
Long memory time series forecasting by using genetic
programming

Emiliano Carreño Jara

Received: 11 September 2010 / Revised: 9 March 2011 / Accepted: 29 April 2011 /

Published online: 12 June 2011

� Springer Science+Business Media, LLC 2011

Abstract Real-world time series have certain properties, such as stationarity,

seasonality, linearity, among others, which determine their underlying behaviour.

There is a particular class of time series called long-memory processes, charac-

terized by a persistent temporal dependence between distant observations, that is,

the time series values depend not only on recent past values but also on observations

of much prior time periods. The main purpose of this research is the development,

application, and evaluation of a computational intelligence method specifically

tailored for long memory time series forecasting, with emphasis on many-

step-ahead prediction. The method proposed here is a hybrid combining genetic

programming and the fractionally integrated (long-memory) component of autore-

gressive fractionally integrated moving average (ARFIMA) models. Another

objective of this study is the discovery of useful comprehensible novel knowledge,

represented as time series predictive models. In this respect, a new evolutionary

multi-objective search method is proposed to limit complexity of evolved solutions

and to improve predictive quality. Using these methods allows for obtaining lower

complexity (and possibly more comprehensible) models with high predictive

quality, keeping run time and memory requirements low, and avoiding bloat and

over-fitting. The methods are assessed on five real-world long memory time series

and their performance is compared to that of statistical models reported in the

literature. Experimental results show the proposed methods’ advantages in long

memory time series forecasting.

Electronic supplementary material The online version of this article

(doi:10.1007/s10710-011-9140-7) contains supplementary material, which is available to authorized users.

E. Carreño Jara (&)

Departamento de Informática, Universidad Nacional de San Luis, Ejército de los Andes 950,

San Luis D5700HHW, Argentina

e-mail: ecarreno@unsl.edu.ar

123

Genet Program Evolvable Mach (2011) 12:429–456

DOI 10.1007/s10710-011-9140-7

http://dx.doi.org/10.1007/s10710-011-9140-7

Keywords Long memory � Time series forecasting � Genetic programming �
Multi-objective search � ARFIMA models

1 Introduction

The aim of time series forecasting (TSF) problems is to predict future values of a

certain variable by analyzing a set of its current and past values and, optionally,

those of other related variables. For example, meteorological agencies try to predict

the future value of temperature based on its past values and past values of other

related variables such as relative humidity, wind velocity, wind direction, etc. There

are two general kinds of methods to solve TSF problems. Those emerging from the

statistical and mathematical fields, known as classical or statistical-mathematical

methods; and those proposed within the framework of computational intelligence

(CI), known as modern heuristic or simply CI methods.

Real-world time series have certain properties, such as stationarity, seasonality,

linearity, among others, which determine their underlying behaviour. There is a

particular class of time series called long-memory processes, characterized by a

persistent temporal dependence between distant observations, that is, the time series

values depend not only on recent past values but also on observations of much prior

time periods. Stationary long memory time series have autocorrelations which

decrease at a very low rate (hyperbolically) converging to zero. In real-world time

series the long memory phenomenon entails that unexpected shocks or innovations

to a time series do not have a permanent nor short-run transitory effect, but that they

have long lasting effects.

The main purpose of this research is the development, application, and evaluation

of a computational intelligence method specifically tailored to forecast (univariate)

long memory time series, with emphasis on many-step-ahead prediction. An

approach from the statistical-mathematical field to forecast long memory time series

consists in using an autoregressive (AR) model of high order (e.g., AR(50)), as an

attempt to approximate the long memory behavior of time series but without

modelling them as long memory processes (see [1, 2, 3]). Then, a simple approach

to forecast long memory time series could be to use a CI method (e.g., artificial

neural networks or genetic programming) including a larger number of lagged

variables as input variables to approximate the long term behavior of the series.

However, if the number of input lagged variables increases too much relative to the

number of training samples (in-sample set size), the search space becomes too large

to search efficiently, as there are many possible models for the given training data

set, but most of them are not likely to capture the underlying data generating process

of the series. That is, there are too many lagged variables regarding the amount of

training samples as to relate these variables in such a way that the obtained model

correctly captures the underlying data generating process. This is known as the

curse of dimensionality problem (see [4, 5, 6, 7]). Moreover, if obtained models

become excessively complex1 in relation to the amount of training samples, they

1 As a consequence of the increase in the number of input lagged variables.

430 Genet Program Evolvable Mach (2011) 12:429–456

123

could lack the appropriate generalization (overfitting). In addition to this, on

incrementing the number of input lagged variables, run time and memory

requirements of the CI method increase and the obtained model is more difficult

to understand. Note that when using only short-lagged variables as input, past

information which is useful to forecast the future behavior of the series is lost.

To overcome these problems, this work proposes the first CI method designed

specially to forecast long memory time series, which is a hybrid combining genetic

programming and the fractionally integrated (long-memory) component of the

autoregressive fractionally integrated moving average (ARFIMA) models. It is

named fractionally integrated genetic programming and will be denoted by FI-GP.

This approach basically consists of including in the terminal set a new type of
variable, named long-memory variables. Genetic programming (GP) is a random

search algorithm based on the process of evolution, in which solutions are tree

structures representing computer programs. Here, a search is carried out in the space

of possible computer programs defined by the terminal and function sets, evolving

both the functional form and the parameters of models (see [8] for a detailed

description on GP).

Another objective of this study is the discovery of useful comprehensible novel

knowledge, represented as time series predictive models. There are two general

kinds of obstacles which make it difficult to obtain comprehensible models on using

CI methods in time series forecasting. Those that arise when the time series is not

well-understood and those due to limitations of the CI method used to obtain the

model. Here, the first type is overcome by understanding the time series main

characteristics and by using the FI-GP method mentioned above. Regarding the

limitations of the CI method used to obtain a model, difficulties specific to the

method, in this case GP, are identified and an approach to overcome them is

proposed. The main limitation to obtain comprehensible models using GP is the

structural complexity (tree size or code size) of evolved solutions and the difficulty

of evolving modular models of which sub-models (modules) are comprehensible.

As mentioned above, the FI-GP method contributes to obtaining comprehensible

modular models. On the other hand, the problems of bloat and over-fitting, and the

search space characteristics are directly related to the general complexity problem

of GP evolved solutions. Bloat is the tendency of the average size of individuals in

the population to grow uncontrolled after some generations without corresponding

increases in fitness (see [9, 10, 11]). This may be caused by the proliferation of

introns, which are inactive parts of GP models (i.e., subtrees) that do not affect

calculation’s results, for example the term yt�1 � 0 in the expression yt�2 þ yt�1 � 0
(see [12]). Another reason may be inefficient GP code (e.g., yt-2 ? 1 ? 1 ? 1

instead of yt-2 ? 3) or the fact that the crossover and mutation operators have a

higher probability to destroy good low complexity solutions than larger ones (see

[12, 13, 14]). In addition to requiring more computer resources, high complexity

solutions (relative to the problem to be solved) generalize worse than short ones

([15, 16]). The over-fitting problem arises when obtained models fit too much into

the in-sample data (training data), generalizing poorly to new unseen (out-

of-sample) data (see [17, 18, 19]). Time series data are made up by two general

Genet Program Evolvable Mach (2011) 12:429–456 431

123

terms, a pattern, corresponding to the underlying generating process, and a random

or error component which is the unpredictable part of the series, as shown in (1).

Data ¼ Patternþ Randomness ð1Þ

An over-fit model includes randomness as part of the generating process. Then,

when over-fitting occurs in GP, the complexity of evolved solutions increases since

models fit random data. Finally, in a search space with more high complexity

models correctly fitting the pattern than low complexity models (also properly

fitting the pattern), there is a tendency to generate high complexity models ([20,

21]).

To overcome these problems, a new method (named radial basis function genetic

programming, denoted by RBF-GP) to limit the complexity of evolved solutions and

improve predictive quality is proposed here. On decreasing the average structural

complexity of the population, obtained model complexity decreases (which could

make them easier to understand), and run time and memory requirements of GP are

reduced. On the other hand, on limiting complexity, the bloat and over-fitting

problems are avoided. The method presented here is an evolutionary multi-objective
search approach based on a new fitness function, which, in addition to forecasting
performance, includes structural complexity as an objective whenever the average
structural complexity of the population is beyond a given threshold. The innovative
component of this method consists of using, in the fitness function, certain
probabilities P1, P2 associated to the forecasting performance and structural
complexity respectively.

Using these two methods (FI-GP and RBF-GP) allows for obtaining more

comprehensible models with high predictive quality, keeping run time and memory

requirements low, and avoiding bloat and over-fitting. The methods are assessed on

five real-world long memory time series and their performance is compared to that

of AR, ARMA, and ARFIMA models reported in [3, 22]. Experimental results show

the proposed methods’ advantages in long memory time series forecasting.

The rest of this work is organized as follows. In Sect. 2, an introduction to long-

memory time series and ARFIMA models is presented. Sections 3 and 4 describe

and analyze the proposed methods, FI-GP and RBF-GP respectively. Section 5

shows experimental results obtained in the comparative study. Finally, conclusions

and future research avenues are given in Sect. 6.

2 Long memory time series and ARFIMA models

Long memory behavior in time series was first observed by the hydrologist H.E.

Hurst [23], who studied the annual minima of the water level in the Nile river

(Fig. 1, top). For this time series he observed that the value in a given year depends

not only on the values in recent past years but also on values from many previous

years. The rather slow decay of the sample autocorrelation function for this series

(Fig. 1, bottom), suggests the possible presence of long memory. For this type of

series, the autocorrelation function (ACF) decreases at a much slower rate than the

exponential rate, finally converging to 0. Since then, evidence on the presence of

432 Genet Program Evolvable Mach (2011) 12:429–456

123

long memory in time series has been found in subject areas as diverse as Finance

(e.g., [24, 25, 26, 27]), Economics (e.g., [28, 29, 30]), Climatology (e.g., [31, 32,

33]), or Hydrology (e.g., [34, 35, 36]).

