
Balanced Cartesian Genetic Programming
via migration and opposition-based learning:
application to symbolic regression

Samaneh Yazdani • Jamshid Shanbehzadeh

Received: 2 September 2013 / Revised: 9 July 2014 / Published online: 29 July 2014

� Springer Science+Business Media New York 2014

Abstract The exploration–exploitation trade-off is an important aspect of evolu-

tionary algorithms which determines the efficiency and accuracy of these algo-

rithms. Cartesian Genetic Programming (CGP) is a generalization of the graph

based genetic programming. It is implemented with mutation only and does not

have any possibility to share information among solutions. The main goal of this

paper is to present an effective method for balancing the exploration and exploi-

tation of CGP referred to as Balanced Cartesian Genetic Programming (BCGP) by

incorporating distinctive features from biogeography-based optimization (BBO) and

opposition-based learning. To achieve this goal, we apply BBO’s migration operator

without considering any modifications in the representation of CGP. This operator

has good exploitation ability and can be used to share information among indi-

viduals in CGP. In addition, in order to improve the exploration ability of CGP, a

new mutation operator is integrated into CGP inspired from the concept of oppo-

sition-based learning. Experiments have been conducted on symbolic regression.

The experimental results show that the proposed BCGP method outperforms the

traditional CGP in terms of accuracy and the convergence speed.

Keywords Cartesian Genetic Programming � Biogeography-based optimization �
Migration � Opposition-based learning � Exploration–exploitation trading-off

S. Yazdani (&)

Department of Computer Engineering, Science and Research Branch, Islamic Azad University,

Tehran, Iran

e-mail: Samaneh.yazdani@gmail.com

J. Shanbehzadeh

Department of Computer Engineering, Faculty of Engineering, Kharazmi University, Tehran, Iran

e-mail: jamshid@khu.ac.ir

123

Genet Program Evolvable Mach (2015) 16:133–150

DOI 10.1007/s10710-014-9230-4

1 Introduction

Evolutionary algorithms have solved different problems, which are difficult to solve

by using more traditional optimization algorithms. The research areas of evolution-

ary algorithms have been attracting researchers for many years. The performance of

evolutionary algorithms depends on balancing between the exploration and

exploitation which are obtained via randomized operations such as mutation and

recombination. Mutation introduces new genetic material into an existing individual.

So, mutation adds diversity to the genetic characteristics of population. Recombi-

nation shares information between two or more individuals [1, 2].

Genetic Programming (GP) is an evolutionary algorithm introduced by Koza [3,

4]. It has tree data structures as genotype. GP has been applied on various problems

in different areas such as image processing and pattern recognition [5–9],

biomedical science [10–13] to control engineering [14–16], robotics [17–19] and

so on [20]. After introducing GP, researchers have been trying to develop new

techniques to improve the performance of GP [21]. One such approach suggested

recently by Miller and Thomson is Cartesian Genetic Programming (CGP) [22].

CGP uses directed graphs which are more general than the trees to represent

programs. The CGP is implemented with mutation only [23], therefore, it may lack

the exploitation ability. As the crossover techniques which were reported in [23]

(i.e. like the simple point crossover that was applied in the CGP original integer

representation) failed to improve the performance of CGP, Clegg et al. [23]

introduced the new crossover. In order to apply this new operator, the CGP

representation is modified in which a genotype is a fixed length list of real-valued

numbers instead of the integer numbers. Each gene in genotype has a value in the

interval [0, 1]. After applying the crossover inspired from the real-valued crossover

operator in real-valued GAs, the decoding process from the real-valued genotype to

integer based genotype should be performed. The results show that by applying a

proper crossover, the performance of CGP can efficiently improve.

Biogeography-based optimization is a new evolutionary algorithm for global

optimization introduced by Simon [24]. It is a population-based algorithm in which

each solution of the population is a vector of integer. Since BBO has certain features

in common with other biology-based optimization algorithms like genetic

algorithms (GAs) and particle swarm optimization (PSO), BBO is applicable to

the same type of problems which they claim to solve [24]. In [24] Simon compares

the BBO performance on 14 benchmark functions with seven widely used

population-based optimization methods. Results of his study show that BBO

outperforms most of the other algorithms on most of the benchmarks. BBO applies

the migration operator to share information among solutions. It has good

exploitation ability due to the migration operator [25].

The new features of the proposed method which aims to balance the exploitation

and exploration are: (1) Taking the migration operator of the BBO to share

information among individuals. Applying this migration operator exempts us from

modifying the CGP representation and dominant the lack of exploitation ability. (2)

Driving a new mutation operator inspired by the concept of opposition-based

learning. This new mutation operator enhances the exploration ability of CGP.

134 Genet Program Evolvable Mach (2015) 16:133–150

123

To illustrate the effect of the proposed method, another search method is used

instead of the 1 ? lambda search method applied with the traditional CGP.

