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Abstract Probabilistic model-building algorithms (PMBA), a subset of evolu-

tionary algorithms, have been successful in solving complex problems, in addition

providing analytical information about the distribution of fit individuals. Most

PMBA work has concentrated on the string representation used in typical genetic

algorithms. A smaller body of work has aimed to apply the useful concepts of

PMBA to genetic programming (GP), mostly concentrating on tree representation.

Unfortunately, the latter research has been sporadically carried out, and reported in

several different research streams, limiting substantial communication and discus-

sion. In this paper, we aim to provide a critical review of previous applications of

PMBA and related methods in GP research, to facilitate more vital communication.

We illustrate the current state of research in applying PMBA to GP, noting

important perspectives. We use these to categorise practical PMBA models for GP,

and describe the main varieties on this basis.
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1 Introduction

Evolutionary Computation (EC), has become a widely used meta-heuristics

optimisation and learning technique, with a wide variety of applications in

engineering, medicine, humanities etc. The primary inspiration for this field arises

from natural phenomena, especially biological evolution. Perhaps the best known

form is the Genetic Algorithm (GA), which applies nature’s evolutionary process to

problem solving, using selection, crossover, and mutation. The core process

maintains a population of possible solutions (individuals), and evaluates their fitness

as a solution (fitness to the environment). Fitter solutions probabilistically survive

selection, and are then adapted into new solutions by combining or mutating them

(reproduction). However EC covers a much wider range of techniques than this

basic concept.

In this paper, our discussion will broadly cover Probabilistic Model-Building

Algorithms (PMBA)—algorithms that generate probabilistic models to guide their

search. PMBAs fall into a number of forms. One form, modelled on natural

processes, has led to the field of Ant Colony Optimisation (ACO [21]). A second,

motivated more by statistical theory, is known by a number of names: Estimation of

Distribution Algorithms (EDA [49, 67]), Probabilistic Model-Building Genetic

Algorithms (PMB-GA [84, 85]) and Iterated Density Estimation Evolutionary

Algorithms (IDEA [15]). To cover all such algorithms, including extensions to

different problem domains, we will use the terminology ’PMBA’ except where we

need to distinguish a specific form, when we will generally use the terms ACO and

EDA unless more specificity is required.

The basic algorithm resembles a conventional GA except that it replaces

crossover and mutation with twin processes of sampling and model update.

Sampling is used to generate new individuals, whose fitness is evaluated. Fitness is

used to weight the samples; usually a Boolean weighting (i.e. truncation selection) is

used, but more sophisticated weighting schemes are possible. The model is updated

(or explicitly learnt—some systems ignore the previous model and learn a new

model de novo) from this selected sample. PMBAs have several interesting

characteristics—notably improvements in performance as problem solvers and ease

of statistical analysis of behaviour.

Genetic programming (GP) extends the evolutionary paradigm to search spaces

consisting of function expressions or programs. Prima facie, the use of probabilistic

models is appealing in GP, since the basic algorithm structure is almost the same—

the biggest difference is in representation; standard GA uses fixed string individuals,

while GP uses variable, often tree-structured, individuals. The tree representation

requires more complex operators and generates a more complex search space,

however it has been successful in solving many problems with tree structured

information [36, 107].

Practically, a number of researchers have applied PMBAs to GP representation.1

However work in this area has been somewhat sporadic, probably because it is quite

1 In Shan’s survey [107] they were referred to as EDA-GP; we prefer to use the more general

terminology PMB-GP, reserving EDA-GP for systems more closely modelled on EDA.
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complex to learn tree-structured representations with the conventional Graphical

Models (GM [45]), which have formed the backbone of most PMBAs [50].

A critical review of the field is needed for a number of reasons. Most important,

researchers have not always been fully aware of other work, leading to inefficient

research advancement in this field. While Shan’s survey went some way to

overcoming this, it is now rather dated, and its circulation has been restricted. The

recent review by Larranaga et al. [50] of probabilistic graphical models in

evolutionary computation briefly noted EDA-GP, but did not cover the field in

detail.

While providing an up-to-date guide to research in PMB-GP and related areas,

this survey also aims to delineate the current position of PMB-GPs relative to other

methods, and to provide a guide for researchers outside the PMB-GP streams. We

will also try to elucidate some important issues for future research, in particular the

values of different representations, and at a more general level, the roles of

positional determinacy, context dependence and structure learning. Our intended

audience is practitioners in evolutionary computation, but particularly those

entering the field of PMB-GP, those familiar with PMB systems who are interested

to see how they are used in GP, and conversely those familiar with GP who are

interested to see how PMB methods are currently being used, and what the problems

and issues may be.

To clarify the range of PMB-GP, in this paper we aim to cover systems that learn

probabilistic models for evolutionary search in the domains generally accepted as

covered by genetic programming. As in optimisation, not all PMB-GP systems are

expressly based on EDA. There has been a range of studies in other research

streams, such as Ant Colony Optimisation (ACO) for GP [1, 8, 10, 11, 12, 25, 42,

72, 93, 96] and Grammar Induction (GI) [13, 114, 120].

Figure 1 may help to clarify our terminology. At the first level, the terminology

distinguishes by problem domain because this enormously affects the issues under

consideration. The second level distinguishes based on the use of the probabilistic

model, primarily between EDA and ACO. The question marks signify that we do

not intend the terminologies to be exhaustive, but simply to recognise important

distinctions among existing systems. For example, at the first level, search spaces

such as permutations are arguably sufficiently different from the Euclidean spaces

of classical PMB-GA to fall under PMB-?, while at the second level, hybrid systems

such as CMA-ES might well form a third category under PMB-GA. Since these are

outside the primary focus of the paper, we do not consider these issues further.

The review is organised as follows. We first introduce the basic concepts of

PMBA, and specifically of EDA and ACO in Sect. 2. Section 3 provides some

PMB A

ACOE DA

PMB -GPPMB -GA

ACO-GPE DA-GP

PMB -?

??

Fig. 1 Hierarchical Terminology for PMB systems
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illustrative examples of EDA-GP systems to set the scene. To clarify the

relationships between the diverse strands of PMB-GP research, we briefly preview

current PMB-GP model representations in Sect. 4. Extending beyond these

superficial issues, we examine semantic issues in learning a model from GP

representation, inspired by an analysis of conventional models in Sect. 5. Based on

these perspectives, we categorise and analyse current PMB-GP models, providing a

brief introduction to their mechanisms, in Sect. 6. We provide a brief review of

research directions and challenges in PMB-GP in Sect. 7, and summarise in Sect. 8.

2 Probabilistic model-building algorithms

PMBAs are evolutionary algorithms, learning a probability distribution over

individuals. Though often not explicitly stated, the underlying aim is, in the limit, to

converge to a degenerate distribution that describes the optimal solutions to the

problem. For practical reasons (symmetry breaking—so that not all solutions will be

retained; retaining exploration—so that full degeneracy is avoided) this target is

usually adjusted in practical systems.

The search spaces are generally either infinite, or extremely large, so that

exhaustive and random search are infeasible. Thus assumptions are needed, both to

guide the search, and to permit economical description of the current state of the

search. Almost all non-random search methods rely on an underlying distance metric

on the space, and on the assumption that there is some correlation between differences

in fitness between points and the distance between them. PMBAs generally rely on

one further assumption: that an individual consists of components, and that there is a

correlation between the fitness of individuals sharing a component. Thus PMBA

models represent these components, and attempt to relate them to fitness. Specific

systems parameterise these models in different ways, imposing further assumptions

(unimodality, symmetry etc.) on the structure of the search space.

Typical PMB algorithms have the form shown in algorithm 1:

Algorithm 1 A Typical PMB Algorithm

Generate N individuals randomly from an initial probability model

while not (termination condition is satisfied) do

Evaluate individuals using fitness function

Select the best individuals

Update the stochastic model using the selected individuals

Sample new individuals from the model distribution

end while

This algorithm omits the step of the conventional GA which applies variation

operators (crossover and mutation) to individuals, replacing it with a model update

and sampling process, which can be viewed as a generalisation of crossover to
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recombinations of the whole population. The hope is that, if the models are

appropriately expressive, all relevant combinations can be sampled. Thus if the

model representation is suitable to the problem, PMBAs may avoid loss of

important building blocks during evolution. This was a key impetus for EDA work

in particular.

Beyond this motivation, PMBAs offer other advantages over more conventional

methods as problem solvers and analysis tools. The probability distribution

collected at each generation provides substantial information, which can influence

the next state of the PMBA system, even if it is only approximated. Compared to

conventional evolutionary approaches, it can lead to much easier analysis. For

example, many researchers have analysed the convergence of EDAs [49, 110, 111].

The probability distribution offers one further advantage over conventional

evolutionary algorithms: the final product is not merely a single solution, but a

probabilistic description of a space of good solutions. While this has limited

importance in standard PMBA work, it potentially offers important advantages in

PMB-GP, particularly in helping to generate explanatory models.

Many PMBAs have been proposed, with a wide variety of operators and model

structures. For example, the hottest issue in EDA research to date has been

constructing models which have substantial representation power for complex

dependencies. More exact representation of dependencies, particularly in complex

fitness landscapes, has led to distinct improvements in performance [49].

2.1 Ant colony versus estimation of distribution

We have noted the close relationship between EDAs and ACO: they have a similar

ultimate target, and they both aim to get there by probability models. So how do

they differ? EDAs generally aim to estimate, at each generation, the unique

distribution best justified by the combination of the previous model as prior, and the

current data (the selected population). ACOs aim to converge to the same final

point, but with less concern about the justification of the intermediate models,

relying on the iterative process to converge, in the end, to the right distribution.

However this distinction is less clear-cut than might at first appear, for two main

reasons. For more complex problems, it is generally not feasible for an EDA to

construct a single best-justified posterior model, it can only be approximated.

Equally important, doing so in each generation is likely to amplify stochastic bias,

so most EDAs relax the learning rate in ways that are not too different from the

pheromone evaporation of ACOs. Thus in the end, the differences turn out to be

more of emphasis than of fundamentals.

2.2 Model construction

Most learning mechanisms used in EDA originate from probabilistic Graphical

Models (GM) [45], a well-studied machine learning technique. The best-known are

Bayesian Networks (BN) and Markov Networks. EDAs often use a BN represented

as a Directed Acyclic Graph (DAG). Each node represents a random variable, with
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the directed edges indicating dependence relations between them. Within this

framework, different EDAs use a range of methods to represent the probability

distribution. The earliest systems used independent variables, while more recent

versions can represent multivariate dependencies. For a comprehensive recent

survey of probabilistic Graphical Models for EDAs, readers are referred to [50].

The individual representation is usually a fixed linear string, because EDA

typically aim to solve the same classes of problems as GA . Each variable is mapped

to a position of the string, thus a variable observes the values at a specific location in

all individuals in a population.

ACO methods, which originated in combinatorial problems, more typically

impose a specific dependence structure (usually imposed by the problem) both in

sampling and learning stages. In these methods, there is generally less emphasis on

learning linkages between variables.

3 Building models with genetic programming: examples

In this section, we describe how two classic PMB-GP systems construct models.

They are Probabilistic Incremental Program Evolution (PIPE) and Stochastic

Grammar based genetic programming (SG-GP), two simple (and early) PMB-GP

systems which form the basis of many more recent systems.

3.1 Probabilistic incremental program evolution

PIPE, the first fully-developed PMB-GP system, introduced the widely-used

Probabilistic Prototype Tree (PPT) as a model. We discuss its properties in detail in

Sect. 6. PIPE omitted GP’s population reproduction stage, in which variation

operators are applied. It replaced this with two stages, of learning a distribution

(represented by a PPT), and generating individuals from it.

3.1.1 Model structure: probabilistic prototype tree

PIPE’s choice of model structure is perhaps the most obvious: using a tree-

structured model to represent distributions over tree-structured individuals. Figure 2

shows a simple example of a PPT for a problem in a domain using arithmetic and

other operators: ?, -, 9 , %, sin, cos, exp, log, random constants (R) and a single

variable (s). Since the maximum arity among these operators is 2, the PPT is a full

binary tree, as seen on the left of the figure (more generally, if the problem domain

symbols have maximum arity n, then the PPT is a full binary tree of arity n). Each

node of this tree represents a random variable (in this case, with an independent

multinomial distribution) ranging over the symbol set of the problem; initially, they

are uniformly distributed, but their probabilities are updated from observations.

