Artif. Intell. 1(1),
45–55 (2012)

78. J. Gama, P. Medas, G. Castillo, P.P. Rodrigues, Learning with drift detection, in Advances in

Artificial Intelligence, volume 3171 of LNCS, (2004), pp. 66–112

79. J. Gama, R. Sebastião, P. Rodrigues, On evaluating stream learning algorithms. Mach. Learn. 90(3),
317–346 (2013)

80. J. Gama, R. Sebastiao, P.P. Rodrigues, Issues in evaluation of stream learning algorithms, in ACM

Conference on Knowledge Discovery and Data Mining, (2009), pp. 329–338

81. J. Gao, W. Fan, J. Han, On appropriate assumptions to mine data streams: analysis and practice, in

IEEE International Conference on Data Mining, (2007), pp. 143–152

82. J.W. Gao, W. Fan, J. Han, P.S. Yu, A general framework for mining concept-drifting data streams

with skewed distributions, in Proceedings of SIAM International Conference on Data Mining,

(2007), pp. 3–14

83. C. Gathercole, P. Ross, Dynamic training subset selection for supervised learning in genetic pro-

gramming, in Parallel Problem Solving Nature, volume 866 of LNCS, (1994), pp. 312–321

84. A. Ghazikhani, R. Monsefi, H.S. Yazdi, Online cost-sensitive neural network classifiers for non-

stationary and imbalanced data streams. Neural Comput. Appl. 23, 1283–1295 (2013)

85. A. Ghosh, S. Tstutsui, H.Tanaka, Function optimization in non-stationary environment using steady

state genetic algorithms with aging of individuals, in IEEE Conference on Evolutionary Compu-

tation, (1998), pp. 666–671

86. A. Godase, V. Attar, Classification of data streams with skewed distributions, in IEEE Workshop on

Evolving and Adaptive Intelligent Systems, (2013), pp. 151–156

87. J.J. Greffenstette, Genetic algorithms for changing environments, in Proceedings of Parallel

Problem Solving from Nature, volume 2, (Elsevier, 1992), pp. 137–144

88. S. Grossberg, Nonlinear neural networks: principles, mechanisms, and architectures. Neural Netw.

1(2), 17–61 (1988)

89. M. Harries, Splice-2 comparative evaluation: electricity pricing. Technical report, University of

New South Wales (1999)

90. H. He, S. Chen, IMORL: incremental multiple-object recognition and localization. IEEE Trans.

Neural Netw. 19(10), 1727–1738 (2008)

Genet Program Evolvable Mach (2015) 16:283–326 321

123

91. H. He, E.A. Garcia, Learning from imbalanced data. IEEE Trans. Knowl. Data Eng. 21(9),
1263–1284 (2009)

92. R.C. Holt, Very simple classification rules perform well on most commonly used datasets. Mach.

Learn. 11, 63–91 (1993)

93. G.S. Hornby, ALPS: the age layered population structure for reducing the problem of premature

convergence, in ACM Genetic and Evolutionary Computation Conference, (2006), pp. 815–822

94. T. Hu, W. Banzhaf, Neutrality and variability: two sides of evolvability in linear genetic pro-

gramming, in ACM Genetic and Evolutionary Computation Conference, (2009) pp. 963–970

95. T. Hu, W. Banzhaf, The role of population size in rate of evolution in genetic programming, in

European Conference on Genetic Programming, volume 5481 of LNCS, (2009), pp. 85–96

96. T. Hu, W. Banzhaf, Evolvability and speed of evolutionary algorithms in light of recent devel-

opments in biology. J. Artif. Evol. Appl. 2010:568375, 1–28, (2010)

97. S. Huang, Y. Dong, An active learning system for mining time changing data streams. Intell. Data

Anal. 11(4), 401–419 (2007)

98. L. Huelsbergen, Finding general solutions to the parity problem by evolving machine-language

representations, in European Conference on Genetic Programming, (Morgan Kaufmann, 1998),

pp. 158–166

99. E. Ikonomovska. DataExpo: Airline dataset, (2009)

100. K. Imamura, T. Soule, R.B. Heckendorn, J.A. Foster, Behavioral diversity and a probabilistically

optimal GP ensemble. Genet. Program Evolvable Mach. 4(3), 235–254 (2003)

101. N. Japkowicz, M. Shah, Evaluating Learning Algorithms: A classification perspective (Cambridge

University Press, Cambridge, 2012)