Experiments have been tested on some of the symbolic regression problems chosen

from literatures. In addition, to fairly compare the proposed method with the

traditional CGP three performance criteria have been utilized. These measures are

success rate (SR), acceleration rate (AR), and the average of the best found solutions

and the corresponding standard deviation as calculated after specific number of

function evaluations has been reached. Furthermore, the influence of changing in

both the number of nodes and population are investigated. The results demonstrate

the importance of the exploration–exploitation trade-off.

The rest of this paper is organized as follows: Sect. 2 reviews the BBO algorithm.

Section 3 introduces the traditional CGP and its problems. The proposed method

called Balanced Cartesian Genetic Programming (BCGP) is also described in Sect.

3. Section 4 presents the experimental results and discussions. Finally, conclusions

and directions for future investigations are given in Sect. 5.

2 Biogeography-based optimization

Biogeography-based optimization is a new population-based algorithm for global

optimization which was originally developed by Simon [24]. Each individual

(called island or habitat) represents a solution for the problem and is comprised of

solution features. These solution’s features are called suitability index variables

(SIVs) which are the same as genes in GA [24, 25]. The goodness of each solution is

characterized by a habitat suitability index (HSI). HSI is equivalent to fitness in GA.

Two main operators of BBO for improving the population are the migration (which

includes both immigration and emigration) and mutation [24, 25].

Migration is an operator for probabilistically sharing features among solutions.

High-HSI solutions are the good ones and tend to share their features with low-HSI

solutions by emigration. Low-HSI solutions are the poor ones and accept new

features from high-HSI solutions by the immigration. In BBO, each individual has

its own immigration rate k and the emigration rate l. These rates indicate the

probability that a solution is selected as an immigration or emigration habitat. A

good solution relatively has a high l and low k and vice versa for the poor solution.

BBO has good exploitation ability due to these characteristic of the migration. For

each solution in each generation, immigration and emigration rates are adaptively

determined based on the fitness of the solution as follows [24, 25]:

ki ¼ I 1� kðiÞ
npop

� �
ð1Þ

li ¼ E
kðiÞ
npop

� �
ð2Þ

where k(i) represents the rank of ith individual in an ordered list sorted based on the

fitness of the population from the worst fitness to the best one, and npop is the

Genet Program Evolvable Mach (2015) 16:133–150 135

123

number of solutions in the population. E and I are respectively the maximum

possible rates of the emigration and immigration which are most of the time set to 1

or close to it. Figure 1 illustrates the above-mentioned explanations for a population

sorted based on the fitness of individuals [24, 29]. According to the already men-

tioned definitions, migration can be expressed as [25]:

Hi;SIV Hj;SIV ð3Þ

where Hi is selected as the immigration solution with immigration rate ki, and Hj is

the individual selected as the emigration solution with the emigration rate lj.

Equation (3) means that a solution feature of solution Hi is replaced by a feature

from solution Hj [25].

The mutation in BBO is utilized to modify solution’s features, SIVs. According

to the mutation rate, a selected SIV in the ith solution, Hi, is replaced by a randomly

generated one. This process can be described as follows:

where D is the number of SIV in each habitat, Hi,j is the jth SIV of the individual

Hi, and mi is calculated from equation (4).

mi ¼ mmax 1� pi

pmax

� �
ð4Þ

where mmax is the user defined maximum mutation probability, pmax = arg max pi,

i = 1,…,npop, and pi is the solution probability [24, 25]. More details about

mutation are discussed in [24].

3 Balanced Cartesian Genetic Programming

Miller and Thomson developed CGP [22]. Although CGP is from GP family, it

represents a program as a directed graph unlike the standard tree based GP. The

main reason is the more generality of a graph in comparison with a tree [22]. This

directed graph is defined by a rectangular grid of nodes with nr and nc number of

nodes in each row and column respectively. nr and nc are user defined parameters.

Yu and Miller [27] showed that CGP has been more effective when number of rows

was chosen to be one. Hence, we choose the number of rows to be one through this

paper.

Genotype in CGP is a fixed length list of integers that encodes the function and

the connections of each node in the directed graph [22, 23]. To explain the genotype

136 Genet Program Evolvable Mach (2015) 16:133–150

123

and corresponding phenotype of a program in CGP more clearly, the following

example is considered. This example is borrowed from [23] which implements a

function considered as x6 - 2x4 ? x2. As shown in Fig. 2, each node of the graph

consists of genes. The first gene encodes the node function randomly selected from

the function set. In this example, functions and corresponding indexes are {?(0),

-(1), *(2), /(3)}. The remaining genes in the node encode where in the graph the

node takes its inputs from. The nodes take their inputs from either output of a

previous node or from the primitive program inputs (terminals). Each of inputs is

labeled with the consecutive number from {0 (x), 1 (1)…}.

The number of previous columns of nodes which may have their output

connected to a node in the current column is defined by levels-back parameter.

Notice that the primary inputs are treated in the same way as node outputs [22]. In

this example levels-back is equal to the maximum number of columns. Thus, nodes

can connect to any previous nodes in left.

