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Abstract This study improves weighted genetic programming and uses proposed

novel genetic programming polynomials (GPP) for accurate prediction and visible

formulas/polynomials. Representing confined compressive strength and strain of cir-

cular concrete columns in meaningful representations makes parameter studies, sensi-

tivity analysis, and application of pruning techniques easy. Furthermore, the proposed

GPP is utilized to improve existing analytical models of circular concrete columns.

Analytical results demonstrate that the GPP performs well in prediction accuracy and

provides simple polynomials as well. Three identified parameters improve the analytical

models—the lateral steel ratio improves both compressive strength and strain of the

target models of circular concrete columns; compressive strength of unconfined concrete

specimen improves the strength equation; and tie spacing improves the strain equation.

Keywords Genetic programming � Models � Compressive strength � Strain �
Concrete columns � Polynomials

1 Introduction

Confined concrete with lateral reinforcements increases its strength and ductility in

axial compression. Many researchers have expended considerable effort to identify
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confinement mechanisms. Most of these studies are empirical or semi-empirical.

Some assumptions are conventionally adopted to create an empirical or analytical

equation, and unknowns in an equation are obtained by fitting data. Various

analytical models have been applied to predict the compressive strength and strain of

confined concrete beams. For instance, Mander et al. [1] developed a novel equation

with five parameters for confined concrete beams. Some studies followed the work

by Mander et al. [1] and analyzed different assumptions or parameters [2–5].

However, analytical models are frequently limited by their calculation accuracy.

Soft-computing approaches have potential to enhance prediction accuracy.

Soft-computing approaches include neural networks (NNs), fuzzy logic, support

vector machines, genetic algorithms (GAs), evolutionary polynomial regression

(EPR), and genetic programming (GP). Each has unique benefits when applied to

particular application categories. NNs are the most commonly used soft-computing

approaches for inference tasks, from which many NN derivatives have been developed

and applied [6–15]. However, NNs have been characterized as ‘‘black box’’ models

due to the extremely large number of nodes and connections within their structures.

Since it was first proposed by Koza [16], GP has garnered considerable attention due to

its ability to model nonlinear relationships for input–output mappings. Baykasoglu

et al. [17] compared a promising set of GP approaches, including Multi Expression

Programming (MEP), Gene Expression Programming (GEP), and Linear Genetic

Programming (LGP) [18–20]. Notably, LGP was the most efficient algorithm for

studied limestone strengths. Differences between these algorithms are rooted in the

methodology utilized to generate a GP individual. A chromosome representation, a

tree topology, and a linear string are used by MEP, GEP, and LGP, respectively.

Although, some formulas generated by MEP, GEP, and LGP have coefficients, all

coefficients are fixed constants [17]. Several studies have utilized GP derivatives for

construction industry problems. Baykasoglu et al. [21] applied GEP to determine

concrete strength, cost, and slump. Yeh and Lien [22] developed a genetic operation

tree (GOT) to investigate concrete strength. The GOT uses a tree topology (as does

GEP) and optimized coefficients that differ from other GP derivatives. Coefficients do

not frequently appear in formulas programmed using any of these GP models. Tsai

[23] proposed a weighted genetic programming (WGP) to introduce weight

coefficients into tree connections and generate a fully weighted formula.

Giustolisi and Savic [24] proposed an evolutionary polynomial regression (EPR)

and its applications had been validated in civil engineering [25, 26]. Giustolisi and

Savic [24] argued that GP is not very powerful in finding constants and that it tends

to produce functions that grow in length over time. This paper significantly

improves GP in finding constants and controls formula length with layered tree

structures and a terminal. Additionally, EPR has to set up the number of additive

terms. Detailed comparisons on EPR and the proposed model will be revealed after

resultant formulas are available.

The main aims of this paper are as follows

1. Improve previous WGP;

2. Model confined compressive strength and strain of circular concrete columns

with good prediction accuracy and visible formulas;
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3. Provide polynomials with a modified WGP, namely, genetic programming

polynomials (GPP);

4. Improve analytical models with the GPP;

5. Study parameter impact using sensitivity analysis;

6. Prune techniques for compacting formulas.

The remainder of this paper is organized as: (1) the proposed WGP, GPP

methods and GAs; (2) details of confined compressive strength and strain of circular

concrete columns; (3) analytical results and discussions; and (4) conclusions.

2 Weighted genetic programming

Following the study by Tsai [23], this paper presents a WGP method with an NL-

layered tree structure (Fig. 1). The eventual layer has 2NL-1 parameter nodes and

each parameter node (xNL
i ) selects one input (including a unit parameter ‘‘1’’). When

a unit parameter is selected, the value of the parameter node uses its weight (i.e.,

value of w is not 1) to create a coefficient.

xNL
i 2 1 P1 P2 . . .Pj. . .PNI

� �
; j ¼ 0�NI ð1Þ

where xNL
i represents nodes in the NL-th layer and i is a related node number; Pj is

the j-th input parameter; and NI is the number of inputs. Each xNL
i node selects one

attached Pj. All nodes in the remaining layers are operator nodes, which use

operators to calculate the values of parent nodes in a down-top order and are

functions of child nodes (Fig. 1). Each operation node y is operated by a set of

defined functions with the two child nodal inputs of xi and xj with weights of wi and

wj, respectively.

