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Abstract The Protein Processor Associative Memory (PPAM) is a novel hardware

architecture for a distributed, decentralised, robust and scalable, bidirectional, het-

ero-associative memory, that can adapt online to changes in the training data. The

PPAM uses the location of data in memory to identify relationships and is therefore

fundamentally different from traditional processing methods that tend to use

arithmetic operations to perform computation. This paper presents the hardware

architecture and details a sample digital logic implementation with an analysis of

the implications of using existing techniques for such hardware architectures. It also

presents the results of implementing the PPAM for a robotic application that

involves learning the forward and inverse kinematics. The results show that, con-

trary to most other techniques, the PPAM benefits from higher dimensionality of

data, and that quantisation intervals are crucial to the performance of the PPAM.
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1 Introduction

The work presented here stems from research into parallel architectures targeted towards

problems in the domain of Artificial Intelligence (AI) and is an attempt to explore possible

alternate non-standard architectures for computation. Although, many architectures exist

that attempt solutions for problems in this domain (for example [1, 2, 14, 25, 27]), most

are based on Arithmetic and Logic Units (ALUs) and often are simply traditional

processors in parallel, thereby suffering from the well known Von Neumann

bottleneck [3]. Some recent attempts have been made with neuromorphic hardware

using mixed signal design, however, these tend to treat the analogue portion as an add-on

to the digital master [7], while others are attempts to design systems for mimicking

biological experiments rather than for AI [16]. Systemic Computation architectures [22]

are yet another alternative, designed using standard digital logic techniques (FSM,

instruction decoders). Like other traditional processor based architectures, SC hardware

also uses mathematical operations as the basis of computation.

An AI application may be defined as one that tries to achieve behaviour that will be

displayed by intelligent beings like humans [29]. Some of the desired features of such

applications are adaptability (in the presence of new stimuli), robustness (in the

presence of errors), real-time results and scalability. In any case, most will agree that

the hallmark of an AI application is complexity. The traditional computation paradigm

(Von Neumann or otherwise) is to implement simple (mathematical) operations in

ALUs, which are accessed by instructions to a control unit. This is further accessed

through (potentially multiple) software/firmware wrapper layers, which may be an

Operating System or a Virtual Machine or both. Therefore, implementing complex AI

applications on traditional machines not only involves mapping an individual complex

operation to multiple simple mathematical operations, but also, each operation passes

through multiple software layers to reach a hardware unit (ALU) that is accessed

through yet another hardware wrapper (the control unit). Traversing all these layers is a

severe handicap for an application that intends to operate in real-time. In Qadir

et al. [17] we proposed a novel architecture called the Protein Processor Associative

Memory (PPAM), that used hetero-associative recall to achieve AI, and explored the

effect of moving computation into memory. Various facets of the PPAM have been

explored in the past, including comparison with more traditional computation

methods [18], hardware implementability [19], comparison with other techniques on a

robotic task [20], and fault-tolerance abilities [21].

In this current paper, we present the complete details of the hardware

architecture. We provide the reasoning for the various design decisions including

why analogue communication is preferred over both serial or parallel digital

communication. We also present results from new experiments performed on a real

robot to learn forward and inverse kinematics. The rest of this paper is structured as

follows. Section 2 presents the motivation and introduces the principles of protein
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processing. Section 3 describes the hardware architecture in detail, while Sect. 4

describes the new experiments conducted and the results obtained using the Bristol

Elumotion Robot Torso 2 (BERT2) to learn the forward and inverse kinematics.

Section 5 discusses the results and presents a comparison with the state of the art.

Section 6 summarises, concludes and discusses future directions.

2 Protein Processing Associative Memory

Johnson [12] define six properties of classical computation. It follows therefore, that a

solution that challenges even one of these six would be non-standard. However, in

order to perturb the existing solution (classical computation) by a large amount, it

might be preferable to challenge as many of the properties as possible. To summarize,

the main focus in this work was to challenge the use of mathematical operators as the

fabric of computation and to test if this brings any advantage for AI applications.

2.1 Principles of protein processing

Let V1 and V2 be two variables that are different (in content and also size). Then

auto-associative memories store V1 and can retrieve V1 upon presentation of a sub-

portion of V1. Hetero-associative memories, store (V1, V2) and can recall V2, upon

presentation of a sub-part of V1. Bidirectional hetero-associative memories can

perform hetero-associative recall in both directions—therefore they can recall V2

using a part of V1 and recall V1 using a part of V2. As shown by Coppin [5,

Chapter 11], the human brain implements bidirectional, hetero-associative memory.

The PPAM is designed to be such a memory.

The PPAM takes inspiration from the biological Neural Network and also the

biological Genetic Regulatory Network (GRN). It is composed of a large number of

simple nodes, which use the Hebbian principle [9] to determine if two pieces of data

are related and a GRN inspired model decides how (and in which node) to store the

data so that it can be recalled quickly and correctly, even in the presence of faults. A

detailed description of the PPAM may be found in Qadir et al. [18, 19] and only a

brief summary is reproduced below, followed by a worked example.

The PPAM associates 2 variables (V1 and V2) with any number of dimensions in

each variable: V1 ¼ ðA1;A2;A3; . . .AdÞ and V2 ¼ ðB1;B2;B3; . . .BDÞ where D 6¼ d.

The PPAM can then be defined as:

PPAM ::¼ ðV1Nodes;V2NodesÞ
V1Nodes ::¼ ðConNodesV1;DimNodesV1Þ
V2Nodes ::¼ ðConNodesV2;DimNodesV2Þ

ConNodesV1 ::¼ ðPv11;Pv12;Pv13; . . .Pv1CÞ
DimNodesV1 ::¼ ðPv11;Pv12;Pv13; . . .Pv1DÞ
ConNodesV2 ::¼ ðPv21;Pv22;Pv23; . . .Pv2cÞ
DimNodesV2 ::¼ ðPv21;Pv22;Pv23; . . .Pv2dÞ
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where C and c are the number of ‘‘Conflict-Resolving nodes’’ in variable 1 and

variable 2 respectively, and P is a ‘‘Protein Processor’’ whose operation is sum-

marized using pseudo-code 1. Note, that there are D nodes in DimNodesV1, which is

the number of dimensions for V2.