The program output is taken from the node output 8. Any encoded nodes in

genotype can be either connected or disconnected. In Fig. 2, gray nodes are not

connected to the program output and are inactive. Therefore, in contrary to the

genotype, phenotypes (programs) in CGP have a variable length.

As mentioned above, CGP may lack the exploitation ability because it is

implemented with mutation only. Some mutation operators include the point

mutation, insert-node and delete-node [28]. Some attempts have been done to

introduce an effective crossover for CGP when CGP representation is in its original

form. However, all of them are failed to improve the performance of CGP. In [23],

the crossover method which improved the performance of CGP was developed.

However, to incorporate this type of crossover operator into CGP requires a

modification to CGP representation itself [23].

Introducing a proper crossover technique can increase the exploitation of CGP

and speed up its convergence considerably. The goal of this paper is to improve the

performance of CGP by balancing its exploration and exploitation. To reach this

purpose, we propose a new method which is called BCGP (Balanced Cartesian

Genetic Programming) which is described in the following subsections.

Fig. 1 Linear migration rates plotted versus the sorted population [29]

Genet Program Evolvable Mach (2015) 16:133–150 137

123

Fig. 2 Genotype and corresponding phenotype of a CGP for the function x6 - 2x4 ? x2. First gene in
each node (underlined gene) encodes the function. The function set is {?=0, -=1, *=2, /=3}. The two
inputs are 0(x) and 1(1) [23]

138 Genet Program Evolvable Mach (2015) 16:133–150

123

3.1 Main procedure of BCGP

By employing the migration operator of BBO and being inspired by the

concept of opposition-based learning as mutation, BCGP is developed to

improve the performance of traditional CGP (see Algorithm 1). In BCGP,

each individual is presented by a D dimensional integer vector. In Algorithm

1, VTR is value to reach, NOG is number of generations, and Mgeneration is

the maximum number of generations. npop is the size of the parent

population P, Pi,k is the kth gene of the ith individual in the P, and Ci is the

ith member of the offspring population C. The proposed method is an elitist

method. Namely, if applying the proposed method yields a better offspring,

parent is replaced with it. It is important to mention that the parent will be

replaced with an offspring even if the offspring receives the same fitness

value.

3.2 Migration

Based on the explanation mentioned in Sect. 2, migration has good exploitation

ability, and it can utilize the population information effectively. In order to make a

way for sharing information among solutions in CGP, the migration operator is

integrated into CGP. Since CGP uses a vector of integers as a genotype just like

BBO, we can use the migration operator without any modifications. Migration can

be expressed in BCGP as:

Pi;gen Pj;gen ð5Þ

where Pi is the immigrating individual and Pj is the emigrating individual.

3.3 Mutation

In order to improve the exploration ability of the proposed method, the mutation

operator which is composed of two types of mutation is integrated into BCGP.

These types of mutation are different in terms of power of exploration and

stochastic.

3.3.1 Type 1: Simple mutation

In type 1, the value of a gene is replaced by a randomly generated value from a valid

integer interval.

3.3.2 Type 2: Opposition-based learning based mutation (OBL mutation)

Initial population in evolutionary algorithms is often created randomly. The

computation time is related to the distance of these initial guesses from the

Genet Program Evolvable Mach (2015) 16:133–150 139

123

optimal solution. The chance of starting with a closer solution is increased by

checking the opposition guesses at the same time. This is the main idea behind

opposition-based learning proposed by Tizhoosh [26]. In opposition-based

optimization, fitter one between guess or opposite guess can be chosen to create

better initial population or better generation to accelerate evolutionary algorithms

convergence. We use the concept of quasi-opposition-based learning as a

mutation. As it has been shown in [30], quasi-opposite points have a better

convergence rate than opposite points [29]. The value of the kth gene of the ith

member of the offspring population C is updated as follows:

opk ¼ MinC
k þMaxC

k � Ci;k

Mk ¼
MinC

k þMaxC
k

2

Ci;k ¼
roundðMk þ ðopk �MkÞ � randð0; 1ÞÞ if Ci;k\Mk

roundðopk þ ðMk � opkÞ � randð0; 1ÞÞ otherwise

� ð6Þ

where MinC
k is the minimum value of the kth gene in the current offspring pop-

ulation and MaxC
k is the maximum value of the kth gene in the current offspring

population C. So, the maximum and minimum values of each variable (gene) in

the current offspring population are used. As explained in [30], using this interval

instead of predefined interval boundaries of variables helps to concentrate on the

current reduced search space and use the obtained knowledge of converged

population. Mk is the middle point, round(x) rounds x to the nearest integer, and

rand(0,1) is a random number uniformly distributed between 0 and 1. It is

important to notice that in order to employ OBL in integer coding, we add round

to the relation of OBL.

The core idea of the proposed mutation type is that when the time

increases, the search space is shrunken. OBL mutation operator is able to

use the knowledge of the current reduced space. The mutation operator is

described in Algorithm 2. mr in Algorithm 2 is the mutation rate.