Figure 2 illustrates the PIPE sampling process. PIPE starts at the root of the PPT

(left side of the figure), sampling an outcome which is used as the root value in the

individual (right side of the figure). The process then recursively visits the children

of the sampled node, depending on the sampled value: if a particular argument is

120 Genet Program Evolvable Mach (2014) 15:115–167

123



defined (the left arguments of sin, cos, exp, log, both arguments of ?, -, 9 , %), the

corresponding child node in the PPT is sampled. In other words, PIPE uses ancestral

sampling, generating an outcome and visiting child variables repeatedly until it

generates a completed tree individual.

In the learning process, the PPT nodes are mapped to corresponding positions in

all (selected) individuals. The resulting frequency table at each PPT node is updated

by the frequency of components in the selected good individuals, using a variety of

update strategies.

3.1.2 Precursors and extensions

Despite PIPE’s simplicity, it has inspired much subsequent research. PIPE may be

considered as a natural application of the ideas of Population-Based Incremental

Learning (PBIL) [4] and Univariate Model Distribution Algorithm (UMDA) [66] to

GP representation. followed by subsequent models representing dependencies

between variables, so PIPE has been followed by subsequent models representing

dependencies between the random variables attached to tree locations. Estimation of

Distribution Programming (EDP) [129–132] adopted bivariate conditionally

dependent variables (children depending on parents) in place of independent

variables. Extended Compact genetic programming (ECGP) [104] used multivariate

conditionally dependent variables, as did Program Optimization with Linkage

Estimation (POLE) [31, 33]. These had been foreshadowed to some extent by

Handley’s [28], which used a DAG to compress the representation of the GP

population (considered as a forest). However there is no evidence in his published

work that Handley built a probability model on this DAG or used it for sampling.

Other potential variations in these systems include changes to the learning and

sampling mechanisms. For example, some variants of PIPE use incremental

learning with a pre-specified learning rate.

A common theme among these extended methods is the mechanism for handling

GP constraints, so as to generate only feasible individuals. Another is the mapping

P(s) = 0.01

P(R) = 0.01

P(+) = 0.04

P( -) = 0.02

P(x) = 0.05

P(%) = 0.01

P(sin) = 0.01

P(cos ) = 0.02

P(exp ) = 0.8

P(log) = 0.03

+

exp %

s s s

Fig. 2 PPT Model Example (Left : PIPE PPT model, Right : Sampling a Tree Individual from the Model
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strategy between observable locations and random variables; this will be discussed

in more detail in Sect. 6.

3.2 Stochastic grammar based genetic programming

SG-GP was another early PMB-GP. Grammars provide a well known approach to

handle search space restriction and guarantee the feasibility of GP individuals [120].

It is relatively straightforward to extend grammar-based GP to a PMB-GP, using

probabilistic grammars as the probability model. Specifically, SG-GP uses

Stochastic Context Free Grammars (SCFGs) as models.

3.2.1 Model structure: stochastic context free grammar

An SCFG is a straightforward extension of Context Free Grammars, adding weights

to each production. The weights are normalised so that the weights on all

productions from the same nonterminal sum to 1, and thus they can be regarded as a

probability table. We may formalise this in the following definition (using the

notation Sð Þ� for the Kleene star of set S) of a stochastic grammar model M.

M ¼ fN; r; S;R; pg
N ¼ fnjnis a nonterminal symbolsg
r ¼ ftjtis a terminal symbolg
R ¼ frjr is a production of form n! k; where k 2 N [ rð Þ�g

In a production, n is known as the left-hand side (LHS), while k is the right-hand

side (RHS). p : R! ð0; 1Þ associates each production r with a probability

p(r) satisfying:

8X 2 N;
X

rhasLHSX

pðrÞ ¼ 1

An example SCFG for symbolic regression problems is shown in Table 1. In this

grammar, each LHS symbol can be viewed as a random variable with an

independent multinomial distribution. Each production defines an outcome.

Mapping these variables to observable locations is based on matching. If we

observed Exp in a tree individual, it is regarded as an observation of the random

variable Exp of the SCFG.

The learning mechanism of SG-GP is based on the frequency of occurrence of

particular symbols in specific contexts. In the simplest form, learning through

Maximum Likelihood Estimation (MLE), the system evaluates the frequency of

each outcome, and normalises for each variable. Sampling of the SCFG starts from

the grammar’s start symbol. In the example, S is the start symbol. Selecting an

outcome from the probability distribution for S, the SCFG can grow a tree

individual by adding symbols from the RHS of the selected production as children,

repeating recursively until the process terminates.
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3.2.2 Extensions

The origin of stochastic grammars in GP stemmed originally from the desire to limit

the search space through type, grammar or other constraints. Examples include the

strong typing of Montana [65], the constrained trees of Janikow’s ACGP [37] and

the grammar guided genetic programming (GGGP) of a number of authors [23, 120,

127]. Whigham [121, 123] subsequently incorporated stochastic grammar learning

in a hybrid genetic system, with SG-GP following a few years later.

In building explicit variables, one direction of extension of SG-GP has followed a

similar course to PPT: incorporating conditional dependency into the model.

Another has extended beyond simple context free grammars to support greater

expressive power in specifying the distribution. For example, depth information

may be added as annotations to the LHS symbols as in vectorial SG-GP (vSG-GP)

[89], so that the distribution varies with the depth. More general annotations as in

PAGE [32, 34] are further extensions. In other alternatives, we may learn a

completely new grammar structure as in GMPE [106], or we may extend beyond

context freeness to the mildly context-sensitive Tree Adjoining Grammars [1] or

other Context Sensitive Grammars (CSG) [114]. The common property of these

systems is their reliance on mapping variables to observable locations based on

symbol context. This contrasts with PPT models, in which the mapping is based on

position. These issues will be discussed in more depth in Sect. 6.

4 An overview of PMB-GP

Over the last 10 years, there has been a surge of research in applying PMBA

concepts to GP. However, the work has been presented in a number of different

streams (most notably, separating between EDA and ACO streams) with limited

interaction, and often even awareness, between them. These streams have shared a

Table 1 Stochastic distribution over context free grammar for symbolic regression problems

LHS RHS Probability

S ? Exp 1.00

Exp ? Exp Op Exp 0.50

? Pre Exp 0.25

? x 0.25

Op ? ? 0.10

? - 0.20

? 9 0.10

? / 0.60

Pre ? sin 0.25

? cos 0.25

? e^ 0.25

? ln 0.25
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number of important issues, to the extent that a rational categorisation would cut

across the streams and emphasise different criteria. Here, we briefly summarise the

criteria we will use to structure our discussion. To a substantial degree, it is based on

the representation used.

In discussing representation in PMBAs for GP, we need to take some care with

terminology. There are two representations involved: the representation for

individuals in the sampled and selected populations (the individual representation)

and the representation used in the stochastic model (the model representation). The

choice of individual representation restricts the possible model representations, but

it does not determine it.

4.1 Representation of individuals

One of the core criteria for distinguishing the problem domains of evolutionary

systems is the representation they use for individuals. For example, in GA systems,

individuals are represented as of string of values. In classifier systems, they are

represented as a set of rules. GP systems mostly use a tree with structural information,

although some systems use special representation for programs, as in linear genetic

programming or Cartesian genetic programming [18, 5, 62, 63]. This fundamental

difference between evolutionary systems leads to important differences in their

operators (crossover and mutation), and other system components. We concentrate on

the differences between GA and GP systems, since these are the most informative for

the extension of GA-based PMBA methodologies to GP. Figure 3 depicts typical GP

evolutionary operators; by comparison with GA, these operators differ in the need to

deal with structural information in addition to simple value information. When

probabilistic methods are substituted for these evolutionary operators, similar issues

arise. Other GP systems use different representations, for example a general graph [40,

41, 116], but the problem of dealing with additional structural information still arises.

4.2 Structural information in GP individuals

Each component of a GA or GP individual has a value (in GP, potentially a value

from the set of function symbols rather than a domain value). In GP, these values

-

y x

+

y

z

%

x

*

-

xz+

+

x

yx

*

Parents

-

y x

-

xz

+Children

+ x

yx

* +

y

z x

*

%
Crossover

−

xz+

+

x

yx

* −

y x

−

xz

+
Parent Child

Mutation

Fig. 3 Operators for GP (left: subtree crossover, right: subtree mutation)
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are required to follow some domain constraints on their relationships (e.g. type

constraints, constraints on the number of arguments). Information about these

constraints influences evolutionary algorithms, by determining the boundary of the

search space. When individuals fail to satisfy the constraints, we can omit them

from the candidate solutions. This deterministic division of the search space allows

us to apply some forms of human knowledge to evolutionary algorithms without the

complexity and uncertainty of learning. When we are certain we know such

relationships, we can use this knowledge to reduce the search space, inducing

greater efficiency in GP systems [64]. The earliest GP systems such as Koza’s tree-

based GP [46] imposed only weak constraints such as number of arguments, but

there has been a trend toward increasing the complexity of constraints in GP, from

strongly-typed GP systems [64, 65], to systems imposing more general syntactic

constraints [120] and even semantic constraints [77, 128].

Unfortunately, making use of this information in extending a PMBA to GP

applications is far from trivial. Effectively extending ordinary evolutionary

algorithms to GP was complex enough, requiring adaptation of the operators right

from the start, and subsequent incorporation of mechanisms to control bloat, and to

handle diversity issues that arise in different ways than in GA. When it comes to

extending PMBA methods to GP representation, there are still more complex issues.

The solutions proposed have been very diverse, but mostly fall into one of two

groups: transforming the GP representation to a GA-like structure so as to be able to

apply a near-standard PMB-GA, or conversely extend a PMBA model to apply to a

more typical GP representation.

4.3 PMB-GP systems with GA-like representation

One reasonable approach to handling these problems is to use a linear GP

representation, thus reducing the apparent difference between conventional PMB-

GA models and the GP system’s structural representation. This permits the use of

standard, well-studied structures for probabilistic models, encoded linearly (perhaps

extended with some structural information). However in many cases, these linear

models can also generate semantically meaningless individuals. Three main

strategies have been used to handle this:

1. adding constraints to the model, so infeasible individuals are not generated [17]

2. dropping infeasible individuals (i.e. a sudden-death constraint handling

mechanism [91])

3. fragmenting the linear structure so that individuals can encode this relational

information [88]

Most of the methods using a linear representations have adopted special

processes of transformation or segmentation of individuals. There is one common

thread between them: the model has no specific way to represent or distinguish the

structural relationships between the components of individuals. Thus knowledge

about such structural relationships, which is available to the user of the system,

cannot be passed to or used by the system in its search. This is not surprising. The

original focus of graphical models, the form most commonly adopted in such
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PMB-GAs, was purely on attribute data—they were not designed for learning from

relational data, such as is normally present in a GP population. Ignoring this

relational information can lead to inefficiencies in the model learning stage of

PMBAs applied to GP representations. We will discuss these issues of structural

formalism further in Sect. 5.

Nevertheless, this direct application of classical graphical models can be an

effective way of extending PMBA methods to GP. Simply changing the

representation of individuals to a linear one is relatively straightforward. For some

problem domains, we can relatively easily gain performance benefits relative to

conventional GP.

To date, one of the best-known EDA methods, the Bayesian Optimization

Algorithm (BOA) [83], has been extended to linear coded GP in several ways. Other

methods have used an N-gram table, inspired by Natural Language Processing

(NLP) [57]. Cartesian genetic programming—whose components are anyway

linearly encoded with additional linkage information,—has been combined with the

conventional EDA Univariate Marginal Distribution Algorithm (UMDA [66]). We

will discuss details of these models in Sect. 6.

4.4 PMB-GP systems with GP-specific representation

Much PMB-GP research has concentrated on extending PMBA methods to a typical

Koza-style tree GP representation. Researchers have invested a lot of effort in

designing specific model representations for this form of GP, on the basis that a

suitable model structure could provide a more effective means of learning from the

information held in the selected population. We have already seen examples of the

two main kinds, prototype trees and stochastic grammars (SG).

A number of researchers have extended PIPE’s [98] simple univariate model over

PPTs, attempting to learn more complicated dependencies in this underlying

structure [31, 33, 104, 130, 131 ].

Correspondingly, there have been a number of PMB-GPs based on stochastic

grammars (SG) [123]. The first such was a hybrid evolutionary/model-based

approach [123], arising out of grammar-guided GP [23, 120, 123, 126, 128], though

described from a genetic perspective. The first explicitly described SG PMB-GP

was that of Ratle and Sebag [89], which we illustrated in Sect. 3.2. These early

methods learnt univariate statistical models over a fixed grammar; many subsequent

extensions have adapted the process to learn some level of grammar structure in

addition to the probabilities [34, 105, 106].