102. M. Karnick, M.D. Muhlbaier, R. Polikar, Incremental learning in non-stationary environments with

concept drift using a multiple classifier based approach, in Proceedings of the International Con-

ference on Pattern Recognition, (2008), pp. 1–4

103. N. Kashtan, E. Noor, U. Alon, Varying environments can speed up evolution. Proc. Nat. Acad. Sci.

104(34), 13713–13716 (2007)

104. A. Kattan, A. Agapitos, R. Poli, Unsupervised problem decomposition using genetic programming,

in Proceedings of the European Conference on Genetic Programming, volume 6021 of LNCS,

(2010) pp. 122–133

105. D. Kifer, S. Ben-David, J. Gehrke, Detecting change in data streams, in Proceedings of the

International Conference on Very Large Data Bases, (Morgan Kaufmann, 2004), pp. 180–191

106. R. Klinkenberg, I. Renz, Adaptive information filtering: learning in the presence of concept drifts,

in ICML/AAAI Workshop on Learning for Text Categorization, (AAAI, 1998), pp. 33–40

107. J.Z. Kolter, M.A. Maloof, Dynamic weighted majority: an ensemble method for drifting concepts.

J. Mach. Learn. 8, 2755–2790 (2007)

108. M.F. Korns, Symbolic regression of conditional target expressions, in Genetic Programming Theory

and Practice VII, eds. by R. Riolo, U.-M. O’Reilly, T. McConaghy, chapter 13, (Springer, 2010),

pp. 211–228

109. T. Kovacs, Strength or Accuracy: Credit Assignment in Learning Classifier Systems (Springer,

Berlin, 2004)

110. K. Krawiec, Genetic programming-based construction of features for machine learning and

knowledge discovery tasks. Genet. Program Evolvable Mach. 3(4), 329–343 (2002)

111. H.-P. Kriegel, P. Kröger, A. Zimek, Subspace clustering. WIREs Data Min Knowl. Discov. 2,
351–364 (2012)

112. L.I. Kuncheva, Classifier ensembles for changing environments, in Multiple Classifier Systems,

volume 3077 of LNCS, (2004), pp. 1–15

113. T.N. Lal, O. Chapelle, J. Weston, A. Elisseeff, Embedded methods, in Feature Extraction:

Foundations and Applications, volume 207 of Studies in Fuzziness and Soft Computing, chapter 5,

(Springer, 2006), pp. 137–165

114. W.B. Langdon, B.F. Buxton, Evolving receiver operating characteristics for data fusion, in Pro-

ceedings of the European Conference on Genetic Programming, volume 2038 of LNCS, (2001),

pp. 87–96

115. W.B. Langdon, R. Poli, Foundations of Genetic Programming (Springer, Berlin, 2001)

116. T. Lange, A. Rahbek, An introduction to regime switching time series models, in Handbook of

Financial Time Series, eds. by T.G. Anderson, R.A. Davis, J.P. Kreiß, T.V. Mikosch, (Spriner,

2009), pp. 871–887

322 Genet Program Evolvable Mach (2015) 16:283–326

123

117. C. Lanquillon, Information filtering in changing domains, in Proceedings of the International Joint

Conference on Artificial Intelligence, (1999), pp. 41–48

118. D. Lewis, Evaluating and optimizing autonomous text classification systems, in ACM International

Conference on Research and Development in Information Retrieval, (1995), pp. 246–254

119. D. Lewis, Y. Yang, T. Rose, F. Li, Rcv1: a new benchmark collection for text categorization

research. J. Mach. Learn. Res. 5, 361–397 (2004)

120. J. Lewis, E. Hart, G. Ritchie, A comparison of dominance mechanisms and simple mutation on non-

stationary problems, in Parallel Problem Solving from Nature, volume 1498 of LNCS, (1998),

pp. 139–148

121. P. Li, X. Wu, X. Hu, Mining recurring concept drifts with limited labeled streaming data. ACM

Trans. Intell. Syst. Technol. 3(2), 29:1–29:32 (2012)

122. P. Lichodzijewski, M.I. Heywood, Managing team-based problem solving with symbiotic bid-based

genetic programming, in ACM Genetic and Evolutionary Computation Conference, (2008),

pp. 363–370

123. P. Lindstrom, B. MacNamee, S.J. Delany, Handling concept drift in a text data stream constrained

by high labelling cost, in Proceedings of the International Florida Artificial Intelligence Research