Fig. 1 Weighted genetic programming structure
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y ¼ Fðwi;wj; xi; xjÞ 2

f0 ¼ T

f1 ¼ wixi

f2 ¼ wixi þ wjxj

f3 ¼ ðwixiÞðwjxjÞ
f4 ¼ ðwixiÞ=ðwjxjÞ
f5 ¼ wixij jwjxj

f6 ¼ sinðwixiÞ
f7 ¼ cosðwixiÞ
f8 ¼ expðwixiÞ
f9 ¼ log wixij j
. . . . . . . . .
fNF ¼ 1

sinðwixiÞþcosðwjxjÞ

9
>>>>>>>>>>>>>>>>>>=

>>>>>>>>>>>>>>>>>>;

8
>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>:

ð2Þ

This paper adopts f0 and nine functions in Eq. (2) for each operator selection F. A

unique operator, f0, is designed as a branch terminal ( ‘‘T’’). When ‘‘T’’ is selected for an

operator node, it uses the value of the left-most parameter node as its nodal value

directly. Therefore, some operator nodes do not exist in the final WGP results when ‘‘T’’

is used; thus, ‘‘T’’ is a default operator function and novel in WGP comparing to Tsai and

Lin [27]. f1 is designed to inherit the child nodes on the left with wi scaling, and is a unary

operator (using ‘‘S’’). This ‘‘S’’ does not exist in GP function sets. Although f2 is a plus

operator (?), the ‘‘-’’ operator in GP is absent in WGP, because f2 fulfills negative

weights. Thus, f3, f4, f5, f6, f7, f8, and f9 are ‘‘9’’, ‘‘/’’, ‘‘^’’, ‘‘sin’’, ‘‘cos’’, ‘‘exp’’, and ‘‘log’’

with balanced weights, respectively. Furthermore, a lucky guess function may be

utilized. Consequently, variables that must be optimized include (2NL-1 - 1) selected

operators, (2NL-1) selected parameters, and (2NL - 2) optimized weights.

2.1 Genetic programming polynomials

Many operator functions can be created to model problems. If a lucky function is

suggested, training performance will be improved markedly. However, such good

luck is rare. Thus, another choice for modeling problems in a concise and simple

format seems to be a good idea. Polynomials exist in a wide range of disciplines,

including mathematics and the sciences. Mathematically, a polynomial is an

expression of finite length constructed from variables and constants using only

addition, subtraction, multiplication, and non-negative integer exponents. This

paper further designs a novel WGP derivative to provide polynomials for modeling

engineering problems, namely, genetic programming polynomials (GPP). There-

fore, a new function set is designed for WGP to create GPP:

y ¼ Fðwi;wj; xi; xjÞ 2

f0
f1
f2
f3
f4

¼
¼
¼
¼
¼

T

wixi

wixi þ wjxj

ðwixiÞðwjxjÞ
ðwixiÞwj

8
>>>><

>>>>:

9
>>>>=

>>>>;

ð3Þ

where f1, f2, f3, and f4 are ‘‘S’’, ‘‘?’’, ‘‘9’’, and ‘‘^’’, respectively; the exponent term,

wj, in f4 uses integers 1–10 to create positive integers as exponent terms for
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polynomials. The division function (f4) in Eq. (2) is not allowed for polynomials. All

materials for the WGP and GPP are considered ready, with the exception of operator

selection, parameter selection, and weight optimization. Obviously, optimization

generates difficult challenges for the WGP and GPP when a large NL is used. For an

NL-layered WGP or GPP, variables that must be optimized include (2NL-1 - 1)

selected operators, (2NL-1) selected parameters, and (2NL - 2) optimized weights,

and typed of integers, integers and floats, respectively (Table 1). The global search

for (2NL?1 - 3) variables is performed by means of GA [28]. Standard GA uses a

binary alphabet to form chromosomes. Instead, float GA coding is used here to

determine integer and float variables simultaneously. Each GA individual has a

double vector varied within 0–1, containing parameter selections (one xNL
i node

selects an attached Pj); operator selections (F) and weights (w). Values are linearly

transferred to boundaries of xNL
i , F, and w at integer 0–NI, integer 0–9 for WGP

(integer 0–4 for GPP), and float -10 to 10 respectively. In this study, the fitness

function was directly set as inverse of the training root mean square error (RMSE).

A larger fitness value indicates a healthier individual. Procedures of WGP and GPP

are demonstrated in Fig. 2. Only one difference exists among WGP and GPP pro-

cedures, i.e. the boundaries of operator selections (step 4 in Fig. 2).

Table 1 Number of variables

for WGP and GPP
Number of

NL Operators Parameters Weights All

2 1 2 2 5

3 3 4 6 13

4 7 8 14 29

5 15 16 30 61

6 31 32 62 125

Fig. 2 Procedures for WGP and
GPP
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The following GA parameters are also used in both WGP and GPP implemen-

tations [23]:

1. Scattered crossover at a rate of 0.8.

2. Uniform mutation at a rate of 0.05.

3. Uniform selection stochastically.

4. 200 individuals.

5. 5,000 iterations without any other terminate criterion.

For instance, a 3-layed GPP needs 13 GA float variables ranged within 0–1 to

identify three used operators, four selected parameters, and six balanced weights

(Fig. 3). Each child node has an attached weight connecting to its parent node.

Sequentially, a corresponding GPP tree structure can be obtained. Finally, the

associated formula can be found.