In other areas of PMB-GP, very similar methods to the previously-described

EDA-GP systems have been studied under the rubric of Ant Colony Optimization

(ACO) [21]. ACO is based on a biological analogy to the way real ants find food

resources. Traveling over a variety of routes while leaving pheromone trails, ants

return to their nest following the same route if they find a food source. If this process

is repeated enough, ants can find an optimal path to the food source. The motivation

is very different from EDA, but the underlying model, update and sampling

mechanisms are very similar [133], to the extent that the across-group similarities

between specific ACO-GP and EDA-GP algorithms are often greater than within-
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group. In particular the preceding categorisation, based as it is on genotype

representation, applies almost as well to ACO-GP systems as it does to EDA-GP.

We will use the above categorisation to organise our discussion of specific

implementations in Sect. 6; but first, we examine in more detail some of the issues

in choosing a stochastic model for PMB-GP

5 Issues in choosing and learning a stochastic model for PMB-GP

The two main approaches to PMB-GP we described above—transforming to a PMB

structure suitable for GA-like problem spaces, or defining a specific representation

for PMB-GP—raise very different issues. In the former case, they depend intimately

on the specific transformation, and thus are difficult to incorporate into a general

discussion. Hence we emphasise the latter here, though specific considerations may

be applicable to the former as well. The core issues are how to define a suitable

distribution, able to represent the regularities likely to occur in post-selection GP

populations; and how (in the case of systems in which model structure is permitted

to change) to learn the appropriate changes. Neither of these are trivial issues.

Although we frame our discussion around PMB-GPs with a typical expression-

tree phenotype representation (thus covering the substantial majority of all PMB-GP

system), the ideas discussed can be extended, in most cases, to other PMB-GP

systems as well. We will allude to this when we consider individual PMB-GPs in

Sect. 6.

Due to the complexity of the issues involved, there is currently no accepted, well-

founded theory. Nevertheless, it is possible to observe a number of issues arising

from analysis of previous systems, which might be of general relevance to PMB-GP

algorithms. The underlying question is: what kinds of distribution are best suited to

form the basis of the model structure?

5.1 Semantics: modularity

The fundamental goal of evolutionary search, finding good solutions, is closely

related to understanding the internal structure of fit individuals, falling into the areas

of linkage analysis and schema theory in GA and GP [24, 48]. Strongly related

internal components or structures are known as building blocks [24], and are viewed

by many as having critical importance in finding better solutions. Understanding

such structures, especially in GP, is still a work in progress, but the work to date

clearly indicates the strong influence of the semantics of problems [2, 59].

The building block hypothesis is a heavily debated issue both in the wider field of

evolutionary algorithms, and in genetic programming in particular [7, 24, 48, 59,

76]. In this context, building blocks refer to subcomponents that can be used to

construct good solutions; finding them is expected to yield better individuals in

subsequent generations. According to schema theories based on building blocks,

evolutionary algorithm performance is heavily affected by how well the algorithm

detects and combines building blocks. Building blocks are seen as highly correlated

with semantics, because they are the components needed to build the fittest
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individuals, the fitness being determined by semantics. Understanding such

structures, especially in GP, is still a work in progress.

The view underlying PMBAs in general is that, if we can appropriately model

these structures, either ahead of time or through explicit run-time learning, PMBAs

may show better performance than conventional approaches [49]. Thus whatever

may be the situation with evolutionary algorithms, PMBAs are strongly committed

to some form of building block hypothesis; the differences between them lie

principally in the building blocks they can represent, and the methods they use to

learn them. Building blocks are even more important in PMB-GP, because building

blocks are what a PMB-GP model explicitly represents. A good PMB-GP

representation will thus be one which effectively captures the structure of such

building blocks for a class of GP problems. In this section, we point out likely

characteristics of such GP building blocks. Next we discuss the issues arising in

attempting to capture them in the distribution learning of PMB-GP.

5.1.1 Modularity in GP theory

In GP, our assumptions about the behaviour of building blocks can be captured in a

word, modularity [107, 108]. It refers to the flexibility of locations where building

blocks are observed, combining three more detailed aspects:

1. Connectivity: Building blocks are connected substructures

2. Relocatability: Building blocks may be useful in different positions

3. Re-use: Building blocks are repeatable in an individual

Connectivity: What crossover—the dominant operator in GP search—most

obviously conserves is connectivity between components, destroying only two links

while conserving all others. This has inspired the recognition of a variety of

connected tree substructures as building block units in GP. In particular, all forms of

GP schema theory to date have used some form of connected substructure for

analysis [74–76, 87, 94, 122].

Relocatability: A second important property of crossover is its ability to relocate

a component. This is most obviously the case when an individual is crossed with a

near-copy of itself: in most cases, the exchanged component will be moved to a new

location. Recognition of this has led to various forms of automatically defined and

relocatable components, which we discuss in more detail below.

While some forms of GP schema theory use fixed-location schemas [87, 94], the

primary reason for this choice was to obtain exact formulae for schema propagation,

and a greater similarity to GA schema theory. Earlier GP schema analyses used

relocatable schemas [74, 122], and demonstrated amplification of fit schemas in

these contexts, suggesting that GP can use either fixed or relocatable schemas,

whichever is suited to the particular task.

Re-use: Sequences of crossovers can result in multiple copies of a building block

within a single individual; most forms of automatically defined components support

such re-use. Again, some forms of GP schema theory [122, 74] have incorporated

re-usable schemas that can occur more than once in the same individual.
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5.1.2 Modularity in GP practice

A number of GP studies have aimed to identify and retain meaningful building

blocks, among them Automatically Defined Functions (ADF) [47], Genetic Library

Builder (GLiB) [3], and adaptive representations [95]. The core idea is to identify

frequently-used substructures in good individuals by evolutionary or other means,

and encapsulate them as intermediate building blocks.

An example of ADF use appears in Fig. 4 [47]. GP trees in an ADF system have

two functional parts: branches that produce results, and at least one function

defining branch. A normal GP tree evolves in the result-producing branches, while

the branches in the other part evolve named subtrees as functions. These function

definitions are treated as terminals in the result producing branch, and can be called

many times in constructing an individual. ADFs share the above three character-

istics, connectivity, relocatability, and re-use, with most modularising systems. All

have achieved substantial improvements in GP search [48].

5.1.3 Modularity in PMB-GP

Modularity is not directly supported in standard GP, though it is implicit in the

operation of crossover; explicitly supporting it requires extensions such as ADFs,

and this explicit support provides benefits in terms of search speed.

A similar situation obtains in PMB-GP: the basic models do not support

modularity directly. It would be complex (but not impossible) to directly

incorporate explicit support for modularity into PMBA individual representations

and into models. For example, there is no intrinsic problem in encoding ADF

representation into a PMB-GP. But the increased complexity would inhibit analysis

of PMB-GP; since ease of analysis is one of the principal arguments for PMBA

methods, this may be undesirable. At any rate, to date most PMB-GP systems have

taken indirect routes to supporting modularity, by providing support for specific

aspects.

In the remainder of this section, we examine two critical factors in designing

PMB-GP models: local dependence and positional determinacy. Local dependence

is an important factor in connectivity, and positional determinacy is closely related

to modularity, and especially to relocatability. We explain these concepts and then

illustrate how PMB-GP model construction can address them.

Program

defun

ADF Argument List

Result Processing 
Branch

Fig. 4 Example use of automatically defined functions in GP
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5.2 Modularity and locality of dependence

In GP, the semantics of an individual are defined through the interaction of three

components:

1. the structural constraints

2. the evaluation mechanism for the structure built under those constraints

3. the fitness function that maps the result of the evaluation to a fitness value (or

more generally, to a fitness ordering)

The evaluation of individuals is almost always defined recursively over the

structural constraints: for example, the evaluation of ? is defined recursively on the

evaluation of its two arguments. But the application of evolutionary or PMBA

methods to a search domain implies a further assumption: that there is some

correlation between fitness and the evaluation of individuals (if there were no such

correlation, there would be nothing for these search methods to take advantage of,

and we might as well use random search). Combining these two perspectives, we

have prima facie reason to expect that this might induce dependence between the

desirable values for adjacent nodes (and in particular, parent-child node pairs).

Returning to our example, suppose x ? (-1) is a highly fit component. We would

anticipate that, if we replaced ? by -, it would also be necessary to replace -1 by 1

to retain that high fitness (i.e. x - 1). In evolutionary GP, we see this local

dependence embodied in the shape of building blocks.

This has implications for the properties of PMB-GP model representations: it is

desirable for them to be able to directly represent such local dependences. Beyond

the issue of detecting problem-specific dependences, PMB-GP models have

different ability to represent such dependence. It leads to varied ability in detecting

complex and sophisticated dependences, no matther what the problems are. Current

implementations vary in the methods they use: some represent all such dependences

in the model structures [13, 14, 123], while others use an explicit random variable to

store the dependence [1, 31–34, 42, 72, 89, 93, 97, 98, 104–106, 114, 129–131]. It is

by no means clear, at this point, what is the most appropriate mechanism to store

such dependences.

For example, in the GACP and bACP systems explained in Sect. 6.3, trees are

represented by linear strings in prefix notation [12, 93]. Learning and sampling can

be done as in any other PMB-GP system, so there is no problem in building a system

in this way.

Nevertheless, the structure of any building block learnt by these systems differs

substantially from what would be learnt in a direct tree representation. For example,

the downstream nodes of a particular node may contain a mix of sibling and child

nodes from the equivalent tree, so that what might subsequently be learnt as a

building block in the model is a complex mix of sibling and child semantics. Thus

the implicit assumptions about local dependence are different from those that

underlie other representations. In grammar systems, for example, any captured local

dependence will be maintained as a tree form, but in ant-systems, while there may

be a tree form, it is combined with extra connectivity to sibling components.
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5.3 Modularity and relocatability

Many PMB-GP systems use a position-determined (PD) model,2 as in most PMB-

GAs: the system attempts to learn what symbols should be in which specific position

of a PPT [98]. However as we noted earlier (Sect. 5.1.1), this conflicts with one of

the underlying assumptions of tree-based GP, the relocatability of building blocks

(as reflected in the importance of crossover in GP). But this assumption might be

mistaken: perhaps the relocatability of building blocks in tree-based GP is an

accidental effect of typical subtree crossover, rather than an important property.

Consider a GP or PMB-GP system applied to a well-known symbolic regression

problem, in which the target is a function fitting points from the function:

f ðxÞ ¼ x3 þ x2 þ x:

Figure 5 shows an example of a typical individual I1 that might appear in a GP or

PMB-GP population during such a run. In fact, since it is a perfect solution, it is

likely to appear in the selected population as well. Suppose that our algorithm is still

running (for example, imagine that the data is noisy, so that we do not at that point

know that we have found a solution). What would we like a PMB-GP system to

learn from I1?

We note that block C is an intron—it has no effect on the semantics of the

individual; an individual I2, consisting of I1 with block C omitted, will have exactly

the same semantics as I1, and hence exactly the same fitness. In learning a non-PD

model, the two copies of block C in individuals I1 and I2 may reinforce each other.

On the other hand, in a PD model, they will not only not reinforce, but actively

conflict with, each other. Thus introns may actively inhibit learning in PD models.

This may be undesirable, though it may also have desirable effects: we can expect

+

*
*

*

-

X

+ +

X X

X

X

X X

A
C

B

X

Fig. 5 Illustrative Example:
Position, Building Blocks and
Introns

2 By ‘positional determinacy’, we mean that in generating, or learning from, an individual, the decision

over which random variable to use is completely determined by the absolute location of the specific node

relative to the root. This concept has been previously used by Shan et al. [107] using the term ‘positional

dependence’. Unfortunately their terminology has sometimes led to confusion: particularly in a statistical

context, ‘positional dependence’ covers cases where the dependence is probabilistic, rather than

deterministic. We use ‘determinate’ to avoid any ambiguity.
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more rapid learning in individuals without introns, thus over time introns may be

eliminated from the models.

5.4 A framework for evaluating modularity in PMB-GP systems

In this subsection, we introduce a framework for evaluating modularity in PMB-GP

systems. The key difference between classical PMB-GAs and PMB-GPs, from a

model-learning perspective, is the variation of the size of individuals in a

population—i.e. of the number of observable locations. But at least within a single

generation, the model size is fixed. Thus the mapping between model variables and

observables is generally not a bijection. Different PMB-GP systems take different

approaches to mapping from the statistical model’s random variables to the

observable locations. We use this mapping as the basis of our framework. To clarify

these concepts, we first carefully discuss the learning environment that arises in

PMB-GP. We then explain how this leads us to a framework enabling us to

distinguish different kinds of PMB-GP. Finally, we examine how this allows us to

better understand modularity in PMB-GP.

