
A comparison of grammatical genetic programming
grammars for controlling femtocell network coverage

Erik Hemberg • Lester Ho • Michael O’Neill •

Holger Claussen

Received: 29 September 2011 / Revised: 18 September 2012 / Published online: 6 October 2012

� Springer Science+Business Media New York 2012

Abstract We study grammars used in grammatical genetic programming (GP) which

create algorithms that control the base station pilot power in a femtocell network. The

overall goal of evolving algorithms for femtocells is to create a continuous online

evolution of the femtocell pilot power control algorithm in order to optimize their

coverage. We compare the performance of different grammars and analyse the fem-

tocell simulation model using the grammatical genetic programming method called

grammatical evolution. The grammars consist of conditional statements or mathe-

matical functions as are used in symbolic regression applications of GP, as well as a

hybrid containing both kinds of statements. To benchmark and gain further information

about our femtocell network simulation model we also perform random sampling and

limited enumeration of femtocell pilot power settings. The symbolic regression based

grammars require the most configuration of the evolutionary algorithm and more fitness

evaluations, whereas the conditional statement grammar requires more domain

knowledge to set the parameters. The content of the resulting femtocell algorithms

shows that the evolutionary computation (EC) methods are exploiting the assumptions

in the model. The ability of EC to exploit bias in both the fitness function and the
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underlying model is vital for identifying the current system and improves the model and

the EC method. Finally, the results show that the best fitness and engineering perfor-

mances for the grammars are similar over both test and training scenarios. In addition,

the evolved solutions’ performance is superior to those designed by humans.

Keywords Genetic programming � Grammars � Femtocell � Symbolic regression �
Grammatical evolution

1 Introduction

In telecommunication networks, femtocells are low power, low-cost, user-deployed

cellular base stations (BSs) with a typical coverage range of 10s of meters [4].

Femtocells are currently on sale worldwide to consumers and enterprises. In order to

minimise operational expenses, femtocells have self-configuration and self-optimi-

sation capability to enable plug-and-play deployment. These capabilities are

implemented using algorithms that are designed to automatically change certain

network configuration parameters in response to any changes in the network

environment. Additionally, to maintain scalability when used in large networks,

these algorithms should work in a distributed manner whenever possible, using only

local information but still achieving good global performance.

Designing these highly distributed algorithms can be difficult, especially if the

network environment varies significantly and multiple conflicting objectives exist. In

addition, for femtocell deployments in enterprise environments, a group of femtocells is

deployed where the individual cells need to work together to jointly provide continuous

coverage in a large building or outdoor area. In Fig. 1 the coverage of a femtocell setup

for an office environment with 12 femtocell BSs is shown, with colour indicating areas

of femtocell coverage—the BSs are using an evolved coverage algorithm. When

femtocell users enter any gaps (white) in the coverage between the femtocells, mobility

procedures (handovers or cell re-selections) to the underlying macrocell are performed,

or a loss of service occurs if macrocell coverage is unavailable.

The aim of the study is to automatically generate algorithms for controlling the pilot

power of femtocells in any network. Addressing this type of real-world dynamic

problem is an opportunity for genetic programming (GP) O’Neill et al. [27]. We use the

grammatical GP [24] method called grammatical evolution (GE) [9, 29]. GE differs

from GP by using a grammar, by its ability to solve typed domain problems, the use of a

genotype-to-phenotype map, different genetic operators and a different chromosomal

bound (length instead of depth). Previously, Hemberg et al. [13] adopted GE and

generated mathematical functions with a symbolic regression grammar. In an earlier

study Ho et al. [14] used GP with a set of conditional statements. Both studies focused

on the feasibility of generating solutions and used the same femtocell network scenario

for training and testing the solutions. We expand on these studies by comparing

different grammars for creating solutions and ask the following questions:

• How does a conditional statement grammar (CG) compare to a symbolic

regression statement grammar (SRG) and a combination of conditional
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statements and symbolic regression grammar (SRCG) in terms of performance

and other benefits?

• How do the evolved algorithms generalise over multiple scenarios?

Our contribution lies in the investigation of the femtocell coverage problem, the

comparison of the novel and different grammars. We further introduce additional

scenarios, perform an analysis of the system and employ a novel fitness function to

drive the evolution. Moreover, it is shown that the best evolved solutions perform

better on the test set than the simple man made approach of optimizing fixed pilot

power by enumeration.

The following sections will first give a background to the GE grammars and

femtocells, as well as to GE in Sect. 2 Then, in Sect. 3 the experiments are

presented. The results are shown in Sect. 4, and in Sect. 5 there is a discussion

regarding the setup and the results. Finally, in Sect. 6 there are conclusions and

future work.

2 Background

Here the femtocell coverage problem, previous work and a preliminary analysis of

the femtocell problem representation and grammatical evolution are described. All

these areas aid the setup and comparison of grammars used for generating pilot

power control algorithms.

Fig. 1 Coverage of a femtocell setup for an office environment with 12 BSs, the colour shows the pilot
channel power in dBm. The BSs are in their final state of a simulation of an evolved solution (Color figure
online)

Genet Program Evolvable Mach (2013) 14:65–93 67

123



2.1 Femtocell coverage problem description

We consider an intended area of coverage, e.g. an office environment as in Fig. 1,

where a group of femtocells is deployed to jointly provide end-user services. The

problem addresses distributed coverage optimisation by adjusting the pilot power of

the BSs in order to alter the coverage of the femtocells and satisfy the following

objectives:

Mobility To minimise mobility events (handovers) between femtocells and

macrocells within the femtocell group’s intended area of coverage.

Load To balance the load amongst the femtocells in the group to prevent

overloading or under-utilisation.

Leakage To minimise the leakage of the femtocell group’s coverage outside its

intended area of coverage.

We believe that there are common characteristics in each scenario that are

possible to capture. However, in order to achieve accuracy, complex predictors

might be necessary [2]. Thus, the aim is to create algorithms that are able to

generalize the expression needed to control the pilot powers of the BSs. When

evaluating solutions in a simulation scenario, this can be seen as multi-dimensional

data fitting.

Moreover, constructing models from observed data is a fundamental problem in

science [22]. The femtocell problem can be classified as a computationally

expensive multi-objective problem [36] with conflicting objectives. For example,

increasing the pilot power in order to improve the coverage of a femtocell would

reduce the amount of mobility events, but doing so may also increase the load of the

femtocell and increase the leakage. Consequently, it is necessary to balance the

requirements of the objectives. Further, the importance of the objectives depends on

the operator’s priorities. Finally, both the optimal pilot power and the interactions

between the femtocells are unknown. This creates two additional problems, i.e. to

determine a realistic simulation model and suitable fitness functions.

Now, to explain further in a more compact notation. For each scenario at each

time step, t� T ; t 2 N there is at least one optimal pilot power configuration,

q�ti; qmin� q�ti� qmax; q 2 R for each BS, i� n; i 2 N: A scenario generates the pilot

power matrix containing the pilot power of each station at each time step

P ¼
q01 � � � q0n

..