3 Confined compressive strength and strain of circular concrete columns

3.1 Data for confined compressive strength and strain of circular concrete

columns

Confined concrete is subjected to transverse reinforcement in the form of closed

hoops or spirals to prevent lateral swelling. Such confinement increases the

Fig. 3 An example to transfer GA variables into a GPP formula (NL = 3)
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compressive strength of concrete and enhances its ductility. Many studies have

focused on developing analytical models and identifying factors affecting confined

concrete. Oreta et al. [29] adopted the three datasets for circular concrete columns

from Mander et al. [1], Sakai et al. [30], and Sakai [4]. Eight factors were listed for

compressive strength of confined concrete specimen f 0cc and confined strain at peak

stress, ecc. These eight factors are: (1) compressive strength of an unconfined

concrete cylinder, f 0c; (2) compressive strength of an unconfined concrete specimen

with the same size and geometry, f 0co; (3) core diameter of a circular column, d;

(4) column height, H; (5) yield strength of lateral or transverse reinforcements,

fyh;(6) ratio of volume of a lateral reinforcement to volume of a confined concrete

core, qs; (7) spacing of a lateral reinforcement or spiral pitch, s; and, (8) ratio of

longitudinal steel to the area of a core of section, qcc. Although f 0co was not used in

NN prediction by Oreta et al. [29], it is retained in this work. Of 38 column

experiments, 29 were used for training and 9 for testing (Table 2). An NN result set

(N7-4-2) was adopted from the work by Oreta et al. [29]. Their attached RMSE

were calculated as 1.68 MPa and 0.054 for f 0cc and ecc, respectively. Such analytical

results provide references for prediction accuracy. Therefore, this work attempts to

achieve prediction accuracies as good as those of NNs and provide visible formulas

for f 0cc and ecc against black-box NNs.

3.2 Analytical models for confined compressive strength and strain of circular

concrete columns

Various analytical models have been applied to calculate compressive strength, f 0cc,

and the corresponding strain, ecc, of confined concrete columns. However, these

models usually have disadvantages in terms of prediction accuracy and advantages

in reasonable/visible formulas comparing to NN learning. This study improves

analytical models with formulas via soft computing approaches. Since both WGP

and GPP models can provide visible formulas, two analytical models are chosen to

be improved.

Table 2 Detailed values of

inputs and outputs
Factors Lower bound Upper bound Avg. Std.

P1: f 0c (MPa) 19.45 33 25.1 5.03

P2: f 0co (MPa) 21 32 25.2 4.19

P3: d (mm) 185 438 329 98.8

P4: H (mm) 600 1500 1096 359

P5: fyh (MPa) 307 376 352 19.0

P6: qs (%) 0.28 2.5 1.51 0.63

P7: s (mm) 20 240 72.5 46.1

P8: qcc (%) 1.18 4.8 1.97 0.74

f 0cc (MPa) 19.3 54 35.6 11.0

ecc (%) 0.24 1.38 0.58 0.25
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Hoshikuma et al. [3] stated:

f 0HOS
cc ¼ f 0co þ 0:0383qsfyh

eHOS
cc ¼ 000218þ 0000332qsfyh=f 0co

�
ð4Þ

Sakai [4] provided:

f 0SAK
cc ¼ f 0coð0:94þ 0:047CÞ
eSAK

cc ¼ 0:0024þ 0:00064C

(

where
C ¼ Ks½qsfyh=ð2f 0coÞ�
Ks ¼ ½1� s=ðd tan 30Þ� � 0

�
ð5Þ

where f 0HOS
cc and eHOS

cc are models developed by Hoshikuma et al. [3]; and f 0SAK
cc and

eSAK
cc were developed by Sakai [4]. Their corresponding RMSEs can be calculated

using aforementioned datasets. They are 10.2 MPa and 0.155 for f 0HOS
cc and eHOS

cc , and

6.24 MPa and 0.159 for f 0SAK
cc and eSAK

cc , respectively. The calculation accuracy of

analytical models also provides references for soft computing approaches and will

be improved by the proposed GPP later.

4 Results and discussion

4.1 Predictions and visible formulas

This paper utilizes NLs in the range of 2–6 to model circular concrete columns.

Tables 3 and 4 list statistical results of 10 runs for f 0cc and ecc, respectively, with

concerns of the use of the ‘‘T’’ operator. Results focus on training/testing RMSE,

execution time, and ‘‘Count’’. The ‘‘Count’’ is used to count the number of activated

operators. For instance, a fully linked four-layer tree has 7 operator nodes; thus, the

‘‘Count’’ is 7. When a ‘‘T’’ function is used in the third layer, the ‘‘Count’’ is 6. As a

‘‘T’’ occurs in the second layer, three operator nodes are eliminated and the

‘‘Count’’ is 4. Therefore, the ‘‘Count’’ is designed to represent the number of

operator nodes needed to model f 0cc and ecc. The ‘‘Count’’ is markedly related to

prune the complexity of GP trees and effect on conciseness of resulted formulas.

Additionally, the use of one-handed operators also positively decreases tree

complexity. As NL increases, computational time increases, the complexity of the

tree structure increases, and the accuracy of computational results increases.

Theoretically, both WGP and GPP may achieve better prediction accuracy without

using ‘‘T’’ than those with employments of ‘‘T’’. However, when a tree structure

uses ‘‘T’’ operators, parts of its variables do not impact on the target function and

need not be optimized. That eases the loading of optimization and may lead results

to further prediction accuracy easily. Additionally, it seems that both WGP and GPP

achieve results under acceptable accuracies with the uses of ‘‘T’’ operator.

