Genet Program Evolvable Mach (2013) 14:65-93
DOI 10.1007/s10710-012-9171-8

A comparison of grammatical genetic programming
grammars for controlling femtocell network coverage

Erik Hemberg Lester Ho * Michael O’Neill -
Holger Claussen

Received: 29 September 2011/Revised: 18 September 2012 /Published online: 6 October 2012
© Springer Science+Business Media New York 2012

Abstract We study grammars used in grammatical genetic programming (GP) which
create algorithms that control the base station pilot power in a femtocell network. The
overall goal of evolving algorithms for femtocells is to create a continuous online
evolution of the femtocell pilot power control algorithm in order to optimize their
coverage. We compare the performance of different grammars and analyse the fem-
tocell simulation model using the grammatical genetic programming method called
grammatical evolution. The grammars consist of conditional statements or mathe-
matical functions as are used in symbolic regression applications of GP, as well as a
hybrid containing both kinds of statements. To benchmark and gain further information
about our femtocell network simulation model we also perform random sampling and
limited enumeration of femtocell pilot power settings. The symbolic regression based
grammars require the most configuration of the evolutionary algorithm and more fitness
evaluations, whereas the conditional statement grammar requires more domain
knowledge to set the parameters. The content of the resulting femtocell algorithms
shows that the evolutionary computation (EC) methods are exploiting the assumptions
in the model. The ability of EC to exploit bias in both the fitness function and the

Recommended by Una-May O’Reilly and Steven Gustafson.

E. Hemberg (<) - M. O’Neill

Complex and Adaptive Systems Laboratory, School of Computer Science and Informatics,
University College Dublin, Dublin, Ireland

e-mail: erik.hemberg@ucd.ie

M. O’Neill
e-mail: m.oneill@ucd.ie

L. Ho - H. Claussen
Bell Laboratories, Alcatel-Lucent, Dublin, Ireland
e-mail: lester.ho@alcatel-lucent.com

H. Claussen
e-mail: holger.claussen @alcatel-lucent.com

@ Springer

66 Genet Program Evolvable Mach (2013) 14:65-93

underlying model is vital for identifying the current system and improves the model and
the EC method. Finally, the results show that the best fitness and engineering perfor-
mances for the grammars are similar over both test and training scenarios. In addition,
the evolved solutions’ performance is superior to those designed by humans.

Keywords Genetic programming - Grammars - Femtocell - Symbolic regression -
Grammatical evolution

1 Introduction

In telecommunication networks, femtocells are low power, low-cost, user-deployed
cellular base stations (BSs) with a typical coverage range of 10s of meters [4].
Femtocells are currently on sale worldwide to consumers and enterprises. In order to
minimise operational expenses, femtocells have self-configuration and self-optimi-
sation capability to enable plug-and-play deployment. These capabilities are
implemented using algorithms that are designed to automatically change certain
network configuration parameters in response to any changes in the network
environment. Additionally, to maintain scalability when used in large networks,
these algorithms should work in a distributed manner whenever possible, using only
local information but still achieving good global performance.

Designing these highly distributed algorithms can be difficult, especially if the
network environment varies significantly and multiple conflicting objectives exist. In
addition, for femtocell deployments in enterprise environments, a group of femtocells is
deployed where the individual cells need to work together to jointly provide continuous
coverage in a large building or outdoor area. In Fig. 1 the coverage of a femtocell setup
for an office environment with 12 femtocell BSs is shown, with colour indicating areas
of femtocell coverage—the BSs are using an evolved coverage algorithm. When
femtocell users enter any gaps (white) in the coverage between the femtocells, mobility
procedures (handovers or cell re-selections) to the underlying macrocell are performed,
or a loss of service occurs if macrocell coverage is unavailable.

The aim of the study is to automatically generate algorithms for controlling the pilot
power of femtocells in any network. Addressing this type of real-world dynamic
problem is an opportunity for genetic programming (GP) O’Neill et al. [27]. We use the
grammatical GP [24] method called grammatical evolution (GE) [9, 29]. GE differs
from GP by using a grammar, by its ability to solve typed domain problems, the use of a
genotype-to-phenotype map, different genetic operators and a different chromosomal
bound (length instead of depth). Previously, Hemberg et al. [13] adopted GE and
generated mathematical functions with a symbolic regression grammar. In an earlier
study Ho et al. [14] used GP with a set of conditional statements. Both studies focused
on the feasibility of generating solutions and used the same femtocell network scenario
for training and testing the solutions. We expand on these studies by comparing
different grammars for creating solutions and ask the following questions:

e How does a conditional statement grammar (CG) compare to a symbolic
regression statement grammar (SRG) and a combination of conditional

@ Springer

Genet Program Evolvable Mach (2013) 14:65-93 67

500

30 100 130 200 250 300 350 400 450 300
m

Fig. 1 Coverage of a femtocell setup for an office environment with 12 BSs, the colour shows the pilot
channel power in dBm. The BSs are in their final state of a simulation of an evolved solution (Color figure
online)

statements and symbolic regression grammar (SRCG) in terms of performance
and other benefits?
e How do the evolved algorithms generalise over multiple scenarios?

Our contribution lies in the investigation of the femtocell coverage problem, the
comparison of the novel and different grammars. We further introduce additional
scenarios, perform an analysis of the system and employ a novel fitness function to
drive the evolution. Moreover, it is shown that the best evolved solutions perform
better on the test set than the simple man made approach of optimizing fixed pilot
power by enumeration.

The following sections will first give a background to the GE grammars and
femtocells, as well as to GE in Sect. 2 Then, in Sect. 3 the experiments are
presented. The results are shown in Sect. 4, and in Sect. 5 there is a discussion
regarding the setup and the results. Finally, in Sect. 6 there are conclusions and
future work.

2 Background
Here the femtocell coverage problem, previous work and a preliminary analysis of
the femtocell problem representation and grammatical evolution are described. All

these areas aid the setup and comparison of grammars used for generating pilot
power control algorithms.

@ Springer

68 Genet Program Evolvable Mach (2013) 14:65-93

2.1 Femtocell coverage problem description

We consider an intended area of coverage, e.g. an office environment as in Fig. 1,
where a group of femtocells is deployed to jointly provide end-user services. The
problem addresses distributed coverage optimisation by adjusting the pilot power of
the BSs in order to alter the coverage of the femtocells and satisfy the following
objectives:

Mobility To minimise mobility events (handovers) between femtocells and
macrocells within the femtocell group’s intended area of coverage.

Load To balance the load amongst the femtocells in the group to prevent
overloading or under-utilisation.

Leakage To minimise the leakage of the femtocell group’s coverage outside its
intended area of coverage.

We believe that there are common characteristics in each scenario that are
possible to capture. However, in order to achieve accuracy, complex predictors
might be necessary [2]. Thus, the aim is to create algorithms that are able to
generalize the expression needed to control the pilot powers of the BSs. When
evaluating solutions in a simulation scenario, this can be seen as multi-dimensional
data fitting.

Moreover, constructing models from observed data is a fundamental problem in
science [22]. The femtocell problem can be classified as a computationally
expensive multi-objective problem [36] with conflicting objectives. For example,
increasing the pilot power in order to improve the coverage of a femtocell would
reduce the amount of mobility events, but doing so may also increase the load of the
femtocell and increase the leakage. Consequently, it is necessary to balance the
requirements of the objectives. Further, the importance of the objectives depends on
the operator’s priorities. Finally, both the optimal pilot power and the interactions
between the femtocells are unknown. This creates two additional problems, i.e. to
determine a realistic simulation model and suitable fitness functions.

Now, to explain further in a more compact notation. For each scenario at each
time step, t<7T,t € N there is at least one optimal pilot power configuration,
05 Pin < P < Ponars P € R for each BS, i <n,i € N. A scenario generates the pilot
power matrix containing the pilot power of each station at each time step

Por ~ Pon
P=1: "

Pri ' Pm
How p;; is created is determined by the femtocells’ pilot power control algorithm,

a € A, A is the set of possible control algorithms. We assume that it is possible to
create an expression, e.g. function or algorithm, which on multiple scenarios has a

pilot power close enough, J, to an acceptable pilot power, P, in all scenarios,

{Vs€S:|P—P|<d,}, S is the set of scenarios.
The algorithm’s decision on pilot power is mapped from pilot power to output to
fitness. The output for mobility (M), load (L) and leakage (Le) are functions of the

@ Springer

Genet Program Evolvable Mach (2013) 14:65-93 69

femtocells’ pilot power, p and the scenario, s. The functions can be written as:
Mobility output oy : R x § — R, oy (p,s), Load output or : R x S — R, 0r(p, s)
and Leakage output o7, : R x § — R, 01.(p, s). The outputs are the components of
the fitness, £ = [fir,f1.,fi.],f € R. The fitness functions can be written as: Mobility
fitness fyy : R x S — R, fiy(on,s), Load fitness f; : R x § — R, f;(or,s) and Leak-
age fitness f1,: R xS — R, f1.(0r,5). We are optimizing the fitness for the
femtocell control algorithms on the scenarios, hence
f* = arg max f(x,S)

X€A
In the next section we describe previous work on evolutionary computation (EC)
and GE in the telecommunication domain.