Long memory behavior is usually defined as follows. Let yt be a stationary time

series with autocorrelation function c(k), then yt has long memory if

X1

k¼�1
jcðkÞj ¼ 1 ð2Þ

This asymptotic definition describes the behavior of the autocorrelations when

k!1. There are several alternative definitions of long memory, all being

asymptotic. Then, the long memory behavior is characterized by a slow

autocorrelation convergence rate to zero, but there are no restrictions regarding

autocorrelations magnitude.

The fractional Gaussian noise model, introduced by Mandelbrot and Van Ness

([37, 38]), was the first model designed to account for the long term behavior of

time series. The second long memory model, the integrated (or fractionally

differenced) series model, was proposed independently by Granger and Joyeux [39]

and by Hosking [40]. Then, in [3], the integrated series model and the fractional

Gaussian noise model are generalized, and the equivalence of general fractional

Gaussian noise and general integrated series is demonstrated. The autoregressive

fractionally integrated moving average (ARFIMA) model is a generalization of the

integrated series model described in [39, 40].

Granger and Joyeux observed that differencing certain type of series apparently

non stationary, in order to obtain stationarity, could have negative conse-

quences. Therefore, for these series, neither differencing, such as on using

Year

Le
ve

l

600 700 800 900 1000 1100 1200 1300

10
00

12
00

14
00

0 20 40 60 80

0.
0

0.
4

0.
8

Lag

A
C

F

Fig. 1 Top: annual minimal water levels of the Nile river for the years 622–1,281, measured at the Roda
gauge near Cairo. Bottom: sample autocorrelations for the annual minimum water levels of the Nile river
time series

Genet Program Evolvable Mach (2011) 12:429–456 433

123

ARIMA(p, d = 1, q) models, nor not differencing, such as on using AR-

IMA(p, d = 0, q) models, are appropriate. Then, they proposed a kind of models

in which the differencing (integration) order d is fractional. The model of an

ARFIMA process of order (p, d, q), denoted by ARFIMA(p, d, q), is defined as

UðBÞ ð1� BÞd yt ¼ HðBÞ et ð3Þ

where p is the order of the autoregressive polynomial UðBÞ ¼ ð1� U1

B� . . .� UpBpÞ, q is the order of the moving average polynomial HðBÞ ¼
ð1þ h1Bþ . . .þ hqBqÞ, d is the fractional differencing (integration or long mem-

ory) parameter, B is the backshift (lag) operator defined by Bi yt = yt-i, and et is

white noise with mean zero and variance r2
e . The fractional differencing operator

(1 - B)d, used in (3), is defined by the following binomial expansion

ð1� BÞd ¼
X1

k¼0

d
k

� �
ð�BÞk ¼

X1

k¼0

Cðk � dÞ
Cðk þ 1ÞCð�dÞB

k ð4Þ

where C is the gamma (or generalized) factorial function2. The ARFIMA(p, d, q)

model can also be found in the literature specified as

UðBÞ ð1� BÞd ðyt � lyÞ ¼ HðBÞ et ð5Þ

where ly is the mean of yt. For d fractional, greater than zero and lower than 0.5, the

process exhibits long memory. The long term decay in the autocorrelation function

of an ARFIMA process is determined by the parameter d, for 0 \ d \ 0.5 and d near

0.5, these processes have a strong persistence (long memory), which decreases as

d approaches zero. The autoregressive and moving average terms model the short-

term behavior of the time series, while the fractionally integrated FI(d) component

accounts for the long-term behavior. ARFIMA(p, d, q) models differ from standard

autoregressive integrated moving average (ARIMA(p, d, q)) models in that for the

latter the parameter d is only allowed to take integer values.

In addition to these long memory models, there are others such as the fractional

exponential (FEXP) model, proposed by Bloomfield [41]. A description of these and

other long memory models can be found in [42]. Also, there are several methods

proposed in the literature for estimating the parameters of long memory models

(e.g., [3, 43, 44, 45]), as well as for testing for the presence of long memory in time

series (e.g., [3, 26, 46, 47]). ARFIMA models’ estimation methods are usually

grouped into two categories: parametric methods, in which the short and long term

correlation structures are known allowing all parameters to be simultaneously

estimated, and semiparametric methods, in which first the long term behavior is

specified by estimating d, and then the autoregressive and moving average

parameters are estimated. For example, the log periodogram regression of Geweke

and Porter-Hudak (GPH, [3]) estimation method operates in two steps. First it

estimates d and then, given this estimation, it fits an ARMA model to the series

ð1� BÞd̂ yt. In the exact maximum likelihood (EML, [48]) estimation method, the

2 The gamma function, denoted by C, is an extension of the factorial function to real and complex

numbers.

434 Genet Program Evolvable Mach (2011) 12:429–456

123

long memory parameter d is estimated simultaneously with the autoregressive and

moving average coefficients. On the other hand, the forecasting performance of long

memory time series models has been reported in [3, 22, 30, 49, 50, 2], among others.

Interested readers may consult [42, 51] for more detailed background information

on long memory processes.

3 Fractionally integrated genetic programming

The main purpose of this research is the development, application, and evaluation of

a computational intelligence method specifically tailored for long memory time

series forecasting, with emphasis on many-step-ahead prediction. Here, the aim is to

obtain useful novel CI models with a forecasting performance comparable with or

even better than that of statistical methods reported in the long memory literature.

To overcome the problems mentioned in Sect. 1, this work proposes the first CI
method designed specially to forecast long memory time series, which is a hybrid

combining genetic programming and the fractionally integrated (long-memory)

component of ARFIMA models. It is named fractionally integrated genetic

programming (denoted FI-GP). The long memory component is the fractionally

differenced time series model (denoted by I(d), FI(d), or ARFIMA(0, d, 0)),

proposed by Granger and Joyeux [39] and by Hosking [40], defined by (6) where yt

is the value of variable y at time t, B is the backshift (lag) operator3, e is white noise,

and d (the fractional differencing parameter) is a fractional number.

ð1� BÞd yt ¼ et ð6Þ

The proposed GP approach includes two types of input variables in the terminal set,

short lagged variables and long-memory variables. Short lagged variables are

variables lagged by short periods which account for the short-term behavior of the

series. The values of long-memory variables are forecasts from FI(d) models, where

d is either chosen at random (0 \ d \ 0.5), estimated by using methods proposed in

the literature such as the log periodogram regression of Geweke and Porter-Hudak

(GPH, [3]) or the exact maximum likelihood (EML, [48]) estimation methods, or

optimized (adjusted) by CI methods such as genetic algorithms (GA, [52]),

evolutionary programming (EP, [53]), or differential evolution (DE, [54]). These

variables account for the long-memory behavior of the series, the aim is to integrate

(compress, gather, resume) all past information about long-range dependencies

scattered along the series into one or more predictive variables. Those models which

include long-memory variables have several input lagged variables, but most of them

are encapsulated in comprehensible FI(d) sub-models, which cannot be destroyed by

crossover. This allows for a comprehensible and modular design, given that larger

models are built by combining smaller comprehensible sub-models. The method

contributes to improving forecasting performance by giving the searching process an

initial approximate solution, and to increasing comprehensibility of obtained solutions

by means of a comprehensible modular design.

3 Defined by: Bi yt = yt-i.

Genet Program Evolvable Mach (2011) 12:429–456 435

123

3.1 One and two step alternatives

In a similar way as with ARFIMA models’ estimation methods, on using the FI-GP

method to obtain a predictive model, it is possible to proceed in one or two steps.

The two-step alternative consists in estimating (optimizing, adjusting) d by using

one or more statistical (or computational intelligence4) methods, in such way as to

obtain one or more long-memory variables FIðd̂iÞ for i ¼ 1; 2; . . .; n in the first step.

Then, in the second step, in-sample forecasts from FIðd̂iÞ sub-models estimated

(optimized) in the first step are used as long-memory variables during the GP

evolutionary process. The one-step alternative consists in running simultaneously

the GP evolutionary process and a CI method used to optimize d. On generating the

initial population, d values are randomly selected, and then they are optimized by a

CI method such as GA or DE, in each generation (or only in some generations) of

the GP evolutionary process. After executing the evolutionary process, the final GP

model is obtained by replacing each long memory variable in the selected GP

solution by its corresponding FIðd̂iÞ sub-model.

3.2 Obtaining forecasts from FI(d) sub-models

Once the value of d has been determined by using statistical or CI methods,

forecasts from FI(d) models can be obtained by computing the first T coefficients in

the binomial expansion of ð1� BÞd̂ and using them to form (build) an autoregres-

sive model of order T AR(T) as described as follows. Let dk ¼
d
k

� �
ð�1Þk ¼

Cðk�dÞ
Cðkþ1ÞCð�dÞ in (4), the fractional differencing operator (1 - B)d can be written as

ð1� BÞd ¼
X1

k¼0

dk Bk ¼ 1þ
X1

k¼1

dk Bk ¼ 1þ d1 B1 þ d2 B2 þ . . . ð7Þ

In order to use an estimated FIðd̂Þ model to forecast the series value at time t ? 1,

given that it is not possible to have an autoregressive representation of infinite order

ARð1Þ, instead an autoregressive model of order T AR(T) is used, where T is an

integer corresponding to the amount of available past observations (or truncated at

the time period t - T ? 1) yt; yt�1; yt�2; . . .; yt�Tþ1. Then, according to (6), the

estimated FIðd̂Þ model can be described as

ð1� BÞd̂ yt ¼
XT

k¼0

dk Bk yt ¼ ð1þ d1 B1 þ d2 B2 þ . . .þ dT BTÞ yt ¼ et ð8Þ

Then, distributing yt and applying the backshift (lag) operator (defined by Bi

yt = yt-i) we have,

4 In this case, in order to improve run time, a CI method that generates one or more d̂ solution values, is

used.