Therefore, they are primarily compared hereafter. Overall four-layer tree structures

are sufficient for achieving good prediction accuracy (Tables 3, 4), as in WGP

findings obtained by in Tsai and Lin [27]. Obviously, WGP gives better accuracy

than GPP because WGP uses more complicated functions for operators. However,

GPP always adopts simpler trees to model circular concrete columns than WGP and
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provide compact formulas (see ‘‘Count’’ in Tables 3, 4). Moreover, the accuracy of

GPP remains acceptable. Finally, a best trial is selected among the 10 runs

according to minimum training and testing RMSE summations. The final f 0cc and ecc

formulas are defined as f 0WGP
cc NL and eWGP

cc NL for WGP; and f 0GPP
cc NL and eGPP

cc NL for GPP. They

are listed as follows:

f 0WGP
cc 2 ¼ 1:02P2 þ 7:4P6 ð6Þ

f 0WGP
cc 3 ¼ 7:81P6 þ 24:7� 9:28 sinð�4:75P5Þ ð7Þ

f 0WGP
cc 4 ¼ �7:1P2 þ 7:85P6 � 20:1 ð8Þ

f 0WGP
cc 5 ¼ 7:86P6 þ 9:36 log j � 10:35P8 þ 13:6 sinð�6:66P5Þj ð9Þ

f 0WGP
cc 6 ¼ log j53215ð639 expð6:14P6ÞÞ2:26 expð�9:95ð3:14Þ�0:13P2 Þ

log j9:64P2P8j cosð�9:78

þ 32:3P6Þj
ð10Þ

f 0GPP
cc 2 ¼ 7:67P6 þ P2 ð11Þ

f 0GPP
cc 3 ¼ �4:14P2 � 25:8þ 6:64P6 ð12Þ

f 0GPP
cc 4 ¼ 1:96P2 � 24:6þ 7:40P6 þ 0:115P8 ð13Þ

f 0GPP
cc 5 ¼ 13:6P2 þ 97:4þ 51:1P6 ð14Þ

f 0GPP
cc 6 ¼ �56:6� 22:9P6 þ 18P2 ð15Þ

eWGP
cc 2 ¼ 10

P6

P2

ð16Þ

eWGP
cc 3 ¼

0:405P6

P2 logð0:12P2Þ
ð17Þ

eWGP
cc 4 ¼ exp �1:13 cos �16:4

P6

P2

� �� �
ð18Þ

eWGP
cc 5 ¼ j6:19 sinð�0:5P2Þ � 25:9 sin 1:33P2=P6

� �
j�0:029P7 ð19Þ

eWGP
cc 6 ¼ exp �0:595 log 4:95 cos 44:7

ð2:84P6 � 8:69P1Þ
P2

� �				

				

� �
ð20Þ

eGPP
cc 2 ¼ 0:31P6 þ 0:125 ð21Þ

eGPP
cc 3 ¼ 0:0016ðP5 � 0:097P4ÞðP6 þ 0:31P8Þ ð22Þ

eGPP
cc 4 ¼ 0:63P6 þ 0:003P5

6 � 0:00022P2
1P2

6 ð23Þ

eGPP
cc 5 ¼ 0:0011P6ð1:77P5 � 14:1P1 þ 168� 32:4P8Þ ð24Þ

eGPP
cc 6 ¼ 0:512P6 � 1:51ð0:0116P6P1 þ 0:00546P2

8Þ
4 ð25Þ

.
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Although WGP usually provides better prediction accuracy than GPP, WGP

formulas are much complex than those of GPP. Obviously, some WGP operators

pick functions of ‘‘sin’’, ‘‘cos’’, ‘‘exp’’, and ‘‘log’’. However, their significances are

hard to be identified. Thereby, the functions are suggested for specific problems,

when particular attributes are determined or some of their parameters are angles (or

periodical). When the background knowledge in detail is not available, the proposed

GPP is more applicable than WGP to model problems with polynomials. Finally,

GPP formulas are suggested in terms of good prediction accuracy and simplicity of

formulas. Of which, f 0GPP
cc 4 is proposed for f 0cc with accuracy at 2.00 MPa/1.92 MPa

(associated value of coefficient of determination R2 are 0.966/0.969) (bold values in

Table 3); and eGPP
cc 4 for ecc with 0.104/0.080 accuracy (0.842/0.754 in R2) (bold

values in Table 4).

4.2 Results of k-fold cross validations and comparisons with neural networks

As previous results, a four-layer GPP structure is enough for modeling circular

concrete columns. A k-fold cross validation method is further used to evaluate

performance of the four-layer GPP model. Fivefold cross validations are conducted.

Source data are partitioned into five equal-sized random datasets. Four folds are

used to train the GPP model and a fifth fold for testing. Each experience conducts 10

runs and is repeated five times such that each of five folds is used for testing the

resultant model trained by the other four. The uses of random folds are primary for

measuring model stability, especially where further datasets are costly to collect.

Additionally, in order to compare with neural network results [29], which used 7

parameters excepting f 0co, GPP results with 7 parameters are also provided. Results

of cross validations are shown in Table 5. With 8 parameters, it seems that results of

f 0cc are not as stable as those of ecc; but they performance well in terms of R2 (over

0.9) and are acceptable. When f 0co is withdrawn, RMSE of f 0cc results are obviously

increased, which indicates the significance of f 0co to f 0cc. Comparing to neural network

results (1.68 MPa for f 0cc and 0.054 for ecc), the best runs of GPP give 2.31/1.74 MPa

(0.957/0.970 in R2) for f 0cc and 0.112/0.068 (0.816/0.773 in R2) for ecc. Although,

GPP does not provide results as accurate as black-box neural networks, the

prediction accuracy is still acceptable in terms of R2 and visible formulas can be

obtained against black-box approaches. Moreover, it is a fact that that ecc

measurements are not as accurate as that of f 0cc. It may be the reason that GPP

always gives better R2 values for f 0cc than those for ecc.