3.4 Differences between BCGP and CGP

There are three main differences between CGP and BCGP: (1) there are no

ways for CGP to share information among individuals while BCGP using the

migration operator can utilize the population information effectively. (2) In

addition, the mutation operator in BCGP which is composed of two types of

mutation tends to increase the diversity of population and improves the

exploration ability. (3) Operators shown in Algorithm 1 can balance the

exploration and the exploitation of BCGP while CGP may lack the

exploitation ability.

140 Genet Program Evolvable Mach (2015) 16:133–150

123

4 Simulation result and analysis on symbolic regression problems

To evaluate the performance of BCGP with traditional CGP, five real-valued

symbolic regression problems [3, 21–23, 31] which are shown in Table 1 are used.

The symbolic regression involves finding a mathematical expression that relates the

independent variables to the dependent variable for a given finite sampling interval.

In other words, it involves finding the hidden relation among the variable/variables

and the target concept.

In order to compare the methods, the following parameters have to be

determined: terminal set, function set, mutation rate (mr), maximum number of

nodes, and maximum NOGs, Mgeneration. These parameters used in this study have

been discussed in detail in [3, 21–23]. They are recommended as follows: terminal

set of {1,X}, function set consisting of {?, -, *, /, sin, cos}, mutation rate of 3 %,

maximum number of nodes of 50, and for the Mgeneration, we use 500 for our

proposed method and 6,250 for traditional CGP. These parameters remain

unchanged unless it is mentioned.

As can be seen, the maximum number of generations is set differently because

CGP and BCGP employ different search methods. Since the search method over the

CGP representation is very important and must be carefully chosen, we apply the

(1 ? lambda) evolutionary strategy1 which most literature used it. Lambda is set to

1 CGP work best using 1 ? lambda.

Genet Program Evolvable Mach (2015) 16:133–150 141

123

4 [32]. In order to equate the number of evaluations in each method, the Mgeneration

for CGP is set to 6,250.

Moreover, for all regression problems, experiments are repeated 100 times and

average results are shown. Note that the fitness value of each individual is defined

here as the sum of absolute errors between its values and the true function value

over all fitness cases. Fitness cases are randomly selected from specified intervals

which are shown in Table 1. The stopping condition is to find a value smaller than

the value to reach (VTR) before reaching the maximum number of generations

Mgeneration. We set VTR to 10-6.

In order to have a fair comparison, three performance criteria are utilized. These

criteria are:

• The Mean and standard deviation (St-d) of errors in 100 runs.

• The number of runs for which the algorithm successfully reaches the VTR for

each test function is measured as the success rate (SR) [33].

• In order to compare convergence speeds, another measure called the acceler-

ation rate (AR) is used [33]. As mentioned above, we must employ two different

search methods in our proposed method and the traditional CGP. To have a fair

comparison, we should compare BCGP and CGP in the same number of

evaluations. We show AR as follows, based on the NOG and the number of

individuals:

AR ¼ NOGCGP � lambda

NOGBCGP � npop

ð7Þ

where NOG is the number of generations. The number of generations multiplied

by the population size is equal to the number of function calls (NFCs) which

indicates the convergence speed. A smaller NFC means higher convergence

speed. The average number of NFC over 100 runs is used for minimizing the

effect of stochastic. AR [1 means BCGP is faster.

4.1 Influence of migration on the performance of BCGP

In our first experiment, we investigate only the influence of applying migration on

the performance of CGP. We call it BCGP1. In our proposed method, the size of the

Table 1 Symbolic regression functions

Functions Fitcases

F1 = x6 - 2 x4 ? x2 50 random points � [-1,1]

F2 = x5 - 2 x3 ? x 50 random points � [-1,1]

F3 = x4 ? x3 ? x2 ?x 20 random points � [-1,1]

F4 = sin(x2) cos(x) - 1 20 random points � [-1,1]

F5 = sin(x) ? sin(x ? x2) 20 random points � [-1,1]

142 Genet Program Evolvable Mach (2015) 16:133–150

123

population is 50 and at each generation 50 offspring are created and as discussed in

Algorithm 1, the better individual between ith parent and ith offspring survives for

the next generation.

Figure 3 depicts average mean errors found by two algorithms over 100 runs

for the benchmark functions. The average results of 100 independent runs of

(b)(a)

(d)(c)

(e)

0 0.5 1 1.5 2 2.5

x 10
4

0

5

10

15

20

25

Number of function calls

F
itn

es
s

va
lu

e
fo

r
th

e
be

st
 in

di
vi

du
al

x6-2 x4+x2

BCGP1
Traditional CGP

0 0.5 1 1.5 2 2.5

x 10
4

0

5

10

15

20

Number of function calls

F
itn

es
s

va
lu

e
fo

r
th

e
be

st
 in

di
vi

du
al

x5-2x3+x

BCGP1
Traditional CGP

0 0.5 1 1.5 2 2.5

x 10
4

0

5

10

15

Number of function calls

F
itn

es
s

va
lu

e
fo

r
th

e
be

st
 in

di
vi

du
al

x4+x3+x2+x

BCGP1
Traditional CGP

0 0.5 1 1.5 2 2.5

x 10
4

0

5

10

15

Number of function calls

F
itn

es
s

va
lu

e
fo

r
th

e
be

st
 in

di
vi

du
al

sin(x2)*cos(x) -1

BCGP1
Traditional CGP

0 0.5 1 1.5 2 2.5

x 10
4

0

2

4

6

8

10

12

14

Number of function calls

F
itn

es
s

va
lu

e
fo

r
th

e
be

st
 in

di
vi

du
al

sin(x)+sin(x+x2)