436 Genet Program Evolvable Mach (2011) 12:429–456

123

et ¼ yt þ d1 yt�1 þ d2 yt�2 þ . . .þ dT yt�T ð9Þ

Finally, increasing the subscripts by one and taking the expected value of future

random errors ðetþ1Þ as zero, the autoregressive representation of the FIðd̂Þ pre-

dictive model can be written as follows

ŷtþ1 ¼ �ðd1 yt þ d2 yt�1 þ . . .þ dT yt�Tþ1Þ ð10Þ

Forecasts h-steps-ahead ðŷtþhÞ can be computed recursively as with an AR model. In

what follows, FI(d) will denote either the modeling or the forecasting representation

of the fractionally differenced time series model, depending on the context.

3.3 Multi-step-ahead forecasting

To perform multi-step-ahead forecasting with the FI-GP method, recursive and direct

methods can be used. In the recursive method (iterated prediction) models are

evolved to carry out single-step-ahead forecasting. Then the obtained solution is used

recursively to forecast h-steps ahead by iteratively taking single-step-ahead

forecasted values as input to forecast the next time step value, until the desired

forecast horizon h is reached. Given that the FI(d) sub-models which are part of a FI-

GP model, are also models that can be used independently, there are two alternative

approaches on using the recursive method with the FI-GP method. The first

alternative, named FI-GP-R, is the standard recursive method, that is, the FI(d) sub-

models take single-step-ahead forecasted values from the FI-GP model as input to

forecast the next time step value. The second alternative, named FI-GP-R2, only

differs from the first in that the FI(d) sub-models take their own single-step-ahead

forecasted values as input to forecast the next time step value. In the direct method,

instead of forecasting the next time step value, FI-GP models are directly evolved to

forecast the h-th period ahead. There are two alternatives on using the direct method

with the FI-GP method. In the first one, named FI-GP-D, h-step-ahead forecasts from

FI(d) sub-models are obtained by a direct method such as best linear unbiased

prediction (readers may consult [42, §8.7] for a detailed description on the best linear

unbiased prediction method). In the second alternative, named FI-GP-DR, h-step-

ahead forecasts from FI(d) sub-models are obtained by the recursive method.

3.4 Combining and improving FI(d) initial solutions

When the FI-GP method is used with only one long-memory variable (FI(d) sub-

model) together with one or more short-lagged variables, this FI(d) sub-model can

be considered as an initial partial solution, which is then improved by an

evolutionary process. On the other hand, on using more than one long-memory

variable (FI(d) models with different values of d) and no short-lagged variables, the

FI(d) models can be considered as final solutions which are combined by means of

evolution, that is, the FI-GP method provides a way of combining forecasts from

these FI(d) predictive models. Finally, when using both short and long-memory

variables, the FI-GP method provides a way to combine and improve these

FI(d) solutions.

Genet Program Evolvable Mach (2011) 12:429–456 437

123

3.5 Setting d randomly

On the other hand, on using the FI-GP method alternative where values of d are

randomly set (0 \ d \ 0.5), we could obtain models with high predictive quality,

without using statistics (or CI) methods to estimate (optimize) d. Even though it’s

very likely that those FI(d) sub-models for which d is randomly selected won’t have

good predictive quality, on combining them with other FI(d) sub-models and with

short-lagged variables during the evolutionary process, we could obtain FI-GP

models with high forecasting performance. The long term decay in the autocor-

relation function of an FI(d) process is determined by the parameter d, for

0 \ d \ 0.5 and d near 0.5, these processes have a strong persistence (i.e, a strong

association between observations widely separated in time), which decreases as

d approaches zero. Then, the aim of incorporating long-memory variables, which

take forecasts from FI(d) models where the value of d is randomly selected, is that

the evolutionary process selects and combines those long-memory variables that

better suit the underlying data generating process of the series. That is, those

individuals made up of FI(d) sub-models with values of d that better approximate

the value best representing the series persistence will tend to be favoured by the

selection process, and so, these FI sub-models will thrive through out generations.

FI(d) sub-models with values of d not close enough to the value best representing

the series persistence will tend to disappear.

4 An evolutive multi-objective searching method

There are several ways to approach the GP complexity problem. Simple approaches

consist in using automatically defined functions (ADFs, to encapsulate parts of GP

programs so that they can’t be destroyed by crossover) or selecting a population big

enough so as to generate a satisfactory solution before individual complexity

increases too much ([55]), although, generally, they aren’t sufficient. Another

approach consists in starting with low complexity individuals and progressively

considering larger individuals in order to find the lowest complexity satisfactory

solution (e.g., see [56]), however, in GP it isn’t possible to consider all low

complexity solutions. Another possibility is to use a fitness function that combines

performance and complexity, but finding proper weights for these functions can be

as difficult as setting an appropriate model complexity (see [57]). As an alternative,

in [58] these weights are modified according to properties of the evolutionary

process, nevertheless, the desired level of training accuracy must be set. Instead of

using a weighted function, the approach proposed in [59] separately selects

according to either performance or complexity in different tournaments. This

requires to set parameters determining the relative importance of performance and

complexity. Other approaches consist in using editors to delete introns (non-

functional parts of GP code), using a threshold to limit solution complexity (by

bounding the number of nodes or tree depth), penalizing (by means of a penalty

factor in the fitness function) long solutions or solutions with too many introns, or

adapting the crossover operator to restrict code growth (see [55]). Finally, other

438 Genet Program Evolvable Mach (2011) 12:429–456

123

authors have used multi-objective search approaches with performance and

complexity as objectives (e.g., [60, 61, 62]), however, this can lead to evolutionary

searches converging to solutions with low complexity but with poor performance

(see e.g., [63, 64]). To avoid this, in [65], diversity is included as an objective in

addition to performance and complexity. In this last approach, the complexity of

obtained solutions will depend not only on the in-sample data set, but also on other

general GP control parameters, which will indirectly influence complexity.

In the time series forecasting framework, different approaches have been used to

solve the GP’s model complexity problem. In [66], Akaike Information Criterion

(AIC, defined in [67]) is utilized to solve model complexity with generalization

capacity on using linear genetic programming. Several techniques for overfitting

avoidance in GP approaches producing tree-structured polynomials are provided in

[68]. In [69], an extension of GP, which uses two re-sampling techniques (i.e.,

Bagging and Boosting) is proposed and authors assert that the re-sampling

techniques are successful in reducing the tree size. [70] studies over-fitting and

premature convergence, on a standard GP approach applied to the Mackey-Glass

time series prediction. According to results presented in this article, the standard GP

approach does not exhibit the over-learning reported in [71] and the premature

convergence problem can be corrected by modifying the crossover operator. On the

other hand, [72] proposed an approach to forecast in non-static environments that

can automatically set the correct analysis window size (i.e., the number of historical

data to be analyzed in predicting a future value) without human intervention. Here,

two methods to overcome the problem of bloat in this approach are proposed. Other

publications approaching the GP’s model complexity (over-fitting and bloating) in

the time series forecasting framework are [73, 74, 75, 76], among others.

According to the literature reviewed, the right (or approximate) choice of the

model’s complexity is too important and difficult a task as to be carried out

automatically, considering currently available methods. It is important to emphasize

that in GP, due to introns and/or inefficient code, there is no optimal model

complexity which can prevent both underfitting and overfitting for a given data set.

Instead, appropriate model complexities are those which allow to minimize the out-

of-sample forecast error, due to both underfitting and overfitting. Selection of

appropriate model complexities highly depends on the size and randomness of the

in-sample data set. Then, the right choice of model complexity and of in-sample

data sets become important, difficult, and highly related top level decisions.

4.1 Overview of the proposed approach

In this work, a new method to limit the complexity of evolved solutions and

improve predictive quality is proposed. On decreasing the average structural

complexity of the population, the obtained model’s complexity decreases (which

could make it easier to understand), and run time and memory requirements of GP

are reduced. On the other hand, on limiting complexity, the bloat and/or over-fitting

problems are avoided. The method presented here is an evolutionary multi-objective

search approach, which, in addition to forecasting performance, includes structural

complexity as an objective whenever average structural complexity of the

Genet Program Evolvable Mach (2011) 12:429–456 439

123

population is beyond a given threshold. Here, the aim is to allow model complexity

to increase as much as to capture the whole time series pattern (avoiding

underfitting), but not so much as for the models to include randomness as part of the

generating process (avoiding overfitting). This way, after a given number of

generations have passed, the search will focus on hypothesis regions with

complexities within a certain range. This approach has been designed to be used

with the FI-GP method presented in Sect. 3, although it could be useful on its own.

4.2 Fitness function for the multi-objective search process

In multi-objective (multi-criteria or multi-attribute) optimization problems, two or

more conflicting objectives subject to certain constraints have to be simultaneously

optimized (e.g., minimizing the cost while maximizing the performance of a

product, or minimizing the weight while maximizing the strength of a material).