4.3 Comparisons on EPR and GPP

The proposed WGP and GPP are models of symbolic regression. EPR is another

symbolic data-driven technique. One of the general model structures of EPR is

formed as:
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y ¼ a0 þ
Xm

j¼1

ajZj ð26Þ

Zj ¼
YNI

k¼1

P
ESjk

k ð27Þ

where a is a coefficient term, m is the number of non-constant terms, P is a input

parameter (candidate-independent input therein), ES is a NI by m exponent matrix

valued within user-defined bounds, and Z is a product of inputs. Since ERP and GPP

are innately different, this paper compares them with GPP resultant formulas. In

terms of Eq. (24), four terms are included and the coefficients are products of

several GPP weights. To obtain the same polynomial of Eq. (24), EPR needs set-

tings: four coefficient terms ranged within [-0.0356, 0.185], and a 4 by 8 ES matrix

valued at -1, 0, or 1. In Eq. (25), there are 6 terms after simplification. Using EPR

to obtain Eq. (25), the maximum value of a should be ranged within [-1.51 9

0.005464, 0.512], and a 6 by 8 ES matrix valued from -8 to 8 should be used. As

aforementioned comparisons, GPP shows differences to EPR in settings of resultant

polynomial, high flexibilities in polynomial forms, and products of weights to

provide extreme coefficient values. Additionally, GPP improves GP in finding

constants and does WGP in resulting polynomials. Furthermore, an extended use of

GPP is revealed in the coming sub-section.

4.4 Improving analytics models

The abilities of GPP were proved in aforementioned descriptions. Another use is to

improve analytical models using the proposed GPP. The idea of improving

Table 5 Four-layer GPP results for fivefold cross validations

Fold 8 parameters 7 parameters

RMSE (MPa) Count RMSE (MPa) Count

Training Testing Training Testing

f 0cc 1 1.97 2.63 4.6 2.81 2.92 4.6

2 2.17 1.74 5.4 2.96 2.38 4.6

3 1.73 2.80 4.4 3.00 2.61 4.2

4 1.99 2.51 3.7 2.88 2.77 4.8

5 2.30 1.11 3.9 2.77 2.50 4.3

All 2.03 2.16 4.4 2.88 2.64 4.5

ecc 1 0.128 0.116 5.6 0.116 0.118 4.6

2 0.109 0.118 5.6 0.121 0.113 5.2

3 0.095 0.120 5.1 0.093 0.130 5.0

4 0.093 0.125 5.3 0.101 0.133 5.8

5 0.106 0.099 4.7 0.115 0.086 5.4

All 0.106 0.116 5.3 0.109 0.116 5.2
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analytical models can be found in Tsai [23], which used previous WGP (without

‘‘T’’ operators). The idea is to make a prediction based on a summation of

calculations by analytical models and GPP prediction to fit the targets. Therefore,

the GPP makes predictions basing on analytical models and improves analytical

models, namely, improving GPP (IGPP). Following a process similar to that of

Tables 3, 4, results of improving f 0HOS
cc , eHOS

cc , f 0SAK
cc , and eSAK

cc can be made in Table 6.

The accuracy of NN results can be treated as references to IGPP still; however, the

original accuracy achieved by analytical models is the most important object to this

IGPP learning. The IGPP markedly improves f 0HOS
cc from 10.21 MPa to 1.97 MPa/

2.03 MPa (0.967/0.966 in R2); and eHOS
cc from 0.155 to 0.089/0.059 (0.883/0.866 in

R2). Improvements for f 0SAK
cc and eSAK

cc are not outstanding but are good. Improving

f 0SAK
cc are from 6.24 MPa to 2.62 MPa/1.16 MPa (0.941/0.989 in R2), and eSAK

cc from

0.159 to 0.118/0.071 (0.795/0.806 in R2). The final IGPP formulas are f 0IGPP
cc NL and

eIGPP
cc NL. The IGPP formulas are as follows:

f 0IGPP
cc 2 ¼ f 0HOS

cc � 2:84P6 � 0:0139P5 ð26Þ

f 0IGPP
cc 3 ¼ f 0HOS

cc � 6:06P6 þ 1:07P2 � 27:1 ð27Þ

f 0IGPP
cc 4 ¼ f 0HOS

cc � 6:19P6 þ 0:937P2 þ 0:0103P4
8 � 23:9 ð28Þ

f 0IGPP
cc 5 ¼ f 0HOS

cc � 6:10P6 þ ð1:86P4 � 26:5P1Þð98:8P2P8 þ 23:3P4 � 98:2P5Þ
� 10�7 ð29Þ

f 0IGPP
cc 6 ¼ f 0HOS

cc � 5:93P6 þ 1:02P2 � 26:0 ð30Þ

eIGPP
cc 2 ¼ eHOS

cc � 0:00287P1P6 ð31Þ

eIGPP
cc 3 ¼ eHOS

cc � 0:00218ðP6 � 0:630ÞP7 ð32Þ

eIGPP
cc 4 ¼ eHOS

cc � 0:00215ðP6 � 0:622ÞP7 ð33Þ

eIGPP
cc 5 ¼ eHOS

cc � 6:56� 10�6 � ðP6 � 0:63ÞP5P7 ð34Þ

eIGPP
cc 6 ¼ eHOS

cc � 0:00211ðP6 � 0:610ÞP7 ð35Þ

.