BCGP1
Traditional CGP

Fig. 3 Mean error curves of BCGP1 and traditional CGP for five regression problems. Results obtained
from averaged over 100 independent runs

Genet Program Evolvable Mach (2015) 16:133–150 143

123

BCGP1 and CGP on all benchmark functions are summarized in Table 2. As

demonstrated in Fig. 3 and Table 2, applying the migration operator improves

the performance of the traditional CGP in terms of convergence speed and

accuracy significantly. In all figures, the horizontal axis represents the number of

function calls in CGP (or BCGP1), and a vertical axis is the fitness value for the

best individual which is averaged over 100 runs. We use number of function

calls for comparison between algorithms because they have the same maximum

number of function calls.

4.2 Comparison between CGP and proposed method (BCGP)

In this section, we try to prove the effectiveness of our proposed method. The

population size for our proposed method is 50 as mentioned in Sect. 4.1. Table 3

summarizes the BCGP and CGP performances on the benchmark functions. It is

obvious that BCGP performs significantly better than CGP consistently with respect

to all three criteria for all regression problems.

Figure 4 depicts average convergence curves of CGP, BCGP1 and BCGP

(over 100 runs) for all regression problems. According to Fig. 4, we can see that:

first, the traditional CGP may trap into local optima while the proposed

algorithm can locate a good near-global optimum (because the proposed operator

allows CGP to escape from poor local optima). Second, we can see that BCGP

is better than BCGP1. The comparison between, BCGP and BCGP1 on all

regression according to Fig. 4 illustrates the effectiveness of the OBL mutation.

Table 2 Comparison of BCGP1 and traditional CGP

BCGP1 CGP BCGP1 versus CGP

Mean St-d SR Mean St-d SR AR

F1 0.241 0.228 31 1.532 1.230 10 1.142

F2 0.363 0.265 29 2.452 2.622 0 1.047

F3 0 0 100 2.083 2.207 10 3.346

F4 0.178 0.123 27 0.386 0.378 0 1.071

F5 0.369 0.419 40 1.22 0.792 0 1.161

Table 3 Comparison of BCGP and CGP

BCGP1 CGP BCGP1 versus CGP

Mean St-d SR Mean St-d SR AR

F1 0.021 0.055 81 1.532 1.230 10 1.828

F2 0.187 0.202 50 2.452 2.622 0 1.258

F3 0 0 100 2.083 2.207 10 3.398

F4 0.139 0.145 30 0.386 0.3789 0 1.24

F5 0.211 0.290 50 1.22 0.792 0 1.330

144 Genet Program Evolvable Mach (2015) 16:133–150

123

Results indicate that the exploration–exploitation trade-off improves the perfor-

mance of CGP. Third and in summary, BCGP converges faster than BCGP1 and

CGP.

(b)(a)

(d)(c)

(e)

0 0.5 1 1.5 2 2.5

x 10
4

0

5

10

15

20

25

Number of function calls

F
itn

es
s

va
lu

e
fo

r
th

e
be

st
 in

di
vi

du
al

x6-2 x4+x2

Traditional CGP
BCGP1
BCGP

0 0.5 1 1.5 2 2.5

x 10
4

0

5

10

15

20

Number of function calls

F
itn

es
s

va
lu

e
fo

r
th

e
be

st
 in

di
vi

du
al

x5-2x3+x

Traditional CGP
BCGP1
BCGP

0 0.5 1 1.5 2 2.5

x 10
4

0

5

10

15

Number of function calls

F
itn

es
s

va
lu

e
fo

r
th

e
be

st
 in

di
vi

du
al

x4+x3+x2+x

Traditional CGP
BCGP1
BCGP

0 0.5 1 1.5 2 2.5

x 10
4

0

5

10

15

Number of function calls

F
itn

es
s

va
lu

e
fo

r
th

e
be

st
 in

di
vi

du
al

sin(x2)*cos(x) -1

Traditional CGP
BCGP1
BCGP

0 0.5 1 1.5 2 2.5

x 10
4

0

2

4

6

8

10

12

14

Number of function calls

F
itn

es
s

va
lu

e
fo

r
th

e
be

st
 in

di
vi

du
al

sin(x)+sin(x+x2)

Traditional CGP
BCGP1
BCGP

Fig. 4 Mean error curves of traditional CGP, BCGP1 and BCGP for five regression problems