2.2 Previous work

There have been previous studies of applying EC to telecommunication problems
[1]. But only a few specifically regarded femtocell coverage algorithms and EC.
One used GP [14] and another used GE [13] before we extend these studies. Most
related work regarding cellular coverage optimisation in the literature deals with
centralised computation methods [10, 34]. For example, they describe the
calculation of parameters such as the number and locations of BSs, pilot channel
transmit powers or antenna configurations using a central server running an
optimisation algorithm. Many studies also focus on determining the optimal BS
numbers or placements to achieve the operator’s quality of service or coverage
target. This approach is not always practical because network design is restricted by
BS placements. Instead, a more realistic approach is to optimise the configuration of
cellular networks where the locations of the BSs have been fixed.

One example of self-configuration and self-optimisation capability in femtocell
deployments is coverage optimisation. The aim of coverage optimisation in residential
femtocell deployments is to ensure that leakage of coverage by a single femtocell into
public spaces is minimised while at the same time maximising indoor coverage [5, 15].
The methods for residential deployment are not applicable to enterprise environments
[14]. Furthermore, there are studies which do not use EC, e.g. Jo et al. [19] investigate
self-optimized coverage coordination in femtocell networks. The transmit power is
adjusted based on the downlink signal and interference power statistics. A Monte Carlo
simulation with static users uniformly distributed verifies the algorithm. A similar study
is performed by Mhiri et al. [25] who create a power management algorithm by hand
for green femtocell networks. Similarly, Ponente and De Marinis [32] optimize the
transmission power and frequency for femtocells in clustered scenarios, although they
use a genetic algorithm. Our approach uses grammars, simulations with moving users
and considers the load of the femtocell when adjusting the pilot power.

Previous work with GP and femtocells [14] automatically derived a distributed
algorithm to dynamically optimise the coverage of a femtocell group using standard
tree based GP. The resulting evolved algorithm clearly showed the ability to
optimise the coverage and was able to offer increased overall network capacity
compared to a fixed coverage femtocell deployment. The functions and terminal set

@ Springer

70 Genet Program Evolvable Mach (2013) 14:65-93

for GP consisted of conditions with predicates checking if the load, overlap and
probability of users entering a gap were over a predefined threshold, as well as
combining the branches of the nodes. The terminals increased pilot power,
decreased pilot power or did nothing. With GE [13] the controllers for femtocells
pilot power were evolved using a symbolic regression (SR) grammar. The best
evolved solutions were superior for two of the objectives compared to a fixed pilot
power. Here, we further investigate and compare the GE approach to different
grammars, multiple scenarios and different fitness functions. Moreover, we reduce
the solution space for the conditional representation of femtocell solutions.

Work by Lewis et al. [21] with a grammar and GP enhanced IEEE802.11
distributed coordinate function. They designed active MAC layer algorithms by
evolving algorithms instead of optimising values and tuning parameters, thus a
wider behaviour space was searched. They used a grammar to embed domain
knowledge in the algorithms they evolved. The variation of contention window sizes
was explored and the results outperformed standard 802.11 behaviour on a variable
sized network under standard load. Moreover, the throughput performance was
comparable to the best aspects of the protocol. Hu and Goodman [17] used GP for
wireless access point configuration, the results improved when they post-processed
their solutions to find the minimum spanning tree. In addition, Yasuda and Sato [35]
used linear GP and a pruning operator on their solutions for wireless LAN access
point configuration to gain improved performance and run time speed-up.

Different grammar configurations in GE have been investigated for various other
applications. O’Neill and Ryan [28] first used GE to automatically evolve caching
algorithms, finding a simple caching algorithm. Murphy et al. [26] explored GE for
horse gait optimisation and found that the grammars used for evolving horse gaits
required domain knowledge to generate realistic animal motion. Perez et al. [30]
evolved behaviour trees for Mario Al using GE. The use of a grammar simplifies the
task of encoding the syntax of behaviour trees and specific tree structures can be
represented. They also limited the grammar syntax in order to reduce the solution
space (language). We extend the use of GE to more application areas.

In a paper by Korns [20], techniques for improving symbolic regression systems in
cases where the target expression contains conditionals were examined and accuracy
was increased for such conditional problems. A regression system combining standard
GP with abstract expression grammars, particle swarm optimisation, differential
evolution, context aware crossover and age-layered populations was tested on nine
base test cases. We extend the study of conditional grammars and symbolic regression
for evolving femtocell controllers, where the conditions represent input states.

This section concludes that GP methods, e.g. GE, are viable for telecommuni-
cation network optimizations. It also reveals gaps in the generation of coverage
algorithms for femtocells. Next, we will further analyse the previous approaches to
the femtocell problem.

2.3 Initial analysis of the femtocell problem

We study the results from work by Ho et al. [14] and previous runs in order to
understand and improve the setup of our own experiments. First, we simplify the

@ Springer

Genet Program Evolvable Mach (2013) 14:65-93 71

solutions and this allows us to reduce the solution space, an approach that has
proved to be successful in other EC applications. For example, in order to distill free
form equation from experimental data with GP, Schmidt and Lipson [33] limit the
representation of the equations with an acyclic graph of 128 nodes. Forrest et al.
[11] also reduce the solution space when using GP for software repair, in order to
get a feasible solution space.

2.3.1 Solution simplification

One way of improving the search is to create shorter solutions, e.g. by pruning the
solutions and removing redundant code. However, the solution space is still the
same size and there is the additional step of simplifying solutions. We studied some
GP solutions from some initial runs where we used the functions and terminals
presented in Table 1 and the fitness functions from Sect. 3.3 averaged over the low,
medium and high load scenarios from Sect. 3.1, with the same GP setup as in
Ho et al. [14]. From these results it is possible to see that the average fitness improves
rapidly in the first four generations and then the fitness converges. Besides, the
solutions are very bloated, they increase in size without improving fitness.

Simplification of a GP solution is made by consolidating statements. One step is
removing redundant and conflicting commands, e.g. combine3 (increasepow,
decreasepow, donothing) can be removed. It is also possible to delete branches
that will never execute, e.g. if_ho_higher (if_ho_higher (increasepow,
decreasepow), decreasepow) reduces to if_ho_higher (increasepow,
decreasepow) since the the nested conditional will always return the same value.
Further, the order of the statements is unimportant for the femtocell problem.
Finally, the simplified solution is also easier to read and interpret for humans. In
Fig. 2 the original best GP solution, called GP1, is shown and the simplified GP1
solution, with a reduction from 74 nodes to 11, is shown in Fig. 3.

The GP1 solution works as follows: the pilot power is changed by 41 dBm if
there are gaps but no leakage and no overload, the pilot power is changed by —1
dBm if there is leakage, and if there is leakage and a gap the pilot power is changed
by —2 dBm. Thus, the pilot power will always be decreased when there is leakage.

Table 1 GP functions and terminals

Type Name Description

Function if_ho_higher Check if M > MT, MT = 0

Function if_load_higher Check if L > LT, LT =17

Function if_macro_requests_higher Check if Le > LeT, LeT = 0

Function combine?2 Execute branches 1 and 2 consecutively
Function combine3 Execute branches 1, 2 and 3 consecutively
Terminal increasepow p=p+ C,C=1dBm

Terminal decreasepow p=p—C, C=1dBm

Terminal donothing Do nothing

M mobility, L load, Le leakage and p pilot power

@ Springer

72 Genet Program Evolvable Mach (2013) 14:65-93

if_ho_higher (if_macromob_higher (combine2 (decreasepow, decreasepow) ,
if_load_higher (if_load_higher (donothing, increasepow) ,if_ho_higher (
increasepow, if_load_higher (if_macromob_higher (if_ho_higher (decreasepow,
increasepow) ,if_macromob_higher (donothing, donothing)), combine3 (combine? (
donothing, decreasepow) , combine3 (decreasepow, decreasepow, decreasepow) ,
combine3 (increasepow, donothing, donothing)))))),combine2 (if_ho_higher (
combine?2 (decreasepow, combine2 (if_ho_higher (decreasepow, decreasepow) ,
increasepow)), combine2 (if_ho_higher (if_load_higher (if_load_higher (
decreasepow, increasepow) , 1f_macromob_higher (increasepow, increasepow)) ,
if_ho_higher (combine3 (increasepow, donothing, donothing) , increasepow)) ,
combine3 (1f_macromob_higher (combine?2 (decreasepow, donothing) ,if_ho_higher (
donothing, donothing)), combine2 (if_ho_higher (decreasepow, decreasepow) ,
combine3 (decreasepow, donothing, increasepow)) ,donothing))),donothing))

Fig. 2 Original GP1 solution
2.3.2 Representation simplification

There are redundancies in the solution representation of Table 1, here different
solutions have the same behaviour, i.e. there is a many-to-one mapping from the
solution space to the pilot power space. One way of improving performance would
be to reduce the solution space by using a representation that produces fewer
redundant solutions. For example, in the case of conditional statements this could be
done by removing the possibility of freely choosing conditional statements and
instead enforcing a truth table which assigns a pilot power change action to each
case. We divide the search space into different states by using the conditions. There
are 2" rows for n conditions with the set of actions, a, the number of possible
solutions in the search space is |a|2n. Using Table 2 we can devise methods for how
to set the action for each row. The most general method is to use the SRCG and for
each row in the table to generate real numbered pilot power values (see Fig. 7). This
allows exploration of non-linear relations between the input variables, and the state
division will hopefully guide the search, but will not reduce the solution or pilot
power space. Another approach is to discretize the pilot power space and use
constants as in CG.