Considering, without loss of generality, the minimization of all the objectives, the

multiobjective optimization problem can be defined in mathematical terms as

follows: Let X be an n-dimensional solution search space of decision variable

vectors x ¼ hx1; x2; . . .; xni, find a vector x* that minimizes a given set of k objective

functions f ðxÞ ¼ ½f1ðxÞ; f2ðxÞ; . . .; fkðxÞ�, which satisfies m inequality constraints

giðxÞ� 0; i ¼ 1; 2; . . .;m and p equality constraints hiðxÞ ¼ 0; i ¼ 1; 2; . . .; p. Read-

ers may consult [77, 78, 79, 80] for a detailed description on multiobjective

optimization. In this work, the in-sample forecasting error (mean square error) f1
and the structural complexity f2 are the objectives to be minimized.

4.2.1 Proportional selection method

Let x be an individual from the current population. The objectives are combined by

using the following Gaussian Radial Basis Function (RBF), which can be used as

performance and fitness measure:

FitnessðxÞ ¼ exp �kPðxÞ � ck2

r2

 !
¼ exp �

P2
i¼1ð1� PiðxÞÞ2

r2

 !
ð11Þ

where PðxÞ ¼ hP1ðxÞ;P2ðxÞi;PiðxÞ is the probability that x has of winning a

comparison (assuming minimization) according to the objective function fi against

another solution randomly selected from the current population, c ¼ h11; 12i, and

r 2 R is the spread around the center which determines the ratio of the function

decay with its (Euclidean or 2-norm) distance from c. On using this fitness function

with proportional fitness (roulette wheel) selection, the spread r determines the

selective pressure. Figure 2 shows the graphical representation of this RBF fitness

measure for r = 0.75.

4.2.2 Tournament selection method

For the tournament selection method, selective pressure is adjusted by changing the

tournament size, then the following fitness function can be used:

440 Genet Program Evolvable Mach (2011) 12:429–456

123

FitnessðxÞ ¼
X2

i¼1

ð1� PiðxÞÞ2
 !1

2

ð12Þ

4.2.3 Summary of the RBF-GP method

The approach used in this work consists of using a threshold for the average

complexity of the population. Each time the average complexity is beyond this

threshold, complexity is included as an objective (in addition to forecasting

performance) by using (11) or (12); otherwise, a standard (mono-objective) fitness

function is used. The innovative component of this method consists of using, in the

fitness function, the probabilities PðxÞ ¼ hP1ðxÞ;P2ðxÞi and the reference point

c ¼ h11; 12i defined on the space of probabilities.

4.2.4 Run example

Once the threshold is reached, the average complexity of the population will

oscillate within a given range of values as shown in Fig. 3. In this figure it can be

seen that, after a certain number of generations, the average population complexity

oscillates between 110 and 150 (approx.), thus the range of individual complexities

is broad. In this run, which uses elitism, the complexity of the best individual is

decreased from a value near 400 (in the 24th generation) to near 130 (in the 79th

generation) improving the in-sample forecasting performance (without overfitting

the data series). So, the choice of the threshold value is rather intuitive and it does

not restrict complexity to only one value, which makes setting this parameter easier.

4.3 How and why the RBF-GP approach could work

The RBF-GP approach works as follows. At the beginning of the evolutionary

process, models are generated with relatively low structural complexity and include

0
0.2

0.4
0.6

0.8
1 0

0.2
0.4

0.6
0.8

1

0

0.2

0.4

0.6

0.8

1

Probability Probability

Fi
tn

es
s

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

Fig. 2 Graphical representation of the radial basis function given in (11) with r = 0.75

Genet Program Evolvable Mach (2011) 12:429–456 441

123

randomness and pattern components. Then, as generations go by, average structural

complexity increases. Then we have the following hypothesis:

Hypothesis 1: the increase in structural complexity is due to over-fitting. After

enough generations have elapsed, in standard GP, the complexity of individuals

could increase until individuals learn the whole pattern and memorize all of the

series random component. Then, it’s necessary to bound structural complexity

during evolution. This way, average population complexity increases, and the

individuals learn the pattern and memorize the series randomness until average

complexity reaches the threshold. From then on, the RBF-GP multiobjective search

approach will include complexity as an objective to minimize. Then, the learning

process (guided by fitness) will progressively remove randomness from the models

undergoing evolution. This is given that, on reaching the threshold, the only way in

which fitness can increase is replacing the random component by the pattern. The

random component will be replaced by pattern due to the complexity necessary to

learn the pattern is less than that needed to memorize the randomness. For example,

consider the series y ¼ 2; 4; 8; 16; 32; . . .; 2n, the complexity necessary to memorize

this series is much greater than that needed to learn the pattern yi = 2i (assuming a

big enough in-sample data set size). Thus, this approach allows for prevent and

overcome over-fitting.

Hypothesis 2: the increase in complexity is due to code bloat. After enough

generations have elapsed, in standard GP, the complexity of individuals could

increase until it consumes considerable resources. Suppose that most code growth is

due to proliferation of introns (which are inactive parts of GP models that do not

affect calculation’s results), and thus, doesn’t contribute to memorization/over-

fitting. Then, average population complexity increases until it reaches the threshold.

From then on, the RBF-GP multiobjective search approach will include complexity

as an objective to minimize. Then, the learning process (guided by fitness) will

progressively remove introns from the models undergoing evolution and/or will

avoid them, given that, the only way in which fitness can increase is replacing the

introns by the pattern. Thus, this approach allows for saving the considerable

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0 10 20 30 40 50 60 70 80

C
om

pl
ex

ity

Generation

Structural complexity through generations

Best
Average

Fig. 3 Average population complexity and best solution complexity through the generations

442 Genet Program Evolvable Mach (2011) 12:429–456

123

computational resources that additional code (of code growth) consumes and, given

that code growth may interfere with exploration of the search space, it also allows

for improving the forecasting performance.

5 A comparative study

The purpose of this section is to evaluate the forecasting performance of the

approaches proposed in this work, comparing it with that of statistical methods

published in the literature (and of standard GP5) in several-step-ahead forecasting,

using real-world economic long memory time series and out-of-sample forecasts

(where no data beyond the point of forecast is used either for analysis, model

estimation, nor model evolution). The GP approaches proposed in this work and

assessed in this section, are: FI-GP (Sect. 3), RBF-GP (Sect. 4), and the FI-RBF-GP

method, which uses both the FI-GP and RBF-GP methods. In these experiments, h-

step-ahead out-of-sample forecasts, with horizons h ¼ 1; 2; . . .; 100 are analyzed.

All estimations and forecasts for statistical models, including those submodels of

models generated by the FI-GP and FI-RBF-GP methods, are performed using the

object-oriented matrix programming statistical system Ox version 6.00 (see [81])

and the Arfima package version 1.00 ([82]). The kernel system for the standard GP,

FI-GP, RBF-GP, and FI-RBF-GP approaches is based on the public domain genetic

programming system Gpc?? Version 0.40 [83] (modified as to use a generational

genetic programming scheme instead of steady state genetic programming). The

statistical models and estimation methods, and the long memory time series used are

those of [3, 22].

The rest of this section is organized as follows. Section 5.1 details the FI-GP and

RBF-GP methods’ alternatives (variants) used. Statistical methods and data sets

used in these experiments are given in Sect. 5.2. The setup of experiments is

described in Sect. 5.3. Finally, results and performance analysis are given in

Sect. 5.4.

5.1 FI-GP and RBF-GP methods’ alternatives

On using the FI-GP and RBF-GP methods, it’s necessary to choose from several

alternatives (or variants) as described in Sects. 3 and 4. For these experiments, the

two-step FI-GP alternative, using statistical methods to estimate d, has been chosen.

Forecasts h-steps-ahead ðŷtþhÞ are computed recursively as with an AR model, using

the alternative named FI-GP-R (see Sect. 3). The statistical methods used to

estimate d are the log periodogram regression of Geweke and Porter-Hudak (GPH,

[3]), exact maximum likelihood (EML, [48]), and nonlinear least squares (NLS, see

[30]) estimation methods. Standard GP will be denoted by STD-GP or STD-GP(n),

where n is the number of lagged variables yt; yt�1; . . .; yt�nþ1. Similarly, the FI-GP,

RBF-GP, and FI-RBF-GP approaches can be denoted as FI-GP(n, m), RBF-GP(n),

and FI-RBF-GP(n, m), where m is the number of long memory variables. For m = 1

5 This approach is only used as a reference.

Genet Program Evolvable Mach (2011) 12:429–456 443

123

EML is used, for m = 2 EML and NLS are used, and for m = 3 the EML, NLS, and

GPH estimation methods are used. The forecasting performance measure used by all

GP approaches during evolution is the normalized mean square error (NMSE)

defined by NMSE ¼ MSE
S2

y
¼ N�1�

P
ðyi�ŷiÞ2

ðN�1Þ�1�
P
ðyi��yÞ2 where N is the number of forecast cases,

yi and ŷi are the observed series value and forecasted value respectively, for the

forecast case i, and, �y and S2
y are the sample mean and sample variance of the series

respectively, computed over all forecast cases i ¼ 1; 2; . . .;N. The complexity of a

GP solution is measured by its structural complexity.

Structural complexity is defined, for this paper, as the number of terminals

and functions in the GP tree.

The FI-GP and STD-GP methods use the following fitness function

FitnessðxÞ ¼ 1

1þ NMSEx
ð13Þ

where NMSEx is the NMSE of individual x. The RBF-GP and FI-RBF-GP methods

use the fitness function given in (12), Sect.(4), each time the average complexity is

beyond the threshold; otherwise (13) is used as fitness function.