2.2 Worked example

A sample dataset is used here to illustrate the operation of the PPAM. Details about

the dataset can be found in Online Resource 1, but a subset of the data is

summarised in Table 1. V1 ¼ ðX; YÞ;V2 ¼ ðR; hÞ and D ¼ d ¼ 2. For simplicity,

assume C ¼ c ¼ 4. Therefore, there are 2C nodes (8 nodes) in each of X, Y, R and h,

resulting in a total of 32 nodes in the PPAM. The PPAM structure is shown in

Fig. 1. Each node in Fig. 1a (e.g. X) is expanded into multiple other nodes as shown
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in Fig. 1b. The following works through the dataset for the Y nodes which should be

sufficient to illustrate the operation of the PPAM. It uses the convention in Fig. 1b

to identify nodes—i.e. columns (for dimensions) are identified using letters A and B,

while rows (for Conflict-Resolving nodes) are identified using numbers 1; 2; . . .C
Let all Y nodes in column A (YiA nodes) have R nodes as neighbour-nodes, and

let all column B nodes (YiB nodes) have h nodes as neighbour-nodes. Then, when

the first tuple is applied to YiA nodes inStatePP = 0x4 and inVarData = 0x5 and so

they update their memory as shown in time step 1 of Table 2.

Similarly, YiB nodes observe inStatePP = 0xA and inVarData = 0x5 and so

update their memory as shown in time step 1 of Table 3. Upon presentation of the

second tuple of the dataset (in Table 1), YiA nodes fire with 0x6 and observe 0x4

from their neighbour-nodes. They detect a conflict as inStatePP = 0x4 again but

inVarData 6¼ 0x5. To resolve this, half of the nodes with conflict (which in this case

is all of the YiA nodes) autonomously update to the new tuple, while the other half

autonomously retain the old value. At the same time, YiB nodes fire with 0x6 and

observe 0x9 from their neighbour-nodes, which is not a conflict and therefore, none

of the YiB nodes object to updating to the new tuple. However, only those YiB nodes

(a) Unexpanded PPAM nodes (b) Expanded X PPAM nodes

Fig. 1 Abstract view of the PPAM nodes (T represents h). a Unexpanded PPAM nodes, b expanded X
PPAM nodes

Table 1 Cartesian polar dataset

Cartesian coordinates (V1) Polar coordinates (V2)

X-code Y-code R-code h-code

0x1 0x5 0x4 0xA

0x1 0x6 0x4 0x9

0x1 0x7 0x3 0x9
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update to the new tuple whose corresponding YiA nodes indicated that they can

update to the new tuple as well. Thus, the Yij nodes update as shown in time step 2

of Tables 2 and 3.

A similar case (with two differences) occurs when the next tuple from the dataset is

presented. Firstly, YiB nodes detect a conflict instead of YiA nodes. Secondly, only

Y1B and Y2B nodes have a conflict and not Y3B and Y4B. This is because these nodes

have already differentiated. In order to resolve the conflict, half of the nodes with the

conflict update to the new conflict-generating tuple. Y3B and Y4B do not have a

conflict, so they don’t object to updating to the new tuple. All of the YiA nodes indicate

that they are willing to update to the new tuple. However, only those YiA nodes update

to the new tuple whose corresponding YiB nodes indicated that they can update to the

new tuple as well. Thus, the memory values in Yij nodes is as shown in time step 3 of

Tables 2 and 3. To see updates for further time steps, refer to Online Resource 1.

After 2 time steps, if the V1 input is removed, and a V2 input of R? 0x4 and h?
0xA (first tuple in the dataset) is provided, the PPAM should recall 0x5 from the

Y nodes. Nodes Y1A and Y2A fire with 0x6 while nodes Y3A and Y4A fire with 0x5.

Nodes Y1B and Y2B do not generate any output since these nodes do not have 0xA

in their memory. Conversely, nodes Y3B and Y4B fire with 0x5, thus reinforcing the

outputs of Y3A and Y4B. In this way, the correct value of 0x5 is recalled from the

Y nodes in the PPAM.

Table 2 Memory contents in YiA nodes during the worked example

Time-step Mem-address Y1A Y2A Y3A Y4A

1 0x5 0x4 0x4 0x4 0x4

0x6

0x7

0x8

2 0x5 0x4 0x4

0x6 0x4 0x4

0x7

0x8

Table 3 Memory contents in YiB nodes during the worked example

Time-step Mem-address Y1B Y2B Y3B Y4B

1 0x5 0xA 0xA 0xA 0xA

0x6

0x7

0x8

2 0x5 0xA 0xA

0x6 0x9 0x9

0x7

0x8
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3 Hardware architecture

This section details the hardware architecture. A sample digital logic implemen-

tation highlights the implications of using existing techniques for hardware design.

First however, it presents some trade-offs in order to justify some of the major

design decisions.

3.1 Trade-offs in synchronisation

The components of most modern machines and systems operate in synchronization

with one (or more) central clocks. The converse are asynchronous circuits, which

present many theoretical advantages, but suffer from many practical hurdles. A full

review of this is outside the scope of this paper, but a brief summary is presented in

Online Resource 3.

The PPAM combines Delay insensitive and Burst mode asynchronous design

techniques [8] with a synchronous-write RAM. Thus memory recall is an

asynchronous operation, while learning is synchronous to avoid the requirement

of asynchronous RAMs in hardware. The use of these asynchronous methods means

that the circuit operates at less than the theoretical maximum speed. Note however,

that the PPAM is envisioned as a system that operates on real-time inputs obtained

from the real world. Since sensory data from the real world is typically slow—in the

range of KHz, rather than MHz—this reduced speed does not reduce the

performance of the system. On the contrary, it means that the system can meet

the data rates while at the same time not waste power on a clock that is operating

faster than the data rates require. Section 3.3 explains the theoretical design and

presents circuit diagrams and schematics, while Sect. 3.4 presents an adapted

implementation that only uses digital logic elements available in existing FPGAs.

As an aside, note that Sect. 3.4 also shows that using a small number of user-defined

constraints specifying false-paths and multi-cycle paths, this asynchronous logic can

be synthesised using a standard commercial synthesis tool (Xilinx ISE) which is not

specifically designed for implementing asynchronous logic. This opens an

interesting avenue for further research exploring synchronous design tools for

asynchronous design.

3.2 Trade-offs in parameters for parallel systems

The PPAM is a parallel architecture since it is composed of nodes operating in

parallel. However, unlike other parallel architectures, nodes are not based on

traditional processors, where traditional processors are defined as containing:

• an ALU that calculates results,

• a control unit that directs execution based on a program that is fetched from

memory and

• a memory that stores results (data) and instructions.