2.3.3 Search space analysis

We also study the possible search space in the simulation in order to improve our
representation to cover only possible pilot power settings. The BS pilot power is cut
off at p,ur = 11, ppmin = —50. For example, if there are four action possibilities
and three inputs, —2<a <1,a € Z and n = 3 then the solutions can be represented

by a bit-string of length 16 and the solution space is 42 = 65,536 solutions. For
integer pilot power settings lal = 1p,,.c — Pminl = 61, this gives the search space
size for the conditional statement as 61° = 1.917¢ 4 17. A tree where all nodes
have two children, i.e. a binary tree, of depth eight is required for a solution which
can increase or decrease maximally for each condition.

For the representation in Table 1 the number of trees are all the shapes with all
the node combinations. The number of shapes of a binary tree with n + 1 leaves is

(2n)!

given by the Catalan number C, = =Sy [31]. For each tree shape there are ¢

@ Springer

Genet Program Evolvable Mach (2013) 14:65-93 73

Fig. 3 Simplified GP1 solution if_ho_higher (
if_macromob_higher (
combine2 (decreasepow, decreasepow
),
if_load_higher (
donothing,
increasepow
)
),
1f_macromob_higher (

decreasepow,
donothing,
)
)
fjﬂﬁiin;h;ai‘g;‘xsogor he Action Mobility Load Leak GP 1
evolved control algorithm a True Trae True D)
a, True True False 0
as True False True -2
ay True False False +1
as False True True —1
de False True False 0
a; False False True —1
ag False False False 0

(n) = IFI" internal node combinations, F is the function set, and (/) = I71" are leaf
combinations, 7 is the terminal set. In Ho et al. [14] the depth limit was eight and
F and T are in Table 1. The max arity is two if we ignore combine3, thus the total
number of tree shapes is 252255 C,, and the total number of combinations of shapes

_ i1y
and contents is 25;155 Cfb (=™ Which is larger than the solution space of 61° for

the conditional setup. This shows that there are, with a conservative calculation,
many more evolved solutions compared to possible solutions in the pilot power
space. Hence, a grammar that has fewer redundant solutions is designed (see Fig. 5).
Next, the grammar based GP approach called GE is explained.

2.4 Grammatical evolution

GE [9, 29] is a grammar-based form of GP [24]. It is inspired by representations in
molecular biology and combines this with formal grammars. The GE system is
flexible and allows the use of alternative search strategies, whether evolutionary,
deterministic or other. This system also includes the ability to bias the search by
changing the grammar. Since a grammar is used to describe the structures that are
generated by GE, editing the grammar modifies the output structures. The genotype-
phenotype (input-output) mapping means that GE allows search operations to be
performed on any representation in the algorithm.

@ Springer

T4 Genet Program Evolvable Mach (2013) 14:65-93

Input Mapping Output
a2]13]s]21]s <E> I
0:4%2=0
| J
GO: <E> <E>)
Grammar
CExnScUyCENCES 1:2%2=02:13%2=1\4:21%2=1
| <V>
<0>:=+
|-
<V>i=x
|1

Fig. 4 Example of GE genotype-to-phenotype mapping. The derivation order, codon value and
production choice are shown to the right of the arrows, e.g. from the start symbol 0:4%?2 = 0. Input is the
genotype and output is the phenotype

<CODE> ::= if gt (my_handover, MT)
if gt (my_load, LT)
if gt (my_macro_requests, LeT)
<function>
else
<function>
else if gt (my_macro_requests, LeT)
<function>
else
<function>
else if gt (my_load, LT)
if gt (my_macro_requests, LeT)
<function>
else
<function>
else if gt(my_macro_requests, LeT)
<function>
else
<function>
<function> ::= <terminal><function> | <terminal>
<terminal> = my_power = increase_power (my_power) ;
| my_power = decrease_power (my_power) ;
| my_power = do_nothing (my_power) ;

Fig. 5 Conditional statement grammar (CG) creates variable length solutions, <function> is
recursive

In GE, the grammar mapping uses a context free grammar, in BNF-format, which
is a four tuple G = (N, T, R, S):

1. N is a finite non-empty set of non-terminal symbols
2. Tis a finite non-empty set of terminal symbols and N N T = J, the empty set

@ Springer

Genet Program Evolvable Mach (2013) 14:65-93 75

3. Ris afinite set of production rules of the form R : N—V : A—o or (A, o) where
A€eN and x € V.V is the set of all strings constructed from N U T and
RCNXV,R#£0

4. S is the start symbol, S € N.

The genotype is used to map the start symbol into a sentence, by the BNF-
grammar. Input (codon) is read from the genotype and a corresponding output
symbol is generated. A function selects a production choice by taking the current
codon’s integer value modulo the number of production choices of the current rule.
The genotype is read from left to right, and the codon to be read is shifted to the
right every time the current rule has more than one production. The derivation
sequence is also expanded from left to right (depth-first). In Fig. 4 an example of a
genotype generating a function is shown.

The steps in a single generation, steps 2—6 are repeated, of the GE algorithm used
in the experiments are:

1. Initialisation The genotypes of the initial solutions are generated with the
ramped half-half method.

2. Mapping A BNF-grammar is used: (a) Integer to String translation where the
grammar maps integer values to a sentential form. (b) When the end of the
genotype is reached and the output contains non-terminal symbols it wraps and
is read from the start again. Finally, if there still are non-terminals in the output
the individual is reinitialised.

3. Evaluation The individual solutions are evaluated in the simulation. Invalid
solutions are reinitialised.

4. Selection Some individuals from the current population are included in a
selected population using a tournament selection.

5. Variation operators Individuals are modified by one point crossover and nodal
mutation.

6. Replacement The new population is created from best ranked solutions of the
selected population and current population, based on the pareto dominance of
the fitness functions.

The femtocell problem, previous work, initial studies and GE have been
described in this section. The next section presents the experiments used for
comparing the performance of the grammars on a number of femtocell scenarios.

3 Experiments

We aim to automatically generate pilot power control algorithms for femtocell
coverage. For larger cells, such as macrocells, each cell is manually configured to
separate pilot power values in a time consuming manual procedure. The macrocell
configuration approach is unfeasible for femtocells, due to the associated high
operational expenses. The current state-of-the-art for femtocells in enterprise
deployment is to use a fixed pilot power for all femtocells. For example, the use of
max pilot power guarantees the coverage objective to be met according to the

@ Springer

76 Genet Program Evolvable Mach (2013) 14:65-93

capabilities of the network, without more information it is not possible to guarantee
the other objectives.

For the automatically evolved algorithms investigated here, three grammars are
tested on multiple scenarios, the performance is compared and the behaviour is
analysed. The grammars used generated conditional solutions, symbolic regression
solutions and conditional solutions containing symbolic regression. The scenario with
12 BSs in an office building, O12 (see Fig. 1) was used for training. Then the best
performing solutions were picked out and evaluated on test scenarios. The variation of
scenarios increases the robustness of the solutions, e.g. solutions which do not
experience any overloading have an unknown behaviour when overloaded, since there
is no evolutionary pressure to penalise “bad” behaviour in this state. This
methodology was adapted, since it is very time consuming to run scenarios. One
evaluation on one Intel i7 2.93 GHz processor core takes approximately 10 min.

In regard to comparing the performance of the grammars, Daida et al. [6] discuss
the challenges of making comparisons in GP and Hoai et al. [16] describe how to
compare GP systems. Our goal is to identify a good method for solving the
femtocell network problem, not to dismiss the methods themselves. In the
experiments, not each grammar has used the same number of fitness evaluations
to reach the solution, which complicates a comparison of average fitness over fitness
evaluations between the grammars. Furthermore, the femtocell network problem is
not the ideal problem for benchmarking algorithmic performance, since the
optimum is unknown. In order to facilitate comparisons we use engineering values
to measure the performance as well. Therefore, comparisons of results from
different fitness functions are possible. As a baseline we compare the evolved
solutions with two manual approaches, a fixed pilot power setting at max pilot
power for all the BSs, as used by Ho et al. [14], and fixed pilot power for each BS
optimized by enumeration.

The simulation model, fitness function and grammars are described in the
following sections.

3.1 Femtocell simulation model

A realistic simulation is needed in order to evaluate a pilot power control algorithm
which would be applicable in hardware. The simulation consists of the physical
environment with user movement, the load model and the radio propagation model.
All these components were varied in the test scenarios. The same population
movement model was used, but hot-spots and way points were configured
differently for some scenarios.

In the user mobility and traffic model the users move to predefined way points on
the map at a speed of 1 ms™', spending some time in a way point before moving to
another way point. At the start users are randomly placed, in total 50 (low), 200
(medium) and 400 (high) users are modelled. Each user has a voice traffic model
which produces 0.2 Erlangs of traffic. When evaluating an algorithm, the scenario
simulates 24 h of operation time, with the algorithm adjusting the femtocell pilot
power after collecting statistics for 30 min. The algorithm start time for each
femtocell is randomly dithered to avoid synchronous updates. Each femtocell’s

@ Springer

Genet Program Evolvable Mach (2013) 14:65-93 77

initial pilot channel power is set to po = —30 dBm, —50 < p < 11. In order to
keep the users connected to the femtocell network for as long as possible, femtocell
to macrocell handovers are triggered when a user terminal’s pilot channel receive
power from the best femtocell goes below —100 dBm. Outside cell users move
east—west and west—east on the north and south edges in the scenario. When the
signal leak is strong enough the outside user will request a handover to the femtocell
and a rejection is recorded. The outside user will try to connect once to each leaking
femtocell, regardless of the leakage strength.