Society Conference, (AAAI, 2010)

124. P. Lindstrom, B. MacNamee, S.J. Delany, Drift detection using uncertainty distribution divergence.

Evol. Intel. 4(1), 13–25 (2013)

125. A. Loginov, M.I. Heywood, On the impact of streaming interface heuristics on GP trading agents:

an FX benchmarking study, in Proceedings of the ACM Genetic and Evolutionary Computation

Conference, (2013), pp. 1341–1348

126. A. Loginov, M.I. Heywood, On evolving multi-agent FX traders, in EvoApplications, volume 8602

of LNCS, (2014)

127. E. Lughofer, On-line active learning based on enhanced reliability concepts, in IEEE Workshop on

Evolving and Adaptive Intelligent Systems, (2013), pp. 1–6

128. S. Ma, C. Ji, Performance and efficiency: recent advances in supervised learning. Proc. IEEE 87(9),
1519–1536 (1999)

129. M. Markou, S. Singh, Novelty detection: a review-part 1: statistical approaches. Sig. Process. 83,
2481–2497 (2003)

130. M. Markou, S. Singh, Novelty detection: a review-part 2: neural network based approaches. Sig.

Process. 83, 2499–2521 (2003)

131. A.R. McIntyre, M.I. Heywood, Cooperative problem decomposition in Pareto competitive classifier

models of coevolution, in European Conference on Genetic Programming, volume 4971 of LNCS,

(2008), pp. 289–300

132. A.R. McIntyre, M.I. Heywood, Pareto cooperative-competitive genetic programming: a classifi-

cation benchmarking study, in Genetic Programming Theory and Practice, eds. by R. Riolo, T.

Soule, B. Worzel, volume IV, chapter 4, (Springer, 2008), pp. 43–60

133. A.R. McIntyre, M.I. Heywood, Classification as clustering: a pareto cooperative-competitive GP

approach. Evol. Comput. 19(1), 137–166 (2011)

134. J.H. Metzen, M. Edgington, Y. Kassahun, F. Kirchner, Analysis of an evolutionary reinforcement

learning method in a multiagent domain, in Proceedings of the ACM International Joint Conference

on Autonomous Agents and Multiagent Systems, (2008), pp. 291–298

135. L.L. Minku, Concept drift datasets and generators (2010), http://www.cs.bham.ac.uk/*minkull/

opensource.html

136. L.L. Minku, H. Inoue, X. Yao, Negative correlation in incremental learning. Nat. Comput. J. 8,
289–320 (2009)

137. L.L. Minku, A.P. White, X. Yao, The impact of diversity on online ensemble learning in the

presence of concept drift. IEEE Trans. Knowl. Data Eng. 22(5), 730–742 (2010)

138. L.L. Minku, X. Yao, DDD: a new ensemble approach for dealing with concept drift. IEEE Trans.

Knowl. Data Eng. 24(4), 619–633 (2012)

139. N. Mori, H. Kita, Y. Nishikawa, Adaptation to a changing environment by means of the feedback

thermodynamical genetic algorithm, in Parallel Problem Solving from Nature, volume 1498 of

LNCS, (1998), pp. 149–157

140. R.W. Morrison, Designing Evolutionary Algorithms for Dynamic Environments. Natural Comput-

ing (Springer, Berlin, 2004)

141. Neurotech. Pakdd 2009 data mining competition, (2009)

Genet Program Evolvable Mach (2015) 16:283–326 323

123

http://www.cs.bham.ac.uk/~minkull/opensource.html
http://www.cs.bham.ac.uk/~minkull/opensource.html

142. H.M. Nguyen, E.W. Cooper, K. Kamei, Online learning from imbalanced data streams, in Inter-

national Conference on Soft Computing and Pattern Recognition, (2011), pp. 347–352

143. N. Nikolaev, H. Iba, Accelerated genetic programming of polynomials. Genet. Program Evolvable

Mach. 2(3), 231–257 (2000)

144. K. Nishida, K. Yamauchi, Learning, detecting, understanding, and predicting concept changes, in

IEEE-INNS International Joint Conference on Neural Networks, (2009), pp. 2280–2287

145. J. Noble, R. Watson, Pareto coevolution: using performance against coevolved opponents in a game

as dimensions for pareto selection, in Genetic and Evolutionary Computation Conference, (Morgan