5.2 Statistical methods and data sets

The two published studies on long memory time series forecasting chosen as

references for the comparative evaluation are [3, 22]. Experiments in these

publications are reproduced and their results are compared to those of methods

proposed in this work. The comparative analysis is carried out using the following

long memory monthly time series data sets: the Consumer Price Index for Food - All

Urban Consumers (denoted by Food-CPI, from January 1947 to July 1978), the

Producer Price Index - All Commodities (denoted by PPI, from January 1947 to

February 1977), the Consumer Price Index - All Urban Consumers (denoted by CPI,

from January 1947 to February 1976), the Consumer Price Index for Food for wage

earners and clerical workers (denoted by Food-CPI-WECW, from January 1947 to

July 1978), and the Retail Price Index Inflation Rate for UK (denoted by UK-

Inflation-Rate, from February 1969 to September 1992). The first three series have

been taken from [3] and the last two from [22], evidence of the presence of long

memory in these series can be found in the respective publications.

The statistical methods used for CPI, Food-CPI, and PPI are: an ARFIMA

(0, d, 0) model (see (3), Sect. 2) estimated by the log periodogram regression of

Geweke and Porter-Hudak method (denoted by ARFIMA-GPH) and an autoregres-

sive model of order fifty AR(50) estimated by nonlinear least squares (denoted

by AR50-NLS). The statistical methods used for the Food-CPI-WECW and

UK-Inflation-Rate series are: an ARFIMA(0, d, 0) model (see (5), Sect. 2)

estimated by exact maximum likelihood (denoted by ARFIMA-EML) and an

ARMA(2,2) model also estimated by EML (denoted by ARMA-EML). Data series

444 Genet Program Evolvable Mach (2011) 12:429–456

123

transformations used in the out-of-sample forecasting experiments for these

statistical methods are those of [3, 22].

5.3 Test experiments setup

This section details the out-of-sample forecasting procedure, the GP parameters

setting, the reasons to use the recursive method, the problem found using it, and the

proposed solution.

5.3.1 The forecasting procedure

For each series, the procedure to carry out out-of-sample forecasts using the

statistical and GP methods, is as follows. The first T series observations are used to

estimate the statistical models and to obtain the GP models. Then, each of these

models is used to forecast the series at time T þ hðŷTþhÞ, computing the forecast

errors for h ¼ 1; 2; . . .; 100 or until T ? h reaches the end of the series. Forecasts are

computed by using the recursive method. This procedure is repeated increasing the

forecast origin T by one at a time, until T reaches a given time point Tmax. The

statistical models’ parameters are re-estimated and GP models re-obtained each time

an additional observation is included into the in-sample data set. The initial forecast

origin will be denoted by Tinit. Then, for each horizon h ¼ 1; 2; . . .; 100 the

forecasting performance measures (MSE, RMSE, NMSE, and MAE) are computed.

For each time series the number of observations, Tinit and Tmax are as follows: for

Food-CPI Tinit = 251 and Tmax = 330; for PPI Tinit = 239 and Tmax = 318; for CPI

Tinit = 227 and Tmax = 306; for Food-CPI-WECW Tinit = 251 and Tmax = 330; for

UK-Inflation-Rate Tinit = 181 and Tmax = 260. The maximum number of out-of-

sample forecasts (Tmax - Tinit) is set to 80, this way there will not be an excessive

difference between the numbers of samples used to compute the performance

measure for each horizon. On using a GP method, the first 36 observations (the first

three years) are reserved to be used as lagged values to carry out forecasts.

5.3.2 The recursive method and forecast exceptions

In the out-of-sample forecast experiments, forecasts h-steps ahead are computed by

using the recursive method (iterated prediction). The recursive method has been

chosen instead of the direct method to make a fairer comparison against results of

statistical methods published in the literature, which use it, and since it’s more

interesting to use the recursive method given that the forecasting performance of

models is expected to improve on using the direct method (as explained next). In

preliminary runs, it was observed that, some of the GP obtained models had high

performance for the first forecast horizons, but, from certain forecast horizon on,

they performed very badly. This problem worsened for further forecast horizons.

Then, on applying the recursive method with a given GP model, the forecasting

errors could be normal for the first horizons, and then, (from a given horizon) errors

could suddenly increase. This error could quickly increase in the following horizons

until it produces a floating-point exception. This is not due to overfitting,

Genet Program Evolvable Mach (2011) 12:429–456 445

123

underfitting, or a change in the underlying data generating process of the series, but

to from what now on will be called forecast exceptions. These forecast exceptions

are generated by inactive parts of GP models (i.e., subtrees) that do not affect

calculation’s results for the in-sample data set, but which, on using the recursive

method to forecast unseen (out-of-sample) observations, become active even if there

is no change in the underlying data generating process. This happens because, on

using the recursive method to forecast the time period T ? h, unexpected
innovations are produced in the time series formed by concatenating the in-sample

data series and the recursive forecasts: y1; y2; . . .; yT ; ŷTþ1; ŷTþ2; . . .; ŷTþh�1. Fore-

cast exceptions are produced for forecast horizons h [1, they expand to following

horizons (chain reaction) until either forecasting values stabilize or forecasting

errors increase and produce a floating-point exception. A forecast exception can also

happen for only one forecast horizon, without having an effect on the next.

When a forecast exception is generated during the out-of-sample forecast
experiments, it’s important to stop the chain reaction given that, either on producing

a floating-point exception or on getting too-high errors, all the sample runs would

become useless. Here, the following method to detect and deal with forecast

exceptions is proposed and used. To detect an out-of-sample forecast exception on

the time period T ? h, the time series formed by concatenating the data series until

time T and the out-of-sample recursive forecasts ŷTþ1; ŷTþ2; . . .; ŷTþh�1 is consid-

ered. Out-of-sample forecasts lying over or under r 2 R standard deviations r from

the mean of the series y1; y2; . . .; yt; ŷtþ1; ŷtþ2; . . .; ŷtþh�1, are deterministically

considered exceptions. An out-of-sample forecast exception (at time t ? h) will be

replaced by the out-of-sample forecast at time t ? h - 1 (the previous out-

of-sample forecast), which is the naı̈ve random walk model ðŷtþ1 ¼ ytÞ forecast

(using the recursive method). Based on preliminary runs, in the comparative

experiments r will be set to 5 for all series, except for UK-Inflation-Rate for which it

will be set to 1.

5.3.3 GP parameters and data transformations

GP configuration and control parameters shared by STD-GP, FI-GP, RBF-GP, and

FI-RBF-GP approaches in the out-of-sample forecasting experiments are the

following. Creation type: ramped half and half. Maximum depth at creation: 6.

Maximum depth at crossover: 17. ADFs: not used. Crossover probability: 0.9.

Mutation probability: 0.01. Selection method: Tournament (the tournament size is

set to 5). Elitism is used6. The generational genetic programming scheme is used.

Function set: f�;þ;�;%; Sqrt; Sine;Cosine; e�Exp; e�Lng, where the protected

division operator % returns 1.0 if the denominator is zero, the protected operator

Sqrt returns the square root of the absolute value of its argument, the protected

exponential operator e - Exp returns e10 if its argument is greater than 10.0, the

protected operator e-Ln returns the natural logarithm of the absolute value of its

argument if its argument is not equal to zero, and zero otherwise. Ephemeral

random constant range: [-1.000, 1.000]. Termination criterion: the run terminates

6 Here, the best solution from the previous population is included in the current population.

446 Genet Program Evolvable Mach (2011) 12:429–456

123

when a given number of generations (NumGens) have been run. Result designation:

designate the solution with the best forecasting performance, that ever appeared in

any generation of the population, as the result. Table 1 shows lagged and long

memory variables (column Method, see Sect. 5.1 for notation), number of

generations (column NumGens), population size (column PopSize), and the RBF-

GP threshold parameter (column Threshold), which are specific to each GP method

for each time series (column TS). Data series transformations used in out-of-

sample forecasting experiments are the following. CPI: 1-st-order difference

ðy0t ¼ yt � yt�1Þ. Food-CPI: 1-st-order difference. PPI: 1-st-order difference and

mean adjustment ðy0t ¼ yt � �yÞ. Food-CPI-WECW: 1-st-order difference. UK-

Inflation-Rate: none. Thirty independent runs were performed for each configuration

setting (series and GP method shown in Table 1), computing the mean and standard

deviation of forecasting performance (SSE, MSE, NMSE, RMSE, and MAE), run

CPU time, and solution structural complexity. According to statistical hypothesis

tests done with these 30 samples and a significance level a = 0.05, all the results of

the experiments presented in this study are statistically significant. That is, the

differences in performance, including forecasting error, structural complexity and

run time, are statistically significant for all algorithms at all forecast horizons (in the

forecasting error case) for all problems. Details of the statistical tests are available

on request from the corresponding author, or in the Genetic Programming and

Table 1 Configuration and control parameters specific to each GP method

TS GP method NumGens PopSize Threshold

CPI STD-GP(12) 60 800 –

RBF-GP(12) 60 800 600

FI-GP(10,1) 20 1,000 –

FI-RBF-GP(10,1) 30 1,000 30

Food-CPI STD-GP(10) 64 800 –

RBF-GP(10) 64 800 800

FI-GP(0,2) 20 1,000 –

FI-RBF-GP(0,2) 30 1,000 30

PPI STD-GP(15) 60 800 –

RBF-GP(15) 60 800 600

FI-GP(0,2) 20 1,000 –

FI-RBF-GP(0,2) 30 1,000 30

CPI-WECW STD-GP(10) 64 800 –

RBF-GP(10) 64 800 800

FI-GP(5,3) 20 1,200 –

FI-RBF-GP(5,3) 30 1,200 30

UK-Inf-Rate STD-GP(10) 50 1,000 –

RBF-GP(10) 50 1,000 600

FI-GP(2,2) 20 50 –

FI-RBF-GP(2,2) 50 1,000 0

Genet Program Evolvable Mach (2011) 12:429–456 447

123

Evolvable Machines journal web site. The statistical tests have been carried out by

using the software environment for statistical computing and graphics named R (see

[84]). Next subsection presents and analyses these out-of-sample forecasting

experiments’ results.