5.4.1 The learning environment of PMB-GP

To clarify the learning environment, we need to make a distinction between the

space in which the search is conducted (which varies from system to system), and

that in which individuals are evaluated for fitness (for PMB-GP, in most cases, a

space of expression trees). This corresponds closely to the distinction drawn in GA

between genotype and phenotype spaces. In a slight abuse of terminology, we use

the same phrasing here: the genotype space is the space from which the probabilistic

model is directly learnt, and in which the next generation’s samples are drawn,

while the phenotype space is (as in genetic systems) the space in which they are

evaluated. We do not mean to imply that this learning/sampling process is a genetic

process, though it has interesting analogies and can be viewed as a generalisation of

mutation and crossover operators.3 As in genetic systems, the genotype and

phenotype spaces may be identical (as in PPT-based systems) or distinct (as in

grammar-based systems).

Phenotype Space The phenotype space for PMB-GP consists of all syntactically

correct individuals. In the search process, a small subset of this space is observed,

and used to learn the stochastic model. In GP, it is often a space of expression trees,

in which an individual is a tree composed of nodes labeled by an appropriate symbol

set. For example, the labels for symbolic regression trees comprise arithmetic

operators, constants, and variables.

Genotype Space For the same reasons as in genetics-based evolutionary systems,

the phenotype space may not be the most suitable space in which to conduct search.

Many PMB-GP systems do not directly learn their probability model from the

3 From another perspective, a typical GA can be modelled as a PMBA in which crossover and mutation

act to change the distribution over the phenotype space [90].
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phenotypes, but instead maintain a separate representation over which model

learning and sampling are performed.

For example, in grammar based systems, learning is conducted on the space of

derivation trees from which the expression trees are generated. Derivation trees are

mapped to expression trees by a many-one mapping. In linear GP systems, the

genotype space is a linear string, though the phenotype space may consist of

expression trees. In PPT-based systems, the genotype space is the same as the

phenotype space—i.e. expression trees.

The genotype representation is important in PMB-GP systems, since it directly

affects the ease with which we may adapt classical PMB-GA techniques. When the

genotype is linear, the similarity to GA genotypes means that we can readily adapt

PMB-GA techniques, no new theory is needed. We refer to such systems as GA-

like. When the genotype is tree-structured, and we pay attention to this tree structure

in learning the statistical model, new techniques are needed; we refer to such

systems as GP-like.

Modularity and Genotype Space Ultimately, what we desire is modularity in the

phenotype space, since that is what governs the semantics of our solutions. However

sampling from the probabilistic model generates elements of the genotype space.

For example, when we use stochastic CFGs as the statistical model, the directly-

sampled derivation trees retain a record of the sampling process, and directly retain

information about how the CFG productions generated specific components of the

tree (and thus created modular structures), whereas the genotype space (expression

trees) do not. Modularity in the phenotype space is an indirect by-product of the

application of the genotype-phenotype mapping to modular structures in the

genotype space. So we will refine our focus to the representation of modularity in

genotype space.

There may be prior knowledge about likely building block structures in specific

domains (and thus representations which are able to represent such knowledge may

be useful). However if we do not have such knowledge, then our system needs to be

able to discover (and therefore represent) it.

Sampling and Learning In any statistical learning system, we need to pay

attention to two key aspects:

• How samples are created

• How updated samples are made available to the model learning system

Both these issues are relatively straightforward in PMBAs, so they are little

discussed. However in PMB-GP they are both more complex and more varied. But

we can nevertheless assume:

– Sampling proceeds generatively, either sequentially or recursively, over a tree

structure

– All nodes of the genotype are available to the learning system (i.e. the

observables are all nodes in the genotype)

In particular, in grammar-based systems, the genotypes (derivation trees) contain

nonterminals that do not appear in the final phenotype; nevertheless, from the

perspective of the learning system, they are observables.
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5.4.2 Context and position

The generative sampling of PMB-GP individuals induces a partial ordering on the

constituent nodes. This ordering determines which nodes are required to be already

sampled before another is sampled. Thus we can, at least for all current PMB-GP

systems, define an absolute position for a node, in terms of the construction path

from the starting node. In turn, this leads to the notion of positional determinacy

(PD), which we will explore further below. In most discussions of PMB-GP, this

absolute position is contrasted with the context of a vertex—the contents of its

surrounding vertices—and the corresponding notion of context determinacy or

dependence (CD).

In the most generalised models, probabilistic reasoning is based on the full joint

distribution between all variables of the model. However in most realistically-sized

applications of statistics, including PMB-GP, the full joint distribution is useful only

as a theoretical concept. Using it directly is, in general, infeasible both statistically

(we could never generate enough samples to accurately approximate the distribu-

tion) and computationally (we could not store the distribution, and even if we could,

we would run out of time to compute with it). In EDA systems there is a further

issue: we may not even want the full joint distribution even if we could practically

obtain it. Generalisation resulting from approximations to the distribution may lead

to more effective search. For all these reasons, we typically look for factorisations of

the distribution that correspondingly allow us to consider smaller subsets of the

variables in relative isolation.

In GP of any kind, values for each variable cannot be directly observed (i.e.

correlated with fitness) in isolation. They are only observable within an individual—

i.e. together with values for all other variables. So finding a factorisation involves

finding a subset of the variables whose values are sufficient to explain the value of

the variable under consideration. To simplify terminology, for a given vertex v, a

context C consists of sets of values for any subset of the remaining vertices, other

than v, indexed by the values of v. In particular, in the full context, all variables

other than v are included. Based on the partial ordering of nodes induced by the

structural definition, it is useful to distinguish between four other kinds of contexts:

1. Ancestor Contexts: all vertices are ancestors of v

2. Descendant Contexts: all vertices are descendants of v

3. Incomparable Contexts: no vertex is either an ancestor or descendant of v

4. Mixed Contexts: a mixture of ancestor, descendant and incomparable vertices

These distinctions will be useful for clarifying the relationships between different

kinds of PMB-GP models, as we will see below: the distinctions between many of

the different systems can be seen as primarily due to differences in the contexts that

they rely on for learning.

5.4.3 Strategies for finding and constructing building blocks

Detecting Relocatable Building Blocks Learning a statistical model from the

selected population is a process of storing information about the population in the
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random variables of the model. In doing so, the first issue is how to detect the

locations of potential building blocks that might correspond to a specific random

variable. In PMB-GP, since the size of individuals is flexible, we may have

incomplete or even no knowledge of where a specific value or set of values might be

observed. Since we can search through a set of candidates, the issue is not so much

how to detect building blocks, as how to determine the candidate locations to test.

In defining such locations, we face more complex problems not easily handled by

models assuming positional meaning (where the problem is simply to estimate the

appropriate outcomes at known locations). The flexible size of GP individuals leads

naturally to representations in which one random variable might map to many

locations, while the structural constraints on GP trees imply specific connections

between components. In practical PMB-GPs, this is handled in a variety of ways. In

PIPE, for example, we map the observable location of the leftmost child of the root

to a specific random variable, the next but leftmost to another and so on (i.e. relying

on the absolute position). By contrast, variables in GMPE are mapped to locations

where the parent symbols and labels of variables match (i.e. relying on the context).

In ant-based systems, or similar systems with transformed tree individuals, it is

more complicated to specify the mapping rules. There are many different rules and

strategies, with little standardisation so far.

Constructing Structured Building Blocks Even once we have determined the

mapping between random variables and locations, we still have to decide on a

structure to represent building blocks. Building blocks are generally regarded as

structured, connected subgraphs of relationships between variables. This raises

issues of locality of dependence. Depending on the assumptions about local

dependence between subcomponents, different variable construction mechanisms

will be needed to capture these dependences.

We can illustrate this more concretely by considering three grammar-based

systems of increasing complexity. At one extreme, scalar SG-GP (sSG-GP [89])

cannot create structured building blocks. It can only generate building blocks that

happen to be representable in the specific problem grammar. At the other extreme,

GMPE, which can learn a new grammar as its search progresses, can in principle

represent tree segments of almost any given complexity. Between these extremes

lies ACO-GP, with a prefix-notation linear representation. The prefix notation can in

principle again represent arbitrary tree segments, but the representation of non-left-

connected components requires discontinuous linear segments, which may be

difficult to detect.

5.4.4 Mapping to observable locations: position versus context

Position-based mappings such as in PIPE are the simplest form. In all systems we

know of, they are one-to-one (though they may be partial): each random variable

maps to at most one genotypic location. They allow for variation in genotype shape

and size by failing to map some variables. As a consequence, the model size is at

least equal to the largest individual size—leading either to very large models (with

consequent requirements for very large sample sizes) or to fairly strong restrictions

on individual size.
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In pure context-based mappings, such as sSG-GP or GMPE, the mapping ignores

positional information and relies solely on context (almost always, an ancestral

context). Given a specific context, whatever its location, a specific random variable

will be used. The mapping may be fixed (as in SG-GP), or may change as the model

is learnt (as in GMPE).

We also see mixed mappings, primarily context-based, but also incorporating

some positional information (as in the use of depth in vSG-GP and Program

Evolution with Explicit Learning (PEEL) [105]).

5.5 Capturing modular building blocks

Having introduced some basic terminology and concepts, we now discuss in more

detail some of the issues involved in capturing building blocks

5.5.1 Positional determinacy

We previously pointed up one of the issues involved in positional determinacy: that

PD models are unable in principle to represent (and thus to learn) relocatable

building blocks. In such systems, building blocks can only be learnt in fixed

positions. We contrasted this with context-based models such as those supported by

grammar-based systems. These can readily represent relocatable building blocks,

but generally will have great difficulty in learning positional building blocks (if they

can represent them at all). Of course, it is important to note that these two extremes

are not the only possibilities. For example, vSG-GP and PEEL both use depth as an

annotation in stochastic CFGs (always in vSG-GP, discretionary in PEEL). Thus

they are partially determined by absolute context, with corresponding restrictions on

the building blocks they may learn, so that vSG-GP can learn building blocks that

are relocatable across positions within a given depth, but cannot share these building

blocks between different depths.

A similar situation arises with context-based learning. Perhaps the same

structured component may be found in two different contexts. Systems based on

fixed-context models (e.g. most grammar- based systems) will not be able to share

learning between the contexts, so that the two components must be learnt separately.

Thus it may be necessary to be able to structure new contexts, as provided by the

annotation learning of PAGE, or the grammar learning of GMPE.

5.5.2 Detectability of building blocks

Given the above, it might seem that the problem is merely that in position-

determinate systems there are too many model variables, so that modular structures

are split among them, compromising learning. Thus a potential solution is to simply

reduce the number of model variables, sharing many locations among each. The

extreme is systems such as sSG-GP, in which model variables correspond to the

(usually small number of) grammar nonterminals. However here we see the opposite

problem: that each variable shares so many genotype locations (all that derive from
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the same nonterminal) that multiple building blocks are liable to overlap and thus

contaminate the learning of each other, leading to the problem of detectability.

The tension between these two aspects, building block relocatability requiring

multiply-mapped model variables, but detectability leading in the opposite

direction, is what has led to some of the more recent developments, of systems

which can gradually learn new mappings, and thus avoid some of the conflict.

6 Probabilistic model-building GP systems

This section provides a survey introduction to the wide variety of PMB-GP systems

in the literature, in a discussion based particularly on some of the more

distinguishing of the issues raised in Sect. 5.

ACO-GP systems have been developed almost entirely separately from EDA-

GPs (in the two literatures, one finds few cross-citations, even when they are

discussing the same issues). In fact, one of our aims is to point out the similarities

between the two fields, and to encourage greater cross-fertilisation. Hence we have

grouped ACO and EDA-based systems together, using the genotype structure as the

primary distinction, and the model structure as a secondary criterion.

Among PMB-GP systems, we may distinguish between those that use GA-like

(i.e. linear) genotype representations (naturally leading to probability models

resembling those of conventional PMB-GAs), those that use conventional-GP-like

(i.e. tree-based) genotype representations, and those that use more general directed

graph representations. The latter two often require new probability models, more

distantly related to those of the PMB-GAs. This leads us to the following primary

categorisation:

6.1 Systems with tree-GP-like representations

6.2 Systems with more general directed graph representations

6.3 Systems with GA-like representations

At the top level of the categorisation, we use the form of a representation, rather

than its semantics, because that is what is available to the model-learning process.