Office (012, 08, O4) The simulation scenario office environment is shown in
Fig. 1. There are versions with 12, 8 and 4 femtocells for the different
configurations, e.g. the training scenario in the office environment with 12 BSs
and medium load is denoted O12m. The coordinates in O4 have been slightly
altered compared to O8 and O12 by moving the BSs closer to the walls.

The building is an office with cubicles, closed meeting rooms, and toilets. The
exterior of the building is mainly glass and the interior is mostly light interior walls
and cubicle partitions. There are four stairwells at each corner with thick concrete
walls. The locations of the femtocells are spaced fairly evenly apart, and done
without any cell surveying. This reflects a plug-and-play deployment where some
heuristic has been used in the deployment, i.e. the femtocells are not placed too
closely to each other. This plug-and-play femtocell deployment is realistic, but can
be sub-optimal due to the lack of exhaustive cell planning. In the simulation each
femtocell has a maximum capacity of eight voice calls, and a macrocell underlay
coverage is assumed. A path loss map is generated for the 450 m x 500 m area for
each femtocell. For shorter distances the path loss (dB) at d (m) from a BS is
modelled as 38.5 + 20logo(d) + PL, 4y, With a smooth transition to
28 4 35log;o(d) + PL,,us in all other cases. In addition, a correlated shadow
fading with a standard deviation of 8 dB and spatial correlation of r(x) = e for a
distance of x in meters is considered. The assumed transmission losses for the
explicit building model are a function of the incident angle. The model is partly
developed by the authors and is proprietary to Bell labs.

Outdoor (Od4) There are no walls. The four BSs have the same location as in O4.

Cross (C5) There are five femtocells and the walls, way points and hot-spots are
different. The way points are set to explicitly model the need for load balancing.
Moreover, there is a different path loss model where signals bounce off the walls.

3.2 Grammatical evolution setup

The aim is to generate an algorithm that increases or decreases the pilot power of the
BS given some inputs. The inputs are load, mobility, leakage and pilot power. Three
different grammars are used, the CG uses conditional statements, while the SRG
uses mathematical functions and constants and the SRCG uses both.

3.2.1 GE grammars

The GE setup emphasises the benefit of using a grammatical representation. It is
straightforward to combine the CG and SRG to create a hybrid SRCG. The aim with

@ Springer

78 Genet Program Evolvable Mach (2013) 14:65-93

<CODE> ::= value = <expr_0>;

<expr_0> ::= (<expr><op><expr>) | <pre-op>

<expr> ::= (<expr><op><expr>) | <var> | <pre-op> | <pre-op_step> | <pre-op_monotone>

<op> ::=+ | = | x| ./ | .7

<pre-op> ::= sin(real (<expr>)) \ cos (real (<expr>)) | log(real (<expr>)) | tan(real(<expr>))
<pre-op_monotone> ::= exp(real (<expr>)) \ uminus (<expr>)

<pre-op_step> ::= atan(<expr>) \ tanh (<expr>) | sigmoid (<expr>)

<var> ::= my_power | my_load | my_handover | my_macro_requests | <cnst>

<cnst> ::= <nr><nr> | <nr> | O.<nr><nr> | 0.<nr>

<nr> ::=1 |2 |3 |4 |56 7819

Fig. 6 Symbolic Regression Statement Grammar (SRG) creates variable length solutions, <expr> is
recursive in several steps

the SRCG is to use the domain knowledge of the conditional approach with the
unconstrained expressions of symbolic regression.

Conditional statement grammar (CG) We construct a grammar using conditional
statements aiming to replicate the GP behaviour in Table 1. The thresholds and the
size of the increase and decrease of pilot power need to be predetermined, here the
change is 1 dBm. The values were assigned in discussion with engineers using
femtocell networks and a brief parameter sweep. Initial experiments with load were
made to determine the threshold value and shape. The aim is to avoid overload or
underutilization of the BS. The values of the thresholds are MT = 0, LeT = 0 and
LT = 7, all thresholds are only binary, indicating gap or no gap, leakage or no
leakage, and overload or no overload. A grammar that generates an algorithm which
produces the states in Table 2 with unlimited pilot power changes, due to the
recursive <function>, is shown in Fig. 5.

Symbolic regression statement grammar (SRG) Many functions were used to
capture different behaviours. The terminals were chosen in order to give a large and
explicitly unbiased search space, relying on evolution to determine the usefulness of
the terminals. The <pre-op_step> is introduced to allow a step-like behaviour.
Moreover, in order to avoid imaginary numbers, only the real valued part of the
function values is used. We bias slightly towards non-monotonic solutions by using
<expr_0> and also reduce the probability of using the recursive <exp>. The
grammar adopted in this study is in MATLAB syntax and is presented in Fig. 6. The
unary minus is uminus and non-recursive constant creation was used [8, 23].

Symbolic regression and conditional statement grammar (SRCG) To create the
SRCG we combine the grammars in Figs. 5 and 6. The multiple <var> productions
keep the grammar from “exploding” (see Harper [12]). The grammar has a bias
towards expression using inputs compared to constants. It creates equations of the
same form as SRG and uses predefined thresholds as in CG. Only the differences in
CG and SRG are shown in Fig. 7.

Grammar differences The theoretical length of the possible solution strings is the
same for all grammars and since all grammars are recursive, it is infinite. However,
each setup has an explicit solution length limit. Furthermore, SRG and SRCG have
an implicit limit imposed by the max call-stack depth in the MATLAB environment.

On the contrary, the space of possible pilot power values when evaluating the
solution is different. The pilot power values for SRGs are real valued, p € R, and
accordingly infinite. In contrast, the pilot power values for CG are finite or
countably infinite since the pilot power changes are discrete, p € Z. This is reflected

@ Springer

Genet Program Evolvable Mach (2013) 14:65-93 79

<function> ::= my_power = <expr_0>;
<expr_0> ::= (<expr><op><expr>) | <pre-op>
<expr> :: <expr><op><expr>) | <var> | <var> | <var> | <var>

=
| <pre-op> | <pre-op_step> | <pre-op_monotone>

Fig. 7 Symbolic regression and conditional statement grammar (SRCG). Only the differences between
the CG (Fig. 5) and SRG (Fig. 6) are shown

in the parameters that need to be decided in the conditional grammar. Moreover,
there is an explicit bias to changes of size one in the CG compared to the SRG.
The number of symbols in SRG is larger than in CG. In addition, SRG can
construct solutions which are functions, dependent on multiple input thresholds. The
size of the search space of possible solutions is greater. The SRCG has the most
symbols and can generate the same equations as SRG, but generates multiple
expansions, one for each state, hence the solutions are expected to be longer.

3.2.2 Random sampling and enumeration of static pilot power

We use random sampling and enumeration of fixed pilot power (SE) for analysing
the behaviour of the simulation and creating optimized man made solutions. In order
to make enumeration feasible, high fitness ranges known from when the pilot power
is the same for all BSs are picked. The best fixed pilot power values are shown in
Table 3. We also randomly sampled from the entire pilot power range. One problem
with this approach is that the positioning of the cells needs to be maintained when
deployed. Furthermore, random search and enumerating solutions cannot generalise
to a different number of femtocells.

3.2.3 GE setup

A modified version of GE was used, based on GEM (http://ncra.ucd.ie/GEM/
GEM.tgz). Nodal mutation is used [3], the nodal mutation operator has a superior
property of locality compared to the standard GE mutation operator. In addition,
nodal mutation is only applied to individuals that have not undergone crossover.

NSGA-II is used to rank the individuals according to domination, a solution is
dominated if there is another solution which is better for all the fitness objectives.
The top individuals from each front are used until the population is filled (see Deb
et al. [7]). When reinitializing individuals the depth is picked from the distribution
of depths on the first front. This is both an attempt to restrict bloat and search depths
containing good solutions. In addition, all evaluated solutions are added to a tabu
list. If a solution is already on the tabu list it will also be reinitialized. Furthermore,
monotone solutions are not allowed. In order to reduce fitness function evaluations,
CG and SRCG have a simplified measure of monotonicity compared to the SRG.
The possible states of the inputs are passed into the evolved solution to see if it
always increases, decreases or maintains its pilot power level. Finally, the input
values in the grammars are then normalized.