5.4 Results and analysis of the performance

First, a graphical analysis of the performance of the different approaches,

considering each series separately, is done. Then, a general analysis is carried

out, taking into account simultaneously all series, methods, and forecast horizons.

Finally, model complexity and run CPU time are compared.

Figure 4a shows the results, as root mean squared errors (RMSE), for the CPI

series. In general, it’s observed that FI-RBF-GP has the best forecasting

performance followed by FI-GP and these are followed by the statistical methods.

The RBF-GP approach slightly outperforms STD-GP for most horizons. Figure 4b

shows the results for the Food-CPI series. The best forecasting performance is

achieved by FI-RBF-GP and by FI-GP, FI-RBF-GP being better for most forecast

horizons. The RBF-GP approach outperforms the STD-GP approach by a noticeable

difference from horizon 1 to horizon 63, from which on both have very similar

performance. For the PPI series (see Fig. 4c), the best performance is achieved by

the FI-RBF-GP followed very closely by FI-GP, and then, in general, by a greater

margin, by the ARFIMA-GPH method. In general, the STD-GP and RBF-GP

approaches have very similar forecasting performance, with slight advantages for

one or the other, for horizons between 1 and 20. For the Food-CPI-WECW series

(see Fig. 4d), for h = 1 to h = 20, the best performance is achieved with the

FI-RBF-GP and ARFIMA-EML methods, FI-RBF-GP being better for most

horizons. These are followed by FI-GP. From h = 20 on, the best forecasting

performance is generally achieved by FI-RBF-GP and FI-GP, followed by

ARFIMA-EML (which ranks first from h = 24 to h = 49 approx.). RBF-GP

outperforms STD-GP for all horizons. Figure 4e shows results for the UK-Inflation-

Rate series. From h = 1 to h = 7 the best forecasting perfromance is achieved by

ARMA-EML and FI-RBF-GP, from h = 8 to h = 92 (approx.), by ARFIMA-EML,

and from then on, by FI-RBF-GP. RBF-GP and STD-GP perform similarly, but

STD-GP outperforms RBF-GP for most horizons. Its important to remark that, even

if ARFIMA-EML ranks last for h = 1 to h = 5, it has the best performance for most

other horizons. The two problems that arise with the UK-Inflation Rate series are the

series characteristics and the size of the data set, which, for this particular case,

affects more the approaches based on GP than the statistical methods. With a total of

284 observations, the UK-Inflation Rate is the one with the least amount of data of

the 5 series used in the experiments. Given this, the in-sample preliminary data set

and the in-sample validation data set used to set (adjust) the parameters of the

approaches based on GP are smaller than for the other series. That is, the insufficient

amount of data is a problem that affects more the methods based on GP than the

statistical approaches (for which it is not necessary to separate and divide the in

sample data set into a preliminary in-sample data set and an in-sample validation

data set to estimate parameters). On the other hand, it can be observed in Fig. 4e,

448 Genet Program Evolvable Mach (2011) 12:429–456

123

 0
 2
 4
 6
 8

 10
 12
 14
 16
 18

 10 20 30 40 50 60 70 80 90 100

R
M

S
E

AR50-NLS
ARFIMA-GPH
STD-GP
RBF-GP
FI-GP
FI-RBF-GP

 0

 5

 10

 15

 20

 25

 30

 10 20 30 40 50 60 70 80 90 100

R
M

S
E

AR50-NLS
ARFIMA-GPH
STD-GP
RBF-GP
FI-GP
FI-RBF-GP

 0

 5

 10

 15

 20

 25

 30

 10 20 30 40 50 60 70 80 90 100

R
M

S
E

AR50-NLS
ARFIMA-GPH
STD-GP
RBF-GP
FI-GP
FI-RBF-GP

 0

 5

 10

 15

 20

 25

 30

 10 20 30 40 50 60 70 80 90 100

R
M

S
E

ARMA-EML
ARFIMA-EML
STD-GP
RBF-GP
FI-GP
FI-RBF-GP

 0
 1
 2
 3
 4
 5
 6
 7
 8

 10 20 30 40 50 60 70 80 90 100

R
M

S
E

ARMA-EML
ARFIMA-EML
STD-GP
RBF-GP
FI-GP
FI-RBF-GP

(a)

(b)

(c)

(d)

(e)

Fig. 4 Methods’ RMSE forecasting performance. Horizons 1 to 100. a CPI time series. b Food-CPI time
series. c PPI time series. d Food-CPI-WECW time series. e UK-Inflation-Rate time series

Genet Program Evolvable Mach (2011) 12:429–456 449

123

that when considering some horizon intervals, the error tends to reduce on

increasing the horizon. This is due to: (1) changes in the variance and the level

(mean) of the UK-Inflation-Rate series, and (2), the period of time chosen to

perform the out-of-sample forecasts.

In order to compare the different methods for all forecast horizons it’s necessary

to apply a comparison criterion and a performance measure. Then, the following

measure is used to compare forecasting performances:

PerformanceðxÞ ¼
ffiffiffi
k
p
�

ffi
Xk

i¼1

ð1� PiðxÞÞ2
vuut ð14Þ

where k ¼ 100; x 2 SM ¼ fARFIMA-GPH, AR50-NLS, ARFIMA-EML, ARMA-

EML; STD� GP;RBF � GP;FI � GP;FI � RBF � GPg, and Pi(x) is the proba-

bility that x has of winning a comparison (assuming minimization) according to the

objective function fi (i.e., the forecasting error for horizon hi) against another

method randomly selected from SM. The best possible performance value is
ffiffiffi
k
p

, an

the worst is zero. Figure 5 shows the forecasting performance of each method for all

the time series. It can be observed that, in general, the FI-RBF-GP method has the

best forecasting performance, followed by FI-GP, ARFIMA-GPH/EML, and AR50-

NLS/ARMA-EML, in that order. On the other hand, it could be said that RBF-GP

performs better than STD-GP, given that the former outperformed the latter for

three of the five series, and never ranked last for all horizons.

Table 2 reports methods’ run CPU time for each time series. The ARFIMA-GPH/

EML method has by far the best run CPU time, followed by AR50-NLS/ARMA-

EML. FI-GP and FI-RBF-GP rank third (FI-GP does better time than FI-RBF-GP

for all but one series). These last two methods reduce the run time required to obtain

models, by a great margin regarding STD-GP and RBF-GP. On the other hand, the

RBF-GP method takes less run time than STD-GP for all the series.

Table 3 shows the GP methods’ structural complexity for each series. The

FI-RBF-GP (which ranks first) and FI-GP approaches have by far the lowest

 CPI
 Food−CPI
 PPI
 Food−CPI−WECW
 UK−Inflation−Rate

 0

 2

 4

 6

 8

 10

AR50−NLS/ARMA−EML

ARFIMA−GPH/EML

STD−GP
RBF−GP

FI−GP
FI−RBF−GP

Fo
re

ca
st

in
g

Pe
rf

or
m

an
ce

Fig. 5 Forecasting performance comparative bar graph

450 Genet Program Evolvable Mach (2011) 12:429–456

123

structural complexity. The RBF-GP approach reduces complexity between 20% and

40% (approx.) regarding STD-GP.

6 Conclusions and future work

The forecasting performance of statistical long memory time series models has been

reported in several publications. The main purpose of this research was the

development, application, and evaluation of a computational intelligence method

specifically tailored to forecast (univariate) long memory time series, with emphasis

on many-step-ahead prediction. Here, the aim has been to obtain useful compre-

hensible novel CI models with a forecasting performance comparable with or even

better than that of statistical methods reported in the long memory literature.

However, as mentioned in Sect. 1, on using GP to evolve forecasting models, the

problems of curse of dimensionality, bloat, over-fitting, and the tendency to

generate high complexity models, may arise. Then, two methods to overcome these

problems, namely FI-GP and RBF-GP, have been proposed in this work. FI-GP (the

first CI method designed specially to forecast long memory time series) contributes

to improving forecasting performance by giving the searching process an initial

approximate solution, and to increase comprehensibility of the obtained solutions by

means of a comprehensible modular design. It does not introduce any parameters

requiring finely tuned settings; it’s only necessary to choose the long memory

variables. Another objective of this study is the discovery of useful comprehensible

novel knowledge, represented as time series predictive models. In this respect, a

new evolutionary multi-objective search method (named RBF-GP) to limit

complexity of evolved solutions and improve predictive quality has been proposed.

Table 2 Methods’ run CPU time for each time series (in seconds)

Series AR/ARMA ARFIMA STD-GP RBF-GP FI-GP FI-RBF-GP

CPI 1.04588 0.003 177.095 149.866 3.94579 6.46088

Food-CPI 1.06925 0.00325 208.31 183.821 9.33866 9.80201

PPI 0.976375 0.00275 155.331 113.498 10.0162 9.08566

Food-CPI-WECW 0.145625 0.012125 203.57 180.489 7.42333 9.43142

UK-Inflation-Rate 0.064625 0.018 118.328 107.319 0.221656 1.70318

Table 3 Methods’ solution structural complexity for each time series

Series STD-GP RBF-GP FI-GP FI-RBF-GP

CPI 625.438 495.604 53.0081 51.185

Food-CPI 883.004 663.479 91.4719 53.2644

PPI 700.237 443.283 115.417 54.485

Food-CPI-WECW 810.229 612.154 78.33 54.9769

UK-Inflation-Rate 474.6 391.442 18.1 2.27875

Genet Program Evolvable Mach (2011) 12:429–456 451

123

The threshold parameter introduced in this method does not require a finely tuned

setting; it can be intuitively set from few possible values. The FI-GP and RBF-GP

methods allow one to limit complexity of evolved solutions preventing it from

impairing model comprehensibility, improving predictive quality, decreasing run

time and memory requirements, and avoiding bloat and (possibly) over-fitting.