Kaufmann, 2001), pp. 493–500

146. M. O’Neill, C. Ryan, Grammatical evolution by grammatical evolution: the evolution of grammar

and genetic code, in European Conference on Genetic Programming, volume 3003 of LNCS,

(2004), pp. 138–149

147. N.C. Oza, S. Russell, Experimental comparison of online and batch versions of bagging and

boosting, in ACM International Conference on Knowledge Discovery and Data Mining, (2001),

pp. 359–364

148. G.L. Pappa, G. Ochoa, M.R. Hyde, A.A. Freitas, J. Woodward, J. Swan, Contrasting meta-learning

and hyper-heuristic research: the role of evolutionary algorithms. Genet. Program Evolvable Mach.

15(1), 3–35 (2014)

149. M. Parter, N. Kashtan, U. Alon, Facilitated variation: How evolution learns from past environments

to generalize to new environments. PLoS Comput. Biol. 4(11), e1000206 (2008)

150. A. Pocock, P. Yiapanis, J. Singer, M. Luján, G. Brown, Online non-stationary boosting, in Multiple

Classifier Systems, volume 5997 of LNCS, (2010), pp. 205–214

151. R. Polikar, R. Elwell, Benchmark datasets for evaluating concept drift/nse algorithms (2011), http://

users.rowan.edu/?polikar/research/NSE

152. R. Polikar, L. Udpa, S.S. Udpa, V. Honavar, Learn??: an incremental learning algorithm for

supervised neural networks. IEEE Trans. Syst. Man Cybern. C 31(4), 497–508 (2001)

153. A. Prugel-Bennett, Benefits of a population: five mechanisms that advantage population-based

algorithms. IEEE Trans. Evol. Comput. 14(4), 500–517 (2010)

154. J. Quinonero-Candela, M. Sugiyama, A. Schwaighofer, N.D. Lawrence, (eds.), Dataset Shift in

Machine Learning (MIT Press, 2009)

155. S. Rahimi, A.R. McIntyre, M.I. Heywood, N. Zincir-Heywood, Label free change detection on

streaming data with cooperative multi-objective genetic programming, in ACM Genetic and Evo-

lutionary Computation Conference, (2013), pp. 159–160

156. K. Rodrı́guez-Vázquez, P.J. Fleming, Evolution of mathematical models of chaotic systems based

on multi objective genetic programming. Knowl. Inf. Syst. 8(2), 235–256 (2005)

157. R. Schapire, Y. Freund, Decision-theoretic generalization of on-line learning and an application to

boosting. J. Comput. Syst. Sci. 55(1), 119–139 (1997)

158. M. Scholz, R. Klinkenberg, Boosting classifiers for drifting concepts. Intell. Data Anal. 11(1), 3–28
(2007)

159. R. Schwaerzel, T. Bylander, Predicting currency exchange rates by genetic programming with

trigonometric functions and high-order statistics, in ACM Genetic and Evolutionary Computation

Conference, (2006), pp. 955–956

160. R. Sebastio, J. Gama, Change detection in learning histograms from data streams, in Proceedings of

the Portuguese Conference on Artificial Intelligence, volume 4874 of LNCS, (Springer, 2007),

pp. 112–123

161. H.A. Simon, The architecture of complexity. Proc. Am. Philos. Soc. 106, 467–482 (1962)

162. P. Sobolewski, M. Wozniak, LDCnet: minimizing the cost of supervision for various types of

concept drift, in IEEE Symposium on Computational Intelligence in Dynamic and Uncertain

Environments, (2013), pp. 68–75

163. D. Song, M.I. Heywood, A.N. Zincir-Heywood, Training genetic programming on half a million

patterns: an example from anomaly detection. IEEE Trans. Evol. Comput. 9(3), 225–239 (2005)

164. K.O. Stanley, R. Miikkulainen, Evolving neural networks through augmenting topologies. Evol.

Comput. 10(2), 99–127 (2002)

165. R. Stapenhurst, G. Brown, Theoretical and empirical analysis of diversity in non-stationary

learning. in IEEE Symposium on Computational Intelligence in Dynamic and Uncertain Environ-

ments (2011), pp. 25–32

166. A. Storkey, When training and test sets are different: characterizing learning transfer, chapter 1,

(2009), pp. 3–28. In [156]

324 Genet Program Evolvable Mach (2015) 16:283–326

123

http://users.rowan.edu/?polikar/research/NSE
http://users.rowan.edu/?polikar/research/NSE