To find extreme solutions and those which have uniform fitness components
we use the index from Jain et al. [18], where a score of one is uniform and zero is

@ Springer

http://ncra.ucd.ie/GEM/GEM.tgz
http://ncra.ucd.ie/GEM/GEM.tgz

80 Genet Program Evolvable Mach (2013) 14:65-93

Table 3 Best enumerated static solutions for different scenarios

Scenario BS pilot powers

0o12 [-35, —35, —35, —25, —-25, —35, —35, —35, —35, 35, —-35, -25]
08 [—40, —40, —28, —28, —36, —36, —36, —28]

04 [0, —10, =15, —=5]

0Od4 [-35, =30, —35, —35]

C5 [—26, —26, —26, —26, —26]

— (Z:’:ox")z

non-uniform. ¢(x) S
=07

multiplying it with its score, h(x), where h(x) = 1 — ¢° fix) and f(x) = e
(1 - h(x)” 4). The implementation also allows for very skewed fitnesses, with the
extreme solutions unpenalised when one of the objectives is zero, i(x) = 1 if x = 0.

The evolutionary parameter settings for the GE algorithm are presented in
Table 4. Due to the long run time to evaluate each individual algorithm in the
femtocell scenario, the number of fitness evaluations was limited. CG has a
population size of 40 and has a max of 20 generations, since the solution space is
significantly smaller than the SRGs. For SRCG the population size is 100 and has a
max of 20 generations, enough to indicate the capabilities of the SRCG based
search.

We penalise the fitness function, f{x) to get f(x) by
—h(x)

3.3 Fitness function

The fitness function is used by GE to determine the quality of the generated
solutions when applied to the femtocell network. The functions are mobility, load
and leakage. The duration of the simulation is 7, the number of femtocells is N, and
x is a vector of femtocells. Statistics of mobility, load and leakage are collected over
a specified update period. These statistics are then used as inputs into the algorithm,
and for calculating the fitness. The fitness function is a vector comprised of the
fitness for each function, f = [fj;(M(h,r)),f1(L(x)), fr.(Le(y))].

Engineering measures is the performance of a femtocell reported to an operator.
The fitness function values only make sense to an EC practitioner. Instead, the
engineering measures are used to decide if an algorithm is good enough. The
measure which indicates load is the total demand served by the femtocell, in Erlangs
(DSE), which should be maximized. The measure for leakage is the average number
of mobility requests from a macrocell user per pass (MUR), which should be
minimized. Mobility is measured by the average number of femtocell-macrocell
handovers per user per hour (MPP), which should be minimized.

Mobility fitness is based on the number of handovers and relocations of users,
derived from the femtocells’ statistics of the mobility events involving femtocell
users. During the simulation, the mobility events between femtocells and macrocells
are recorded during an update period. The number of femtocell handovers is h,
macrocell handovers is h™ | femtocell relocations are r, and macrocell relocations is

™. Mobility M is composed of MM (h,r) =" SN wM 4577 SV M and

i=1"1it

@ Springer

Genet Program Evolvable Mach (2013) 14:65-93 81

Table 4 Parameter settings for

the experiments. Values which Parameter Value
are different for the grammars Max wraps)
are labelled, e.g. population size
for CG was 40, denoted by Codon size 128
CG:40 Population size 100, CG:40
Initialisation Ramped half-and-half, depth 8
Generations 20, SRG:50
Tournament size 2
Crossover probability 0.5
Mutation 1 event per individual
Parsimony pressure True
Extended nodal probability 0.5
Extended nodal tries 1000
Max used input SRG:400, CG:100, SRCG:1000
Runs SRG:12, CG:19, SRCG:19

My(hyr) = MY (h,r) + S S i+ 00 oY ra. Mobility is the ratio of
update periods where a mobility event occurs to the total number of update
periods. It is maximised when there are no handovers or relocations to the macrocell
underlay, and is 0 when all femtocell user handovers are to or from macrocells. The
average mobility is 1 if there are no handovers or relocations, otherwise it is

i B { MY (h,r)/My(h,r) if M,(h,r) >0
(h,r) = :

1 if My(h,r)=0
The mobility fitness is calculated as fijy = M(h,r).

Load fitness is based on the ratio of the average number of times the load has
been greater than a load threshold, LT, and the total load, including the macrocell. If
the mean cell load during an update period exceeds this threshold, L is equal to one,
else it is equal to zero. Cell load is 0 <x <7 in this scenario, LT = 7, just below the
capacity of the femtocell, as the aim is to prevent the femtocell from operating at its
capacity. Total load is the load on the femtocells and the load on the macrocell, Ly,.

LT if x>LT
L(X){x if x<LT

Average load is L(x) = 31y S| L(x;1)/Lu(x,) and the fitness function f, = L(x).

Leakage fitness is the number of outside users trying to use the femtocell.
Leakage increases the number of unwanted users captured, which increases the
signalling load to the core network. The leakage, Le is the ratio of blocked calls,
y and the maximum number of macrocell users, Cyp. 0 <y < Cpy, Le(y) = va
1 — y/ Cyp. The fitness function for leakage is f7, = Le(y).

This section has described the femtocell simulation, GE grammars, GE setup and
fitness functions. The following section presents the results from the simulations

using different grammars.

@ Springer

82 Genet Program Evolvable Mach (2013) 14:65-93

Table 5 Raw fitness for all the solutions averaged over the objectives and load types

Scenario GP1 CGl SRGl1 SRG2 SRCGI S SE

012 0.96 0.93 0.95 0.92 0.79 0.68 0.90
08 0.91 0.89 0.92 0.90 0.74 0.64 0.91
04 0.64 0.64 0.67 0.67 0.55 0.68 0.88
0Od4 0.91 0.82 0.91 0.91 0.70 0.58 0.89
G5 0.93 0.89 0.92 0.92 0.69 0.60 0.93
Total 0.87 0.84 0.87 0.86 0.70 0.63 0.90

Total shows the averaged fitness on all scenarios

4 Results

We investigate different grammars used to generate controls for the pilot power in
femtocell networks. The following results compare the test performance of the best
solution from each grammar on the training set: CG1 (Fig. 10), SRG2 (Fig. 12),
SRCG1 (Fig. 15), the static solution (S) of max power and enumerated static
solutions (SE) in Table 5. In addition, the solutions for SRG on a larger training set,
SRG1 (Fig. 13) and GP1 (Fig. 3) are inspected.

The results show that CG uses the fewest fitness evaluations to get relatively
good solutions, as expected, since it has the smallest language and finite pilot power
space. With SRG it is possible to fit the simulation in one expression without using
much domain knowledge. Moreover, SRCG needs more fitness evaluations, since
the search space is continuous and it needs to evolve even larger solutions than
SRG. In addition, in SRCG each state has fewer samples than SRG to determine the
fitness of the equation. Finally, a fixed length representation can be used with a
reasonably sized search space and a reasonable discretization.

However, one issue is how to bias the domain knowledge and the search without
over-fitting, and the SRG has the least explicit bias. In addition, the three grammars
allow us to verify if the discretization is reasonable and to check that the state
divisions are sensible. We can also see the effect of explicit bias in the form of
domain knowledge.

4.1 Test scenarios

The GP1 solution compared to the SRG1 solution shows a small difference in fitness
when averaging the values over all test scenarios. These two solutions were evolved
using all the load types for O12 as training data. SRG1 has the lowest variance of
the evolved solutions. The pilot power trace for each BS for some scenarios with
medium load for SRG1 is shown in Fig. 8, the plot shows how the BSs slowly
increase the pilot power and then it drops.

In Table 3 the raw fitness is shown for all the solutions. It can be seen that the
fitness of the static solutions S and SE is the best on O4. Thus, static enumeration
and random search perform better than the evolved solutions on this scenario,
however, these solutions are not generalisable in the same way as the evolved

@ Springer

Genet Program Evolvable Mach (2013) 14:65-93 83

8. 28
8. Lt -2 |
-3 H = 0.
g 2 //// i /// %, H
E . //7 % =1
| (S £ Gl - o
o | : &, i i / i
1 s, ._ " R,
0. -3 J ;e ¥ // .
§ ezt ~ TRy L o
P — 1000 S 000
— 0 - —
— 4 Py e 40
1 - S Time (i) Base Station (B3) "_--_.-c--' e Time ()
(a) (b)

Fig. 8 SRGI pilot power trace for each BS during the simulation on two different scenarios for load type
medium. The x axis shows the time in the simulation, the y axis shows the BSs and the z axis shows the
pilot power. The pilot power traces show how the BSs slowly increase the pilot power and then it drops.
a 08, b 0d4

solutions. The poor performance of the evolved solutions on this scenario is because
the femtocells are discouraged from leaking and there are few femtocells. The low
leakage can be seen by the MUR values for all solutions in Table 8, being lower on
04 than SE. Among the evolved solutions SRG1 handles the loss of BSs the best.
SRCGI1 and S are significantly lower (¢« = 0.05) according to Wilcoxon rank sum
test on the unadjusted fitness of the scenarios. For all the other solutions there are no
significant differences. SRCG1 performance drops the most in the high load for all
scenarios. The engineering measures for the grammars over the chosen solutions on
the test and training scenarios are shown in Tables 6, 7 and 8.

The following sub sections will study the different grammars separately, showing
the average best fitness over fitness evaluations. The average fitness plots filter out
the extreme solutions, i.e. setting pilot power very high. It is possible for the fitness
to drop since we are using the average of the average fitness objectives on the first
front. The first front contains the solutions which are not dominated by any of the
fitness objectives.