. . .
.

qT1 � � � qTn

0
B@

1
CA

How qti is created is determined by the femtocells’ pilot power control algorithm,

a 2 A; A is the set of possible control algorithms. We assume that it is possible to

create an expression, e.g. function or algorithm, which on multiple scenarios has a

pilot power close enough, dq to an acceptable pilot power, P̂; in all scenarios,

f8s 2 S : jP� P̂j\dqg; S is the set of scenarios.

The algorithm’s decision on pilot power is mapped from pilot power to output to

fitness. The output for mobility (M), load (L) and leakage (Le) are functions of the
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femtocells’ pilot power, q and the scenario, s. The functions can be written as:

Mobility output oM : R� S! R; oMðq; sÞ; Load output oL : R� S! R; oLðq; sÞ
and Leakage output oLe : R� S! R; oLeðq; sÞ: The outputs are the components of

the fitness, f ¼ ½fM; fL; fLe�; f 2 R: The fitness functions can be written as: Mobility

fitness fM : R� S! R; fMðoM ; sÞ; Load fitness fL : R� S! R; fLðoL; sÞ and Leak-

age fitness fLe : R� S! R; fLeðoLe; sÞ: We are optimizing the fitness for the

femtocell control algorithms on the scenarios, hence

f� ¼ arg max
x2A

fðx; SÞ

In the next section we describe previous work on evolutionary computation (EC)

and GE in the telecommunication domain.

2.2 Previous work

There have been previous studies of applying EC to telecommunication problems

[1]. But only a few specifically regarded femtocell coverage algorithms and EC.

One used GP [14] and another used GE [13] before we extend these studies. Most

related work regarding cellular coverage optimisation in the literature deals with

centralised computation methods [10, 34]. For example, they describe the

calculation of parameters such as the number and locations of BSs, pilot channel

transmit powers or antenna configurations using a central server running an

optimisation algorithm. Many studies also focus on determining the optimal BS

numbers or placements to achieve the operator’s quality of service or coverage

target. This approach is not always practical because network design is restricted by

BS placements. Instead, a more realistic approach is to optimise the configuration of

cellular networks where the locations of the BSs have been fixed.

One example of self-configuration and self-optimisation capability in femtocell

deployments is coverage optimisation. The aim of coverage optimisation in residential

femtocell deployments is to ensure that leakage of coverage by a single femtocell into

public spaces is minimised while at the same time maximising indoor coverage [5, 15].

The methods for residential deployment are not applicable to enterprise environments

[14]. Furthermore, there are studies which do not use EC, e.g. Jo et al. [19] investigate

self-optimized coverage coordination in femtocell networks. The transmit power is

adjusted based on the downlink signal and interference power statistics. A Monte Carlo

simulation with static users uniformly distributed verifies the algorithm. A similar study

is performed by Mhiri et al. [25] who create a power management algorithm by hand

for green femtocell networks. Similarly, Ponente and De Marinis [32] optimize the

transmission power and frequency for femtocells in clustered scenarios, although they

use a genetic algorithm. Our approach uses grammars, simulations with moving users

and considers the load of the femtocell when adjusting the pilot power.

Previous work with GP and femtocells [14] automatically derived a distributed

algorithm to dynamically optimise the coverage of a femtocell group using standard

tree based GP. The resulting evolved algorithm clearly showed the ability to

optimise the coverage and was able to offer increased overall network capacity

compared to a fixed coverage femtocell deployment. The functions and terminal set
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for GP consisted of conditions with predicates checking if the load, overlap and

probability of users entering a gap were over a predefined threshold, as well as

combining the branches of the nodes. The terminals increased pilot power,

decreased pilot power or did nothing. With GE [13] the controllers for femtocells

pilot power were evolved using a symbolic regression (SR) grammar. The best

evolved solutions were superior for two of the objectives compared to a fixed pilot

power. Here, we further investigate and compare the GE approach to different

grammars, multiple scenarios and different fitness functions. Moreover, we reduce

the solution space for the conditional representation of femtocell solutions.

Work by Lewis et al. [21] with a grammar and GP enhanced IEEE802.11

distributed coordinate function. They designed active MAC layer algorithms by

evolving algorithms instead of optimising values and tuning parameters, thus a

wider behaviour space was searched. They used a grammar to embed domain

knowledge in the algorithms they evolved. The variation of contention window sizes

was explored and the results outperformed standard 802.11 behaviour on a variable

sized network under standard load. Moreover, the throughput performance was

comparable to the best aspects of the protocol. Hu and Goodman [17] used GP for

wireless access point configuration, the results improved when they post-processed

their solutions to find the minimum spanning tree. In addition, Yasuda and Sato [35]

used linear GP and a pruning operator on their solutions for wireless LAN access

point configuration to gain improved performance and run time speed-up.

Different grammar configurations in GE have been investigated for various other

applications. O’Neill and Ryan [28] first used GE to automatically evolve caching

algorithms, finding a simple caching algorithm. Murphy et al. [26] explored GE for

horse gait optimisation and found that the grammars used for evolving horse gaits

required domain knowledge to generate realistic animal motion. Perez et al. [30]

evolved behaviour trees for Mario AI using GE. The use of a grammar simplifies the

task of encoding the syntax of behaviour trees and specific tree structures can be

represented. They also limited the grammar syntax in order to reduce the solution

space (language). We extend the use of GE to more application areas.

In a paper by Korns [20], techniques for improving symbolic regression systems in

cases where the target expression contains conditionals were examined and accuracy

was increased for such conditional problems. A regression system combining standard

GP with abstract expression grammars, particle swarm optimisation, differential

evolution, context aware crossover and age-layered populations was tested on nine

base test cases. We extend the study of conditional grammars and symbolic regression

for evolving femtocell controllers, where the conditions represent input states.

This section concludes that GP methods, e.g. GE, are viable for telecommuni-

cation network optimizations. It also reveals gaps in the generation of coverage

algorithms for femtocells. Next, we will further analyse the previous approaches to

the femtocell problem.

2.3 Initial analysis of the femtocell problem

We study the results from work by Ho et al. [14] and previous runs in order to

understand and improve the setup of our own experiments. First, we simplify the
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solutions and this allows us to reduce the solution space, an approach that has

proved to be successful in other EC applications. For example, in order to distill free

form equation from experimental data with GP, Schmidt and Lipson [33] limit the

representation of the equations with an acyclic graph of 128 nodes. Forrest et al.

[11] also reduce the solution space when using GP for software repair, in order to

get a feasible solution space.

2.3.1 Solution simplification

One way of improving the search is to create shorter solutions, e.g. by pruning the

solutions and removing redundant code. However, the solution space is still the

same size and there is the additional step of simplifying solutions. We studied some

GP solutions from some initial runs where we used the functions and terminals

presented in Table 1 and the fitness functions from Sect. 3.3 averaged over the low,

medium and high load scenarios from Sect. 3.1, with the same GP setup as in

Ho et al. [14]. From these results it is possible to see that the average fitness improves

rapidly in the first four generations and then the fitness converges. Besides, the

solutions are very bloated, they increase in size without improving fitness.