Most existing parallel architectures are simply networks of such traditional

processors. The usual motivation for parallel systems is to increase processing
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power and decrease processing time. In the case of architectures for AI, quite often

the objective is to achieve real-time processing.

The issue of accessing the hardware through potentially multiple layers of

hardware abstraction was mentioned earlier (in Sect. 1). This is the overhead of

using a general purpose processor. This overhead is further enhanced in parallel

arrays and is known as the operating system (OS) noise or jitter (Fig. 2). Note that

the nodes in the clusters would typically run a complete operating system, like a

flavour of Windows, or Linux. A detailed review of parallel systems is outside the

scope of this paper, however a brief overview is presented in the Online Resource 4.

The PPAM does not execute a program or need a configuration bit-stream. This

allows it to circumvent the parallel programming issues faced by parallel

architectures based on traditional processors. However, it must be noted that the

PPAM compromises by not being Turing Complete. Nonetheless, assuming a

problem can be solved by an associative memory, the PPAM should be applicable.

As will be seen from Sect. 3.3 some parameters of the circuit are dependent upon

the characteristics of the dataset being associated. Therefore, one fundamental

assumption for flexibility of the PPAM is that it is implemented either on:

• a reconfigurable fabric like an FPGA: This is less desirable because of reasons

which will be explained in Sect. 3.3

• or an ASIC which includes certain dynamic routing capabilities—either through

packet switching routers, virtual connections, or physical multiplexers to

dynamically redirect packets. It must be noted however, that this dynamic

routing capability is not required in real-time since it will happen only once at

the beginning of the association when the PPAM is informed of the

characteristics of the dataset.

Due to cost and time considerations, the ASIC option was not actually implemented

as part of this research, but Sect. 3.4 does present details of implementing on a

reconfigurable fabric.

3.3 Circuit design and schematic

The PPAM is a distributed system where each node makes its own decision about

updating its memory contents. To reduce hardware connections, DimNodesV1 (and

DimNodesV2) nodes have pipelined sequential connections, while ConNodesV1

Fig. 2 Effect of Operating
System noise on parallel arrays.
Even when tasks are spawned at
the same time (Barrier N), noise
in one process can force all other
processes to wait (Barrier
N ? 1) [28]
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(and ConNodesV2) nodes communicate in parallel. Therefore, V1 nodes update in

D ? 1 steps, where D is the number of dimensions in V2 (and vice versa). This

means the PPAM needs D ? 1 clock edges to store each tuple of data. In each step,

the Conflict-Resolving nodes transmit an address and data to each other informing

each other about their own memory contents. They use this information to generate

a threshold which is later used to determine if the current node should update its

value or maintain the old one. This process will hereafter be called ‘‘threshold and

compare’’. The specifics of its implementation are crucial to the performance of the

PPAM. This is discussed in more detail in Sects. 3.3.1 and 3.3.2.

If a node observes a conflict and decides to update, two (or more) tuples may

have to be updated, as one tuple has to be removed while another has to be entered.

In the first D cycles, nodes transmit information about tuples that will need to be

removed (if any). In the last cycle, nodes transmit the new tuple information. In each

cycle, nodes use threshold and compare operations to make their decisions.

Figure 3 illustrates the overall schematic for a node in the PPAM. Events

eventEnv and eventOVN are generated by using standard pull-down resistors for

inputs (sample circuit in Figure R2.4 in Online Resource 2).

The combinatorial cloud labelled ‘‘match all locations’’ uses N XNOR gates to

compare all the locations of the neighbour-node LUT with the value from the other

variable; where N is the size of the memory in bits. The circuit for this block is

shown in Fig. 4. Conflicts are detected using a small set of gates as shown in the

bottom right section of the schematic in Figure R2.1. The conflict resolving circuit

is based on the ‘‘threshold and compare’’ logic. Two methods for implementing the

‘‘threshold and compare’’ circuit are considered. The first is an analogue

implementation which is deemed better suited for the operation but requires mixed

signal design techniques. The second is entirely digital logic which has the

advantage of being easier to implement with greater tool-chains support. The

advantages and disadvantages of both are considered, however only the digital logic

design was actually implemented, due to the limitations of current FPGA

architectures (which only allow digital logic design).

3.3.1 Analogue threshold and compare

The threshold and compare operates as follows. A Protein Processor node receives

address and data values from its Conflict-Resolving neighbours as an analogue

voltage. The node compares these value with its own by subtracting the 2 voltages.

A regenerative amplifier is used at the output so that if the result is small, it tends to

zero. The output is then inverted. This is repeated for all Conflict-Resolving

neighbours and the results are added together. Half of the sum is stored. At the clock

edge, a node decides to update, if the current result of the summed values is greater

than the stored threshold. Note that it is essential that the summation circuit should

respond faster than the clock skew between Conflict-Resolving nodes.

The italicised words represent the operations that need to be performed in the

analogue domain. All of these operations have standard, well-studied analogue

circuits, and so these aren’t presented within this paper. The interested reader may

refer to Online Resource 2 for sample circuits.
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The thresholding is based on the well studied and frequently used sample-and-

hold circuit and the voltage adder. The voltage adder output increases as the

voltages are summed, which is similar to the way neuronal synapses accumulate

chemical charge. On the other hand, a digital implementation would use a binary

representation with each bit using the same voltage to represent logic levels. Only

by observing all these bits together, is the digital adder seen to be performing the

Fig. 3 Node schematic
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same operation. Therefore, the analogue voltage adder better mimics its biological

counterpart. The analogue circuit also uses fewer transistors and far fewer physical

connections. It must be noted however that analogue transistors are much larger

than their digital counterpart. Coupled with the extra hardware required for mixed

signal design, this usually precludes analogue designs. In the case of the PPAM, the

number of connections between nodes outweighs other considerations, particularly

as the network is scaled. Although an N-bit symbol may be transmitted using

N parallel lines, this becomes infeasible as the number of connections per node

becomes prohibitive with any realistically sized network. Serial transmission is an

alternative, but it significantly increases the complexity and size of the hardware and

also the time required to transmit data, particularly as the network is scaled.

Complexity and size Serial communication involves the use of registers (typically

shift registers) to store the data as it is received and a state machine (SM) to control

the overall communication. The number of flip-flops in the registers and the SM are

dependent on the width of the symbols; 16-bit symbols are quite conceivable.

PPAM nodes communicates simultaneously with C Conflict-Resolving nodes and

one Other-Dimension node. Therefore, given that symbols are represented using N-

bits, each node must be composed of C ? 1 serial communicators, each of which

would be composed of an N-bit shift register and a ðlog2NÞ-bit counter.

