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Abstract Parallel and distributed methods for evolutionary algorithms have

concentrated on maintaining multiple populations of genotypes, where each geno-

type in a population encodes a potential solution to the problem. In this paper, we

investigate the parallelisation of the genotype itself into a collection of independent

chromosomes which can be evaluated in parallel. We call this multi-chromosomal

evolution (MCE). We test this approach using Cartesian Genetic Programming and

apply MCE to a series of digital circuit design problems to compare the efficacy of

MCE with a conventional single chromosome approach (SCE). MCE can be readily

used for many digital circuits because they have multiple outputs. In MCE, an

independent chromosome is assigned to each output. When we compare MCE with

SCE we find that MCE allows us to evolve solutions much faster. In addition, in

some cases we were able to evolve solutions with MCE that we unable to with SCE.

In a case-study, we investigate how MCE can be applied to to a single objective

problem in the domain of image classification, namely, the classification of breast

X-rays for cancer. To apply MCE to this problem, we identify regions of interest

(RoI) from the mammograms, divide the RoI into a collection of sub-images and use
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a chromosome to classify each sub-image. This problem allows us to evaluate

various evolutionary mutation operators which can pairwise swap chromosomes

either randomly or topographically or reuse chromosomes in place of other

chromosomes.

Keywords Multiple chromosomes � Cartesian genetic programming �
Digital circuits � Mammography � Parallelisation

1 Introduction

Parallel and distributed evolutionary algorithms have hitherto concentrated on

techniques for maintaining a collection of sub-populations of genotypes, where each

genotype is a complete encoding of a potential solution. In this paper we propose a

different approach. We maintain a population of sub-solutions to the problem in

hand, each of which can be evaluated independently. Each sub-solution is encoded

in a chromosome and the genotype is a collection of chromosomes. We call it multi-

chromosomal evolution (MCE).

We have evaluated this idea using a form of Genetic Programming (GP) called

Cartesian Genetic Programming (CGP). This is a particularly suitable form of GP to

tackle this investigation as CGP is well suited to problems having multiple outputs.

MCE can be employed in problems where either multiple program outputs are

required (e.g. multi-output digital circuits) or large problems can be subdivided into

independent parts (e.g. spatial division of images into a collection of smaller image

problems). We have investigated both these types of problems. The first type of

problem we investigated was the evolution of multi-output combinational circuits.

We compared the effectiveness of Multi-chromosome CGP with single chromosome

CGP and show, in some cases, that we can solve problems with MCE which we

could not solve with a single chromosome approach.

In a follow up to our comparative investigation of MCE and SCE, we report a

case-study on the merits of MCE for locating potentially cancerous regions in

mammograms. The single objective and spatial nature of images allows us to

investigate and compare the effectiveness of a number of evolutionary mutation

operators and evolutionary strategies. These allow chromosomes to be: swapped

with their neighbours, swapped with other randomly chosen chromosomes, or even

to replace other randomly chosen chromosomes. One of the additional benefits of

MCE for this kind of problem is that one obtains a large number of CGP programs

(in our case 256) that can be used in voting schemes to provide reliable and effective

classification of malignancy.

The plan for the paper is as follows: Sect. 2 gives an overview of multi-

chromosomal approaches in evolutionary computation and also explains the CGP

method. In Sect. 3 we describe the multi-chromosome approach we have used for the

evolution of digital circuits and the classification of malignancy in mammograms.

The details of our experimental methodologies are given in Sect. 4. Experimental

results are presented and analysed for digital circuits in Sect. 5. Section 6 describes
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experimental results and analysis for classification of mammograms. Section 7

provides conclusions and some suggestions for future work.

2 Background

2.1 Multiple chromosomes in genetic programming

Multiple chromosomes have been used in a number of ways within GP. One of the

first was by Hillis [15], who co-evolved genotypes comprising fifteen pairs of

chromosomes, to produce minimal sorting networks that were capable of

outperforming human designs. Mayer and Spitzlinger [22] used a multi-chromo-

some genotype when investigating a biologically inspired, two-stage crossover

operator, which combined a multi-point crossover with chromosome shuffling. The

aim of the crossover operator was to produce offspring that inherit chromosomes

from a number of parents in the population. Although the approach performed well,

there was no overall advantage over a single chromosome approach using a 2-point

crossover, on the optimisation problems tested. Cavill et al. [3–5] also discovered

that the use of multiple chromosomes, and also having multiple copies of

chromosomes within the representation is advantageous to evolution on symbolic

regression problems. Using a two-stage crossover operator, similar chromosomes

from two parents are paired using chromosome shuffling and then a n-point

crossover is used to exchange material between the pairs of chromosomes.