The forecasting performance of the FI-GP (Sect. 3), RBF-GP (Sect. 4), and

FI-RBF-GP approaches have been evaluated by comparing them with that of

statistical methods published in the literature in several-step-ahead forecasting,

using real-world economic long memory time series and out-of-sample forecasts. In

general, the FI-RBF-GP method has the best forecasting performance, followed by

FI-GP, ARFIMA-GPH/EML, and AR50-NLS/ARMA-EML, in that order. On the

other hand, it could be said that RBF-GP performs better than STD-GP, given that

the former outperformed the latter for three of the five series, and never ranked last

for all horizons. Regarding run time, the ARFIMA-GPH/EML method has by far the

best run CPU time, followed by AR50-NLS/ARMA-EML. FI-GP and FI-RBF-GP

rank third (FI-GP does better time than FI-RBF-GP for all but one series). These last

two methods reduce the run time required to obtain models, by a great margin

regarding STD-GP and RBF-GP. On the other hand, the RBF-GP method takes less

run time than STD-GP for all the series. In addition, both fractionally integrated GP

approaches have a very competitive run time, together with the best general

forecasting performance. As for structural complexity, the FI-RBF-GP (which ranks

first) and FI-GP approaches have by far the lowest complexity. The RBF-GP

approach reduces complexity between 20% and 40% (approx.) in comparison to

STD-GP. In general, structural complexity of FI-GP and FI-RBF-GP obtained

models does not impair nor prevent their comprehensibility. These methods allow

for obtaining useful (and possibly comprehensible) novel knowledge, different from

what can traditionally be obtained with standard GP or statistical methods.

Future works could include the evaluation of the forecasting performance, run

time, structural complexity, and comprehensibility of the FI-GP alternatives

described in Sect. 3, such as adjusting the d parameter by using CI methods or

choosing it at random (0 \ d \ 0.5), instead of using statistical methods. One of the

conclusions of this work is that, on using the recursive method, in spite of forecasts
exceptions (a concept introduced in this work), it’s possible to obtain high (good)

forecasting performance with the FI-GP and FI-RBF-GP approaches. However,

using the direct method could lead to better results, and then further experiments

could use this method. In these experiments a simple method has been applied to

identify and deal with forecast exceptions (on using the recursive method). In this

respect, future research could consider applying methods from computer science

and statistics fields used to identify and deal with outlying observations (which are

those that appear to deviate markedly from other members of the sample in which

they occur). To further study the performance of the proposed methods (and of

standard GP) in long memory time series forecasting, their performance in

forecasting simulated long memory time series with different degrees of persistence

could be evaluated.

The methods proposed in this work increase performance, reduce computational

requirements, and at the same time, allow for obtaining useful (possibly)

452 Genet Program Evolvable Mach (2011) 12:429–456

123

comprehensible novel knowledge (represented as forecasting models). The FI-GP

and FI-RBF-GP approaches allow for obtaining models specially designed to

forecast long memory time series, contributing to the improvement of forecasting

performance by giving the searching process an initial approximate solution, and to

the increase of the comprehensibility of obtained solutions by means of a

comprehensible modular design. Thus, they provide an effective alternative to

conventional methods. Finally, we suggest that further research in above mentioned

directions could contribute substantially to the state of the art in time series

forecasting.

Acknowledgments I would like to thank the anonymous reviewers for their review, comments, and

suggestions. The author acknowledges the financial support, offered through a doctoral fellowship, from

CONICET (Consejo Nacional de Investigaciones Cientı́ficas y Técnicas, Argentina).

References

1. B. Ray, Modeling long-memory processes for optimal long-range prediction. J. Time Ser. Anal.

14(5), 511–525 (1993)

2. J. Barkoulas, C. Baum, Long-memory forecasting of US monetary indices. J. Forecast. 25(4) (2006)

3. J. Geweke, S. Porter-Hudak, The estimation and application of long memory time series models.

J. Time Ser. Anal. 4(4), 221–238 (1983)

4. J. Reisinger, K. Stanley, R. Miikkulainen, Evolving reusable neural modules. Lecture Notes in
Computer Science (Springer, Berlin/Heidelberg, 2004), pp. 69–81

5. P. Evangelista, M. Embrechts, B. Szymanski, Taming the curse of dimensionality in kernels and

novelty detection. in Applied Soft Computing Technologies: The Challenge of Complexity, ed. by A.

Abraham, B.D. Baets, M. Koppen, B. Nickolay (2006), pp. 431–444

6. M. Verleysen, D. Francois, The Curse of Dimensionality in Data Mining and Time Series Prediction.
Lecture Notes Computer Science (Springer, Berlin/Heidelberg, 2005), pp. 758–770

7. A. Sorjamaa, J. Hao, N. Reyhani, Y. Ji, A. Lendasse, Methodology for long-term prediction of time

series. Neurocomputing 70(16–18), 2861–2869 (2007)

8. J.R. Koza, Genetic Programming: On the Programming of Computers by Means of Natural Selection
(MIT Press, Cambridge, MA, 1992)

9. S. Luke, L. Panait, A comparison of bloat control methods for genetic programming. Evol. Comput.

14(3), 309–344 (2006)

10. P. Monsieurs, E. Flerackers, Reducing Bloat in Genetic Programming. Lecture Notes in Computer
Science (Springer, Berlin/Heidelberg, 2001), pp. 471–478

11. W. Langdon, R. Poli, Genetic programming bloat with dynamic fitness. in Proceedings of the First
European Workshop on Genetic Programming (Springer, London, 1998), pp. 97–112

12. P. Nordin, W. Banzhaf, Complexity compression and evolution. in Proceedings of the 6th Interna-
tional Conference on Genetic Algorithms (Morgan Kaufmann Publishers Inc., San Francisco, CA,

1995), pp. 310–317

13. T. Blickle, L. Thiele, Genetic programming and redundancy. in Genetic Algorithms within the
Framework of Evolutionary Computation (Workshop at KI-94, Saarbrucken), (Max-Planck-Institut

für Informatik, 1994), pp. 33–38

14. W. Langdon, Evolution of size in variable length representations. in The 1998 IEEE International
Conference on Evolutionary Computation, ICEC’98 (1998), pp. 633–638

15. K. Kinnear Jr, Generality and Difficulty in Genetic Programming: Evolving a Sort. in Proceedings of
the 5th International Conference on Genetic Algorithms (Morgan Kaufmann Publishers Inc. San

Francisco, CA, 1993), pp. 287–294

16. J. Rosca, Generality versus size in genetic programming. in Genetic Programming 1996: Proceed-
ings of the First Annual Conference (The MIT Press, Cambridge, MA, 1996), pp. 381–387

Genet Program Evolvable Mach (2011) 12:429–456 453

123

17. L. Becker, M. Seshadri, Comprehensibility and Overfitting Avoidance in Genetic Programming for
Technical Trading Rules. Worcester Polytechnic Institute, Computer Science Technical Report

(2003)

18. D. Robilliard, C. Fonlupt, Backwarding: An Overfitting Control for Genetic Programming in a
Remote Sensing Application. Lecture Notes in Computer Science (Springer, Berlin/Heidelberg,

2002), pp. 245–254

19. N. Nikolaev, L. de Menezes, H. Iba, Overfitting avoidance in genetic programming of polynomials.

in Proceedings of the Evolutionary Computation on 2002. CEC’02. Proceedings of the 2002 Con-
gress-Volume 02 (IEEE Computer Society, Washington, DC, 2002), pp. 1209–1214

20. W. Langdon, R. Poli, Fitness Causes Bloat: Mutation. Lecture Notes in Computer Science (Springer,

Berlin/Heidelberg, 1998), pp. 37–48

21. W. Banzhaf, W. Langdon, Some considerations on the reason for bloat. Gene. Prog. Evol. Mach.

3(1), 81–91 (2002)

22. K. Man, Long memory time series and short term forecasts. Int. J. Forecast. 19(3), 477–491 (2003)

23. H. Hurst, Long-term storage capacity of reservoirs. in Transactions of the American Society of Civil
Engineers, vol. 116 (American Society of Civil Engineering, 1951), pp. 770–808

24. Z. Ding, C. Granger, R. Engle, A long memory property of stock market returns and a new model.

Econ. Soc. Monogr. 33, 349–372 (2001)

25. N. Crato, de P. Lima, Long-range dependence in the conditional variance of stock returns. Econ. Lett.

45(3), 281–285 (1994)

26. A. Lo, Long-term memory in stock market prices. Econom. J. Econ. Soc. 1279–1313 (1991)

27. T. Bollerslev, H. Ole Mikkelsen, Modeling and pricing long memory in stock market volatility.

J. Econom. 73(1), 151–184 (1996)

28. U. Hassler, J. Wolters, Long memory in inflation rates: International evidence. J. Bus. Econ. Stat.

37–45 (1995)

29. R. Baillie, C. Chung, M. Tieslau, Analysing inflation by the fractionally integrated ARFIMA-

GARCH model. J. Appl. Econom. 11(1), 23–40 (1996)

30. J. Doornik, M. Ooms, Inference and forecasting for ARFIMA models with an application to US and

UK inflation. Stud. Nonlinear Dyn. Econom. 8(2), 1208–1218 (2004)

31. R. Baillie, S. Chung, Modeling and forecasting from trend-stationary long memory models with

applications to climatology. Int. J. Forecast. 18(2), 215–226 (2002)