Timing and power Serial communication is dependent upon ‘‘clocking in’’ data as

it is received. Assuming 16-bit symbols with 1 start-bit and 1 stop-bit, the clock

would now have to be at least 18 times faster to be able to meet the same timing

requirements. Also, power dissipation is directly related to signal transition. Using

serial communication would therefore have a major impact on this as well—the

exact value is dependent on the number of transistors, the length of interconnects,

capacitance and other implementation specific factors. Finally, at eventOVN, nodes

use inStatePP to recall the associated value. If this communication is serial, a clock

would be required for recall operations as well. This is a major divergence from the

synchronous store and asynchronous recall objectives of the PPAM. For these

reasons, the digital alternative, though possible, is considered less desirable.

Fig. 4 Match all locations
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3.3.2 Digital threshold and compare

The digital logic threshold and compare is based on counters. Parallel communi-

cation was chosen to closely mimic the analogue circuit behaviour and ensure

asynchronous recall. Conflict-Resolving nodes update in a staggered manner so that

they have time to register updates from other nodes. The PPAM uses the clock skew

inherent in digital logic designs to implement this staggered update (Fig. 5).

Traditionally, clock skew is seen as an unwanted side-effect of large designs. As

designs are scaled, considerable effort and expense is required to remedy this. The

PPAM, on the other hand, embraces clock skew thereby making it more easily

scalable. This opens interesting possibilities for future work exploring designs that

use clock skew to their advantage.

3.4 Digital logic synthesis and implementation results

Including full schematics of the hardware architecture or a listing of the HDL code

would not necessarily add to the understanding of the reader, therefore these have

been excluded from this paper. However, a fully parametrized HDL (verilog) code

including the test bench is available online.1 Although the verilog is parametrized,

Xilinx ISE constraints need to be tweaked manually. The following sections present

results from the synthesis of this code.

3.4.1 Implementation on FPGAs

The HDL code for PPAM was synthesized for two different Xilinx FPGA

architectures. The first was the older XCS10XL, attempted due to legacy reasons. A

single node was synthesized per FPGA, with C = 7, and symbols were encoded in 2

bits. In addition, each node implemented 16 locations deep memory. The device

utilisation summary is presented in Table 4. Reducing C to 3 allowed upto 2 PPAM

nodes per FPGA.

To test the operation on the sample dataset in Sect. 2.2, the entire PPAM was

implemented on one Virtex 5 FPGA (XUPV5LX110T2 development board). C = 6,

symbols were encoded in 4 bits and the LUTs were 16 locations deep.

Fig. 5 Utilizing clock skew to implement staggered update

1 http://www.eEvolved.info/blog.html#PPAMverilogHDL.
2 http://www.xilinx.com/univ/xupv5-lx110t.htm.
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The device utilisation summary is presented in Table 5a. The resource utilisation

is shown in Table 5b. The Xilinx LogiCORE Clock Generator IP was used to

generate staggered clocks and the Xilinx LogiCORE Distributed Memory Generator

IP was used to generate asynchronous read, synchronous write RAM. For this

implementation, the Clock Generator used a clock with period 10 ns and slowed it

to generate an output clock of period 200 ns. The staggered clocks had a phase shift

of approximately 18 ns.

3.4.2 Implementation on the Unitronics fabric

The PPAM was also implemented on the Unitronics fabric being developed by the

project partners at UWE Bristol as part of the SABRE3 project. The Unitronics (UX)

fabric is a cellular architecture, with mechanisms inspired by the processes that

occur in colonies of unicellular life; it is somewhat analogous to a custom FPGA.

For full details about the fabric, its features and capabilities, refer to Samie

et al. [23].

4 Experiments: testing the effects of quantisation

In order to test whether the PPAM is capable of extracting relationship information,

the PPAM was used to learn the forward and inverse kinematics for a hand-eye

coordination task. A robotic arm places objects in (and retrieves them from) its

reach space (V1), while a vision system tries to identify the location of the object in

its vision space (V2). The task was to associate the vision space with the reach space

so that when one is known, the other can be recalled. The experiments were

performed in the Bristol Robotics Laboratory4 (BRL) with the help of the SABRE

Table 4 XCS10XL device utilisation summary

Elements Used Percentage

External IOBs 62 out of 112 55

Flops 4

Latches 0

IOBs driving global buffers One out of eight 12

CLBs 163 out of 196 83

Latches 0 out of 392 0

CLB flops 36 out of 392 9

4 input LUTs 306 out of 392 78

3 input LUTs 34 out of 196 17

BUFGLSs Two out of eight 25

STARTUPs One out of one 100

3 Self-healing cellular Architectures for Biologically-inspired highly Reliable Electronic systems.
4 www.brl.ac.uk.
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Table 5 5VLX110T

implementation results
(a) 5VLX110T device utilisation summary

Elements Used Percentage

Slice logic utilization

Slice registers 3,648 5

Slice LUTs 14,330 20

Used as logic 14,330 20

Slice logic distribution

LUT flip flop pairs used 14,330

With an unused flip flop 10,682 74

With an unused LUT 0 0

Fully used LUT-FF pairs 3,648 25

Unique control sets 774

IO utilization

IOs 314

Bonded IOBs 312 48

Specific feature utilization

BUFG/BUFGCTRLs 12 37

PLL_ADVs 1 16

(b) 5VLX110T resource utilisation summary

Elements Used

BELS 14,703

GND 1

LUT2 3,356

LUT3 634

LUT4 2,339

LUT5 2,490

LUT6 5,511

MUXF7 371

VCC 1

FlipFlops/latches 3,648

FDC (FF Async clear) 480

FDC_1 (negedge FDC) 96

FDE (FF Clock Enable) 3,072

Clock buffers 12

BUFG 12

IO buffers 312

IBUF 19

IBUFG 1

OBUF 292

PLL_ADV 1

258 Genet Program Evolvable Mach (2014) 15:245–274

123



project partners. The BERT2 and the Vicon motion capture system were used for

these experiments. Section 4.1 describes experiments to test the effect of

quantisation on a forward/inverse kinematics task, while Sect. 4.2 presents the

results. Forward/inverse kinematics experiments to compare the PPAM with state of

the art techniques have also been conducted and results of this have been published

in the past. Nonetheless, these results are summarised in Sect. 5.3 for completeness.