167. W. Street, Y. Kim, A streaming ensemble algorithm (SEA) for large-scale classification, in ACM

Conference on Knowledge Discovery and Data Mining, (2001), pp. 377–382

168. R.S. Sutton, A.G. Barto, Reinforcement Learning: An Introduction (MIT Press, Cambridge, 1998)

169. R. Swan, J. Allan, Extracting significant time varying features from text, in ACM International

Conference on Information and Knowledge Management, (1999), pp. 38–45

170. K. Trojanowski, Z. Michalewicz, Evolutionary optimization in non-stationary environments.

J. Comput. Sci. Technol. 1(2), 93–124 (2000)

171. A. Tsymbal, M. Pechenizkiy, P. Cunningham, S. Puuronen, Dynamic integration of classifiers for

handling concept drift. Inf. Fusion 9(1), 56–68 (2008)

172. P.D. Turney, Increasing evolvability considered as a large-scale trend in evolution, in Genetic and

Evolutionary Computation Conference: Workshop on Evolvability, (Morgan Kaufmann, 1999),

pp. 43–46

173. U.S. National Oceanic and Atmospheric Administration. Federal climate complex global surface

summary of day data (2010), ftp://ftp.ncdc.noaa.gov/pub/data/gsod

174. A.Ş. Uyar, A.E. Harmanci, Performance comparisons of genotype-to-phenotype mapping schemes

for diploid representations in changing environments, in International Conference on Recent

Advances in Soft Computing, (2002), pp. 128–134

175. A. Vahdat, A. Atwater, A.R. McIntyre, M.I. Heywood, On the application of GP to streaming data

classification tasks with label budgets, in ACM Genetic and Evolutionary Computation Conference:

ECBDL Workshop, (2014), pp. 1287–1294

176. A. Vahdat, J. Morgan, A.R. McIntyre, M.I. Heywood, A.N. Zincir-Heywood, Evolving GP clas-

sifiers for streaming data tasks with concept change and label budgets: a benchmarking study, in

Handbook of Genetic Programming Applications (Springer, under review)

177. H. Valizadegan, P.-N. Tan, A prototype-driven framework for change detection in data stream

classification, in IEEE Symposium on Computational Intelligence and Data Mining, (2007),

pp. 88–95

178. L. Vanneschi, G. Cuccu, Variable size population for dynamic optimization with genetic pro-

gramming, in ACM Genetic and Evolutionary Computation Conference, (2009), pp. 1895–1896

179. W. Verbeke, K. Dejager, D. Martens, J. Nur, B. Basens, New insights into churn prediction in the

telecommunication sector: a profit driven data mining approach. Eur. J. Oper. Res. 218, 211–229
(2012)

180. E. Vladislavleva, G. Smits, D. den Hertog, On the importance of data balancing for symbolic

regression. IEEE Trans. Evol. Comput. 14(2), 252–277 (2010)

181. P. Vorburger, A. Bernstein, Entropy-based concept shift detection, in Proceedings of the Sixth

International Conference on Data Mining, (2006), pp. 1113–1118

182. A. Wagner, Environmental change in adaptation and innovation, in The Origins of Evolutionary

Innovations, chapter 11 (Oxford University Press, 2011)

183. G.P. Wagner, L. Altenberg, Complex adaptations and the evolution of evolvability. Complexity

50(3), 433–452 (1996)

184. N. Wagner, Z. Michalewicz, M. Khouja, R.R. McGregor, Time series forecasting for dynamic

environments: the DyFor genetic program model. IEEE Trans. Evol. Comput. 11(4), 433–452
(2007)

185. J. Wang, P. Zhao, S.C.H. Hoi, R. Jin, Online feature selection and its applications. IEEE Trans.

Knowl. Data Eng. 26(3), 698–710 (2014)

186. S. Wang, L.L. Minku, X. Yao, A learning framework for online class imbalance learning, in IEEE

Symposium on Computational Intelligence and Ensemble Learning (2013), pp. 36–45

187. Y. Wang, M. Wineberg, Estimation of evolvability genetic algorithm and dynamic environments.

Genet. Program Evolvable Mach. 7(3), 355–382 (2006)

188. R.A. Watson, J.B. Pollack, Modular interdependency in complex dynamic systems. Artif. Life

11(4), 445–457 (2005)

189. G.M. Weiss, R. Provost, Learning when training data are costly: the effect of class distribution on

tree induction. J. Artif. Intell. Res. 19, 315–354 (2003)