For example, a number of systems use linearised representations of trees (e.g. prefix

representation). Unlike direct tree representations, in these systems, the tree

information is not available to the model learning system (for example, in a direct

tree representation, the information about which node is the tree ancestor of a given

node is directly available to the model-learning algorithm—whether it is used or

not—whereas in a prefix notation, it is generally not available).

Within the top-level categorisation, we further subdivide into different uses of

these representations (for example, within tree-GP-like representations, we distin-

guish between representations which directly represent the expression tree, and

those which use a syntax tree as genotype).

Within these levels of categorisation, we may further distinguish systems, based

on the complexity of the model and the learning process. The simplest systems use

simple univariate models. The next stage of complexity uses fixed multivariate

models (for example, bivariate dependencies between tree children and parents),
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while the most sophisticated systems learn the model structure itself. However the

number of systems within each such sub-category is small, so this level of

categorisation is only represented informally (within each second-level category,

the systems are arranged roughly in order of the level of sophistication of the

probability model).

Table 2 summarises the overall categorisation of the systems we consider here.

The order of presentation of systems is not intended to be significant (and in

particular, is not temporally based). Instead, the arrangement has aimed at economy

of presentation. Since later systems often build upon the ideas of earlier, this

inevitably leads to some degree of temporal order. But this is a by-product of the

research process, not an intended result. In particular, the fact that a particular

system occurs late in the presentation is not intended to reflect on either its research

priority or its importance.

In discussing these systems, we relate them as far as possible to the issues raised

in Sect. 5. Specifically, we aim to cover their structural formalism (in terms of

AND/OR graphs) and semantic issues (positional determinacy, context dependence,

and detectability). The degree to which we will be able to do this varies from system

to system. Some are described in full detail in the literature, and hence can be fairly

unambiguously classified; for others, the available descriptions are relatively brief,

so that classification turns on the exact meaning of one or two words; we hope that,

in discussing these systems, we have done full justice to them.

Where possible, we have used the authors’ own names and abbreviations to

describe their systems. However this has not been possible in all cases, either

because the authors do not name their systems, or because the names are too

susceptible to confusion with other systems. In these cases, we have introduced

names and abbreviations that we hope are sufficiently descriptive to avoid

confusion.

Finally, we review a small number of systems that can be viewed as hybrids of

PMB and other GP methods.

6.1 Systems based on GP-like representations

In this group, there are two main kinds of stochastic models: PPT models and

stochastic grammars such as SCFG. They are clearly distinguishable, so we detail

them separately. In both cases, the development has proceeded in a relatively

orderly way, with increasing sophistication of the probability models, so that they

are presented in roughly chronological order. We conclude with a small number of

hybrid systems not fitting into either category.

6.1.1 PPT based systems

The detail of the PPT structure and an example of how it works were provided in

Sect. 3. The mapping of observables onto random variables is based on matching of

positions, so it is a position-determinate model. This property is shared among all

the PPT-based systems. The major variation between these systems lies in the
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sophistication with which they can represent probabilistic linkages between random

variables, and what is closely related, the detectability of specific structures.

Population-based Incremental Program Evolution (PIPE) was the first PMB-GP

system, and introduced the PPT representation [98]. Its detailed processes were

presented as an example in Sect. 3. Although it is described in EDA-like terms (and

is usually classified so in discussion of PMB-GP), it is worth noting that its

probability update does not attempt to estimate the posterior distribution accurately,

but simply moves the model distribution in the direction of the sample distribution;

Table 2 Summary: PMB-GP models and their determinacy/dependence properties

Abbreviations Determinate (Det.), Dependent (Dep.), Expression (Exp.), Derivation (Der.)

Entries : For each entry, the numerical value indicates whether the corresponding property (determinacy or

dependence) holds in the corresponding form (positional, label context or ancestral context). A value of 1

indicates that the property holds; -1 indicates that it does not hold. 0 indicates an implicit rather than

direct dependence. If the property can change during evolution, we indicate this by a range (-1,1). A

greyed-out region indicates that the corresponding property is inapplicable or (in the case of dependence)

that it is implied by determinacy.
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in this respect, it resembles typical ACO-GP systems rather more than EDA-GP. It

uses independent variables and a fixed mapping of observables onto variables, and

thus has a minimum of detectability in comparison with other PPT-based systems.

The use of an independent variable model is unsurprising—PIPE was first described

only three years after PBIL—but limits PIPE’s ability to find complex programs.

Subsequent extensions mirrored those in EDA—the simple independent model of

PIPE (PBIL) was subsequently extended to represent more dependences between

random variables.

Ant Programming (AP) is the first example of an ACO-GP [96] explicitly

described as such. The genotype and model structure seem to us identical to PPT;

the learning mechanism is also very similar, though explicitly described in terms of

pheromone tables and evaporation (the exact update formulae differ from PIPE, but

the similarities are more obvious—once the terminologies are equilibrated—than

the differences). As a result, the considerations regarding positional determinacy,

detectability etc. are as for PIPE.

Estimation of Distribution Programming (EDP) extended PIPE by providing a

more complex PPT-based statistical model, in which a variable mapped to a specific

node may be dependent on the variable mapped to the parent of that node [129-

131]. This reflects a common intuition, that the distribution of child nodes may be

affected by the choice of parent nodes. as compared to PIPE, it expands

detectability, representing a more sophisticated distribution describing the same

observables.

Extended Compact Genetic Programming (ECGP) further extended the com-

plexity of the probability model over the basic PPT structure. It captures

multivariate dependences [104]. It takes its mechanism for learning a conditional

distribution from the Extended Compact Genetic Algorithm(ECGA) [30], using

marginal product models (MPM). The random variables are partitioned into discrete

groups; within each group, variables are fully dependent; between groups, the

system assumes independence. Thus the key issue is how to partition the variables.

The search for a suitable partition uses the minimum description length (MDL [92])

principle to determine preferences between models. Sampling relies on this

distribution as in ECGA, but has also to satisfy the constraints imposed by the PPT

structure. In comparison with PIPE or EDP, ECGP can represent more detail of the

distribution through applying more conditions to each variable. The most important

difference from PIPE and EDP lies in the learning process. PIPE and EDP rely on a

single fixed model structure, which does not change over time. All learning is

performed through updating probabilities alone. However ECGP, by learning a

partitioning, can change the structure of its model over time.

Program Optimisation with Linkage Estimation (POLE) aimed to provide a more

flexible model of interdependence [31, 33]. In this respect there is a close

parallelism between PMB-GA and PMB-GP systems. In the former, ECGA learns

better factorisations of models by creating MPMs, but ignores all interdependence

between the MPMs: it requires either full dependence or full independence. The

Bayesian Optimisation Algorithm(BOA) [83] overcomes this restriction by learning

a Bayesian network interlinking the variables. In the latter, POLE bears a somewhat

similar relationship to ECGP. The extension from the GA to GP world is similar in
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both cases, but BOA and POLE differ in their approach to sampling, because

generating a GP tree individual must still respect the PPT structure. At each

iteration, POLE learns a Bayesian network superimposed on the PPT representation,

estimating the internal linkage from observed information (i.e. the selected

population). The next population is generated following both the structural

constraints of the PPT and the probability distribution of the current Bayesian

network.

6.1.2 Other expression tree representations

Operator Free Genetic Programming (OFGP) [35] uses the expression tree as

genotype, and learns from it using an N-gram ancestor context model. N-gram

models are mainly familiar from document processing, but can also be used to

describe ancestor context in trees. Such models store the frequency histogram of

N-Gram components, and use them to sample new (hopefully fit) individuals. OFGP

ignores absolute position, so that it is not position-determinate; however it is fully

ancestor-context-determinate up to the chosen size of the ancestor context.

6.1.3 Systems based on stochastic Chomsky grammars

Many grammar-based models use SCFGs, and others use mildly context-sensitive

grammars, either modified Chomsky-style grammars, or in some cases, a non-

Chomsky grammar form. We will detail the specific form of grammar as we discuss

each system. Here, we collect together all the systems which use Chomsky

grammars, since they relate to each other in easily understood ways; subsequently,

we will look at systems using non-Chomsky grammars. These Chomsky grammar

models are position-indeterminate in principle, because the mapping from

observables to variables relies on matching symbols, rather than positional

information. This does not mean that the mapping is always position-independent,

as noted in Sect. 5.4: depending on the specific grammar, it is possible for the

grammar to constrain the mapping to any degree of position dependence (for

example, it is possible—though probably pointless—to write SCFGs exactly

equivalent to PPTs). In grammar-learning systems, it is common for there to be a

gradual increase in position dependence as the system converges toward a specific

solution. As with PPT models, detectability is a key issue that has been emphasised

in the development of the field; it is typically improved in this case, either by

learning more complex grammars, or by learning supra-grammatical structures that

can represent more complex distributions.

Scalar Stochastic Grammar-based Genetic Programming (sSG-GP), the first

grammar-based PMB-GP, was introduced in Sect. 3 as an example of the use of

SCFG [89]. The original paper introduced two versions of SG-GP: scalar SG-

GP(sSG-GP) (the system described in Sect. 3), and vectorial SG-GP(vSG-GP), an

extension incorporating some positional information (see below). sSG-GP is fully

context-determinate: the mapping of a specific observable is determined only by the

nonterminal (itself determined by context) labelling the node. As a result, sSG-GP

not only can, but must, share information about the same building block occurring at
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different depths. This limits the complexity of the distributions that can be

represented—and consequently, of the problems that can be solved.

Vectorial Stochastic Grammar-based Genetic Programming (vSG-GP) was

defined in the same paper, in an attempt to overcome the limitations of sSG-GP [89]

by incorporating some positional (depth) information. Assuming a depth limit D, for

each sSG-GP variable, vSG-GP has D variables, one for each depth. An observable

with a given label is mapped to the variable with the same label and depth. Thus the

vSG-GP model is partly determined by position and partly by context. vSG-GP thus

supports a more complex overall distribution, and can solve problems whose

solution cannot even be represented by sSG-GP models. On the other hand, vSG-GP

cannot share information about the same building block occurring at different

depths. This is an example of the previously-noted trade-off between context-

determinacy and detectability. Much of the subsequent work can be viewed as an

attempt to overcome this dilemma, by avoiding fixed probability models (as in the

two versions of SG-GP) and instead learning structures on-line, aiming to reflect the

actual dependencies in the problem domain.

Program Evolution with Explicit Learning (PEEL) uses an extension of the vSG-

GP model [105]. As in vSG-GP, PEEL can use the depth information of variables.

However the more important difference from vSG-GP is that the use of the depth

information is not compulsory. Rather, PEEL starts off with a model like that of

sSG-GP. However once the distribution of a nonterminal satisfies a specific

condition, the corresponding random variable is split into a separate variable

incorporating the index information. Thus PEEL is position-indeterminate, but can

become context-determinate. In the extreme case, it is possible that each random

variable represents the distribution of an observable located at one specific ancestral

context (for combinatorial reasons, this would be highly unlikely to arise in all but

the tiniest problems). Splitting variables allows PEEL to fairly search among

unknown ancestor contexts. Building blocks may be shared across different depths,

or limited as the system learns specific depths. Building blocks are always shared

horizontally across locations, so that PEEL (like vSG-GP) is unable to specialise its

model horizontally.

Grammar Model-based Program Evolution (GMPE) [106] aimed to overcome

these limitations of PEEL, by learning not just specific locational information, but a

full CFG to incorporate previously-learnt restrictions. The underlying idea of GMPE

is to specialise the grammar describing the original search space to a new, more

restricted, grammar covering only the desirable parts of the search space. Thus the

grammar restrictions take the place of the depth limitations of vSG-GP and PEEL.

GMPE’s fundamental task is, given a selected sample of individuals and a prior

grammar, to find a sub-grammar of that prior grammar that describes the selected

sample well. This is essentially a machine learning task. As such, it could be

undertaken in either specialising form (starting from the prior grammar and

restricting it to more specifically cover the selected individuals), or in generalising

form (starting from the extreme specific grammar, covering only the selected

individuals, then generalising it toward the prior grammar). GMPE takes the latter

approach. Doing so requires that the selected individuals generate an ordering over

grammars (so that a heuristic search may be conducted). GMPE uses information-
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theoretic measures (Minimum Message Length—MML—[119]) to direct this

search, which is conducted using a ’merge’ operator that unifies two non-terminals

(i.e. random variables) and their corresponding distributions. In its original form,

GMPE uses the initial grammar as the prior grammar in all generations (so that

learning is not fully incremental).