To reveal the improvements of the aforementioned equations upon f 0HOS
cc and

eHOS
cc , Figs. 4 and 5 compare results of experiments, analytical models, and IGPP

formulas. It can be easily obtained that f 0HOS
cc and eHOS

cc frequently overestimate the

strength and strain based on experimental results. Therefore, all IGPP formulas

generally contribute negative impacts on improving f 0HOS
cc and eHOS

cc . Comparing all

IGPP formulas in terms of result accuracy and formula simplicity (Table 6), Eqs.

(28) and (32) are selected in improving f 0HOS
cc and eHOS

cc , respectively, and both of

them have good consistency with experimental results, especially Eq. (28). Since

these formulas are visible, they render parameter studies easy. Table 7 shows the

occurrences of input parameters in IGPP formulas. For instance, f 0 IGPP
cc 4 results are

more accurate than f 0 IGPP
cc 3 with presence of P8 and f 0 IGPP

cc 5 makes further

improvements with three additional input parameters. Obviously, P6 is significant
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Fig. 4 Results of improving f 0HOS
cc with IGPP

Fig. 5 Results of improving eHOS
cc with IGPP
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in improving f 0HOS
cc and eHOS

cc , P2 improves f 0HOS
cc , P7 improves eHOS

cc , and P3 does

nothing. The same process can be applied to Eqs. (6)–(25) and the parameters will

impact on modeling the confined compressive strength and strain of circular

concrete columns instead of improving analytical models.

There are many manners to improve prediction errors of Eqs. (4) and (5). For

instance, GA can be directly applied to optimize coefficients of analytical equations,

which can be formed as:

f 0HOS
cc ¼ c1f 0co þ c2qsfyh ¼ 105f 0co þ 00198qsfyh

eHOS
cc ¼ c3 þ c4qsfyh=f 0co ¼ 000249þ 0000273qsfyh=f 0co

�
ð36Þ

f 0SAK
cc ¼ f 0coðc5 þ c6CÞ ¼ f 0coð117þ 0:0426CÞ
eSAK

cc ¼ c7 þ c8C ¼ 0:00265þ 0:000500C

�
ð37Þ

where c1–c8 are coefficients for optimization. Same GA settings are used and 10

runs for each equation. The best trial results, according to minimization of sum-

mation of training and testing errors, can be found. The prediction RMSE of f 0HOS
cc is

improved from 10.2 MPa to 4.41/4.89 MPa (training/testing RMSE); eHOS
cc from

0.155 to 0.111/0.0792; f 0SAK
cc from 6.24 MPa 3.98/4.17 MPa; and eSAK

cc from 0.159 to

0.138/0.148. Although the improvement in prediction accuracy is significant, IGPP

still provide better results. Two major differences existed between the aforemen-

tioned manner and IGPP. One is that IGPP does not have to set a fixed format for the

studied equation. Therefore, better prediction accuracy can be expected for IGPP

and users need not concern about which coefficient should be optimized (c1 in

Eq. (36) or their exponent coefficients). The other difference is that the analytical

model is completely kept in the obtained IGPP formulas. Improvements are directly

achieved upon analytical models. The manner of tuning coefficients breaks the

original model, but it is useful for figuring out an empirical model under prereq-

uisites of influenced parameter relationships.

Table 7 Result accuracy, formulas simplicity, and parameter impacts for improving analytical models of

Hoshikuma et al. [3]

Formula ranking P1 P2 P3 P4 P5 P6 P7 P8

Accuracy Simplicity

f 0 IGPP
cc 2

5 1 j j

f 0 IGPP
cc 3

3 2 j j

f 0 IGPP
cc 4

2 4 j j j

f 0 IGPP
cc 5

1 5 j j j j j j

f 0 IGPP
cc 6

4 2 j j

eIGPP
cc 2

5 1 j j

eIGPP
cc 3

2 2 j j

eIGPP
cc 4

3 2 j j

eIGPP
cc 5

1 5 j j j

eIGPP
cc 6

4 2 j j
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4.5 Sensitivity analysis

Sensitivity analysis can be applied to assess the impact of parameters [31]. A

common approach in sensitivity analysis is to change one factor at a time to

determine its effect on output. This work adopts mean values for all inputs and

standard deviation of a targeted input is treated as the variation of the factor changed.

SA1
i ¼ VðM þ diÞ � VðMÞ ð38Þ

SA2
i ¼ VðM � diÞ � VðMÞ ð39Þ

where M represents mean values of all inputs, di is the standard deviation of the i-th
input and impacts the mean value of the i-th input (found in Table 2), and V is an

output value calculated by IGPP formulas. Therefore, SAi
1 is a sensitivity mea-

surement with a positive variation on the i-th input and SAi
2 with a negative vari-

ation. Table 8 lists the IGPP sensitivity results. When an input parameter is linear in

an IGPP formula, the values of SAi
1 and SAi

2 are the same. As the effect of the i-th
input on output increases, SAi

1 or SAi
2 increase. When an input is insensitive to

outputs, it can be omitted or replaced. For instance, P8 can be omitted to compact

f 0 IGPP
cc 4 . Notably, P2 and P6, especially P6, are important to IGPP formulas for f 0cc.