4.1 Experimental setup

In essence, the task is one of learning the kinematics (forward5 and inverse6) of a robotic

arm. This is by no means a difficult task for the state of the art today. The traditional

approach is to use mathematics, usually trigonometry and geometry, to solve such tasks.

On the other hand, rather than calculating the forward or inverse kinematics of the

robotic arm, the PPAM attempts to learn kinematics from the dataset. Such a task is well

within the domain of AI and as such is a good application to test the behaviour and

performance of the PPAM. Lenz et al. [15] provides a detailed description of the

hardware platform used, the relevant points of which are summarised here.

BERT2 (Fig. 6) is the second version of the upper-body humanoid torso at the

Bristol Robotics Laboratory. The torso has four joints and 2 arms. Each arm has

seven degrees of freedom. There is significant overlap in the movement, such that

many different orientations of the arm can be used to reach the same location.

Humeral and wrist movement were considered irrelevant to the task and these

motors were not used. In order to simplify the shape of the reach space, only hip

rotation was used from amongst the four torso joints. This meant that the reach

space could be defined using a four-dimensional variable, with each dimension

Fig. 6 Bristol Elumotion Robot Torso 2. Note the toroid object attached to the left thumb

5 Calculate the position (and orientation) of a robotic arm from its joint angles.
6 Calculate the joint angles from the position (and orientation) of a robotic arm.
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being an angle value for each motor used—namely, hip rotation, shoulder flexion,

shoulder abduction, and elbow flexion.

Vision is provided by the three-dimensional Vicon7 Motion Capture system. The

proprietary Vicon system detects and localises objects in 3-D space. Proprietary

software developed at BRL [15] was used to retrieve Cartesian coordinates of

objects in real-time, which formed the 3-dimensional variable representing vision

space.

The following objectives were identified for this experiment.

• Determine the PPAM configuration required to store and accurately recall the

dataset.

• Test whether the PPAM is able to extract underlying relationship information by

placing an object in a new location in the 3-D space and using the object

coordinates to reach for the object.

An important aspect of these experiments was to explore the effect of varying

quantisation levels on the performance of the PPAM.

4.1.1 Generating the dataset

The range of motor movements was restricted according to Table 6a. These values

were chosen empirically by observing the movements of the robot which defined a

complex 3-D region. To simplify this region, the object coordinate space was

limited as specified by Table 6b, which is a subset of the region in Table 6a.

Table 6b defines a cuboid with base b = 75 cm, length l = 96 cm and height

h = 73 cm, with a total volume of 5.256 9 105 cubic centimetres (b 9 l 9 h).

The dataset was produced by generating 500 evenly distributed random values

for each of the four dimensions of the BERT2 Motor movement variable (500 9 4

random values). The BERT2 was placed in the pose corresponding to each of these

500 values, while an object was attached to its hand. Then the coordinates of the

object were read back. If the coordinates were within the range described by

Table 6, the data-point was accepted and added to the final dataset; otherwise it was

discarded. The final dataset consisted of 430 real-valued tuples. This dataset was

encoded into integer symbols to be used by the PPAM.

4.1.2 Determining the optimal configuration

The real-valued data was encoded into b-bit wide integers, which are abstract

symbols from the perspective of the PPAM. This is the quantisation process and b is

inversely proportional to the noise introduced by quantisation.

Experiments with b = (4, 5, 6, 7, 8) were performed while keeping quantisation

levels equal. This meant that each symbol encodes ðM � mÞ=ð2b � 1Þ real-values;

where M is the maximum real-value and m is the minimum real-value. The divisor is

2b � 1 instead of 2b because the symbol 0 is reserved to indicate that external data is

not present. For an 8-bit symbol size, each Cartesian coordinate X-symbol encodes

7 www.vicon.com.
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(from Table 6), (30 - (-45))/255 = 0.294 cm. Similar calculations for Y-symbols

(0.376) and Z-symbols (0.286) show that the Cartesian coordinate variable encoded

with 8-bits means a single 3-dimensional value encodes a cubic volume of 0.032

cubic centimetres. Volumes for all the symbol sizes are shown in Table 7 and the

effect of this, along with results of the experiments using the different symbol sizes,

are presented in Sect. 4.2.

The memory depth shown in Table 7 is the absolute theoretical maximum

number of locations in each node, whereas the actual number of locations used in

each node may be less (as shown by the previous results from Qadir et al. [19] and

[20]). The total number of memory locations in the entire PPAM is dependent upon

the number of Conflict-Resolving nodes (C) in the network. Experiments were

conducted to find the optimal configurations for each of the symbols sizes listed in

Table 7 and results are presented in Sect. 4.2.

4.1.3 Extracting relationships

To test if the PPAM can extract information from the training dataset about the

relationship of the underlying dataset, previously unseen values need to be

Table 6 BERT2 experiment variables’ ranges

(a) V1: BERT2 motor angular movement range (�)

Motor Min angle Max angle

Hip rotation -45.0 45.0

Shoulder flexion -30.0 30.0

Shoulder abduction 0.0 45.0

Elbow flexion -30.0 30.0

(b) V2: Vicon object coordinate range (in cm)

Axis Min value Max value

X -45 30

Y -21 75

Z 14 87

Table 7 Effect of symbol size

Symbol size (b) Volume (cm3) Memory depth (per node)

4 155.733 16

5 17.643 32

6 2.102 64

7 0.257 128

8 0.032 256
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presented. Two measures were used to test this. Firstly, the training dataset was

divided into 2 parts with the first 420 elements being part of the training set and the

last 10 elements being used to test the PPAM in the presence of previously unseen

data. This unbalanced ratio was used because the dataset already provided only a

very sparse coverage and decreasing the number of training elements meant that the

coverage would decrease even further. However, these experiments do not take into

account the noise inherent in any real-world system interacting with the physical

world. This includes such things as sensor reading errors, motor movement

granularity, and play or flexibility in joints and motors. A second set of experiments

were conducted to incorporate this. These were conducted using the physical

BERT2 platform described in Sect. 4.1. Objects were placed randomly within the

arena and the object coordinates in the vision space were retrieved from the Vicon

system. These coordinates were presented to the PPAM and recalled values were

used to move the BERT2 arm. The measure for success in this case was simply

whether the arm would be able to successfully touch the object. Results are

presented in Sect. 4.2

4.2 Results

4.2.1 Determining the optimal configuration

To determine the optimal configuration for storing the training dataset, experiments

were conducted with varying numbers of Conflict-Resolving nodes (C) for each of

the five different symbol sizes (b). Figure 7 shows the results. The PPAM generates

a confidence value along with the recalled result. If the value with the highest

confidence is correct, this is defined as a successful recall. If the PPAM did recall

the correct value, but indicated a higher confidence for a different value, then this is

a Partial Error. Errors are defined as the case where the correct value was not

recalled at all. For each configuration (value of C), the 430 element training dataset

was stored; next the 430 Cartesian coordinate values were presented and

corresponding motor movement values recalled; and finally 430 motor movement

values were presented and corresponding Cartesian coordinates recalled. Errors and

partial errors were recorded for each dimension of data. The maximum possible

errors are (430 9 4) ? (430 9 3) = 3,010. Figure 8 plots the score for each

symbol size as C is varied. Score is calculated as 2E ? e, where E is errors and e is

partial errors, so that the objective is to minimise the score.