4.2 CG solution

The average fitness and size of the non-extreme solutions on the first front are
shown in Fig. 9. We can see that the average fitness is quite high to begin with.
Within quite a small number of fitness evaluations it increases even further. The
variance of the fitness also decreases as the search progresses. Further evidence that
solutions with few pilot power changes have good fitness can be seen in the size
plot. The recursive <function> is the rule that changes the solutions’ size, and the
terminals chosen are power changes, consequently shorter solutions have fewer
power changes. Thus, the CG representation needs relatively few fitness evaluations
to yield quite high fitness on the training scenario.

At generation five solution CG1 was found (see Fig. 10), the solution can be
reduced from 20 pilot power changing statements to 11. The CG1 solution changes
the pilot power by +1 dBm only when there is a gap and no leakage and overload.

@ Springer

84 Genet Program Evolvable Mach (2013) 14:65-93

Table 6 Engineering measures for the static baseline of 11 dBm on all scenarios

Scenario Load S SE

DSE MUR MPP DSE MUR MPP
012 1 7.51 8.75 0.00 7.59 1.20 0.11
012 m 19.08 8.75 0.00 19.30 1.05 0.20
012 h 66.89 8.74 0.00 67.23 1.05 0.22
08 1 7.50 9.75 0.00 7.56 0.00 0.22
08 m 18.96 9.74 0.00 19.25 0.00 0.44
08 h 59.04 9.74 0.00 61.95 0.00 0.50
04 1 7.39 7.00 0.00 7.48 0.91 0.00
04 m 17.94 7.00 0.00 17.80 0.91 0.00
04 h 31.62 6.99 0.00 31.50 1.01 0.00
0d4 1 7.27 10.25 0.00 7.28 0.50 0.02
0d4 m 17.72 10.24 0.00 17.85 0.50 0.03
0d4 h 31.55 10.24 0.00 31.64 0.50 0.04
C5 1 7.77 11.99 0.00 7.77 0.00 0.01
C5 m 18.24 11.99 0.00 18.27 0.00 0.01
C5 h 38.09 11.99 0.00 38.16 0.00 0.01

DSE, MUR and MPP are explained in Sect. 3.3

Table 7 Engineering measures for only conditional and integer solutions on all scenarios

Scenario Load GP1 CGl1

DSE MUR MPP DSE MUR MPP
012 1 7.54 0.10 0.07 7.57 0.13 0.12
012 m 19.23 0.17 0.08 19.38 0.24 0.16
012 h 67.96 0.07 0.04 74.09 0.48 0.89
08 1 7.55 0.29 0.27 7.57 0.30 0.31
08 m 19.16 0.63 0.43 19.28 0.65 0.49
08 h 63.64 0.11 0.35 62.41 0.26 0.93
04 1 7.53 1.02 1.80 7.53 1.01 1.82
04 m 18.18 0.97 3.19 18.16 0.97 3.19
04 h 38.04 0.17 3.36 38.18 0.18 3.28
0d4 1 7.26 0.02 0.00 7.42 0.13 0.17
0d4 m 17.73 0.02 0.00 17.97 0.30 0.42
0d4 h 31.56 0.01 0.00 37.01 0.01 2.06
C5 1 7.76 0.00 0.01 7.76 0.00 0.02
C5 m 18.22 0.05 0.01 18.65 0.06 0.10
C5 h 38.57 0.00 0.02 46.27 0.00 1.39

DSE, MUR and MPP are explained in Sect. 3.3

@ Springer

Genet Program Evolvable Mach (2013) 14:65-93 85

Table 8 Engineering measures for symbolic regression solutions on all scenarios

Scenario Load SRG1 SRG2 SRCGI1

DSE MUR MPP DSE MUR MPP DSE MUR MPP

012 1 752 0.18 0.05 7.51 1.46 0.08 7.61 1.30 1.78
012 m 19.14 0.16 0.06 19.11 0.25 0.13 19.36 1.40 1.45
012 h 68.73 0.15 0.07 69.28 0.11 0.23 13.29 1.99 0.09
08 1 752 0.13 0.13 751 0.64 0.14 7.60 1.30 223
08 m 19.07 0.11 0.23 19.03 0.17 0.30 19.06 1.40 2.19
08 h 63.74 0.12 0.27 60.09 0.07 0.41 4754 1.30 5.85
04 1 752 0.07 1.44 752 0.10 1.41 758 034 3.46
04 m 18.24 0.07 2.81 18.26 0.07 2.80 16.84 0.25 5.54
04 h 38.33 0.07 3.26 38.17 0.04 3.24 2668 0.14 7.30
0Od4 1 727 0.07 0.00 727 0.15 0.00 748 0.36 191
0Od4 m 17.75 0.08 0.00 17.72 0.09 0.00 18.27 0.34 3.71
0Od4 h 31.60 0.09 0.00 31.53 0.03 0.00 23.61 0.19 8.52
(03] 1 7.77 0.00 0.04 7.77 0.00 0.08 7.77 0.00 1.36
(03] m 18.43 0.00 0.05 18.44 0.00 0.09 18.75 0.00 2.58
(63 h 39.59 0.00 0.06 40.69 0.00 0.09 32.81 0.00 8.83

DSE, MUR and MPP are explained in Sect. 3.3

The pilot power is changed by —1 dBm when there are leaks, but there is neither gap
nor overload. When there are no gaps and overload but leakage, then the pilot power
is changed by —2 dBm. It is a very readable solution, although a constant creation
grammar could be used to increase the readability further, without reducing the
expressiveness.

4.3 SRG solution

The average fitness and size of the non-extreme solutions on the first front are
shown in Fig. 11. The early fitness values are around 0.7 and then increase to over
0.85. The number of fitness evaluations required for SRG in comparison to CG is
almost 10 times more at the final evaluation, whereas the fitness averages are lower.
On average there are 2,728 extra fitness evaluations for a SRG run, i.e. more than 50
% of the fitness evaluations are resulting in monotone functions. Therefore, an
approximation of monotonicity, e.g. interval arithmetic, could reduce the number of
fitness evaluations.

The best solution was SRG2 (see Fig. 12), found in generation 34, which
contains all the inputs: mobility, load, leakage and pilot power.

4.4 Generalisation using SRG
We ran four runs of SRG testing for improved generalisation with the low, medium

and high load scenario for the O12 scenario for training. We used the settings in
Table 4 for SRG, except that we only ran for 30 generations. The generalization

@ Springer

86 Genet Program Evolvable Mach (2013) 14:65-93

Average Fitness for Average Non Extreme Solutions

on Front 1 for CG - Pop 40, Gen 20 Average Used Codons and Chromosome size for Average Non
0.96 6gxtreme Solutions on Front 1 for CG — Pop 40, Gen 20
0.94 ——Used Codons
0.92 55 hromsomse
0.9
2 50
¥ 0.88
£ 2
i 086 D 45
0.84
0.82 40
0.8
35
0.78
0.76 30
100 200 300 400 500 600 700 800 100 200 300 400 500 600 700 800
Fitness Evaluations Fitness Evaluations
(a) (b)

Fig. 9 Adjusted fitness performance and size for CG runs. a Fitness, b Size

if gt (my_handover, MT)
if gt(my_load, LT)
if gt (my_macro_requests, LeT)
my_power = my_power = decrease_power (my_power) ;
else
my_power = my_power = do_nothing (my_power) ;
else if gt (my_macro_requests, LeT)
my_power = decrease_power (my_power) ;
else
my_power = increase_power (my_power) ;
else if gt(my_load, LT)
if gt (my_macro_requests, LeT)
my_power = do_nothing (my_power) ;
else
my_power = decrease_power (my_power) ;my_power = decrease_power (my_power) ;
else if gt (my_macro_requests, LeT)
my_power = decrease_power (my_power) ;
else
my_power = do_nothing(my_power) ;

Fig. 10 Solution CGl, simplified

requires even more extra fitness evaluations since the solution have to be non-
monotone on all the load scenarios. The additional fitness evaluations are 2,631,
which is almost 85 % of the number of fitness evaluations performed during a run.
The average fitness over the load scenarios is adjusted.

The SRGI solution (see Fig. 13), is only dependent on the leakage, which is
transformed by several trigonometric functions, a sigmoid function and then
multiplied by a constant. The power traces in Fig. 8 show that the pilot power often
increases periodically until leakage reaches such a level that it is reduced again. The
BS positions in each scenario show that the pilot power outputs are similar since the
leakage is governing the power. In the Od4 scenario the effect of the walls is seen by
the reduction in pilot power of the femtocells.

The solution ignores the load component, which is only one of three objectives.
When there is not too much leakage in the simulation then the coverage is often
acceptable. It is an unwanted simplification of the three objectives when there is a

@ Springer

Genet Program Evolvable Mach (2013) 14:65-93 87

Average Fitness for Average Non Extreme Solutions
on Front 1 for SRG - Pop 100, Gen 50 Average Used Codons and Chromosome size for Average Non
Extreme Solutions on Front 1 for SRG — Pop 100, Gen 50

70
—— Used Codons
—— Chromsomse

0.95

09

0.85 - 4 60 [

08} 50

[
O 075
£ " 8 4ol
L o7 o
30

0.65

0.6}) 20

0.55 10

500 1000 1500 2000 2500 3000 3500 4000 4500 5000 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
Fitness Evaluations Fitness Evaluations
(a) (b)

Fig. 11 Adjusted fitness performance and size for SRG runs. a Fitness, b Size

((cos(real (exp(real (tanh(my_load)))))-(tan(real (my_load)) .=
(exp (real (my_power)) . ((94+exp (real (my_handover))) ./
exp(real ((2-my_power))))))) .*tan(real (my_macro_requests)));

Fig. 12 Solution SRG2

tan(real((cos(real (sigmoid(cos (real (atan(my_macro_requests)))))).
tan(real (atan(uminus (exp(real(5))))))))).*log(real(tanh(3)))

Fig. 13 Solution SRG1

correlation between two objectives which allows the solution to reduce the impact
of one. With the only input being leakage it is not possible for some BSs to cover
gaps when femtocells are removed, since it would increase the leakage.