Simplification of a GP solution is made by consolidating statements. One step is

removing redundant and conflicting commands, e.g. combine3 (increasepow,

decreasepow, donothing) can be removed. It is also possible to delete branches

that will never execute, e.g. if_ho_higher(if_ho_higher (increasepow,

decreasepow), decreasepow) reduces to if_ho_higher (increasepow,

decreasepow) since the the nested conditional will always return the same value.

Further, the order of the statements is unimportant for the femtocell problem.

Finally, the simplified solution is also easier to read and interpret for humans. In

Fig. 2 the original best GP solution, called GP1, is shown and the simplified GP1

solution, with a reduction from 74 nodes to 11, is shown in Fig. 3.

The GP1 solution works as follows: the pilot power is changed by ?1 dBm if

there are gaps but no leakage and no overload, the pilot power is changed by -1

dBm if there is leakage, and if there is leakage and a gap the pilot power is changed

by -2 dBm. Thus, the pilot power will always be decreased when there is leakage.

Table 1 GP functions and terminals

Type Name Description

Function if_ho_higher Check if M [ MT, MT = 0

Function if_load_higher Check if L [ LT, LT = 7

Function if_macro_requests_higher Check if Le [ LeT, LeT = 0

Function combine2 Execute branches 1 and 2 consecutively

Function combine3 Execute branches 1, 2 and 3 consecutively

Terminal increasepow q = q ? C, C = 1 dBm

Terminal decreasepow q = q - C, C = 1 dBm

Terminal donothing Do nothing

M mobility, L load, Le leakage and q pilot power
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2.3.2 Representation simplification

There are redundancies in the solution representation of Table 1, here different

solutions have the same behaviour, i.e. there is a many-to-one mapping from the

solution space to the pilot power space. One way of improving performance would

be to reduce the solution space by using a representation that produces fewer

redundant solutions. For example, in the case of conditional statements this could be

done by removing the possibility of freely choosing conditional statements and

instead enforcing a truth table which assigns a pilot power change action to each

case. We divide the search space into different states by using the conditions. There

are 2n rows for n conditions with the set of actions, a, the number of possible

solutions in the search space is aj j2
n

: Using Table 2 we can devise methods for how

to set the action for each row. The most general method is to use the SRCG and for

each row in the table to generate real numbered pilot power values (see Fig. 7). This

allows exploration of non-linear relations between the input variables, and the state

division will hopefully guide the search, but will not reduce the solution or pilot

power space. Another approach is to discretize the pilot power space and use

constants as in CG.

2.3.3 Search space analysis

We also study the possible search space in the simulation in order to improve our

representation to cover only possible pilot power settings. The BS pilot power is cut

off at qmax = 11, qmin = -50. For example, if there are four action possibilities

and three inputs, �2� a� 1; a 2 Z and n = 3 then the solutions can be represented

by a bit-string of length 16 and the solution space is 423

= 65,536 solutions. For

integer pilot power settings |a| = |qmax - qmin| = 61, this gives the search space

size for the conditional statement as 618 = 1.917e ? 17. A tree where all nodes

have two children, i.e. a binary tree, of depth eight is required for a solution which

can increase or decrease maximally for each condition.

For the representation in Table 1 the number of trees are all the shapes with all

the node combinations. The number of shapes of a binary tree with n ? 1 leaves is

given by the Catalan number Cn ¼ ð2nÞ!
ðnþ1Þ!n! [31]. For each tree shape there are /

Fig. 2 Original GP1 solution
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(n) = |F|n internal node combinations, F is the function set, and s(l) = |T|l are leaf

combinations, T is the terminal set. In Ho et al. [14] the depth limit was eight and

F and T are in Table 1. The max arity is two if we ignore combine3, thus the total

number of tree shapes is
P

i=o
l=255 Cn and the total number of combinations of shapes

and contents is
Pl¼255

i¼1 C
/ði�1ÞsðiÞ
i which is larger than the solution space of 618 for

the conditional setup. This shows that there are, with a conservative calculation,

many more evolved solutions compared to possible solutions in the pilot power

space. Hence, a grammar that has fewer redundant solutions is designed (see Fig. 5).

Next, the grammar based GP approach called GE is explained.

2.4 Grammatical evolution

GE [9, 29] is a grammar-based form of GP [24]. It is inspired by representations in

molecular biology and combines this with formal grammars. The GE system is

flexible and allows the use of alternative search strategies, whether evolutionary,

deterministic or other. This system also includes the ability to bias the search by

changing the grammar. Since a grammar is used to describe the structures that are

generated by GE, editing the grammar modifies the output structures. The genotype-

phenotype (input-output) mapping means that GE allows search operations to be

performed on any representation in the algorithm.

Fig. 3 Simplified GP1 solution

Table 2 The actions of

conditional statements for the

evolved control algorithm

Action Mobility Load Leak GP 1

a1 True True True -2

a2 True True False 0

a3 True False True -2

a4 True False False ?1

a5 False True True -1

a6 False True False 0

a7 False False True -1

a8 False False False 0
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In GE, the grammar mapping uses a context free grammar, in BNF-format, which

is a four tuple G = (N, T, R, S):

1. N is a finite non-empty set of non-terminal symbols

2. T is a finite non-empty set of terminal symbols and N \ T = [, the empty set

Fig. 4 Example of GE genotype-to-phenotype mapping. The derivation order, codon value and
production choice are shown to the right of the arrows, e.g. from the start symbol 0:4%2 = 0. Input is the
genotype and output is the phenotype

Fig. 5 Conditional statement grammar (CG) creates variable length solutions, \function[ is

recursive
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3. R is a finite set of production rules of the form R : N 7!V : A 7!a or (A, a) where

A 2 N and a 2 V :V is the set of all strings constructed from N [ T and

R � N � V;R 6¼ ;
4. S is the start symbol, S 2 N:

The genotype is used to map the start symbol into a sentence, by the BNF-

grammar. Input (codon) is read from the genotype and a corresponding output

symbol is generated. A function selects a production choice by taking the current

codon’s integer value modulo the number of production choices of the current rule.

The genotype is read from left to right, and the codon to be read is shifted to the

right every time the current rule has more than one production. The derivation

sequence is also expanded from left to right (depth-first). In Fig. 4 an example of a

genotype generating a function is shown.

The steps in a single generation, steps 2–6 are repeated, of the GE algorithm used

in the experiments are:

1. Initialisation The genotypes of the initial solutions are generated with the

ramped half-half method.

2. Mapping A BNF-grammar is used: (a) Integer to String translation where the

grammar maps integer values to a sentential form. (b) When the end of the

genotype is reached and the output contains non-terminal symbols it wraps and

is read from the start again. Finally, if there still are non-terminals in the output

the individual is reinitialised.

3. Evaluation The individual solutions are evaluated in the simulation. Invalid

solutions are reinitialised.

4. Selection Some individuals from the current population are included in a

selected population using a tournament selection.

5. Variation operators Individuals are modified by one point crossover and nodal

mutation.