The number of errors in Fig. 7 reflect the storage capacity of the memory.

Therefore, past trends [19, 20] can be seen to be repeated, namely memory capacity

increases rapidly with C but with diminishing returns. Furthermore, from Fig. 8 it

can be seen that larger symbol sizes have fewer errors for the same C, with the

exception of b = 5. Therefore, b = 8 achieves zero errors and zero partial errors for

C = 24, while b = 7 achieves the same for C = 36 and so on. Symbol sizes of

b = 4 and b = 5 are exceptions in a couple of ways. Firstly, for both these cases,

although zero errors were achieved, zero partial errors were not achieved for any

configuration. The minimum for b = 4 was with a configuration of C = 60 while

that for b = 5 was observed for C = 69. Secondly, b = 5 has more errors for the
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same value of C which is in opposition to the trend for the rest of the symbol sizes.

Note, however, that the number of partial errors for b = 5 approaches zero (though

it does not attain it) while that for b = 4 remains quite high (around the 200 mark).

(a) (b)

(c) (d)

(e)

Fig. 7 For each symbol size (b), the number of Conflict-Resolving nodes (C) is varied and errors and
partial errors are plotted to find the optimal configuration for the BERT2 dataset. (a) b = 8, (b) b = 7,
(c) b = 6, (d) b = 5, (e) b = 4
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Therefore, although the curve for b = 4 starts below the curve for b = 5, it ends up

above it. In this, it does follow the overall trend.

Both these anomalies can be explained because of the effect symbol size has on

the training dataset. As the symbol size is reduced to a sufficiently small value, the

nature of the relationship of the two variables being associated also changes. As

shown in Table 10, b = 4 and b = 5 both have significantly fewer unique number

of coordinates. However, the number of unique motor commands remain at 430 for

b = 5 and drops just a little to 428 for b = 4. Therefore, whereas for b = 6 and

onwards the dataset has a one-to-one relationship (or almost that for b = 6), the

dataset when b = 4 and b = 5 has a one-to-many relationship. This means, that

when a particular value is presented for recall, there are multiple correct answers.

As may be expected, in such a situation the PPAM can get confused.

4.2.2 Extracting relationships

For each configuration (value of C), the 420 element training dataset was stored.

Next the 10 Cartesian coordinate values were presented and corresponding motor

movement values recalled; and finally 10 motor movement values were presented

and corresponding Cartesian coordinates recalled. Errors and partial errors were

recorded for each dimension of data. The maximum possible errors are

10 9 4 ? 10 9 3 = 70. Figure 9 plots the errors for each symbol size as C is

varied, while Fig. 10 plots the score for each symbol size as C is varied. As in

Sect. 4.2.1, score is calculated as 2E ? e, where E is errors and e is partial errors, so

that the objective is to minimise the score.

From the plots in Fig. 9, it can be seen that varying C does not have quite as

much effect on the memory capacity of the PPAM as it did in Fig. 7. In fact, from

Fig. 9a, it may be seen that b = 8 performs quite poorly in the case of previously

unseen data, with errors being very close to the worst case value (as is the
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(a) (b)

(c) (d)

(e)

Fig. 9 For each symbol size (b), the number of Conflict-Resolving nodes (C) is varied and previously
unseen data is presented to test whether the PPAM was able to extract relationship information about the
underlying dataset. (a) b = 8, (b) b = 7, (c) b = 6, (d) b = 5, (e) b = 4
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corresponding score in Fig. 10). The performance of b = 7 (Fig. 9b) is quite similar

to that of b = 8 and its only with b = 5 that errors fall below 50 %. b = 4 is the

only case where errors are reduced to zero and this trend is quite obvious from

Fig. 10 which shows the score for b = 4 being far better than the rest. This effect is

related to the sparsity of data and the effect of quantisation discussed in Sect. 5.2.

For the second set of experiments using the physical BERT2 robot, only symbol

sizes of 4, 5 and 6 were attempted, since the simulations with b = 8 and b = 7

indicated a high error rate. An experiment was considered a complete success if the

index finger or thumb of the hand touched the object. It was considered a partial

success if any part of the robot’s arm touched the object. 10 objects were placed

randomly in the environment and results of these experiments are shown in Table 8

and discussed in Sect. 5.

5 Discussion

5.1 Tuning Conflict-Resolving nodes (C)

Table 9 collects the information from Figs. 10 and 8 to show the values of C for

which the score converges. These results support previous results [19, 20] indicating
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Table 8 BERT2 experiments using previously unseen object locations

Symbol size (b) Complete success Partial success

4 0 3

5 0 1

6 0 0
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that a PPAM with fewer than optimal nodes displays almost optimal performance

for unseen data.

5.2 Unseen data in the physical space

After training BERT2 on 430 data points, in none of the 30 tests was the BERT2

able to successfully reach an object placed in a new location (Table 8). Only 4 of the

30 cases resulted in partial success (any part of the hand touching the object). At

first glance, these poor results may seem to indicate that the PPAM is unable to

extract relationships, but an analysis in the light of the sparsity of the dataset

presents some interesting points.

Part of Table 7 is reproduced in Table 10. Let N be the total number of discrete

points possible in a 3-D volume. If n is the number of discrete data points in a

dataset, then the sparsity of the dataset can be defined as n/N. Each point in the 430

element dataset represents a region of space whose volume is shown in Table 10.

Volumes of points could overlap, therefore the actual coverage of the 3-D space

depends upon the training dataset itself. However, maximum coverage of the

volume would be achieved if the volume of points do not overlap with others.