Genet Program Evolvable Mach (2015) 16:133–150 145

123

4.3 Effect of increasing the number of nodes

This section considers the influence of the number of nodes on the performance of

two methods. In order to consider the effect of individual size on the performance of

(b)(a)

(d)(c)

(e)

0 0.5 1 1.5 2 2.5

x 10
4

0

5

10

15

20

Number of function calls

F
itn

es
s

va
lu

e
fo

r
th

e
be

st
 in

di
vi

du
al

x6-2 x4+x2

BCGP
Traditional CGP

0 0.5 1 1.5 2 2.5

x 10
4

0

5

10

15

20

Number of function calls

F
itn

es
s

va
lu

e
fo

r
th

e
be

st
 in

di
vi

du
al

x5-2x3+x

BCGP
Traditional CGP

0 0.5 1 1.5 2 2.5

x 10
4

0

5

10

15

20

25

Number of function calls

F
itn

es
s

va
lu

e
fo

r
th

e
be

st
 in

di
vi

du
al

x4+x3+x2+x

BCGP
Traditional CGP

0 0.5 1 1.5 2 2.5

x 10
4

0

2

4

6

8

10

12

Number of function calls

F
itn

es
s

va
lu

e
fo

r
th

e
be

st
 in

di
vi

du
al

sin(x2)*cos(x) -1

BCGP
Traditional CGP

0 0.5 1 1.5 2 2.5

x 10
4

0

2

4

6

8

10

12

Number of function calls

F
itn

es
s

va
lu

e
fo

r
th

e
be

st
 in

di
vi

du
al

sin(x)+sin(x+x2)

BCGP
Traditional CGP

Fig. 5 Performance comparison between BCGP and traditional CGP with 100 nodes using the average
error on the five regression problems

146 Genet Program Evolvable Mach (2015) 16:133–150

123

the two methods, similar to [23], the number of nodes is increased from 50 to 100 in

all regression problems. Average convergence graphs are shown in Fig. 5. Results

of solving the five regression problems are given in Table 4. Compared with CGP,

BCGP performs better in terms of the quality of the final solutions and the

convergence rate.

4.4 Influence of population size

The increase of individuals in population makes the initial diversity of population

rise and allows large parts of the search space to be covered per iteration [1]. In

order to consider the influence of population size on the performance of BCGP, the

number of population is increased to 150 in BCGP. Other parameters are the same

as in Sect. 4.3. The results for npop=50 and npop=150 are shown in Table 5. From

Table 5, we can conclude that overall Mean criterion is decreased and SR is

increased.

4.5 Comparison with the algorithm presented in [23]

In this section, the BCGP is compared with the real coded CGP presented in

[23]. In Clegg et al. method, a new crossover technique was used. It was

inspired by the real-valued crossover operator found in real-valued GAs. This

method was tested on F1 and F2 (see Table 1). For two methods, the CGP basic

parameters are as follows:

Table 4 Comparison of BCGP and traditional CGP with 100 nodes

BCGP1 CGP BCGP1 versus CGP

Mean St-d SR Mean St-d SR AR

F1 0.079 0.107 40 0.369 0.200 0 1.644

F2 0.167 0.178 50 0.481 0.464 0 1.474

F3 0 0 100 0.709 1.07 10 3.563

F4 0.253 0.100 0 0.325 0.255 0 1

F5 0.217 0.273 50 0.596 0.857 10 1.185

Table 5 Influence of population size on the performance of BCGP

BCGP1 npop = 150 npop = 50

Mean St-d SR Mean St-d SR

F1 0.01 0.032 90 0.079 0.107 40

F2 0.046 0.094 80 0.167 0.178 50

F3 0 0 100 0 0 100

F4 0.021 0.025 60 0.253 0.100 0

F5 0 0 100 0.217 0.273 50

Genet Program Evolvable Mach (2015) 16:133–150 147

123

• Population size: npop = 50;

• Function set: {?,-,*,/};

• Terminal set: {1,X};

• Maximum number of nodes: 50;

• Mgeneration: 500;

Other parameters of BCGP are the same as mentioned in Sect. 4. The

method presented in [23] was performed with different rates of crossover

(such as 25 and 50 %) which are reported in Fig. 6. Since the maximum

number of generations is the same as what used in two algorithms, they are

compared on the basis of generations. According to Fig. 6, it is observed

that the relative performance of BCGP is better than the method of Clegg

et al. in terms of convergence speed and solution accuracy.