6. Replacement The new population is created from best ranked solutions of the

selected population and current population, based on the pareto dominance of

the fitness functions.

The femtocell problem, previous work, initial studies and GE have been

described in this section. The next section presents the experiments used for

comparing the performance of the grammars on a number of femtocell scenarios.

3 Experiments

We aim to automatically generate pilot power control algorithms for femtocell

coverage. For larger cells, such as macrocells, each cell is manually configured to

separate pilot power values in a time consuming manual procedure. The macrocell

configuration approach is unfeasible for femtocells, due to the associated high

operational expenses. The current state-of-the-art for femtocells in enterprise

deployment is to use a fixed pilot power for all femtocells. For example, the use of

max pilot power guarantees the coverage objective to be met according to the

Genet Program Evolvable Mach (2013) 14:65–93 75

123



capabilities of the network, without more information it is not possible to guarantee

the other objectives.

For the automatically evolved algorithms investigated here, three grammars are

tested on multiple scenarios, the performance is compared and the behaviour is

analysed. The grammars used generated conditional solutions, symbolic regression

solutions and conditional solutions containing symbolic regression. The scenario with

12 BSs in an office building, O12 (see Fig. 1) was used for training. Then the best

performing solutions were picked out and evaluated on test scenarios. The variation of

scenarios increases the robustness of the solutions, e.g. solutions which do not

experience any overloading have an unknown behaviour when overloaded, since there

is no evolutionary pressure to penalise ‘‘bad’’ behaviour in this state. This

methodology was adapted, since it is very time consuming to run scenarios. One

evaluation on one Intel i7 2.93 GHz processor core takes approximately 10 min.

In regard to comparing the performance of the grammars, Daida et al. [6] discuss

the challenges of making comparisons in GP and Hoai et al. [16] describe how to

compare GP systems. Our goal is to identify a good method for solving the

femtocell network problem, not to dismiss the methods themselves. In the

experiments, not each grammar has used the same number of fitness evaluations

to reach the solution, which complicates a comparison of average fitness over fitness

evaluations between the grammars. Furthermore, the femtocell network problem is

not the ideal problem for benchmarking algorithmic performance, since the

optimum is unknown. In order to facilitate comparisons we use engineering values

to measure the performance as well. Therefore, comparisons of results from

different fitness functions are possible. As a baseline we compare the evolved

solutions with two manual approaches, a fixed pilot power setting at max pilot

power for all the BSs, as used by Ho et al. [14], and fixed pilot power for each BS

optimized by enumeration.

The simulation model, fitness function and grammars are described in the

following sections.

3.1 Femtocell simulation model

A realistic simulation is needed in order to evaluate a pilot power control algorithm

which would be applicable in hardware. The simulation consists of the physical

environment with user movement, the load model and the radio propagation model.

All these components were varied in the test scenarios. The same population

movement model was used, but hot-spots and way points were configured

differently for some scenarios.

In the user mobility and traffic model the users move to predefined way points on

the map at a speed of 1 ms-1, spending some time in a way point before moving to

another way point. At the start users are randomly placed, in total 50 (low), 200

(medium) and 400 (high) users are modelled. Each user has a voice traffic model

which produces 0.2 Erlangs of traffic. When evaluating an algorithm, the scenario

simulates 24 h of operation time, with the algorithm adjusting the femtocell pilot

power after collecting statistics for 30 min. The algorithm start time for each

femtocell is randomly dithered to avoid synchronous updates. Each femtocell’s
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initial pilot channel power is set to q0 = -30 dBm, -50 B q B 11. In order to

keep the users connected to the femtocell network for as long as possible, femtocell

to macrocell handovers are triggered when a user terminal’s pilot channel receive

power from the best femtocell goes below -100 dBm. Outside cell users move

east–west and west–east on the north and south edges in the scenario. When the

signal leak is strong enough the outside user will request a handover to the femtocell

and a rejection is recorded. The outside user will try to connect once to each leaking

femtocell, regardless of the leakage strength.

Office (O12, O8, O4) The simulation scenario office environment is shown in

Fig. 1. There are versions with 12, 8 and 4 femtocells for the different

configurations, e.g. the training scenario in the office environment with 12 BSs

and medium load is denoted O12m. The coordinates in O4 have been slightly

altered compared to O8 and O12 by moving the BSs closer to the walls.

The building is an office with cubicles, closed meeting rooms, and toilets. The

exterior of the building is mainly glass and the interior is mostly light interior walls

and cubicle partitions. There are four stairwells at each corner with thick concrete

walls. The locations of the femtocells are spaced fairly evenly apart, and done

without any cell surveying. This reflects a plug-and-play deployment where some

heuristic has been used in the deployment, i.e. the femtocells are not placed too

closely to each other. This plug-and-play femtocell deployment is realistic, but can

be sub-optimal due to the lack of exhaustive cell planning. In the simulation each

femtocell has a maximum capacity of eight voice calls, and a macrocell underlay

coverage is assumed. A path loss map is generated for the 450 m 9 500 m area for

each femtocell. For shorter distances the path loss (dB) at d (m) from a BS is

modelled as 38.5 ? 20log10(d) ? PLwalls, with a smooth transition to

28 ? 35log10(d) ? PLwalls in all other cases. In addition, a correlated shadow

fading with a standard deviation of 8 dB and spatial correlation of r(x) = ex/20 for a

distance of x in meters is considered. The assumed transmission losses for the

explicit building model are a function of the incident angle. The model is partly

developed by the authors and is proprietary to Bell labs.

Outdoor (Od4) There are no walls. The four BSs have the same location as in O4.

Cross (C5) There are five femtocells and the walls, way points and hot-spots are

different. The way points are set to explicitly model the need for load balancing.

Moreover, there is a different path loss model where signals bounce off the walls.

3.2 Grammatical evolution setup

The aim is to generate an algorithm that increases or decreases the pilot power of the

BS given some inputs. The inputs are load, mobility, leakage and pilot power. Three

different grammars are used, the CG uses conditional statements, while the SRG

uses mathematical functions and constants and the SRCG uses both.

3.2.1 GE grammars

The GE setup emphasises the benefit of using a grammatical representation. It is

straightforward to combine the CG and SRG to create a hybrid SRCG. The aim with
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the SRCG is to use the domain knowledge of the conditional approach with the

unconstrained expressions of symbolic regression.

Conditional statement grammar (CG) We construct a grammar using conditional

statements aiming to replicate the GP behaviour in Table 1. The thresholds and the

size of the increase and decrease of pilot power need to be predetermined, here the

change is 1 dBm. The values were assigned in discussion with engineers using

femtocell networks and a brief parameter sweep. Initial experiments with load were

made to determine the threshold value and shape. The aim is to avoid overload or

underutilization of the BS. The values of the thresholds are MT = 0, LeT = 0 and

LT = 7, all thresholds are only binary, indicating gap or no gap, leakage or no

leakage, and overload or no overload. A grammar that generates an algorithm which

produces the states in Table 2 with unlimited pilot power changes, due to the

recursive \function[, is shown in Fig. 5.