Merging of symbols in GMPE changes the observables mapped to a variable,

with no restriction other than that imposed by the initial grammar, while new

variables in PEEL must share ancestral contexts. This aspect is an important issue,

because the restriction of PEEL on mapping observables can cause implicit bias

when we aim to search for a better mapping without any prior knowledge.

Detectability can be handled by structure learning, without artificial limitations

imposed by previous groupings of observables.

Context Free Grammar Transformation (CFGT) [13], Bosman and de Jong’s

previously unnamed system, generates individuals from an SCFG, as in the

preceding systems. However it differs from these systems in an essential way, in

that genotypes are represented purely as expression trees, not as derivation trees.

Thus when it comes time to learn a new grammar from the selected population, the

individuals must first be parsed. Since multiple parses could lead to complexity,

grammar ambiguity is an important issue for this system. Nevertheless in many

ways, it can be seen as a close analogue of GMPE, the major difference being that it

learns directly from the expression trees rather than from GMPE’s intermediate

genotype, the derivation trees.

Program with Annotated Grammar Estimation (PAGE) resembles GMPE in that

segmentation of observables depends only on symbols. However unlike GMPE,

these symbols are not CFG symbols, but rather annotating symbols [32, 34]. The

idea is inherited from probabilistic context free grammars with latent annotations

(PCFG-LA) [58] in computational linguistics. As in GMPE, there is an initial CFG,

representing the whole solution space. The nonterminals in observed individuals

carry additional arbitrary annotations, (bounded in number by a predefined limit, the

annotation size). Random variables thus correspond to a combination of nonterminal

symbol and label. To learn a suitable distribution for the variables, PAGE uses the

EM algorithm [20] or variational Bayes [9]. In the annotation process, the EM

algorithm can generate annotations for a symbol without restriction. Detectability

and context determinacy are quite similar to GMPE: in the extreme, both can learn

completely specific trees, and the only restriction on their learning relaxations of

this extreme is symbol matching (and in the case of PAGE, the annotation size).

However a key difference lies in their mechanism for choosing between model

structures (MML vs EM).

6.1.4 Other grammar representations

Context Sensitive Grammar Refinements (CSGR) is our proposed name for Tanev’s

unnamed context sensitive grammar (CSG) system [114]. Tanev extended SCFG to

stochastic CSG (SCSG). In an SCSG, the left-hand-side nonterminal contexts are

the preceding terminal sequences of tree individuals, rather than parts of the

ancestor contexts. The contexts of observables mapped to a single variable are more
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specialised than in SCFG, being restricted by the preceding terminal sequence. As

with the other grammar-based models, CSGR is position-indeterminate, but context-

determinate. It can represent a more complex variable-observables mapping in

comparison with SCFG, however it is limited in relocatability since it is restricted

from noting building blocks across different preceding terminal contexts.

6.2 Systems based on general directed graph representations

As in genetics-based GP, it is possible to use directed graphs rather than trees as the

genotype (and phenotype) representation. One such system is GNP-EDA.

Genetic Network Programming with Estimation of Distribution Algorithms

(GNP-EDA) uses directed graph representation for individuals [52, 53]. The

probability model is a matrix P(i, k, j) giving the probability of a connection from

the kth branch of node i to node j (it is not completely clear whether this is initialised

with uniform or random probabilities). Network graphs are sampled from this

model, evaluated and selected, as in other PMB-GP. The probabilities of particular

links are updated to reflect the selected population, by an update more reminiscent

of ACO than EDAs. The system is sufficiently different from other PMB-GPs that it

is difficult to directly compare. In particular, there is no clear meaning to position,

unlike expression tree or string representations. For example, the start node is

clearly the analogue of the root node of a tree-based GP. But the same start node

may also be the third node in a three-cycle from itself, thus also having a position at

depth 3. Thus it is difficult to define positional determinacy. Similarly, there is only

one node label (‘‘judgment node’’), hence there is no useful meaning to be assigned

to context.

6.3 Systems based on GA-like representations

In GA-like representation systems, both in genetically-based GP and in PMB-GP,

the genotypes of individuals are represented by linear chromosomes. There are a

number of ways to achieve this.

Some systems, inspired by the fact that computer programs are themselves linear

structures, directly use a linear representation. This has a number of advantages in

terms of direct transfer of technologies and tools from GA systems. But it also has a

downside, in that components that would be recognised as homologous by a human

observer may lie in different positions, and hence may not have any homology from

a genetic or PMB perspective.

One way of overcoming this is to constrain the representation in some way, via

structural constraints. In a genetic system, operators (especially crossover) may be

restricted, so that the genetic operators may only be applied in restricted ways.

Analogously, in PMB systems, sampling and learning phases may be constrained in

ways that increase homology between different individuals. This may increase the

effectiveness of the operators (by ensuring that they act homologously), but at the

cost of reducing the similarity to GA, and hence affecting the transfer of GA

technologies.
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An alternative is to treat the linear genotype as a recipe for constructing a

structured object (usually, a tree). Thus the genotype itself is linear, but prior to

evaluation, is translated to a structured phenotype, which is the object that is

evaluated. In this case, the issue of homology still arises: the level of homology will

depend both on any restrictions that may be imposed on the evolutionary stages

(genetic operators in the case of genetic systems, sampling and learning in the case

of PMB), and on the extent to which the translation process preserves homologies.

Overall, this leads us to a threefold sub-classification of such linear

representations:

1. Prefix notation (implicit or explicit) for expression trees

2. Prefix notation (implicit or explicit) for grammar derivation trees

3. Other linear representations

In all cases, extension of standard PMB methods still face a key hurdle: it is a

hallmark of GP problems that the solution complexity is not predefined. There may

be a complexity limit—such as a tree size or depth limit or a string length limit—but

it is only an upper bound, the system is free to construct smaller solutions, and

generally this is desired. Conversely, stochastic models designed for classical

optimisation problems are mostly of fixed complexity—whether for discrete or

continuous domains. The classic solution in PMB-GP is to define a fixed-complexity

genotype, of sufficient size to have reasonable certainty that it can represent a

solution, and to permit part of the genotype to represent ‘‘undefined’’ values. As a

result, most models used with GA-like representations are position-determinate.

However they vary greatly in syntactic style and detectability, as learning more

sophisticated structures to represent more complex distributions has been an

important research direction.

6.3.1 Prefix notation expression tree genotypes

Ant Colony Programming (ACP) causes some confusion, because the same name

has been used for two rather different systems. To distinguish them, we prepend the

first author’s name, as below.

Boryczka Ant Colony Programming (bACP) [10, 11] actually introduces two

different genotype representations—prefix-notation expression trees, and sequences

of assignment statements (we were unable to determine from the description how

the system deals with incomplete sequences of assignments which might lead to

undefined values). These two representations are combined with two different

sampling methods, a purely stochastic one in which any symbol may be sampled

any number of times, and a second in which each symbol is replicated a fixed

number of times, but each replicate may be used only once. In the second (tabu list)

form, it appears that multiple instances of the same symbol have the same

probability, although this is not completely clearly specified. The probability model

is a classic parent-child dependency model. In the assignment statement represen-

tation, neither genotype position nor context have a clear meaning, so it is not

possible to assess related properties of the representation. In the expression tree

representation, as a consequence of the use of prefix notation, the mapping of
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observables onto variables is not determined by the position in the phenotype

expression tree (if the arity of a variable in an ancestral context changes, then the

location corresponding to the current variable may change). Detectability is limited

because only bivariate conditional variables are used. Notably, while the mapping is

not fully position determinate, the locations of observables mapped to by specific

variables cannot change unrestrictedly; hence the relocatability of building blocks is

heavily constrained.

Green Ant Colony Programming (gACP) [25] is very different from bACP,

despite the similarity of names. The search space is predefined by a random graph

containing (multiple copies of) nodes labeled by the function and atom symbols.

This graph is explored in parallel by ants which traverse the graph, cooperating to

generate a tree expression—new ants being initiated whenever an encountered

function has arguments that need to be instantiated. Each ant is programmed with an

inherent minimum and maximum depth that it will endeavour to satisfy. Other than

that, its sampling is controlled by the probability model (pheromone). Because of

the use of the random graph to underly the probability model, the operation of the

model is not determined by either position or context. Some relocatability of

building blocks is supported, but the degree is very much determined by the

structure of the specific random graph.

Grid based Ant Colony System (GACP) uses a predefined 2D grid to represent the

search space [93]. Each row contains a list of all available GP tree symbols. Ants

start from the first row, selecting one symbol in each row as they move downward.

They stop when the sequentially selected symbols create the prefix form of a correct

GP tree. The probability model (pheromone distribution) consists of a random

variable for each element of every row. These independent variables learn

multinomial distributions—which symbol to select for the next step. However

reaching a specific variable is conditional on reaching the variable in the preceding

row, so that the model representation can be viewed as a linear chain of conditional

random variables. From a representational perspective, the system is fairly similar to

bACP, sharing its characteristics.

Dynamic Ant Programming (DAP) resembles some of the EDA systems more

than other ACO-GPs, in that it learns model structure [112]. The probability model

(pheromone table) is composed of variables mapped to nonterminals as in sSG-GP.

It learns from the frequencies of transitions, but its sampling step is not determined

solely by the probability, because ants are prohibited from re-visiting a symbol. The

probability distribution thus depends on all values in ancestor contexts, in the

extreme allowing the distribution to become degenerate. To learn the structure, this

system is able to insert or delete symbols in the table. It deletes symbols whose

pheromone level (i.e. probability) falls below a threshold.

6.3.2 Prefix notation derivation tree genotypes

Generalised Ant Programming (GAP) adopted a CFG for model representation [42].

The representation is a tree where nodes are labeled by derived expressions. The

root is labeled with the starting symbol, and each node is labeled by an expression

derived by applying one production to its parent (although not explicitly stated, it
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appears from examples that leftmost expansions are always used). In the

implemented system, probabilities are attached to full derivations rather than to

derivation steps, though the possibility of attaching probabilities instead to

individual derivation steps is acknowledged. Even in this amended form, the

representation differs substantially, nonetheless, from the direction in most EDA

systems, in which probabilities are applied to productions, rather than specific

derivation steps. From another perspective, in the amended GAP, the probability of

a production is determined by the full ancestral context. As a result, there is no

provision for relocatability of building blocks. It can be viewed as an extreme case

of PEEL, in which the learnt context of every production has been refined to the full

ancestral context.

Enhanced GAP (EGAP) extended details of the learning algorithm of GAP

(adapting the pheromone update strategy and path termination [97]) without

changing any of the representational aspects.

Grammar Based Ant Programming (GBAP) [72] resembles DAP in assigning

probabilities (pheromone) to transitions rather than paths. As in DAP, the

probability table is supplemented by additional information in determining the

next transition. In making this decision, GBAP also takes into account the number

of possible successor states and the information gain (a quantity which is available

because DAP is restricted to classification tasks, though the authors note that it

could be extended to other tasks). At least at the representation level, it strongly

resembles DAP, and thus sSG-GP.

6.3.3 Other linear genotypes

Ant Tree Adjoining Grammars (AntTAG) [1] represented distributions over trees

using stochastic tree adjoining grammars (TAG) [38] instead of SCFG. A TAG is

somewhat similar to a CFG, but its derivation mechanism is different. From a CFG,

it defines elementary derivation trees, called a and b trees. In derivation, growing

combinations of trees are expanded by adjunction, which inserts a b tree at a

matching internal node (for a more detailed description of TAGs and their

relationship with GP, please see [68]). AntTAG attempts to learn which b tree to

adjoin at each potential adjunction point (in terms of what nonterminal labels that

point). Unlike the previously-listed linear Chomsky grammar systems, AntTAG is

linear not because it uses a linearisation (preorder) on an inherently tree structure,

but because it was restricted to linear derivation trees. Whereas a restriction to linear

Chomsky grammar trees severely limits the available languages (to regular

languages), linear TAG derivation trees still provide reasonable representational

power.

All adjunction points with the same label share the same distribution over b trees,

so there is some similarity to sSG-GP; however the greater representational power

of TAGs (compared to CFGs) permit it to learn slightly more complex structures.

Like sSG-GP, AntTAG is position-indeterminate, but context-determinate.