5 Conclusion

This paper highlights the importance of balancing the exploration and

exploitation to improve the performance of CGP. CGP utilizes only the random

mutation, therefore, it may lack the exploitation ability. In this paper, Balanced

Cartesian Genetic Programming (BCGP) is proposed as a method to balance the

exploration and exploitation ability of CGP. To dominate the lack of exploitation

ability of CGP, the migration operator of BBO is integrated in BCGP. The main

reasons for implementing the migration operator to share information among

individuals in CGP are based on two considerations. First, this operator is easily

applicable in CGP without any modification in CGP representation. Second, the

migration operator has good exploitation ability, and it can utilize the population

information effectively. Furthermore, a new mutation type namely opposition-

based learning based mutation (OBL mutation) is applied in the mutation

0 100 200 300 400 500
0

1

2

3

4

5

6

7

8

Generation number

F
itn

es
s

va
lu

e
fo

r
th

e
be

st
 in

di
vi

du
al

x6-2 x4+x2

Crossover 25%
Crossover 50%
Crossover 75%
Variable Crossover
BCGP

0 100 200 300 400 500
0

1

2

3

4

5

6

7

8

9

Generation number

F
itn

es
s

va
lu

e
fo

r
th

e
be

st
 in

di
vi

du
al

x5-2x3+x

Crossover 25%
Crossover 50%
Crossover 75%
Variable Crossover
BCGP

Fig. 6 Mean error curves of BCGP and Clegg et al. method considered with various crossover rates, for
F1 and F2 symbolic regression problems

148 Genet Program Evolvable Mach (2015) 16:133–150

123

operator of BCGP. The OBL mutation is defined on the basis of the concept of

opposition-based learning to enhance the exploration ability of BCGP. The OBL

mutation uses the knowledge of the population to reduce the exploration time as

time increases.

The proposed method (i.e. BCGP) were tested on symbolic regression problems

and compared with traditional CGP. In this study, three performance criteria have

been utilized to fairly compare the algorithms. They are success rate (SR),

acceleration rate (AR) and the average of the best found solutions and the

corresponding standard deviation as calculated after specific number of function

evaluations has been reached. AR is applicable to compare the convergence speeds

of two methods when one generation of each algorithm executes the different

number of evaluations. Experimental results show that by using OBL mutation and

migration operators, BCGP outperforms CGP in terms of accuracy and the

convergence speed.

Experiments that we performed verify that our proposed operators improve the

CGP performance. For all cases, BCGP performs better than CGP with respect to

the performance measures such as SR. Also, the effect of increasing the length of

the individual and the population size on the performance of BCGP is investigated.

Our future will consist of applying proposed method on the real-valued

representation of CGP which was presented in [23]. Future work can be investigated

about how other types of migration are incorporated into CGP to improve its

performance. Another direction for future work will be to extend the method so that

it can be applicable as the preprocessing method to discover the relation among

features by constructing new features in order to facilitate the learning of the target

concept in the classification task.

References

1. A.P. Engelbrecht, Computational Intelligence, an Introduction, 2nd edn. (Wiley, New York, 2007)

2. T. Weise, Global Optimization Algorithms—Theory and Application. Available: http://www.it-weise.

de, 2009

3. J.R. Koza, Genetic Programming: On the Programming of Computers by Means of Natural Selection

(MIT Press, Cambridge, 1992)

4. J.R. Koza, Genetic Programming: A Paradigm for Genetically Breeding Populations of Computer

Programs to Solve Problems. Technical Report STAN-CS-90-1314, Department of Computer Sci-

ence, Stanford University, 1990

5. J.M. Daida, T.F. Bersano-Begey, S.J. Ross, J.F. Vesecky, Evolving feature-extraction algorithms:

adapting genetic programming for image analysis in geoscience and remote sensing. Geosci. Remote

Sens. Symp. Remote Sens. Sustain. Future 4, 2077–2079 (1996)

6. D. Howard, S.C. Roberts, Object Detection by Multiple Textural Analyzers. Evolutionary Compu-

tation, Washington, DC, vol. 2, pp. 850–854, 6–9 July 1999

7. M. Kotani, M. Nakai and K. Akazawa, Feature extraction using evolutionary computation. In Evo-

lutionary Computation, Washington, DC, USA, vol. 2, pp. 1230–1236, 6–9 July 1999

8. J. Koza, Simultaneous discovery of detectors and a way of using the detectors via genetic pro-

gramming. in IEEE International Conference, vol. 3, pp. 1794–1801, 28 March–1 April, 1993

9. M.M. Rizki, M.A. Zmuda, L.A. Tamburino, Evolving pattern recognition systems. IEEE Trans. Evol.

Comput. 6(6), 594–609 (2002)

Genet Program Evolvable Mach (2015) 16:133–150 149

123

http://www.it-weise.de
http://www.it-weise.de

10. F. Fernandez, M. Tomassini, L. Vanneschni, Saving computational effort in genetic programming by

means of plagues. in Proceedings of the 2003 Congress on Evolutionary Computation, vol. 3,

pp. 2042–2049, 8–12 Dec 2003

11. H. Guo, A.K. Nandi, Breast cancer diagnosis using genetic programming generated feature. in 2005

IEEE Workshop on Machine Learning for Signal Processing, pp. 215–220, 28–30 Sept 2005

12. J.H. Hong, S.B. Cho, The classification of cancer based on DNA microarray data that uses diverse

ensemble genetic programming. Artif. Intell. Med. 36(1), 43–58 (2006)