190. G. Widmer, M. Kubat, Effective learning in dynamic environments by explicit context tracking, in

Proceedings of the European Conference on Machine Learning, volume 667 of LNCS, (1993),

pp. 227–243

191. G. Wilson, W. Banzhaf, Interday and intraday stock trading using PAM developmental GP and

linear GP, in Natural Computing in Computational Finance 3, volume 293 of SCI, chapter 11, eds.

by A. Brabazon, M. ONeill, D.G. Maringer, (Springer, 2010), pp. 191–212

Genet Program Evolvable Mach (2015) 16:283–326 325

123

ftp://ftp.ncdc.noaa.gov/pub/data/gsod

192. X. Wu, K. Yu, W. Ding, H. Wang, X. Zhu, Online feature selection with streaming features. IEEE

Trans. Pattern Anal. Mach. Learn. 35(5), 1178–1182 (2013)

193. Y. Xu, S. Furao, O. Hasegawa, J. Zhao, An online incremental learning vector quantization, in

Advances in Knowledge Discovery and Data Mining, volume 5476 of LNAI, (2009), pp. 1046–1053

194. S. Yang, Dominance learning in diploid genetic algorithms for dynamic optimization problems, in

ACM Genetic and Evolutionary Computation Conference, (2006), pp. 1435–1448

195. Y. Yang, X. Wu, X. Zhu, Mining in anticipation for concept change: proactive-reactive prediction

in data streams. Data Min. Knowl. Disc. 13(3), 261–289 (2006)

196. M. Zhang, W. Smart, Using Gaussian distribution to construct fitness functions in genetic pro-

gramming for multiclass object classification. Pattern Recogn. Lett. 27(11), 1266–1274 (2006)

197. P. Zhang, X. Zhu, L. Guo, Mining data streams with labeled and unlabeled training examples, in

IEEE International Conference on Data Mining, (2009), pp. 627–636

198. P. Zhang, X. Zhu, J. Tan, L. Guo, Classifier and cluster ensembles for mining concept drifting data

streams, in IEEE International Conference on Data Mining, (2010), pp. 1175–1180

199. X. Zhu, P. Zhang, X. Lin, Y. Shi, Active learning from stream data using optimal weight classifier

ensemble. IEEE Trans. Syst. Man Cybern. B 40(6), 1607–1621 (2010)

200. T. Ziemke, N. Bergfeldt, G. Buason, T. Susi, H. Svensson, Evolving cognitive scaffolding and

environment adaptation: a new research direction for evolutionary robotics. Connect. Sci. 16(4),
339–350 (2004)

201. I. Žliobait _e, Change with delayed labelling: When is it detectable? in IEEE International Confer-

ence on Data Mining Workshops, (2010), pp. 843–850

202. I. Žliobait _e, A. Bifet, B. Pfahringer, G. Holmes, Active learning with evolving streaming data, in

Proceedings of the European Conference on Machine Learning and Knowledge Discovery in

Databases, (Springer, 2011), pp. 597–612

203. I. Žliobait _e, A. Bifet, B. Pfahringer, G. Holmes, Active learning with drifting streaming data. IEEE

Trans. Neural Netw. Learn. Syst. 25(1), 27–54, (2014)
204. I. Žliobait _e, B. Gabrys, Adaptive preprocessing for streaming data. IEEE Trans. Knowl. Data Eng.

26(2), 309–321 (2014)

326 Genet Program Evolvable Mach (2015) 16:283–326

123

	Evolutionary model building under streaming data for classification tasks: opportunities and challenges
	Abstract
	Introduction
	Characterizing the streaming data task
	Statistical frameworks
	Types of change
	Bias--variance tradeoff
	Discussion

	Identifying generic ML properties for the stream learning task
	Generic ML perspective
	Ensemble ML perspective
	Generic model-based EC perspective
	Evolvability
	Memory
	Diversity

	Discussion

	Benchmarking issues
	Evaluation
	Datasets
	Artificial datasets
	Real-world, time varying datasets
	Artificially modified real-world datasets

	Progress to date
	Stream interfaces
	Sampling

	Evolved temporal features
	Label free change detection
	Universal measures of change detection
	Task specific change detection

	Semi-supervised learning
	Learning classifier systems and prototype methods
	Class imbalance

	Conclusion
	Future research
	Acknowledgments
	References