4.5 SRCG solution

The average fitness and size of the non-extreme solutions on the first front are
shown in Fig. 14. The fitness has not flattened out as much as for CG and SRG,
showing that the search has not converged. From the size plot it can be seen that the
SRCG solutions are larger than the SRG solutions.

At generation 19 the best solution, SRCG1 was found (see Fig. 15). The solution
uses more codons than the size of the chromosome and therefore it wraps around.
The effect of the wrapping can be seen in the repetition of the expressions. A more
refined way of handling modules and repetition might improve the results.

The results showed that the best fitness and engineering performances for the
grammars are similar over both test and training scenarios. Moreover, the evolved
solutions’ performances is sometimes better than the simple man made approach of
using fixed pilot power for each BS. SRG and SRCG require more fitness
evaluations than CG, but CG requires more domain knowledge to construct. The
next section further discusses the results.

@ Springer

88 Genet Program Evolvable Mach (2013) 14:65-93

Average Fitness for Average Non Extreme Solutions

on Front 1 for SRCG - Pop 100, Gen 20 Average Used Codons and Chromosome size for Average Non
0.75 T T T T T

Extreme Solutions on Front 1 for SRCG - Pop 100, Gen 20
115
0.7 1 110 | | — Used Codons
105 —— Chromsomse
0.65 J
[}
3
c 08 -g
[[
0.55
05
0.45 L L L L L L L L L
200 400 600 800 1000 1200 1400 1600 1800 2000 200 400 600 800 1000 1200 1400 1600 1800 2000
Fitness Evaluations Fitness Evaluations
(@)

Fig. 14 Adjusted fitness performance and size for SRCG runs. a Fitness, b Size

5 Discussion

The results of the grammar comparisons raised several issues. First, the conditional
functions and discrete pilot power changes are what a human engineer would
anticipate as a sensible method to altering the femtocells’ pilot power. The
engineers find the more compact solutions easier to deal with and understand. On
the other hand, the SRG setup gives the search method complete freedom to find any
solution, and one of the tricks is to provide functions that allow the expression to
capture the required pattern. Therefore, it might be more interesting to search for
SRG and SRCG solutions.

Another issue with CG is that there are multiple good solutions in the
solution space, i.e. a set of solutions with a fitness higher than a constant,
g={g:f(g) > C,g €S} One important issue to consider is what the ratio
of good solutions is when the search space increases. Most CG solutions either do
nothing or change pilot power by one, since the increments and decrements can
cancel each other out. When the solution sizes are increasing, the number of pilot
power changes by one grows fastest of all the changes. Therefore, if there are good
solutions which require only single pilot power changes, the probability of generating
them does not decrease too rapidly. The SRG and SRCG have no such bias.

From the random sampling of the scenarios it can be seen that the mobility
fitness value is the most skewed, but reaches the entire fitness range with some
outliers. The leakage is the most uniformly distributed value. Increasing the
number of BSs lowers the median leakage as expected, since there are more
stations that can leak. If the pilot power is kept roughly in the range [-40, —20]
then the more BSs the higher the mobility and load, since there are more stations
that can cover the area as well as avoid overload. When comparing the office
environment with the Od4 enumeration the load range is larger for open spaces.
This can be explained by the walls blocking the signal, which keep cells from
being overloaded.

@ Springer

Genet Program Evolvable Mach (2013) 14:65-93 89

if gt (my_handover, MT)
if gt(my_load, LT)
if gt (my_macro_requests, LeT)
my_power = sin(real (my_power)) ;
else
my_power = log(real(cos(real (my_macro_requests))));
else if gt (my_macro_requests, LeT)
my_power = (cos(real (exp(real (sin(real (my_handover)))))) .*my_macro_requests) ;
else
my_power = tan(real (sigmoid(tanh(log(real (my_macro_requests))))));
else if gt(my_load, LT)
if gt(my_macro_requests, LeT)
my_power = (my_power./atan((my_power.*my_power))) ;
else
my_power = log(real(cos(real (my_macro_requests))));
else if gt (my_macro_requests, LeT)
my_power = (cos(real (exp(real(sin(real (my_handover)))))) .*my_macro_requests) ;
else
my_power = tan(real (sigmoid(tanh(log(real (my_macro_requests))))));

Fig. 15 Solution SRCGI
5.1 Load

There is an inherent difficulty in distributed load balancing. For example, in a
scenario when a BS is overloaded and it reduces its pilot power, a gap can be
created. A neighbouring BS needs to detect and then increase its pilot power to
cover this gap. The problem is that the BS might still be overloaded, in addition to
possible fitness penalties from lack of coverage during the time that the coverage
gap exists. Therefore, evolution might find it more beneficial to ignore overloading,
in order to avoid additional fitness penalties.

Furthermore, load can also be difficult to balance if there are no BSs which are
capable of handling an increased load. Another reason for the difficulty of detecting
overloaded states is the threshold of the load. The load fitness function creates a
very sharp step for the fitness. The other states are entered if the input values are >0,
while the load is >7, o, oy, 01 = 0. The input values are averaged over the update
time period and are always >0. Mobility and leakage will always be greater than
their threshold of zero if an event occurs. In contrast, the load threshold requires the
load to be high most of the time.

5.2 States

We can trace the states of the algorithm in the BS, described in Sect. 2.3.2, by
recording the transition between states. If we correlate the states with the conditions
in the grammar we can gain information about the algorithm, otherwise, we only
gather information concerning the simulation. By tracing the states we gain
information regarding the input that the algorithm reacts to. The state trace helps
analysing the contents of the simulation as well as explaining nonsensical
statements in the algorithm. The “junk” in the algorithm is there because the
state is never reached. This is unwanted and will affect the robustness of the
algorithm, since when a new scenario invokes an unseen state

Figure 16 shows the state trace for some solutions on O12m, with state numbers
as in Table 2. The most desirable state is eight (8) and the least desirable is one

@ Springer

90 Genet Program Evolvable Mach (2013) 14:65-93

GP1, 12 BS Medium Load, Seed = 0 CG1, 12 BS Medium Load, Seed = 0

(@ (b)

SRCGI, 12 BS Medium Load, Seed = 0

(e)

Fig. 16 State trace for solutions on O12m, with state numbers as in Table 2. M, L, Le indicate if the input
is above a threshold. a GP1, b CGl, ¢ SRGI1, d SRG2, e SRCG1

@ Springer

Genet Program Evolvable Mach (2013) 14:65-93 91

(1:M, L, Le), which is hardly ever reach by any algorithm. The solutions all have
different behaviours, e.g. GP1 has the fewest gaps, whereas GP1, SRG2 and SRCG1
do not reach all the states. However, GP1 was evolved using all load types which
indicates that it is difficult to balance the load in O12. As discussed in Sect. 5.1 from
an overloaded state (6:L) a gap (4:M) is reached, but a gap and overload (2:M, L) are
never reached directly. The analysis shows that each algorithm behaves differently.

6 Conclusions and future work

We performed an initial study of grammars used in grammatical GP which create
algorithms that control the BS pilot power in a femtocell network. The overall goal
is to create a continuous online evolution of the femtocell pilot power control
algorithm. We compared the performance of the different grammars and then
analyzed the femtocell simulation model.

The grammars consisted of conditional statements, mathematical functions, as in
symbolic regression and a combination of symbolic regression and conditional
statements. The conditional grammar is a simplification of a GP representation
previously used, but with a smaller solution space and significant improvement in
human readability, which is demanded by the engineers. The solutions regulate the
pilot power with discrete or continuous values. We also performed limited
enumeration of femtocell pilot power settings and random sampling to gain further
information about our femtocell network simulation model

The results showed that the best fitness and engineering performances for the
grammars are similar over both test and training scenarios. In addition, the evolved
solutions’ performance is sometimes better than the simple man made approach of
using fixed pilot power for each base station. The symbolic regression statement
grammars require more configuration of the evolutionary algorithm and more fitness
evaluations. But to construct the pure conditional statement grammar more domain
knowledge is required.

Different grammars have different languages and a different bias to power
changes. The language of CG creates solutions which perform well with the least
fitness evaluations. The same language as CG, but using GP instead, generates
solutions that perform equally well. The language for SRG generates solutions that
perform as well as CG. SRCG has lower performance. It is the language with the
most terminals and here the solution sentences are the longest in order to be valid,
e.g. a SRCG solution completely identical to a SRG solution is eight times longer.
Therefore, SRCG requires more fitness evaluations than SRG, which is one reason
for its low performance. Finally, the content of the resulting femtocell algorithms
showed that the EC methods are exploiting the simplifications in the model. The
ability of EC to exploit bias in both the fitness function and the underlying model is
vital for identifying the current system and can either improve the model or the EC
method.