Symbolic regression statement grammar (SRG) Many functions were used to

capture different behaviours. The terminals were chosen in order to give a large and

explicitly unbiased search space, relying on evolution to determine the usefulness of

the terminals. The \pre-op_step[ is introduced to allow a step-like behaviour.

Moreover, in order to avoid imaginary numbers, only the real valued part of the

function values is used. We bias slightly towards non-monotonic solutions by using

\expr_0[ and also reduce the probability of using the recursive \exp[. The

grammar adopted in this study is in MATLAB syntax and is presented in Fig. 6. The

unary minus is uminus and non-recursive constant creation was used [8, 23].

Symbolic regression and conditional statement grammar (SRCG) To create the

SRCG we combine the grammars in Figs. 5 and 6. The multiple\var[productions

keep the grammar from ‘‘exploding’’ (see Harper [12]). The grammar has a bias

towards expression using inputs compared to constants. It creates equations of the

same form as SRG and uses predefined thresholds as in CG. Only the differences in

CG and SRG are shown in Fig. 7.

Grammar differences The theoretical length of the possible solution strings is the

same for all grammars and since all grammars are recursive, it is infinite. However,

each setup has an explicit solution length limit. Furthermore, SRG and SRCG have

an implicit limit imposed by the max call-stack depth in the MATLAB environment.

On the contrary, the space of possible pilot power values when evaluating the

solution is different. The pilot power values for SRGs are real valued, q 2 R; and

accordingly infinite. In contrast, the pilot power values for CG are finite or

countably infinite since the pilot power changes are discrete, q 2 Z: This is reflected

Fig. 6 Symbolic Regression Statement Grammar (SRG) creates variable length solutions,\expr[ is

recursive in several steps
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in the parameters that need to be decided in the conditional grammar. Moreover,

there is an explicit bias to changes of size one in the CG compared to the SRG.

The number of symbols in SRG is larger than in CG. In addition, SRG can

construct solutions which are functions, dependent on multiple input thresholds. The

size of the search space of possible solutions is greater. The SRCG has the most

symbols and can generate the same equations as SRG, but generates multiple

expansions, one for each state, hence the solutions are expected to be longer.

3.2.2 Random sampling and enumeration of static pilot power

We use random sampling and enumeration of fixed pilot power (SE) for analysing

the behaviour of the simulation and creating optimized man made solutions. In order

to make enumeration feasible, high fitness ranges known from when the pilot power

is the same for all BSs are picked. The best fixed pilot power values are shown in

Table 3. We also randomly sampled from the entire pilot power range. One problem

with this approach is that the positioning of the cells needs to be maintained when

deployed. Furthermore, random search and enumerating solutions cannot generalise

to a different number of femtocells.

3.2.3 GE setup

A modified version of GE was used, based on GEM (http://ncra.ucd.ie/GEM/

GEM.tgz). Nodal mutation is used [3], the nodal mutation operator has a superior

property of locality compared to the standard GE mutation operator. In addition,

nodal mutation is only applied to individuals that have not undergone crossover.

NSGA-II is used to rank the individuals according to domination, a solution is

dominated if there is another solution which is better for all the fitness objectives.

The top individuals from each front are used until the population is filled (see Deb

et al. [7]). When reinitializing individuals the depth is picked from the distribution

of depths on the first front. This is both an attempt to restrict bloat and search depths

containing good solutions. In addition, all evaluated solutions are added to a tabu

list. If a solution is already on the tabu list it will also be reinitialized. Furthermore,

monotone solutions are not allowed. In order to reduce fitness function evaluations,

CG and SRCG have a simplified measure of monotonicity compared to the SRG.

The possible states of the inputs are passed into the evolved solution to see if it

always increases, decreases or maintains its pilot power level. Finally, the input

values in the grammars are then normalized.

To find extreme solutions and those which have uniform fitness components

we use the index from Jain et al. [18], where a score of one is uniform and zero is

Fig. 7 Symbolic regression and conditional statement grammar (SRCG). Only the differences between
the CG (Fig. 5) and SRG (Fig. 6) are shown

Genet Program Evolvable Mach (2013) 14:65–93 79

123

http://ncra.ucd.ie/GEM/GEM.tgz
http://ncra.ucd.ie/GEM/GEM.tgz


non-uniform. /ðxÞ ¼ ð
Pn

i¼0
xiÞ2

n
Pn

i¼0
x2

i

: We penalise the fitness function, f(x) to get f0(x) by

multiplying it with its score, h(x), where h(x) = 1 - /� f(x) and f0(x) = e-h(x)

(1 - h(x)1/4). The implementation also allows for very skewed fitnesses, with the

extreme solutions unpenalised when one of the objectives is zero, h(x) = 1 if x = 0.

The evolutionary parameter settings for the GE algorithm are presented in

Table 4. Due to the long run time to evaluate each individual algorithm in the

femtocell scenario, the number of fitness evaluations was limited. CG has a

population size of 40 and has a max of 20 generations, since the solution space is

significantly smaller than the SRGs. For SRCG the population size is 100 and has a

max of 20 generations, enough to indicate the capabilities of the SRCG based

search.

3.3 Fitness function

The fitness function is used by GE to determine the quality of the generated

solutions when applied to the femtocell network. The functions are mobility, load

and leakage. The duration of the simulation is T, the number of femtocells is N, and

x is a vector of femtocells. Statistics of mobility, load and leakage are collected over

a specified update period. These statistics are then used as inputs into the algorithm,

and for calculating the fitness. The fitness function is a vector comprised of the

fitness for each function, f ¼ ½fMðMðh; rÞÞ; fLðLðxÞÞ; fLeðLeðyÞÞ�:
Engineering measures is the performance of a femtocell reported to an operator.

The fitness function values only make sense to an EC practitioner. Instead, the

engineering measures are used to decide if an algorithm is good enough. The

measure which indicates load is the total demand served by the femtocell, in Erlangs

(DSE), which should be maximized. The measure for leakage is the average number

of mobility requests from a macrocell user per pass (MUR), which should be

minimized. Mobility is measured by the average number of femtocell-macrocell

handovers per user per hour (MPP), which should be minimized.

