
Genetic programming: where meaning emerges
from program code

Krzysztof Krawiec

Published online: 10 October 2013

� The Author(s) 2013. This article is published with open access at Springerlink.com

Abstract Program behavior results from the interactions of instructions with data.

In genetic programming, a substantial part of that behavior is not explicitly

rewarded by fitness function, and thus emergent. This includes the intermediate

memory states traversed by the executing programs. We argue that the potentially

useful intermediate states can be detected and used to make evolutionary search

more effective.

Keywords Genetic programming � Emergence � Semantics � Modularity �
Interactions

In ‘Genetic Programming and Emergence’ [1] Wolfgang Banzhaf portrays a GP

system as a hierarchy of components, where downward causation and upward

causation lead to feedbacks that give rise to the overall dynamics of the system. That

dynamics may involve various phenomena, among them such that have not been

explicitly rewarded by selection pressure and thus can be deemed emergent, like

modularity or bloat.

My argument starts with the observation that, if we agree with Banzhaf’s

perspective, which I find adequate, the interactions between the components should

be considered more important than the components themselves. The components do

not ‘do’ anything. Until one lets them interact, little can be said about their nature.

Supported by NCN grant DEC-2011/01/B/ST6/07318.

This comment refers to the article available at doi:10.1007/s10710-013-9196-7.

K. Krawiec (&)

Institute of Computing Science, Poznan University of Technology, Poznan, Poland

e-mail: krawiec@cs.put.poznan.pl

123

Genet Program Evolvable Mach (2014) 15:75–77

DOI 10.1007/s10710-013-9200-2

http://dx.doi.org/10.1007/s10710-013-9196-7


Interactions take place at many levels within a GP system. Programs in a

population interact with each other by competing for selection, and with the search

operators by producing offspring. Instructions within programs interact by forming

code fragments that contribute to program fitness. But there is one kind of

interaction which I find particularly important: that between programs and data.

Instructions interact with data by processing them and producing new data. From

these interactions, the dynamics of a GP system originates, including the emergent

phenomena. Together with the random variation, they are at the root of upward

causation (see Table 1 in [1]).

The consequences of embracing this perspective are quite profound. Interactions

are functional by nature: an interaction can be modeled as a function that maps the

interacting components to an outcome of interaction. This is in stark contrast to the

more structural perspective that prevails in GP, which focuses on the components:

search operators, individuals, program syntax. The functional aspects, particularly

those pertaining to the so important interactions between programs and data, attract

less attention, sometimes because they are too difficult to analyze, or because they

are regarded as too domain-specific. But a GP system cannot be fully understood

without them, and I argue in the following that they are essential for making GP

truly scalable.

The need for turning towards the functional perspective in bio-inspired

computing has been articulated many times in the past (see, e.g., [5]). Within GP,

the recent development of semantic genetic programming diverges from the

structural perspective and adopts the functional one by focusing on the outcomes of

interactions between program and data. Within that framework, program semantics

is usually defined as the vector of outcomes of program execution for the particular

training examples. The many-to-one mapping from the syntax (program code) to

semantics (program meaning) allows expressing the same semantics in many ways,

and thus involves the causal slack pondered over by Banzhaf [1]. Making search

operators semantically-aware already proved a useful means for designing effective

GP variants [6].

However, it would be incorrect to simply say that semantics emerges from

program code as a whole. Programs in GP are being selected based on their fitness,

which is directly derived from program semantics, and if we agree with Banzhaf,

qualities for which entities are being explicitly selected should not be deemed

emergent ([1], Section 4). Nevertheless—and this is the pivot of my argument—

there is room for emergence during program execution. When run instruction by

instruction, programs arrive at intermediate results, for which they are not explicitly

rewarded. Consider the task of evolving a program that calculates the median of an

array of numbers. A GP system solving that task can come up with programs that

sort the array at a certain stage of execution. But nobody asked the programs to do

that, nor selected them for this particular capability. This intermediate result

emerged from the dynamics of the search process.

Why is this important? I claim that such functional intra-program phenomena can

be harnessed. To start with, certain regularities emerge in intermediate products of

program execution and can be exploited to improve search efficiency [3]. Also, the

evolving programs can discover common intermediate semantic states and converge

76 Genet Program Evolvable Mach (2014) 15:75–77

123



to them [4], forming functional modules. In [2], we showed that some programming

tasks are more modular in this sense than others. An effective exploitation of these

phenomena remains to be seen, but seems attainable.

Is this a feature of GP only, or is it common to all automatic programming

paradigms? I am inclined to adopt the former view, mostly due to the iterative

nature of GP. Banzhaf rightly emphasized the temporal aspect: there are no

feedbacks without time, and feedbacks are essential for emergence. This applies

also to functional modules, which can emerge only when program induction is an

iterative process. A GP system needs time to discover that certain intermediate

outcomes are desirable. This, together with other features discussed in [1], makes

GP quite a unique genre of automated programming, a genre that makes emergence

not only possible, but employs it as one of its main vehicles.

Open Access This article is distributed under the terms of the Creative Commons Attribution License

which permits any use, distribution, and reproduction in any medium, provided the original author(s) and

the source are credited.

References

1. W. Banzhaf, Genetic Programming and Emergence, Genetic Programming and Evolvable Machines

(2013)

2. K. Krawiec, On relationships between semantic diversity, complexity and modularity of programming

tasks. In Genetic and Evolutionary Computation Conference. New York, NY, USA. ACM, 783–790

(2012)

3. K. Krawiec, J. Swan, Pattern-Guided Genetic Programming. In Genetic and Evolutionary Computation

Conference, New York, NY, USA. ACM (2013)

4. K. Krawiec, B. Wieloch, analysis of semantic modularity for genetic programming. Found. Comput.

Decis. Sci. 34(4), 265–285 (2009)

5. M. Mitchell, Ubiquity symposium: biological computation, Ubiquity, February, 17 (2011)

6. A. Moraglio, K. Krawiec, C.G. Johnson, Geometric semantic genetic programming. In Parallel

Problem Solving from Nature—PPSN XII, eds. by Carlos A. Coello Coello et al. (Springer, Berlin,

2012), pp. 21–31

Genet Program Evolvable Mach (2014) 15:75–77 77

123


	Genetic programming: where meaning emerges from program code
	Abstract
	Open Access
	References