Bayesian Automatic Programming (BAP) [91] uses a linear representation for

CFG derivation trees; unlike the preceding systems, it does not use a prefix notation

representation, but instead uses a coding derived from that of the well-known
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grammatical evolution [73], in which the individual is represented as a list of

integers. It uses the algorithm of BOA [83] to learn dependencies between the

positions in this list. However this combination leads to a complication: GE

genotypes can vary greatly in length. GE implementations generally simply allow

short genotypes, ignoring the remainder of the (fixed-length) string, and handle

over-long individuals, that have not been completed by the time the string is

exhausted, by wrapping or other strategies. Both are likely to lead to noisy learning

in an EDA, so BAP uses an alternate solution, which is to discard overly short or

long individuals.

BOA Programming (BOAP) [56] uses a novel linearised GP representation, the

zigzag tree. Only limited information on the representation is available, however it

is clear from comments in the paper that zigzag trees can be of variable length. The

system learns a model using BOA [83], however we have been unable to determine

how BOA is adapted to learn from variable-length strings. The system is interesting

in that, having chosen a representation which is fairly position-determinate, it

incorporates a low level of crossover to permit the relocation of building blocks.

N-gram GP(N-gram GP) [88] uses a linear (assignment expression) represen-

tation as its genotype.Thus it is free to take a classic N-gram approach to

distribution modelling.In the description, the system used N = 3. Since an N-gram

can be viewed as a depth N - 1 ancestral context in a linear system, N-gram GP is

determinate in the N - 1 ancestral context. Since that context can occur anywhere

in the string, it is not position-determinate. Detectability varies according to the

value of N. If it is large, complex dependencies can be found; if small, many

dependencies will be missed. In particular, an N-gram model may in theory have

difficulty in handling long-distance dependencies; since these potentially exist in GP

problems, there is some risk of limiting the problems that can be handled. On the

other hand, natural language also incorporates long-distance dependencies, yet

N-gram based systems such as ‘‘google translate’’ have nevertheless proven

extraordinarily successful and robust.

Cartesian Genetic Programming with EDA (CGP-EDA) [17] is an originally-

unnamed combination of EDA methods with Cartesian genetic programming,

another linear representation for GP. In Cartesian GP, the genome consists of a fixed

number of tuples, each tuple encoding an operation and backward references to its

inputs. CGP-EDA used a simple univariate model over this genotype space, so that

its primary innovation lay in extending EDA methods to CGP. In terms of the

natural positional representation of CGP, CGP-EDA thus uses a fully position-

determinate model.

6.4 Hybrid PMB-GP systems

The first two hybrid genetic-PMB methods described in this subsection bear

somewhat the same relationship to GP and PMB-GP as does the well-known

Covariance Matrix Adaptation Evolution Strategy (CMAES) [29] to evolution

strategies and EDAs. That is, the outer algorithm is individual-based, but the

variation operators are biased by a local probabilistic model.
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Context Free Grammar Refinement (CFGR) (a name we assigned for an unnamed

extension of Whigham’s CFG-GP system [123]) can be viewed as a precursor for

grammar-based PMB-GP. It extends a typical CFG-GP system by learning a bias

toward the subregion composed of observed (i.e. selected) individuals. Among other

mechanisms, it uses a method, ‘‘merit selection’’, which evaluates the relative

importance of productions, and increases the probability of selecting productions of

higher merit. In this, it pre-figured the subsequent work on EDA and ACO systems

based on grammars. It also incorporates mechanisms for condensing derivation

steps in individuals, thus anticipating subsequent grammar-learning systems.

However it does not have a separate sampling step—information was transmitted

between generations both through the populations and the grammar model—and

thus cannot be seen as a true PMB-GP system.

Meta-Optimising Semantic Evolutionary Search (MOSES) [55] can be viewed as

a hybrid EDA-hillclimbing search algorithm (though the unusual description

somewhat obscures this). The hillclimber searches a set of demes, where a deme is a

region neighbouring a promising exemplar solution. Each deme is initially sampled

via a distance-dependent sampling mechanism, centred around the exemplar.

Selection is then performed, and hierachical BOA (hBOA [82]) is used to learn a

model, with learning repeated in an EDA-style process (differing from a classical

EDA-GP in that the distribution is biased toward the exemplar). When a new

solution is found that outperforms previously-found solutions, a new deme centred

on it is created, possible displacing previous demes. In the inner (PMB) search, the

genotype is a string of differences from the exemplar; however it differs very

substantially from other string-genotype EDAs, and cannot easily be described in

terms of our analysis. Because the genotype is based on the exemplar, it is difficult

to extend the earlier-described conceptions of location- or context-determinacy.

Probabilistic Adaptive Mapping Developmental GP (PAM-DGP) [125] is very

different from the preceding systems (and indeed, most GP systems) in being

developmentally based. It uses probabilistic methods to adapt the genotype-

phenotype mapping in an otherwise standard developmental GP system.

7 Issues in PMB-GP research

It will be apparent, especially from seeing the wide variety of disparate systems

presented in Sect. 6, that PMB-GP systems have over the last decade seen an

exuberant profusion of different ideas and implementations. This is desirable, and it

is to be hoped that it will continue. However it has, to date, been supplemented by

only a limited degree of consolidation and systematisation.

Most systems have been presented with only a few comparative experiments,

usually on ‘‘toy’’ benchmark problems, and generally only in comparison with

classical GP. Comparisons between PMB representations, either at genotype or

model level, are rare, as are treatments of different learning algorithms. Tests on

large-scale problems are also rare, leading to concerns about the scalability of PMB-

GP. Despite the oft-claimed potential for theoretical analysis of PMB systems,

especially the more theoretically-based EDA systems, there is little currently to
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point to. We discuss some directions in which PMB-GP research might go, to

provide better understanding of the behaviour of PMB-GP systems.

PMB methods present new opportunities as well: in particular, the use of a

statistical model inherently provides new ways to interact with knowledge, not

present in genetics-based systems. These interactions can go in multiple directions.

In the forward direction, the statistical model provides new opportunities for human

prior knowledge to influence search. Conversely, the learning method updating the

statistical model potentially provides new knowledge, not necessarily available in

the population of an otherwise-equivalent genetic system. Finally, bidirectional

interactions can potentially enhance the behaviour of a system. This can happen in

at least two ways. As an interactive learning system, the human user may

incorporate additional prior knowledge into future runs as a result of what has been

learnt in earlier [109]. The simplicity and regularity of statistical models (by

comparison with the populations they model) may facilitate this. In addition, there is

potential for extracting generalisable knowledge from the statistical model, thus

facilitating transfer learning [102], especially in the form of hyperheuristics [16].

We consider some of these issues in more detail below. Some are applicable not

only to PMB-GP, but more widely to PMB systems in general.

7.1 PMB-GP systems and GP analysis

7.1.1 Analysing the behaviour of conventional evolutionary algorithms

One important justification given for the study of EDAs in particular is that their

potentially more tractable behaviour may cast light on the effectiveness of

evolutionary algorithms. This justification applies equally to GP (or perhaps, in light

of GP’s very limited theoretical analysis, with even more force). Unfortunately this

promise has not, to date, been fulfilled.

In this respect, the recent study of Hemberg et al. [35] is highly encouraging: a

study of the evolution of statistical relationships in GP (itself informative for the

understanding of GP behaviour) led to a new statistical model for EDA-GP, and a

new system (OFGP). Unfortunately OFGP fails to perform competitively with GP

(itself informative, in that it tells us that the OFGP N-gram model did not fully

capture the important behavioural information). The authors suggest that this is

because their model did not capture sibling relationships (which GP operators also

preserve). In addition, however, the analysis could only capture fixed-length

positional relationships (for example, the commonality in the relationships between

‘?’ and ‘X’ in ‘? X’ and in ‘? ? 0 X’ could not be recognised). We note that this

could explain the relatively poorer performance of OFGP (i.e. in that it failed to

capture important relationships), the tendency to lose good behaviours once evolved

(in that the model might not capture the important components of those behaviours)

and the tendency to favour small solutions (in that the system would be more likely

to capture short relationships than long, because the short relationships would be

less likely to be disrupted by introns).

150 Genet Program Evolvable Mach (2014) 15:115–167

123



7.1.2 Analysing the effects of different genotype representations

To date, there has been only limited study of the effects of genotype representations.

One exception is our own work, which recently investigated the effects of sampling

bias in PPT genotypes [43, 44], demonstrating that sampling bias is a serious issue

for at least some genotype representations, and proposing a solution. More such

studies are clearly needed, for both the sampling and learning phases over different

genotype representations.

More generally, comprehensive comparative studies are also needed, experi-

mentally testing the performance of different genotype structures (and if possible,

the underlying reasons for any differences).

7.1.3 Analysing the effects of different probability models

It is almost a truism in PMB-GP research to date that streams of research have

begun with simple univariate models and moved on to fixed multivariate models. In

many cases, there has been a further extension, to learning the model structure. In

some cases, this has been based on rigorous comparisons, but in others more on

opinion. More study of these issues is needed, as is a clearer framework (to which

we hope this study makes a first contribution) for understanding these issues across

a range of genotype representations..

7.1.4 Analysing and comparing different algorithm components

This study has largely focused on representation issues—especially, genotype

representation and probability model structure. However a PMB-GP system is not

just its representations. There is a need for more detailed study of the effects of at

least:

1. Different sampling strategies—most systems use some form of probabilistic

logic sampling; a more thorough study and comparison with alternative

sampling strategies is needed.

2. Different probability update strategies—one of the major areas of distinction

between EDA and ACO systems. Most current EDA systems use maximum

likelihood update, while ACO systems use less formalised strategies. Both are

generally adapted, in somewhat ad-hoc ways, to increase diversity in

recognition of the risk of loss of diversity in iterated sampling/learning cycles.

Better theory (or perhaps closer attention to the already-developed theory in the

more general EDA and ACO fields) is needed.

3. Different structure-learning strategies—a number of systems attempt to learn

not merely the probabilities within a fixed probability model, but also the

probability model itself. There are a wide range of issues here.

One key issue is how to trade off model complexity against model accuracy.

This is often reduced to maximising the posterior probability of sampling fit

individuals in the next round—a classic machine learning question. But the

learning round is repeated in an iterative algorithm. Repeated maximisation is
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likely to amplify sampling and other biases, leading to sub-optimal outcomes.

Somewhat greater generality than would be predicted by machine learning

heuristics is desirable—but how much more general? There does not seem to be

any current theory for this.

Another is the form of learning. Both bottom-up (generalising from the selected

sample upward) and top-down (specialising from the previous generation’s

model toward the current selected population) have been proposed. Bottom-up

learning increases the risk of overfitting the current population, while top-down

algorithms often lead to greater algorithmic complexity. More complex, multi-

directional algorithms are also possible.

7.2 Knowledge and PMB-GP systems

7.2.1 Incorporating user knowledge of the form of solutions

As in genetics-based systems, some representations (notably grammars) provide the

opportunity to incorporate user knowledge in the search process, by excluding

potential solutions that do not meet those constraints. However PMB-GP systems

provide additional opportunities, in particular by permitting uncertain knowledge to

be incorporated through the probability model. This can be achieved either through the

standard statistical approach of specifying a statistical prior, or through structural

control to alter the available solution space [120, 127]. It may seem that this differs

little from the classical GP approach, of biasing the initial population. Indeed this is

correct in the case of PMB-GP systems that learn the probability model anew at each

generation. However most systems incorporate some form of incremental learning,

thus allowing PMB-GP systems to use lower overall levels of bias, and protecting them

from the worst consequences of incorrect biases. However the effects of user-imposed

biases in PMB-GP systems have not been carefully studied; such study is now overdue.

7.2.2 Incorporating user knowledge about properties of the search space

Grammars were originally introduced into GP to allow the user to incorporate

knowledge about the search space [127, 120]. Grammar-based PMB-GPs inherit this

ability.

The explicit probability model provides other opportunities to incorporate

knowledge. For example, GP search spaces typically involve numerous symmetries

[101]: in boolean and arithmetic search spaces, many logical and arithmetic identities

generate symmetries. In GP, these symmetries are more a hindrance than a help—in

fact, we rely on spontaneous symmetry breaking to permit GP systems to converge to a

few neighbouring solutions, among the myriad actual solutions that most problems

have. There are alternatives—many other search methods rely on canonicalisation to

factor out the symmetries, reducing the search space, often to an extent exponential in

the problem size. This generally works poorly in GP, because canonicalisation reduces

diversity and thus limits productive exploration. PMB-GPs do not face the same

problem, because canonicalisation can be imposed on the selected population just
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prior to the learning phase (thus giving the search-space-reduction advantages of

canonicalisation), but then removed through random choice of symmetries during

sampling, prior to selection, giving the best of both worlds. Investigation of the role of

symmetries in EDA-GP thus seems well worth the effort.