13. R. Seehuus, Protein motif discovery with linear genetic programming. Knowledge-based Intelligent

Information and Engineering Systems, PT 3. in Proceedings Lecture Notes in Artificial Intelligence,

vol. 3683, pp. 770–776, 2005

14. J. Imae, S. Nakatani, J. Takahashi, A design method for optimal controllers of minimax problems: a

genetic programming approach. in American Control Conference, vol. 6, pp. 5394–5399, 4–6 June

2003

15. Y. Jessen, M.A. Keane, J.R. Koza, Automatic design of both topology and tuning of a common

parameterized controller for two families of plants using genetic programming. in Proceedings of

Eleventh IEEE International Symposium on Computer-Aided Control System Design (CACSD)

Conference and Ninth IEEE International Conference on Control Applications (CCA) Conference,

vol. 11, pp. 234–242, 25–27 Sept 2000

16. K.A. Marko, R.J. Hampo, Application of genetic programming to control of vehicle systems. in

Intelligent Vehicles Symposium, Detroit, MI, USA, vol. 1, pp. 191–195, 29 June–1 July 1992

17. K.-J. Lee, B.-T. Zhang, Learning Robot Behaviors by Evolving Genetic Programs. Industrial

Electronics Society. Control and Instrumentation (IECON-2000), vol. 4, pp. 2867–2872, 2000

18. M.C. Martin, Genetic programming for real world robot vision. in Intelligent Robots and System,

IEEE International Conference, vol. 1, pp. 67–72, 30 Sept–5 Oct 2002

19. C.H. Messom, M.G. Walker, Evolving cooperative robotic behaviour using distributed genetic

programming. Control Autom. Robot. Vision 1, 215–219 (2002)

20. P. Kouchakpour, A. Zaknich, T. Braunl, Population variation in genetic programming. Inf. Sci.

177(17), 3438–3452 (2007)

21. J.A. Walker, J.F. Miller, Automatic acquisition, evolution and reuse of modules in Cartesian genetic

programming. IEEE Trans. Evol. Comput. 12(4), 397–417 (2008)

22. J. F. Miller, P. Thomson, Cartesian genetic programming. in Proceedings of 3rd European Con-

ference on Genetic Programming (EuroGP 2000), vol. 1802, Lecture Notes in Computer Science,

pp. 121–132, Edinburgh, 2000

23. J. Clegg, J.A. Walker, J.F. Miller, A new crossover technique for Cartesian genetic programming. in

Proceedings of GECCO, pp. 1580–1587, 2007

24. D. Simon, Biogeography-based optimization. IEEE Trans. Evol. Comput. 12, 702–713 (2008)

25. H. Ma, D. Simon, ‘‘Blended biogeography-based optimization for constrained optimization. Eng.

Appl. AI 24(3), 517–525 (2011)

26. H. Tizhoosh, Opposition-based learning: a new scheme for machine intelligence. in Proceedings of

International Conference on Computational Intelligence for Modeling Control and Automation, vol.

1, pp. 695–701, 2005

27. T. Yu, J.F. Miller, Neutrality and the evolvability of boolean function landscape. in Proceedings on

EuroGP, pp. 204–217, 2001

28. J. F. Miller, What bloat? Cartesian Genetic Programming on Boolean problems. in Genetic and

Evolutionary Computation Conference Late Breaking Papers, pp. 295–302, 2001

29. M. Ergezer, D. Simon, D. Du, Oppositional biogeography-based optimization. in Proceedings on

SMC, pp. 1009–1014, 2009

30. S. Rahnamayan, H.R. Tizhoosh, M.M.A. Salama, Quasi-oppositional differential evolution. in Pro-

ceedings of IEEE Congress on Evolutionary Computation, pp. 2229–2236, 2007

31. N.Q. Uy, N.X. Hoai, M. O’Neill, R.I. McKay, E. Galvan- Lopez, Semantically-based crossover in

genetic programming: application to real-valued symbolic regression. Genet. Program Evolvable

Mach. 12(2), 91–119 (2011)

32. J. F. Miller, Cartesian Genetic Programming. (Springer, Berlin, 2011)

33. S. Rahnamayan, H.R. Tizhoosh, M.M.A. Salama, Opposition-based differential evolution. in IEEE

Transactions on Evolutionary Computation, vol. 12, pp. 64–79, 2008

150 Genet Program Evolvable Mach (2015) 16:133–150

123

	Balanced Cartesian Genetic Programming via migration and opposition-based learning: application to symbolic regression
	Abstract
	Introduction
	Biogeography-based optimization
	Balanced Cartesian Genetic Programming
	Main procedure of BCGP
	Migration
	Mutation
	Type 1: Simple mutation
	Type 2: Opposition-based learning based mutation (OBL mutation)

	Differences between BCGP and CGP

	Simulation result and analysis on symbolic regression problems
	Influence of migration on the performance of BCGP
	Comparison between CGP and proposed method (BCGP)
	Effect of increasing the number of nodes
	Influence of population size
	Comparison with the algorithm presented in [23]

	Conclusion
	References