Future investigations will concern the use of more local search to create a hybrid
algorithm and explore promising solutions. Another hybrid version to explore is to
first find a solution which satisfies the constraints and then apply GE. There are

@ Springer

92 Genet Program Evolvable Mach (2013) 14:65-93

more scenarios to test and also possibilities to refine operations on the conditional
symbolic regression grammar. Moreover, it is possible to simplify solutions during
the run and add more domain knowledge to SRCG. The threshold values and ranges
can be explained further, e.g. use percent of load as a fitness function. In addition,
the method can be applied to other constraint satisfaction problems, for example
asset and sensor networks.

Acknowledgments This research is based upon works supported by the Science Foundation Ireland
under Grant No. 08/IN.1/11868.

References

1. E. Alba, J.F. Chicano, in Evolutionary Algorithms in Telecommunications. IEEE Mediterranean
Electrotechnical Conference (MELECON 2006), pp. 795-798. IEEE (2006)

2. L. Breiman, Statistical modeling: the two cultures. Statist. Sci. 16(3), 199-215 (2001)

3. J. Byrne, M. O’Neill, J. McDermott, A. Brabazon, An analysis of the behaviour of mutation in
grammatical evolution. Genet. Program. 6021, 14-25 (2010)

4. V. Chandrasekhar, J. Andrews, A. Gatherer, Femtocell networks: a survey. IEEE Commun. Mag.
46(9), 59-67 (2008)

5. H. Claussen, F. Pivit, L.T.W. Ho, Self-optimization of femtocell coverage to minimize the increase in
core network mobility signalling. Bell Labs Tech. J. 14(2), 155-183 (2009)

6. JM. Daida, D.S. Ampy, M. Ratanasavetavadhana, H. Li, O.A. Chaudhri, in Challenges with
Verification, Repeatability, and Meaningful Comparison in Genetic Programming: Gibson’s
Magic. GECCO, vol. 2, pp. 1851-1858. Citeseer (1999)

7. K. Deb, A. Pratap, S. Agarwal, T. Meyarivan, A fast and elitist multiobjective genetic algorithm:
NSGA-II. IEEE Trans. Evol. Comput. 6(2), 182—-197 (2002)

8. I. Dempsey, M. O’Neill, A. Brabazon, in Grammatical Constant Creation, ed. by D. Kalyanmoy
et al. Genetic and Evolutionary Computation—GECCO-2004, part II, vol. 3103. Lecture Notes in
Computer Science (Springer, Seattle, 2004), pp. 447-458

9. I. Dempsey, M. O’Neill, A. Brabazon, Foundations in Grammatical Evolution for Dynamic
Environments (Springer, Berlin, 2009)

10. D. Fagen, P.A. Vicharelli, J. Weitzen, Automated wireless coverage optimization with controlled
overlap. IEEE Trans. Veh. Technol. 57(4), 2395-2403 (2008)

11. S. Forrest, T.V. Nguyen, W. Weimer, C. Le Goues, A Genetic Programming Approach to Automated
Software Repair (ACM, New York, NY, 2009), pp. 947-954

12. H. Robin, in Ge, Explosive Grammars and the Lasting Legacy of Bad Initialisation. IEEE World
Congress on Computational Intelligence (WCCI 2010) (2010)

13. E. Hemberg, L. Ho, M. O’Neill, H. Claussen, in A Symbolic Regression Approach to Manage
Femtocell Coverage Using Grammatical Genetic Programming. GECCO, pp. 639-646. ACM (2011)

14. L. Ho, 1. Ashraf, H. Claussen, in Evolving Femtocell Coverage Optimization Algorithms Using
Genetic Programming. IEEE 20th International Symposium on Personal, Indoor and Mobile Radio
Communications, 2009, pp. 2132-2136. IEEE (2010)

15. L.T.W. Ho, H. Claussen, in Effects of User-Deployed, Co-channel Femtocells on the Call Drop
Probability in a Residential Scenario. IEEE 18th International Symposium on Personal, Indoor and
Mobile Radio Communications (PIMRC 2007), pp. 1-5. IEEE (2007)

16. N.X. Hoai, RI McKay, D. Essam, H.A. Abbass, Toward an alternative comparison between different
genetic programming systems. Genet. Program. 7, 67-77 (2004)

17.J. Hu, E. Goodman, in Wireless Access Point Configuration by Genetic Programming. 1EEE
Congress on Evolutionary Computation, pp. 1178-1184 (2004)

18. R. Jain, D.M. Chiu, W.R. Hawe, in A Quantitative Measure of Fairness and Discrimination for
Resource Allocation in Shared Computer System (Eastern Research Laboratory, Digital Equipment
Corp., Hudson, MA, 1984)

19. H.S. Jo, C. Mun, J. Moon, J.G. Yook, Self-optimized coverage coordination in femtocell networks.
IEEE Trans. Wirel. Commun. 9(10), 2977-2982 (2010)

@ Springer

Genet Program Evolvable Mach (2013) 14:65-93 93

20.

21.

22.
23.

24.

25.

26.

27.

28.

29.

30.

32.

33.

34.

35.

36.

M.F. Korns, Symbolic regression of conditional target expressions. Genet. Program. Theory Pract.
VII 211-228 (2010)

T. Lewis, N. Fanning, G. Clemo, in Enhancing IEEES802. 11 DCF Using Genetic Programming.
IEEE 63rd Vehicular Technology Conference (VTC 2006), vol. 3, pp. 1261-1265. IEEE (2006)

L. Ljung, Perspectives on system identification. Annu. Rev. Control. 34(1), 1-12 (2010)

M. O’Neill, I. Dempsey, A. Brabazon, C. Ryan, in Analysis of a Digit Concatenation Approach to
Constant Creation, vol. LNCS 2610 (Springer, Essex, UK 2003), pp. 173-182

R.I. McKay, N.X. Hoai, P.A. Whigham, Y. Shan, M. O’Neill, Grammar-based Genetic Program-
ming: a survey. Genet. Program. Evol. Mach. 11(3), 365-396 (2010)

F. Mhiri, K. Sethom Ben Reguiga, R. Bouallegue, G. Pujolle, in A Power Management Algorithm for
Green Femtocell Networks. The 10th IFIP Annual Mediterranean Ad Hoc Networking Workshop
(Med-Hoc-Net), 2011, pp. 45-49. IEEE (2011)

J. Murphy, M. O’Neill, H. Carr, Exploring grammatical evolution for horse gait optimisation. Genet.
Program. 5481, 183-194 (2009)

M. O’Neill, L. Vanneschi, S. Gustafson, W. Banzhaf, Open issues in genetic programming. Genet.
Program. Evolv. Mach. 11(3), 339-363 (2010)

M. O’Neill, C. Ryan, Automatic Generation of Caching Algorithms, ed. by K. Miettinen et al.
Evolutionary Algorithms in Engineering and Computer Science (Wiley, Finland, 1999), pp. 127-134
M. O’Neill, C. Ryan, Grammatical Evolution: Evolutionary Automatic Programming in an Arbitrary
Language (Kluwer, Norwell, 2003)

D. Perez, M. Nicolau, M. O’Neill, A. Brabazon, Evolving behaviour trees for the mario ai compe-
tition using grammatical evolution. Appl. Evol. Comput. 6624, 123-132 (2011)

. R. Poli, W.B. Langdon, S. Dignum, in On the Limiting Distribution of Program Sizes in Tree-Based

Genetic Programming. Technical Report CSM-464, Department of Computer Science, University of
Essex (2006)

G.I. Ponente, E. De Marinis, in Femtocell System Optimization by Genetic Algorithm in Clustered
Scenarios. Future Network and Mobile Summit (FutureNetw), 2011, pp. 1-9. IEEE (2011)

M. Schmidt, H. Lipson, Distilling free-form natural laws from experimental data. Science 324(5923),
81 (2009)

I. Siomina, P. Varbrand, Automated optimization of service coverage and base station antenna
configuration in umts networks. IEEE Commun. Wirel. 13(6), 16-25 (2006)

Y. Yasuda, Y. Sato, in Using Genetic Programming to Improve the Performance of Wireless LAN
Access Point Configuration, ed. by The Long Pham et al. Proceedings of the Third Asian-Pacific
Workshop on Genetic Programming, pp. 57-68. Vietnam (2006)

A. Zhou, B.-Y. Qu, H. Li, S.-Z. Zhao, P.N. Suganthan, Q. Zhang, Multiobjective evolutionary
algorithms: a survey of the state of the art. Swarm Evol. Comput. 1(1), 32-49 (2011)

@ Springer

	A comparison of grammatical genetic programming grammars for controlling femtocell network coverage
	Abstract
	Introduction
	Background
	Femtocell coverage problem description
	Previous work
	Initial analysis of the femtocell problem
	Solution simplification
	Representation simplification
	Search space analysis

	Grammatical evolution

	Experiments
	Femtocell simulation model
	Grammatical evolution setup
	GE grammars
	Random sampling and enumeration of static pilot power
	GE setup

	Fitness function

	Results
	Test scenarios
	CG solution
	SRG solution
	Generalisation using SRG
	SRCG solution
	Load
	States

	Conclusions and future work
	Acknowledgments
	References