4.6 Pruned IGPP formulas

Another method for studying the impact of parameters is pruning technique [32],

which replaces an input with a fixed value (e.g., a mean or median) to determine the

effect of the input on outputs. Furthermore, the pruning technique can be used to

prune/compact formulas. Selecting f 0 IGPP
cc 4 as an example, it has training/testing

RMSEs at 1.97/2.03 MPa originally (step (a) in Table 9). The process continues

replacing parameters one by one. As P2 is replaced in f 0 IGPP
cc 4 , RMSEs increase to

4.38/5.07 MPa. Thus, P2 cannot be replaced by its mean. After steps (b)–(d), P8 is a

good candidate for removal from f 0 IGPP
cc 4 with an accuracy at 2.25/2.01 MPa.

However, coefficients in the formula of step (d) are not yet optimized. The GAs can

Table 8 Results of sensitivity analysis for f 0 IGPP
cc formulas with SAi

1 and SAi
2 (kN)

P1 P2 P3 P4 P5 P6 P7 P8

f 0 IGPP
cc 2

– – – – -0.28 -1.8 – –

0.28 1.8

f 0 IGPP
cc 3

– 4.6 – – – -3.7 – –

-4.6 3.7

f 0 IGPP
cc 4

– 4.0 – – – -3.8 – 0.5

-4.0 3.8 -0.1

f 0 IGPP
cc 5

0.2 0.4 – 4.1 -0.9 -3.7 – 0.9

-0.2 -0.4 -0.7 0.9 3.7 -0.9

f 0 IGPP
cc 6

– 4.3 – – – -3.7 – –

-4.3 3.7
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be applied again to optimize constants of A, B, and C in the formula of step (e). The

accuracy after step (e) is improved again relative to that in step (d). Sequentially,

steps (f)–(h) (Table 9) remove two parameters at a time. Finally, the formula from

step (e) is applied to prune f 0 IGPP
cc 4 . Furthermore, the pruned and optimized f 0 IGPP

cc 4 is

very similar to those in Eqs. (12) and (16), although they differ innately. This work

considers above evidences as the reliability of the proposed GPP. Finally, the

formula in step (e) (Table 9) is applied to model f 0cc and two parameters are

involved. The formula is listed below with an accuracy of 2.20/1.91 MPa, indicating

that f 0co and qs are essential to improve f 0HOS
cc .

f 0cc ¼ f 0HOS
cc � 5:89P6 þ 1:05P2 � 26:7 ð40Þ

Equations (32), (33), and (35) have similar formats but have entirely different

tree structures (Fig. 6). The evidence of reliable GPP is therefore proved again. A

formula with two variables can be assigned to GAs to improve eHOS
cc .

ecc ¼ eHOS
cc � AðP6 � BÞP7 ¼ eHOS

cc � 0:00215ðP6 � 0:619ÞP7 ð41Þ
Variables A and B in Eq. (41) can be easily obtained by GAs. When optimization

is achieved, Eq. (41) can be treated as the ultimate IGPP solution for improving eHOS
cc

with RMSEs at 0.089/0.059. Moreover, qs and s are identified important when

improving eHOS
cc . Furthermore, this work follows same steps in Table 9 for eIGPP

cc 5 , and

the same formula in Eq. (41) can be obtained. Certainly, such a pruning process can

be applied to Eqs. (6)–(25). Summarily, as visible formulas can be obtained,

extended uses can be easily carried out.

To combine Eq. (4), (40), and (41) together, improved f 0HOS
cc and eHOS

cc can be

formed as:

f 0cc ¼ ½f 0co þ 0:0383qsfyh� � 5:89qs þ 105f 0co � 267

ecc ¼ ½0:00218þ 0:000332qsfyh=f 0co� � 0:00215ðqs � 0619Þs

�
ð42Þ

The proposed formulas attempt to modify the influences of f 0co and qs on confined

compressive strength f 0cc and achieve higher calculation accuracy based on current

datasets. Although eight input parameters are used herein, no new parameter is altered

to impact the improved f 0HOS
cc . A new parameter, i.e. s, is used to improve eHOS

cc . The

Table 9 Pruning and compacting f 0 IGPP
cc 4

Step Remove f 0 ISCP
cc 4 formula RMSE (MPa)

(a) – f 0HOS
cc � 6:19P6 þ 0:937P2 þ 0:0103P4

8 � 23:9 1.97/2.03

(b) P2 f 0HOS
cc � 6:19P6 þ 0:0103P4

8 � 0:3 4.38/5.07

(c) P6 f 0HOS
cc þ 0:937P2 þ 0:0103P4

8 � 33:2 4.16/4.97

(d) P8 f 0HOS
cc � 6:19P6 þ 0:937P2 � 23:7 2.25/2.01

(e) P8 f 0HOS
cc � AP6 þ BP2 � C ¼ f 0HOS

cc � 5:89P6 þ 1:05P2 � 26:7 2.20/1.91

(f) P2, P6 f 0HOS
cc þ 0:0103P4

8 � 9:62 4.38/5.51

(g) P2, P8 f 0HOS
cc � 6:19P6 � 0:133 4.85/5.08

(h) P6, P8 f 0HOS
cc þ 0:937P2 � 33:1 4.06/4.91

Genet Program Evolvable Mach (2013) 14:221–243 239

123



Fig. 6 Tree structures of eIGPP
cc 3 , eIGPP

cc 4 , and eIGPP
cc 6

Fig. 7 Final f 0cc results
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occurrence of s can be justified by Sakai [4] (see Eq. (5)). Owing to the coefficients in

the improved terms are numerical results not analytical, they are not meaningful in

structural mechanism and are changed when using different datasets. In spite of

lacking complicated structural mechanism, the improved formulas for confined

compressive strength and strain of circular concrete columns achieve better accuracy

than those of the original model (Figs. 7, 8). The influenced parameters are key results

of this paper to identify potential parameters on improving analytical models.