Mobility fitness is based on the number of handovers and relocations of users,

derived from the femtocells’ statistics of the mobility events involving femtocell

users. During the simulation, the mobility events between femtocells and macrocells

are recorded during an update period. The number of femtocell handovers is h;

macrocell handovers is hM; femtocell relocations are r; and macrocell relocations is

rM. Mobility M is composed of MM
b ðh; rÞ ¼

PT
t¼0

PN
i¼1 hM

it þ
PT

t¼0

PN
i¼1 rM

it and

Table 3 Best enumerated static solutions for different scenarios

Scenario BS pilot powers

O12 [-35, -35, -35, -25, -25, -35, -35, -35, -35, -35, -35, -25]

O8 [-40, -40, -28, -28, -36, -36, -36, -28]

O4 [0, -10, -15, -5]

Od4 [-35, -30, -35, -35]

C5 [-26, -26, -26, -26, -26]
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Mbðh; rÞ ¼ MM
b ðh; rÞ þ

PT
t¼0

PN
i¼1 hit þ

PT
t¼0

PN
i¼1 rit. Mobility is the ratio of

update periods where a mobility event occurs to the total number of update

periods. It is maximised when there are no handovers or relocations to the macrocell

underlay, and is 0 when all femtocell user handovers are to or from macrocells. The

average mobility is 1 if there are no handovers or relocations, otherwise it is

Mðh; rÞ ¼ MM
b ðh; rÞ=Mbðh; rÞ if Mbðh; rÞ[ 0

1 if Mbðh; rÞ ¼ 0

�

The mobility fitness is calculated as fM ¼ Mðh; rÞ:
Load fitness is based on the ratio of the average number of times the load has

been greater than a load threshold, LT, and the total load, including the macrocell. If

the mean cell load during an update period exceeds this threshold, L is equal to one,

else it is equal to zero. Cell load is 0� x� 7 in this scenario, LT = 7, just below the

capacity of the femtocell, as the aim is to prevent the femtocell from operating at its

capacity. Total load is the load on the femtocells and the load on the macrocell, LM.

LðxÞ ¼ LT if x [ LT
x if x� LT

�

Average load is LðxÞ ¼
PT

t¼0

PN
i¼1 LðxitÞ=LMðxtÞ and the fitness function fL ¼ LðxÞ:

Leakage fitness is the number of outside users trying to use the femtocell.

Leakage increases the number of unwanted users captured, which increases the

signalling load to the core network. The leakage, Le is the ratio of blocked calls,

y and the maximum number of macrocell users, CMU. 0 B y B CMU, Le(y) =
P

i
N

1 - y/ CMU. The fitness function for leakage is fLe = Le(y).

This section has described the femtocell simulation, GE grammars, GE setup and

fitness functions. The following section presents the results from the simulations

using different grammars.

Table 4 Parameter settings for

the experiments. Values which

are different for the grammars

are labelled, e.g. population size

for CG was 40, denoted by

CG:40

Parameter Value

Max wraps 2

Codon size 128

Population size 100, CG:40

Initialisation Ramped half-and-half, depth 8

Generations 20, SRG:50

Tournament size 2

Crossover probability 0.5

Mutation 1 event per individual

Parsimony pressure True

Extended nodal probability 0.5

Extended nodal tries 1000

Max used input SRG:400, CG:100, SRCG:1000

Runs SRG:12, CG:19, SRCG:19
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4 Results

We investigate different grammars used to generate controls for the pilot power in

femtocell networks. The following results compare the test performance of the best

solution from each grammar on the training set: CG1 (Fig. 10), SRG2 (Fig. 12),

SRCG1 (Fig. 15), the static solution (S) of max power and enumerated static

solutions (SE) in Table 5. In addition, the solutions for SRG on a larger training set,

SRG1 (Fig. 13) and GP1 (Fig. 3) are inspected.

The results show that CG uses the fewest fitness evaluations to get relatively

good solutions, as expected, since it has the smallest language and finite pilot power

space. With SRG it is possible to fit the simulation in one expression without using

much domain knowledge. Moreover, SRCG needs more fitness evaluations, since

the search space is continuous and it needs to evolve even larger solutions than

SRG. In addition, in SRCG each state has fewer samples than SRG to determine the

fitness of the equation. Finally, a fixed length representation can be used with a

reasonably sized search space and a reasonable discretization.

However, one issue is how to bias the domain knowledge and the search without

over-fitting, and the SRG has the least explicit bias. In addition, the three grammars

allow us to verify if the discretization is reasonable and to check that the state

divisions are sensible. We can also see the effect of explicit bias in the form of

domain knowledge.

4.1 Test scenarios

The GP1 solution compared to the SRG1 solution shows a small difference in fitness

when averaging the values over all test scenarios. These two solutions were evolved

using all the load types for O12 as training data. SRG1 has the lowest variance of

the evolved solutions. The pilot power trace for each BS for some scenarios with

medium load for SRG1 is shown in Fig. 8, the plot shows how the BSs slowly

increase the pilot power and then it drops.

In Table 3 the raw fitness is shown for all the solutions. It can be seen that the

fitness of the static solutions S and SE is the best on O4. Thus, static enumeration

and random search perform better than the evolved solutions on this scenario,

however, these solutions are not generalisable in the same way as the evolved

Table 5 Raw fitness for all the solutions averaged over the objectives and load types

Scenario GP1 CG1 SRG1 SRG2 SRCG1 S SE

O12 0.96 0.93 0.95 0.92 0.79 0.68 0.90

O8 0.91 0.89 0.92 0.90 0.74 0.64 0.91

O4 0.64 0.64 0.67 0.67 0.55 0.68 0.88

Od4 0.91 0.82 0.91 0.91 0.70 0.58 0.89

C5 0.93 0.89 0.92 0.92 0.69 0.60 0.93

Total 0.87 0.84 0.87 0.86 0.70 0.63 0.90

Total shows the averaged fitness on all scenarios
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solutions. The poor performance of the evolved solutions on this scenario is because

the femtocells are discouraged from leaking and there are few femtocells. The low

leakage can be seen by the MUR values for all solutions in Table 8, being lower on

O4 than SE. Among the evolved solutions SRG1 handles the loss of BSs the best.

SRCG1 and S are significantly lower (a = 0.05) according to Wilcoxon rank sum

test on the unadjusted fitness of the scenarios. For all the other solutions there are no

significant differences. SRCG1 performance drops the most in the high load for all

scenarios. The engineering measures for the grammars over the chosen solutions on

the test and training scenarios are shown in Tables 6, 7 and 8.

The following sub sections will study the different grammars separately, showing

the average best fitness over fitness evaluations. The average fitness plots filter out

the extreme solutions, i.e. setting pilot power very high. It is possible for the fitness

to drop since we are using the average of the average fitness objectives on the first

front. The first front contains the solutions which are not dominated by any of the

fitness objectives.

4.2 CG solution

The average fitness and size of the non-extreme solutions on the first front are

shown in Fig. 9. We can see that the average fitness is quite high to begin with.

Within quite a small number of fitness evaluations it increases even further. The

variance of the fitness also decreases as the search progresses. Further evidence that

solutions with few pilot power changes have good fitness can be seen in the size

plot. The recursive\function[ is the rule that changes the solutions’ size, and the

terminals chosen are power changes, consequently shorter solutions have fewer

power changes. Thus, the CG representation needs relatively few fitness evaluations

to yield quite high fitness on the training scenario.

At generation five solution CG1 was found (see Fig. 10), the solution can be

reduced from 20 pilot power changing statements to 11. The CG1 solution changes

the pilot power by ?1 dBm only when there is a gap and no leakage and overload.