7.2.3 Extracting knowledge from the final model

The final model incorporates information from the final population, but it also

encapsulates information from previous stages of the evolution. In addition, in

structure-learning systems, it incorporates knowledge about the important compo-

nents, and the relative importance of those components, that may not be available in

a genetically-evolved population. If the aim of our PMB-GP application is simply to

find an optimal solution, this information may not be useful. However in many

applications in scientific study and design, generating new knowledge about the

domain may be much more important. In this respect, it will be important to

determine both the extent to which useful knowledge can be extracted from such

models, and the value of so doing. In such studies, it will be important—even more

so than in optimisation—to preserve diversity, so that there can be reasonable

confidence that the model covers most or all good solutions; mechanisms for such

enhanced diversity preservation need exploration. In particular, the role of

symmetries and symmetry-breaking (or its avoidance) need investigation.

7.2.4 Knowledge re-use

There are two important roles for knowledge re-use in PMB-GP: in iterative

learning and in transfer learning. In iterative learning, the user may examine the

information generated in one round of application of PMB-GP (by examining the

resulting model). This information may well reveal the user’s further unconscious

knowledge that may be incorporated into future runs of the system. This strategy has

been previously used with standard GP [121, 109], but the probability model of a

PMB system provides a more sophisticated means.

Transfer learning is the generalisation of knowledge gained in one problem to

other related problems, in order to speed up learning [19, 27, 51, 78, 117].

Hyperheuristics [16] are the main mechanism used to date in evolutionary

algorithms. PMB systems, especially those which learn model structure, can

potentially provide a more extensive knowledge transfer than is available in

classical hyperheuristic systems, so long as the knowledge embedded in the

probability model can be extracted and generalised to new problems. Research in

this area has been the subject of some recent research in EDAs [54, 113, 86, 102],

but has a very high potential pay-off for PMB-GPs as well.

7.3 Theory-based extensions

7.3.1 Using more information from evaluation

In most PMB systems (for optimisation as well as for GP problems) truncation

selection is used. As a result, each individual provides a maximum of one bit of
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information in return for the cost of evaluation. Truncation selection treats an

individual which barely passes the truncation cutoff the same as an elite individual, and

one which just fails the same as the worst individual ever evaluated. Recognition of

this issue in PMB optimisation, has led to algorithms using the Boltzmann distribution,

or otherwise taking the fitness value into account [99] . Despite the typically much

higher evaluation cost in PMB-GP (and hence the greater importance of using all the

information resulting from evaluation), we are not aware of any extensions of such

methods to GP problems. It would be highly desirable to evaluate their potential.

7.3.2 Making use of negative instances

A restricted form of the above would at least make use of the negative instances for

learning—the knowledge that a particular area is unlikely to contain a solution may

be of equal importance to positive knowledge. Negative information has rarely been

used in PMB systems—to the best of our knowledge, only in the Boltzmann-style

models just described, and in Michalski’s somewhat EDA-like system LEM [60,

61]. However it is worth noting the importance of negative instances even in

learning from crisp instances. Numerous problems that are not learnable from

positive instances alone, are learnable if negative instances are provided [118].

7.3.3 Learning, parsimony and noise

The close relationship between generality, parsimony and noise have been heavily

studied in machine learning, and by now are relatively well understood [9, 92, 119].

As we already noted, this understanding breaks down when applied to PMB

systems, because the level of generalisation that is appropriate for a single round of

learning may not be appropriate (in general, is likely to be overfitted to chance

fluctuations) when embedded in an iterated sampling/learning cycle.

However with PMB-GP there is a further complication. Most real-world GP

problems are themselves learning problems, in that we have a set of samples of data,

to which we wish to fit a GP solution. The samples of data are a somewhat randomly

selected subset of all possible samples, and we hope to generate a model which will fit

future samples, which we hope will be generated from the same distribution. Thus in

effect, we have two learning systems embedded one within the other (an outer layer

trying to learn a GP solution, which we hope will generalise to new instances, and an

inner layer trying to learn a good probability model from candidate GP solutions).

These two systems interact with each other in ways that immensely complicate the

underlying theory. What is more, the outer layer, learning from instances in a

complex fitness landscape, faces a further complication. The ‘‘parsimony’’ landscape

is smooth and easy to learn, while the fitness landscape is not. Hence simple

approaches to trading these off inside an evolutionary algorithm using theoretically-

derived trade-off parameters often fail. They converge to an over-parsimonious local

optimum before the fitness landscape search has a chance to get under way.

In PMB-GP, there is a further complication: there is a built-in stochastic bias

toward smaller individuals. It results from both sampling bias and selection bias. In

sampling, the more complex an individual is, the more difficult it is to generate in
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sampling process. In selection, the more complex an individual is, the more likely a

particular (good or bad) component is to be evaluated in a deceptive context that

misleads the PMB algorithm about its quality [43, 44] (this analysis is focused on

PPT models, but the underlying arguments extend generally to PMB-GP models). In

contrast to the bloat in genetically-based GP systems, this parsimony pressure may

seem desirable (and has been repeatedly argued as such in PMB-GP papers).

However the extent of the bias is not tuned to the particular problem (for example, a

properly tuned parsimony pressure should depend on the level of noise in fitness

evaluation, while the PMB-GP biases are independent of this).

Overall, there is much that we do not understand about PMB-GP systems as

learning systems; a better linkage with machine learning theory is desirable,

however difficult it may be to accomplish in fact.

7.4 Practical use of PMB-GPs

7.4.1 Applications to real-world problems

Application of the PMB-GP research to real world problems is crucial to win wider

acceptance. So far, most research has focused on developing theoretically well-

founded models rather than practical applications. Testing has generally used toy

benchmark problems such as royal tree, MAX, DMAX, symbolic regression [33, 34,

88, 106] and so on. The results show significant performance improvements relative

to conventional algorithms, implying good potential for real world problems. There

have been few practical experiments. CSGT was proposed to evolve Snake bot’s

locomotion in various environments [114], and GNP-EDA was applied to rule

mining from traffic data [52] and Khephera robot control [53]. Further such

applications are crucial to the future development of the field.

7.4.2 Preferred problems

It is likely that PMB methods are more suited to some GP problems than others;

it is highly unlikely that PMB methods can out-perform genetic methods on all

GP problems. Hence characterising the relative performance of PMB and genetic

methods on different domains GP would be highly desirable. However it is

unlikely to be easy—it is very limited even for EDA domains, where the

comparison should be much easier. Similar considerations apply within PMB-GP:

which systems are best suited to which problems? This issue has, to date, barely

been touched on.

At present, the basis for choosing PMB-GP over classical GP is more about other

aspects of the problem than the domain. If the user has probabilistic knowledge to

inform the search, PMB methods are more likely to be able to incorporate it. If the

user desires explanatory models, the final probability model of the PMB-GP system

may give better guidance than is available simply from the best solution.
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7.4.3 Open-source systems

There are a number of widely available EDA systems, both general libraries such as

MATEDA [100] and implementations of specific algorithms [79–81, 103]. To the

best of our knowledge, there is currently no equivalent freely-available, industrial-

strength implementation of a PMB-GP system. This is primarily because current

PMB-GP systems are still research software, subject to repeated tweaking. There is

a clear need for a flexible, modular PMB-GP system, freely available and built to

software industry quality standards. Such a system would doubtless provoke a

blossoming of research and application of EDA-GP, and perhaps lead to

clarification of many of the issues raised here.

7.5 Disclosure

Throughout this paper, we have endeavoured to present a neutral perspective on a

wide range of matters. It is unlikely we succeeded—it is almost inevitable that our

views have influenced the way we present issues, and even the selection of issues

(because our views are reflected in the importance we attach to specific issues).

Rather than pretend that our discussion could be completely objective, we here

present our own views on representation issues in EDA-GP, together with the

arguments for them, so that the extent to which they have influenced the rest of the

presentation can be independently assessed.

7.5.1 Tree versus other representations

All our work in GP and EDA-GP has used tree-based representations. The

arguments for and against tree-based representations have been rehearsed in many

places [6, 18, 26, 39, 47, 69, 116, 124]. We don’t have strong views on this; our

neglect of linear and graph representations reflects pragmatic considerations (once

you have built software for tree representations, it is easier to continue with it).

Nevertheless, our experience with tree representations may have subconsciously

affected our presentation.

7.5.2 Linearised tree versus direct tree representations

On this issue, we do have strong views, especially as regards PMB systems.

Whatever may be the case with GP, and the ability of crossover to handle complex

search spaces, we believe that there is a clear argument with respect to PMB

systems. Dependences within trees are highly likely to reflect the tree structure

(after all, the belief that the mapping between tree space and fitness is likely to be

continuous is exactly what justifies a preference for heuristic rather than pure

random search). If dependences reflect the tree structure, then linearisation simply

complicates the learning phase of a PMB-GP (it needs to rediscover the tree

relationships for itself, as well as discovering the inherent relationships), without

providing any corresponding benefit. We note that similar issues arise for tree-based

156 Genet Program Evolvable Mach (2014) 15:115–167

123



GP representations that do not use the tree structure during learning, even if the tree

structure is explicitly represented.

7.5.3 Relocatability of building blocks

We are convinced that relocatablity is crucial in GP. This reflects Koza’s argument

for its importance [47], that human programmers deal with blocks of code, and

expect them to be relocatable. It also reflects the subsequent repeated verification,

over many years of experimentation, of the importance of subtree crossover and its

derivatives as search mechanisms in GP [70, 71, 115]. Finally, it also reflects the

experience, over many years, of the importance of introns and near-introns in GP,

since in the presence of introns, relocatability of the meaningful components of GP

is essential to their operation.

7.5.4 Importance of hidden relationships

We are of the view that important probabilistic relationships in specific problems may

rely on components that are not explicit in the genotype (otherwise, we are expecting

of the user who defines the genotype an almost god-like foreknowledge). Thus good

representations for probabilistic models almost inevitably require some mechanism to

discover and represent such components. We expect models supporting, and able to

discover, some such hidden variables to be more successful. We note that grammar-

based systems able to discover new nonterminals or to learn new annotations provide

such mechanisms, as do dependency models in systems such as ECGP.

7.5.5 Importance of user-imposed biases

GP search spaces, especially for real-world-scale problems, are already extremely

difficult . Thus we need to take advantage of any edge that we can find. In most

domains, users already have substantial prior knowledge about the search space—

about the likely form of solutions, about the relationships between good solutions,

and about the acceptable forms of solutions (in many real-world domains, solutions

of high fitness may nevertheless not be acceptable; examples include solutions

whose value cannot be computed when applied to real-world examples, and

solutions lacking specific formal—algebraic or analytic—properties).

8 Conclusion

We have presented what we hope is a critical and comprehensive survey of the

application of probabilistic model building systems to GP problems. The survey

brings together two main strands of research effort (EDA-GP and ACO-GP),

showing their commonalities and differences. It also explores contributions from

classical EDA and ACO research and that from grammar induction. In analysing

systems, we have emphasised a number of factors that we view as critical:

modularity, positional and context determinacy/dependence, and the related issue of
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structural learning. We used these factors as guides in analysing different PMB-GP

systems.

In the past decade, PMB-GP work has proliferated in a number of different research

streams, with interaction between them ranging from almost zero to substantial. As a

result of the implicit complexity of GP search spaces, this research is still in its infancy

in comparison with that into EDA and ACO. The underlying reason for this

complexity is the requirement to learn relational information from GP trees. While

EDA-GP was inspired by EDA, and similarly for ACO-GP, both are underlain,

implicitly or explicitly, by probabilistic graphical models, which are well developed

for propositional search spaces. However to be successful, PMB-GP systems very

probably require relational learning, leaving them in the domain of the much more

complex—and much less explored—field of stochastic relational learning (SRL) [22].

Probabilistic model building has major potential in genetic programming. The

exact form that eventually succeeds is difficult to predict, but we hope that the

systematisation we have attempted here, and the open questions we have raised, can

help to stimulate the field and lead to more focused research. We also hope that, by

surveying across the range of EDA- and ACO-based systems in a common

framework, we have contributed to bringing these two fields together, and that

greater cross-fertilisation between them may result. More generally, we hope that

drawing attention to the potential of the field, and to the sheer number of open

questions, can stimulate greater interest in and a more rigorous approach to the

underlying issues.
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