5 Conclusions

This study improves previous WGP with a terminate operator, which reduces tree

complexity and makes formulas compact, and proposes a novel GPP, which allow

GP approaches providing polynomials for problems. Engineering applications focus

on not only modeling compressive strength and strain, but also particularly

improving analytical models with GPP. Employments of sensitivity analysis and

pruning techniques can also be found in this study. Both WGP and GPP achieve

good prediction accuracy and visible formulas for target strength and strain. The

significant findings of this study are as follows.

1. Visible formulas are bonus production of the WGP and GPP compared with

black-box approaches. Unlike analytical models, the proposed WGP and GPP

directly provide functional relationships for strength and strain based on fitting

data without a prior setting of equation formats.

2. The GPP provides polynomials for compressive strength and strain of circular

concrete columns. This approach provides simple solutions for problems.

Fig. 8 Final ecc results
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3. Improving analytical models with soft computing approaches is a novel idea.

This IGPP may open a new avenue for improving existing models using soft

computing approaches. Both WGP and GPP, even EPR, can be implemented to

proceed same manner on improving various analytical models.

4. Visible formulas make parameter studies, sensitivity analysis, and application

of pruning techniques easy.

5. Equations (38) and (39) improve the analytical equations developed by

Hoshikuma et al. [3]. The ratio of lateral reinforcement volume to confined

concrete core volume, qs, impacts improvements to both confined compressive

strength and strain equations; the compressive strength of an unconfined

concrete specimen of the same size and geometry, f 0co, improves the strength

equation and the spacing of lateral reinforcement or spiral pitch, s, in the strain

equation.

6. The proposed GPP is a data-driven approach. Owing to only 38 datasets are

used herein, there is possibility of over-fitting in the obtained formulas although

cross-validation method is conducted.

References

1. J.B. Mander, M.J.N. Priestley, R. Park, Observed stress-strain behavior of confined concrete.

J. Struct. Eng. 114(8), 1827–1849 (1988)

2. M. Saatcioglu, S.R. Razvi, Strength and ductility of confined concrete. J. Struct. Eng. 118(6),

1590–1607 (1992)

3. K. Hoshikuma, K. Kawashima, K. Nagaya, A.W. Taylor, Stress-strain model for confined reinforced

concrete in bridge piers. J. Struct. Eng. 123(5), 624–633 (1997)

4. J. Sakai, Effect of Lateral Confinement of Concrete and Varying Axial Load on Seismic Response of
Bridges. Doctor of Engineering Dissertation, Dept. of Civil Engineering, Tokyo Institute of Tech-

nology, Tokyo (2001)

5. G.G. Penelis, A.J. Kappos, Earthquake-Resistant Concrete Structures, (E&FN Spon, London, 1997)

Sec. 7.4, pp. 177–196

6. M. Mehrjoo, N. Khaji, H. Moharrami, A. Bahreininejad, Damage detection of truss bridge joints

using Artificial Neural Networks. Expert Syst. Appl. 35(3), 1122–1131 (2008)

7. E. Mesbahi, Y. Pu, Application of ANN-based response surface method to prediction of ultimate

strength of stiffened panels. J. Struct. Eng. 134(10), 1649–1656 (2008)

8. Y.Q. Ni, H.F. Zhou, J.M. Ko, Generalization capability of neural network models for temperature-

frequency correlation using monitoring data. J. Struct. Eng. 135(10), 1290–1300 (2009)

9. H.-C. Tsai, Hybrid high order neural networks. Appl. Soft Comput. 9, 874–881 (2009)

10. N.B. Dash, S.N. Panda, R. Remesan, N. Sahoo, Hybrid neural modeling for groundwater level

prediction. Neural Comput. App. 19(8), 1251–1263 (2010)

11. H.-C. Tsai, Predicting strengths of concrete-type specimens using hybrid multilayer perceptrons with

center-unified particle swarm optimization. Expert Syst. Appl. 37, 1104–1112 (2010)

12. A. Nazari, G. Khalaj, S. Riahi, ANFIS-based prediction of the compressive strength of geopolymers

with seeded fly ash and rice husk-bark ash. Neural Comput. App. 1–13 (2011)

13. S. Cawley, F. Morgan, B. McGinley, S. Pande, L. McDaid, S. Carrillo, J. Harkin, Hardware spiking

neural network prototyping and application. Genet. Program. Evol. M. 12(3), 257–280 (2011)

14. H. Yaprak, A. Karaci, I. Demir, (2011) Prediction of the effect of varying cure conditions and w/c

ratio on the compressive strength of concrete using artificial neural networks. Neural Comput. App.

1–9 (2011)

15. H.-C. Tsai, Y.-W. Wu, Y.-Y. Tyan, Y.-H. Lin, Programming Squat Wall Strengths and Tuning
Associated Codes with Pruned Modular Neural Network. Neural Comput App, Accepted (2012)

242 Genet Program Evolvable Mach (2013) 14:221–243

123



16. J.R. Koza, Genetic programming: On the programming of computers by means of natural selection
(MIT Press, Massachusetts, 1992)
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