Assuming this, generates the least sparse dataset. The values in the ‘‘Total Volume

Covered’’ column are generated using this assumption, therefore they are simply the

total number of unique coordinates in the dataset multiplied by the volume of a data-

point in that dataset. The total volume of the entire region is 5.256 9 105 cubic

centimetres (Sect. 4.1). Therefore, the percentage coverage column (sparsity) is the

Table 9 Convergence of C for unseen data and the entire training set

Size (b) Conflict Resolving nodes (C)

Unseen data Entire training dataset

4 40 60

5 60 72

6 40 50

7 35 38

8 15 24

Table 10 Sparsity of coverage in the dataset

Symbol

size (b)

Number of unique

coordinates

Volume per

symbol (cm3)

Total volume

covered (cm3)

Percentage

coverage

4 291 155.733 45,318 8.622

5 410 17.643 7,234 1.376

6 428 2.102 900 0.171

7 430 0.257 110 0.021

8 430 0.032 14 0.003
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‘‘Total Volume Covered’’ as a percentage of the total volume of the entire region.

As can be seen, even with 4-bit wide symbols, only 8.622 percent of the total

volume of space is covered. Note that a 4-bit wide symbol represents 155.733 cubic

centimetres. Alternately, using 8-bit wide symbols, only 0.003 percent of the entire

region is covered. For low values of b, the PPAM would be more likely to recall a

value corresponding to the input, as data presented would be more likely to be

previously observed data. However, the values recalled would suffer from a large

quantisation error when mapped back to the real world. Alternately, for high values

of b, the PPAM would be less likely to recall a value corresponding to the input,

even though the values that are recalled would have a high accuracy when mapped

back to the real world. Therefore, increasing the size of the symbols (b) has the

following effects:

1. Increases the width of the memory in the nodes as each node needs to store

b bits wide data in memory.

2. Increases the depth of the memory in the nodes as the data of one variable is

used as the address in the other variable.

3. Changes the number of conflicts in the dataset as varying the quantisation levels

modifies the number of real-valued points encoded in each symbol. The nature

of the change (increase or decrease in the number of conflicts) is dependent

upon the actual dataset.

4. Increases the accuracy when mapping back to real-valued data as quantisation

noise is reduced.

5. Decrease the ability to extract relationship information and predict values when

presented with previously unseen data as more and more data is previously

unobserved.

From this, it is evident that the performance of the PPAM hinges not only on the

number of Conflict-Resolving nodes (C), but also on the bit-width (b) that effects

the quantisation.

5.3 Comparison with other techniques

5.3.1 Comparing hardware resources

Existing solutions for hetero-associative memory are typically software implemen-

tations on traditional ALU-based processors. A comparison between a software

solution and a hardware solution (e.g. PPAM) is not entirely fair. Due to the novelty

of the PPAM architecture, there would always be some imbalance in the

comparison. Nonetheless, a comparison with existing architectures is essential.

Although a mixed signal VLSI implementation of the PPAM would be ideal, due

to time and cost considerations, only FPGA implementations were attempted.

PPAM implementations on FPGAs are handicapped because of their inability to

customise RAM blocks (in the way required by the PPAM) and also because of the

lack of analogue resources. Regardless, experiments with various configurations

indicate that the Virtex 5 LX110T FPGA can fit approximately 200 nodes with 32

memory locations in each node (Sect. 3.4). Qadir et al. [18] shows that a 31 node
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PPAM learns the complete dataset to successfully operates a mobile robot (ePuck)

on an object avoidance task. Qadir et al. [18] also shows that an optimally trained

BAM [13] even with 85 neurons is only able to learn 98 % of the same dataset.

Since the SoftTOTEM [2] is a commercially produced neural network hardware

architecture for the Xilinx Virtex XCV600E FPGA, this is a good candidate for

comparison. The SoftTOTEM boasts 32 neurons with 8-bit weights, operating at

40 MHz. Note that this maximum number of neurons (32) is inclusive of all layers

in the neural network and is insufficient to implement the BAM for the ePuck object

avoidance task. To put this further into perspective, consider that Chellapilla and

Fogel [4] evolved feed-forward ANNs with 2 hidden layers to play checkers in what

later became the famous Blondie24 program [6]. The ANNs used for Blondie24,

had 40 neurons in the first hidden layer and 10 neurons in the second one. Yang

et al. [31] described the application of a feed-forward ANN with back-propagation

to the problem of image recognition to differentiate between crops and weeds. It

uses one hidden layer and, in its various experiments, implements up to 300 neurons

in the hidden layer. Wang et al. [30] use up to 150 nodes in ANNs used to associate

8 9 7 pixel images. Sudo et al. [24] use a variant of the Bidirectional Associative

Memory using 99 neurons in the competitive layer to associate the 7 9 7 pixel IBM

PC CGA characters dataset (capital letters versus small letters). Tirdad and

Sadeghian [26] use 100 neurons in a Hopfield network to generate a pseudo-random

number generator that passes the 15 critical tests identified by the National Institute

of Standards and Technology. None of these solutions would fit on the SoftTOTEM.

5.3.2 Comparing computation method and performance

The task described in Sect. 4.1 is to learn the forward/inverse kinematics of a

robotic arm. Experiments were conducted to evaluate and compare the performance

of the PPAM against a regression-based solution applied to another forward/inverse

kinematics task. The catcher-in-the-rye project was conducted at the University of

Aberystwyth, and defined the same forward/inverse kinematics task as is specified

in Sect. 4.1, using a robotic arm and a stereo vision system. Details of the dataset

and results of the regression-based solution are presented in Hülse et al. [10]. The

PPAM results and comparison with Hülse et al. [10] were originally published in

Qadir et al. [20]. These are summarized below since a comparison with other

techniques provides an essential benchmark.

Let T be a set of vector pairs T ¼ fXðkÞ; Y ðkÞgk¼1;...;N . Hülse et al. [10] stores

selected associative pairs from the dataset and uses Euclidean distance to recall the

closest matching pair using the Catcher-in-the-rye algorithm (or catcher algorithm).

Each pair is tested to see if it should be added to the list of stored pairs and old data

that hasn’t been refreshed in a specified number of cycles is removed. Complete

details of the algorithm (including pseudo-code) are presented in the Online

Resource 5.

The catcher experiments use polar coordinates ðd; aÞ that range as follows:

30� d� 60 cm; �1:4� a� 1:4 radians.
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D ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

d1 � sina1 � d2 � sina2½ �2þ d1 � cosa1 � d2 � cosa2½ �2
q

ð1Þ

Distance D between points can be measured according to Eq. 1. Benchmarks for

calculating trigonometric functions vary greatly, depending upon the hardware

architecture and the method used to compute the function. Intel architectures can be

used as the standard, particularly since they provide hardware support for calcu-

lating trigonometric functions using native instructions (like fsin, fcos and fsincos).