32. R. Caballero, S. Jewson, A. Brix, Long memory in surface air temperature detection, modeling, and

application to weather derivative valuation. Climat. Res. 21(2), 127–140 (2002)

33. H. Hamisultane, Pricing the Weather Derivatives in the Presence of Long Memory in Temperatures.

Technical report, Working paper, EconomiX, Nanterre (2006)

34. J. Hosking, Modeling persistence in hydrological time series using fractional differencing. Water

Resour. Res. 20(12), 1898–1908 (1984)

35. M. Ooms, P. Franses, A seasonal periodic long memory model for monthly river flows. Environ.

Modell. Softw. 16(6), 559–569 (2001)

36. W. Wang, P. Van Gelder, J. Vrijling, Long-memory in streamflow processes of the Yellow river. in

IWA International Conference on Water Economics, Statistics, and Finance (2005), pp. 8–10

37. B. Mandelbrot, J. Van Ness, Fractional Brownian motions, fractional noises and applications. SIAM

Rev. 422–437 (1968)

38. B. Mandelbrot, A fast fractional gaussian noise generator. Water Resour. Res. 7(3), 543–553 (1971)

39. C. Granger, R. Joyeux, An Introduction to long-memory time series models and fractional differ-

encing. J. Time Ser. Anal. 1(1), 15–29 (1980)

40. J. Hosking, Fractional differencing. Biometrika 68(1), 165–176 (1981)

41. P. Bloomfield, An exponential model for the spectrum of a scalar time series. Biometrika 60(2),

217–226 (1973)

42. J. Beran, Statistics for long-memory processes (Chapman & Hall/CRC, London, 1994)

43. Y. Yajima, On estimation of long-memory time series models. Aust. NZ. J. Stat. 27(3), 303–320

(1985)

44. R. Fox, M. Taqqu, Large-sample properties of parameter estimates for strongly dependent stationary

gaussian time series. Annal. Stat. 14(2), 517–532 (1986)

45. W. Li, A. McLeod, Fractional time series modelling (Biometrika Trust, Great Britain, 1986)

46. P. Robinson, Testing for strong serial correlation and dynamic conditional heteroskedasticity in

multiple regression. J. Econ. 47(1), 67–84 (1991)

47. P. Robinson, Efficient tests of nonstationary hypotheses. J. Am. Stat. Assoc. (1994), 1420–1437

454 Genet Program Evolvable Mach (2011) 12:429–456

123

48. F. Sowell, Maximum likelihood estimation of stationary univariate fractionally integrated time series

models. J. Econom. 53(1), 2 (1992)

49. G. Bhardwaj, N. Swanson, An empirical investigation of the usefulness of ARFIMA models for

predicting macroeconomic and financial time series. J. Econom. 131(1-2), 539–578 (2006)

50. J. Barkoulas, C. Baum, Long memory and forecasting in Euroyen deposit rates. Asia-Pac Financ.

Mark. 4(3), 189–201 (1997)

51. R. Baillie, Long memory processes and fractional integration in econometrics. J. Econom. 73(1),

5–59 (1996)

52. J. Holland, Adaptation in Natural and Artificial Systems (University of Michigan Press, Ann Arbor,

MI, 1975)

53. L. Fogel, A. Owens, M. Walsh, Artificial Intelligence Through Simulated Evolution (Wiley, New

York, 1966)

54. R. Storn, K. Price, Differential Evolution-a Simple and Efficient Adaptive Scheme for Global Opti-
mization Over Continuous Spaces. International Computer Science Institute-Publications-TR (1995)

55. P. Smith, Controlling Code Growth in Genetic Programming. Advances in Soft Computing (2000),

pp. 166–171

56. R. Olsson, Inductive functional programming using incremental program transformation. Artif. Intell.

74(1), 55–81 (1995)

57. T. Soule, J. Foster, Effects of code growth and parsimony pressure on populations in genetic pro-

gramming. Evol. Comput. 6(4), 293–309 (1998)

58. B. Zhang, H. Mühlenbein, Balancing accuracy and parsimony in genetic programming. Evol.

Comput. 3(1), 17–38 (1995)

59. S. Luke, L. Panait, Fighting Bloat with Nonparametric Parsimony Pressure. Lecture Notes in
Computer Science (2003), pp. 411–421

60. W. Langdon, Data structures and genetic programming. Adv. Genet. Prog. 2, 395–414 (1996)

61. E. Zitzler, L. Thiele, Multiobjective evolutionary algorithms: A comparative case study and the

strength pareto approach. IEEE Trans. Evol. Comput. 3(4), 257–271 (1999)

62. E. De Jong, R. Watson, J. Pollack, Reducing bloat and promoting diversity using multi-objective

methods. in Proceedings of the Genetic and Evolutionary Computation Conference (2001), pp. 11–18

63. W. Langdon, J. Nordin, Seeding Genetic Programming Populations. Lecture Notes in Computer
Science (2000), pp. 304–315

64. A. Ekárt, S. Nemeth, Selection based on the pareto nondomination criterion for controlling code

growth in genetic programming. Gene. Prog. Evol. Mach. 2(1), 61–73 (2001)

65. E. De Jong, J. Pollack, Multi-objective methods for tree size control. Gene. Prog. Evol. Mach. 4(3),

211–233 (2003)

66. A. Guven, Linear genetic programming for time-series modelling of daily flow rate. J. Earth Syst.

Sci. 118(2), 137–146 (2009)

67. H. Akaike, A new look at the statistical identification model. IEEE Trans. Auto. Cont. 19(6), 716–723

(1974)

68. N. Nikolaev, L.M. de Menezes, H. Iba, Overfitting avoidance in genetic programming of polyno-

mials. in Proceedings of the 2002 Congress on Evolutionary Computation CEC2002 (IEEE Press,

2002), pp. 1209–1214

69. H. Iba, Bagging, boosting, and bloating in genetic programming. in Proceedings of the Genetic and
Evolutionary Computation Conference, Vol. 2. (1999), pp. 1053–1060

70. B.S. Mulloy, R.L. Riolo, R.S. Savit, Dynamics of genetic programming and chaotic time series

prediction. in Genetic Programming 1996: Proceedings of the First Annual Conference, Stanford

University, CA, (MIT Press, 1996), pp. 166–174

71. H. Iba, de H. Garis, T. Sato, A numerical approach to genetic programming for system identification.

Evol. Comput. 3(4), 417–452 (1995)

72. N. Wagner, Z. Michalewicz, M. Khouja, R.R. McGregor, Time series forecasting for dynamic

environments: The DyFor genetic program model. IEEE Trans. Evol. Comput. 11(4), 433–452 (2007)

73. R. Jagielski, Genetic programming prediction of solar activity. Intelligent Data Engineering and
Automated LearningIDEAL 2000. Data Mining, Financial Engineering, and Intelligent Agents
(2009), pp. 191–210

74. N. Nikolaev, H. Iba, Genetic programming of polynomial harmonic models using the discrete Fourier

transform. in Evolutionary Computation, 2001. Proceedings of the 2001 Congress on. Vol. 2. (IEEE,

2002), pp. 902–909

Genet Program Evolvable Mach (2011) 12:429–456 455

123

75. N. Nikolaev, H. Iba, Regularization approach to inductive genetic programming. Evol. Comput.

IEEE Trans. 5(4), 359–375 (2002)

76. H. Iba, N. Nikolaev, Genetic programming polynomial models of financial data series. in Evolu-
tionary Computation, 2000. Proceedings of the 2000 Congress on. Vol. 2. (IEEE, 2002),

pp. 1459–1466

77. R. Steuer, Multiple Criteria Optimization: Theory, Computation, and Application (Wiley, New York,

1986)

78. K. Deb, Multi-objective Optimization Using Evolutionary Algorithms (Wiley, New York, 2001)

79. A. Konak, D. Coit, A. Smith, Multi-objective optimization using genetic algorithms: a tutorial.

Reliab. Eng. Syst. Safe. 91(9), 992–1007 (2006)

80. C. Coello, G. Lamont, D. Van Veldhuizen, Evolutionary Algorithms for Solving Multi-objective
Problems (Springer, New York , 2007)

81. J. Doornik, Object-Oriented Matrix Programming using Ox 6.0 (2007) London: Timberlake Con-

sultants Ltd. See http://www.doornik.com

82. J. Doornik, M. Ooms, Computational aspects of maximum likelihood estimation of autoregressive

fractionally integrated moving average models. Comput. Stat. Data Anal. 42(3), 333–348 (2003)

83. A. Fraser, Genetic Programming in C?? (Gpc?? Version 0.40). Public Domain Genetic Pro-
gramming System (1994)

84. R Development Core Team, R: A Language and Environment for Statistical Computing. (R Foun-

dation for Statistical Computing, Vienna, Austria, 2010) ISBN 3-900051-07-0

456 Genet Program Evolvable Mach (2011) 12:429–456

123

http://www.doornik.com

	Long memory time series forecasting by using genetic programming
	Abstract
	Introduction
	Long memory time series and ARFIMA models
	Fractionally integrated genetic programming
	One and two step alternatives
	Obtaining forecasts from FI(d) sub-models
	Multi-step-ahead forecasting
	Combining and improving FI(d) initial solutions
	Setting d randomly

	An evolutive multi-objective searching method
	Overview of the proposed approach
	Fitness function for the multi-objective search process
	Proportional selection method
	Tournament selection method
	Summary of the RBF-GP method
	Run example

	How and why the RBF-GP approach could work

	A comparative study
	FI-GP and RBF-GP methods’ alternatives
	Statistical methods and data sets
	Test experiments setup
	The forecasting procedure
	The recursive method and forecast exceptions

	Results and analysis of the performance

	Conclusions and future work
	Acknowledgments
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