Fig. 8 SRG1 pilot power trace for each BS during the simulation on two different scenarios for load type
medium. The x axis shows the time in the simulation, the y axis shows the BSs and the z axis shows the
pilot power. The pilot power traces show how the BSs slowly increase the pilot power and then it drops.
a O8, b Od4
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Table 6 Engineering measures for the static baseline of 11 dBm on all scenarios

Scenario Load S SE

DSE MUR MPP DSE MUR MPP

O12 l 7.51 8.75 0.00 7.59 1.20 0.11

O12 m 19.08 8.75 0.00 19.30 1.05 0.20

O12 h 66.89 8.74 0.00 67.23 1.05 0.22

O8 l 7.50 9.75 0.00 7.56 0.00 0.22

O8 m 18.96 9.74 0.00 19.25 0.00 0.44

O8 h 59.04 9.74 0.00 61.95 0.00 0.50

O4 l 7.39 7.00 0.00 7.48 0.91 0.00

O4 m 17.94 7.00 0.00 17.80 0.91 0.00

O4 h 31.62 6.99 0.00 31.50 1.01 0.00

Od4 l 7.27 10.25 0.00 7.28 0.50 0.02

Od4 m 17.72 10.24 0.00 17.85 0.50 0.03

Od4 h 31.55 10.24 0.00 31.64 0.50 0.04

C5 l 7.77 11.99 0.00 7.77 0.00 0.01

C5 m 18.24 11.99 0.00 18.27 0.00 0.01

C5 h 38.09 11.99 0.00 38.16 0.00 0.01

DSE, MUR and MPP are explained in Sect. 3.3

Table 7 Engineering measures for only conditional and integer solutions on all scenarios

Scenario Load GP1 CG1

DSE MUR MPP DSE MUR MPP

O12 l 7.54 0.10 0.07 7.57 0.13 0.12

O12 m 19.23 0.17 0.08 19.38 0.24 0.16

O12 h 67.96 0.07 0.04 74.09 0.48 0.89

O8 l 7.55 0.29 0.27 7.57 0.30 0.31

O8 m 19.16 0.63 0.43 19.28 0.65 0.49

O8 h 63.64 0.11 0.35 62.41 0.26 0.93

O4 l 7.53 1.02 1.80 7.53 1.01 1.82

O4 m 18.18 0.97 3.19 18.16 0.97 3.19

O4 h 38.04 0.17 3.36 38.18 0.18 3.28

Od4 l 7.26 0.02 0.00 7.42 0.13 0.17

Od4 m 17.73 0.02 0.00 17.97 0.30 0.42

Od4 h 31.56 0.01 0.00 37.01 0.01 2.06

C5 l 7.76 0.00 0.01 7.76 0.00 0.02

C5 m 18.22 0.05 0.01 18.65 0.06 0.10

C5 h 38.57 0.00 0.02 46.27 0.00 1.39

DSE, MUR and MPP are explained in Sect. 3.3

84 Genet Program Evolvable Mach (2013) 14:65–93

123



The pilot power is changed by -1 dBm when there are leaks, but there is neither gap

nor overload. When there are no gaps and overload but leakage, then the pilot power

is changed by -2 dBm. It is a very readable solution, although a constant creation

grammar could be used to increase the readability further, without reducing the

expressiveness.

4.3 SRG solution

The average fitness and size of the non-extreme solutions on the first front are

shown in Fig. 11. The early fitness values are around 0.7 and then increase to over

0.85. The number of fitness evaluations required for SRG in comparison to CG is

almost 10 times more at the final evaluation, whereas the fitness averages are lower.

On average there are 2,728 extra fitness evaluations for a SRG run, i.e. more than 50

% of the fitness evaluations are resulting in monotone functions. Therefore, an

approximation of monotonicity, e.g. interval arithmetic, could reduce the number of

fitness evaluations.

The best solution was SRG2 (see Fig. 12), found in generation 34, which

contains all the inputs: mobility, load, leakage and pilot power.

4.4 Generalisation using SRG

We ran four runs of SRG testing for improved generalisation with the low, medium

and high load scenario for the O12 scenario for training. We used the settings in

Table 4 for SRG, except that we only ran for 30 generations. The generalization

Table 8 Engineering measures for symbolic regression solutions on all scenarios

Scenario Load SRG1 SRG2 SRCG1

DSE MUR MPP DSE MUR MPP DSE MUR MPP

O12 l 7.52 0.18 0.05 7.51 1.46 0.08 7.61 1.30 1.78

O12 m 19.14 0.16 0.06 19.11 0.25 0.13 19.36 1.40 1.45

O12 h 68.73 0.15 0.07 69.28 0.11 0.23 13.29 1.99 0.09

O8 l 7.52 0.13 0.13 7.51 0.64 0.14 7.60 1.30 2.23

O8 m 19.07 0.11 0.23 19.03 0.17 0.30 19.06 1.40 2.19

O8 h 63.74 0.12 0.27 60.09 0.07 0.41 47.54 1.30 5.85

O4 l 7.52 0.07 1.44 7.52 0.10 1.41 7.58 0.34 3.46

O4 m 18.24 0.07 2.81 18.26 0.07 2.80 16.84 0.25 5.54

O4 h 38.33 0.07 3.26 38.17 0.04 3.24 26.68 0.14 7.30

Od4 l 7.27 0.07 0.00 7.27 0.15 0.00 7.48 0.36 1.91

Od4 m 17.75 0.08 0.00 17.72 0.09 0.00 18.27 0.34 3.71

Od4 h 31.60 0.09 0.00 31.53 0.03 0.00 23.61 0.19 8.52

C5 l 7.77 0.00 0.04 7.77 0.00 0.08 7.77 0.00 1.36

C5 m 18.43 0.00 0.05 18.44 0.00 0.09 18.75 0.00 2.58

C5 h 39.59 0.00 0.06 40.69 0.00 0.09 32.81 0.00 8.83

DSE, MUR and MPP are explained in Sect. 3.3
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requires even more extra fitness evaluations since the solution have to be non-

monotone on all the load scenarios. The additional fitness evaluations are 2,631,

which is almost 85 % of the number of fitness evaluations performed during a run.

The average fitness over the load scenarios is adjusted.

The SRG1 solution (see Fig. 13), is only dependent on the leakage, which is

transformed by several trigonometric functions, a sigmoid function and then

multiplied by a constant. The power traces in Fig. 8 show that the pilot power often

increases periodically until leakage reaches such a level that it is reduced again. The

BS positions in each scenario show that the pilot power outputs are similar since the

leakage is governing the power. In the Od4 scenario the effect of the walls is seen by

the reduction in pilot power of the femtocells.

The solution ignores the load component, which is only one of three objectives.

When there is not too much leakage in the simulation then the coverage is often

acceptable. It is an unwanted simplification of the three objectives when there is a
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Fig. 9 Adjusted fitness performance and size for CG runs. a Fitness, b Size

Fig. 10 Solution CG1, simplified
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correlation between two objectives which allows the solution to reduce the impact

of one. With the only input being leakage it is not possible for some BSs to cover

gaps when femtocells are removed, since it would increase the leakage.

4.5 SRCG solution

The average fitness and size of the non-extreme solutions on the first front are

shown in Fig. 14. The fitness has not flattened out as much as for CG and SRG,

showing that the search has not converged. From the size plot it can be seen that the

SRCG solutions are larger than the SRG solutions.