Latencies and throughput are shown in Table 11. Here clock latency is defined as

the number of cycles to complete execution of the instruction and throughput is

defined as the number of cycles to wait before the instruction can be issued again.

The exact number of cycles is dependant upon the range of the input data and the

processor model. This estimate does not include the overhead from the branch

instructions or the load/store instructions required to manipulate the data. Further-

more, the calculations are performed on floating point numbers, thus requiring a

Floating Point Unit.

Hülse et al. [10] uses a training set of 300 elements (N = 300), and shows that

best results are achieved if the entire training set is maintained in memory.

Therefore, recalling an arbitrary associative pair requires, at most, N iterations of the

loop (with trigonometric calculations). On the other hand, the PPAM required 29

conflict resolving nodes to fully store and recall the entire dataset and the maximum

number of memory locations in any node was 160, with the average and quartiles

being much lower [20]. Table 12 compares the number and types of operations for

the catcher-in-the-rye with a PPAM configuration of H nodes that achieves the same

association. It does not consider the branch operations implicit in any software

implementation of the algorithm, since these would be removed if the algorithm was

implemented in hardware. The catcher-in-the-rye implementation is assumed to be

optimized such that calculations are not repeated and results are considered to be

stored in temporary memory (CPU registers). Memory access (read/write) does not

include access to these temporary locations or to any other working memory.

Furthermore, memory requirements (or operations) for stimulating nodes or

providing input is not included. For the catcher-in-the-rye, XðkÞ 2 R
N and

Y ðkÞ 2 R
M , while for the PPAM XðkÞ and YðkÞ are encoded values of the same.

Note that each of the H operations execute in parallel in each of the H nodes in the

PPAM. Further note that all memory variables in the catcher-in-the-rye are real

values and therefore all catcher-in-the-rye calculations require floating point

arithmetic. The details for calculating the values in Table 12 are published in Qadir

et al. [20] and can also be found in the Online Resource 5.

Table 11 Clock latency and throughput for trignometric operations on Intel architectures [11]

Operation Latency in clock cycles Throughput in clock cycles

fsin 160–200 130

fcos 180–280 130

fsincos 170–250 140
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The catcher algorithm uses error thresholds to control errors in the recalled

values. As shown by Hülse et al. [10] the algorithm accumulates uncertainty. For

the PPAM, the equivalent of this error threshold is performed implicitly through

encoding the real values into integer symbols. If more values are placed in the same

bin such that a larger range of values are encoded using the same symbol, the error

threshold (or quantisation error) is higher. In Qadir et al. [20] we show that, unlike

the catcher-in-the-rye, increasing this quantisation error did not have a detrimental

effect on the performance. In this paper we explored the effects of quantisation in a

more controlled manner and discovered that although quantisation does not directly

reduce performance, it must be tuned along with C to optimise performance.

6 Conclusion and future work

This paper presented the hardware architecture for the PPAM which is a novel

bidirectional hetero-associative memory. It also presented the results of an

experiment to associate the reach space of the BERT2 robot with the vision space

of the Vicon system and to test if the PPAM was able to extract relationship

information about the underlying dataset. The effect of quantisation on the

performance of the PPAM was explored. Quantisation was emulated by varying the

bit-width (b) of symbols encoding real-values. Section 4.2.1 shows that as

b increases, the relationship between the variables being associated becomes more

well-defined and requires fewer number of Conflict-Resolving nodes (C).

Section 4.2.2 shows that, although increasing b sharpens the relationship between

the variables, it also reduces the coverage of the overall underlying dataset. This in

turn means that extracting relationship information becomes harder. Therefore,

although the PPAM can extract relationship information, it is a function of the

quantisation parameter (b) which needs to be tuned along with the number of

Conflict-Resolving nodes (C) to maximise performance. Being able to analytically

Table 12 Comparison of PPAM with standard techniques

Catcher-in-the-rye PPAM

Trigonometric Up to N 9 4 0

Multiplications Up to N 9 6 0

Square root Up to N 0

Additions Up to N 0

Subtractions Up to N 9 2 0

[Comparisons 0a or up to N b 0

BComparisons Up to N 0

¼¼ Comparisons 0 Up to N 9 H

Memory reads Up to N 9 3a or up to N 9 4b N 9 H

Memory writes 1a or up to N 9 5 ? 6b 0a or up to Hb

a For recall
b For store
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determine a value for C to provide a given level of accuracy and fault tolerance

would be quite helpful, though it is uncertain whether such a (analytical) method

exists.

It remains to discover the relationship between spatial coverage and the accuracy

of recall; in particular, what is the level of coverage at which the PPAM can provide

95 percent accuracy? The logical next step to the BERT2 experiments would be to

conduct more experiments in order to generate a higher coverage of the space and

evaluate the performance of the PPAM in this situation. However, due to limited

time and access to the shared resource (BERT2) at the Bristol Robotics Laboratory,

it was not possible to gather more data. An imprecise projection can nonetheless be

made from the current data. Figure 11 uses linear regression to predict how

coverage varies with the success rate. It plots the Percentage Coverage from

Table 10 against the score obtained using the data from Table 8. Spatial coverage is

normalised to range between 0 and 1.

It must be noted, however, that in terms of the more abstract aim of discovering

an alternate computational paradigm that could be applied more widely to a large

range of AI applications, the results are less favourable. The results of Sect. 4 which

analyse the effect of quantisation indicate that the ability of the PPAM to extract

information about the underlying dataset hinges on the quantisation level used, and

the coverage of the dataset. This leads to the philosophical discussion of what is a

reasonable amount of coverage (by the training dataset) that is necessary before an

architecture can be evaluated.

Although it is an advantage that quantisation errors can be utilised to increase

performance, incorrectly chosen quantisation levels (or b) could drastically reduce

the performance of the PPAM. In terms of generalisation from a sample dataset,

whereas other techniques suffer from the curse of dimensionality, the PPAM

requires higher dimensionality in data to generalise. Association of a 1-dimensional

Fig. 11 Projected coverage requirements to improve success rate (generated using linear regression)
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variable with a 1-dimensional variable reduces to a simple lookup. However, the

larger the dimensions, the greater would be the ability of the PPAM to generalise,

since the likelihood of the PPAM having previously observed a portion of the input

data increases.
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