At generation 19 the best solution, SRCG1 was found (see Fig. 15). The solution

uses more codons than the size of the chromosome and therefore it wraps around.

The effect of the wrapping can be seen in the repetition of the expressions. A more

refined way of handling modules and repetition might improve the results.

The results showed that the best fitness and engineering performances for the

grammars are similar over both test and training scenarios. Moreover, the evolved

solutions’ performances is sometimes better than the simple man made approach of

using fixed pilot power for each BS. SRG and SRCG require more fitness

evaluations than CG, but CG requires more domain knowledge to construct. The

next section further discusses the results.
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5 Discussion

The results of the grammar comparisons raised several issues. First, the conditional

functions and discrete pilot power changes are what a human engineer would

anticipate as a sensible method to altering the femtocells’ pilot power. The

engineers find the more compact solutions easier to deal with and understand. On

the other hand, the SRG setup gives the search method complete freedom to find any

solution, and one of the tricks is to provide functions that allow the expression to

capture the required pattern. Therefore, it might be more interesting to search for

SRG and SRCG solutions.

Another issue with CG is that there are multiple good solutions in the

solution space, i.e. a set of solutions with a fitness higher than a constant,

g ¼ fg : f ðgÞ[ C; g 2 Sg: One important issue to consider is what the ratio

of good solutions is when the search space increases. Most CG solutions either do

nothing or change pilot power by one, since the increments and decrements can

cancel each other out. When the solution sizes are increasing, the number of pilot

power changes by one grows fastest of all the changes. Therefore, if there are good

solutions which require only single pilot power changes, the probability of generating

them does not decrease too rapidly. The SRG and SRCG have no such bias.

From the random sampling of the scenarios it can be seen that the mobility

fitness value is the most skewed, but reaches the entire fitness range with some

outliers. The leakage is the most uniformly distributed value. Increasing the

number of BSs lowers the median leakage as expected, since there are more

stations that can leak. If the pilot power is kept roughly in the range [–40, –20]

then the more BSs the higher the mobility and load, since there are more stations

that can cover the area as well as avoid overload. When comparing the office

environment with the Od4 enumeration the load range is larger for open spaces.

This can be explained by the walls blocking the signal, which keep cells from

being overloaded.
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5.1 Load

There is an inherent difficulty in distributed load balancing. For example, in a

scenario when a BS is overloaded and it reduces its pilot power, a gap can be

created. A neighbouring BS needs to detect and then increase its pilot power to

cover this gap. The problem is that the BS might still be overloaded, in addition to

possible fitness penalties from lack of coverage during the time that the coverage

gap exists. Therefore, evolution might find it more beneficial to ignore overloading,

in order to avoid additional fitness penalties.

Furthermore, load can also be difficult to balance if there are no BSs which are

capable of handling an increased load. Another reason for the difficulty of detecting

overloaded states is the threshold of the load. The load fitness function creates a

very sharp step for the fitness. The other states are entered if the input values are[0,

while the load is[7, oL, oM, oLe C 0. The input values are averaged over the update

time period and are always [0. Mobility and leakage will always be greater than

their threshold of zero if an event occurs. In contrast, the load threshold requires the

load to be high most of the time.

5.2 States

We can trace the states of the algorithm in the BS, described in Sect. 2.3.2, by

recording the transition between states. If we correlate the states with the conditions

in the grammar we can gain information about the algorithm, otherwise, we only

gather information concerning the simulation. By tracing the states we gain

information regarding the input that the algorithm reacts to. The state trace helps

analysing the contents of the simulation as well as explaining nonsensical

statements in the algorithm. The ‘‘junk’’ in the algorithm is there because the

state is never reached. This is unwanted and will affect the robustness of the

algorithm, since when a new scenario invokes an unseen state

Figure 16 shows the state trace for some solutions on O12m, with state numbers

as in Table 2. The most desirable state is eight (8) and the least desirable is one

Fig. 15 Solution SRCG1
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Fig. 16 State trace for solutions on O12m, with state numbers as in Table 2. M, L, Le indicate if the input
is above a threshold. a GP1, b CG1, c SRG1, d SRG2, e SRCG1
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(1:M, L, Le), which is hardly ever reach by any algorithm. The solutions all have

different behaviours, e.g. GP1 has the fewest gaps, whereas GP1, SRG2 and SRCG1

do not reach all the states. However, GP1 was evolved using all load types which

indicates that it is difficult to balance the load in O12. As discussed in Sect. 5.1 from

an overloaded state (6:L) a gap (4:M) is reached, but a gap and overload (2:M, L) are

never reached directly. The analysis shows that each algorithm behaves differently.

6 Conclusions and future work

We performed an initial study of grammars used in grammatical GP which create

algorithms that control the BS pilot power in a femtocell network. The overall goal

is to create a continuous online evolution of the femtocell pilot power control

algorithm. We compared the performance of the different grammars and then

analyzed the femtocell simulation model.

The grammars consisted of conditional statements, mathematical functions, as in

symbolic regression and a combination of symbolic regression and conditional

statements. The conditional grammar is a simplification of a GP representation

previously used, but with a smaller solution space and significant improvement in

human readability, which is demanded by the engineers. The solutions regulate the

pilot power with discrete or continuous values. We also performed limited

enumeration of femtocell pilot power settings and random sampling to gain further

information about our femtocell network simulation model

The results showed that the best fitness and engineering performances for the

grammars are similar over both test and training scenarios. In addition, the evolved

solutions’ performance is sometimes better than the simple man made approach of

using fixed pilot power for each base station. The symbolic regression statement

grammars require more configuration of the evolutionary algorithm and more fitness

evaluations. But to construct the pure conditional statement grammar more domain

knowledge is required.

Different grammars have different languages and a different bias to power

changes. The language of CG creates solutions which perform well with the least

fitness evaluations. The same language as CG, but using GP instead, generates

solutions that perform equally well. The language for SRG generates solutions that

perform as well as CG. SRCG has lower performance. It is the language with the

most terminals and here the solution sentences are the longest in order to be valid,

e.g. a SRCG solution completely identical to a SRG solution is eight times longer.

Therefore, SRCG requires more fitness evaluations than SRG, which is one reason

for its low performance. Finally, the content of the resulting femtocell algorithms

showed that the EC methods are exploiting the simplifications in the model. The

ability of EC to exploit bias in both the fitness function and the underlying model is

vital for identifying the current system and can either improve the model or the EC

method.

Future investigations will concern the use of more local search to create a hybrid

algorithm and explore promising solutions. Another hybrid version to explore is to

first find a solution which satisfies the constraints and then apply GE. There are
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more scenarios to test and also possibilities to refine operations on the conditional

symbolic regression grammar. Moreover, it is possible to simplify solutions during

the run and add more domain knowledge to SRCG. The threshold values and ranges

can be explained further, e.g. use percent of load as a fitness function. In addition,

the method can be applied to other constraint satisfaction problems, for example

asset and sensor networks.
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