Others have used multi-chromosomes for evolving genotype-phenotype map-

pings. Chow [6] used a representation divided into a binary-based data chromo-

some, and an integer-based mapping chromosome. The mapping chromosome

contains a combination of the bit positions in the data chromosome, and is used to

re-order the binary string of the data chromosome to produce the phenotype. This

approach was shown to perform well on GA-hard and deceptive problems.

Similarly, Corne et al. [10] used an approach which applied a multiploid genotype

with a mapping chromosome to multiple knapsack and set covering problems.

However, in this approach the mapping chromosome is used to determine which

chromosome each gene in the expressed genotype is taken from. Both Chow and

Corne et al. used a crossover operator which probabilistically exchanged genetic

material between the chromosomes of two parents. Chow specified that the

chromosomes must be of the same type [6], whereas Corne et al specified that the

chromosomes were located at the same position in both genotypes [10].

If an approach does not explicitly mention the term ‘‘chromosome’’, it does not

necessarily mean that it is not a multi-chromosome approach. A good example of

this is evolving a team of individuals who work together to solve a particular task

[14, 20]. In this case, the genotype is divided into a number of regions, each

encoding an individual. In such a situation, when there is only a single genotype,

the regions are equivalent to chromosomes. Team-based approaches have also

been used for robot soccer [2, 19, 33] but they have also been successfully applied

to a range of problems not normally associated with teams, such as symbolic

regression, which demonstrates the ability and value of multi-chromosome
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approaches [14, 35, 36]. Luke and Spector, and Haynes et al. have both

experimented with two different crossover operators. The first allows the exchange

of genetic material between any two chromosomes, located anywhere within each

of the parents. The second is a restricted version of the first crossover operator,

and is the same as that used by Corne et al., described in the previous paragraph.

This restricted crossover operator was shown to perform equal to, or better than,

the unrestricted crossover operator on team-based problems [20]. It was also

adopted by Soule [35, 36].

Another approach which could be classed as multi-chromosome is Multi

Expression Programming (MEP) [31]. In MEP, groups of statements (which could

be seen as chromosomes) are evolved as linear genetic programs, where any

statement may re-use a previous statement in the genotype in order to construct

complex expressions. The output of the program does not come from a statement at

a fixed point in the genotype, instead every statement is evaluated and the program

output comes from the fittest statement. This approach has been successfully applied

to simple adder and multiplier problems [30] and the knapsack problem [32]. In

MEP, a uniform crossover is used which exchanges instructions between two

individuals.

2.2 Cartesian genetic programming

Cartesian Genetic Programming was originally developed by Miller et al. [27] for

the purpose of evolving digital circuits. However, the term ‘Cartesian Genetic

Programming’ first appeared in a paper by Miller in 1999 [23] and was proposed as

a general form of Genetic Programming in 2000 [26].

CGP represents a program as a directed graph (that for feed-forward functions is

acyclic). The benefit of this type of representation is that it allows the implicit re-use

of nodes, as a node can be connected to the output of any previous node in the

graph, thereby allowing the repeated re-use of sub-graphs. This is an advantage over

tree-based GP representations (without ADFs) where identical sub-trees have to be

constructed independently.

In CGP, the genotype is a fixed length representation consisting of a list of

integers which encode the function and connections of each node in the directed

graph. However, CGP uses a genotype-phenotype mapping that does not require

all of the nodes to be connected to each other, which results in the program

(phenotype) being bounded but having variable length. Thus there may be genes

that are entirely inactive, having no influence on the phenotype, and hence on the

fitness. Such inactive genes therefore have a neutral effect on genotype fitness.

This phenomenon is often referred to as neutrality. The influence of neutrality in

CGP has been investigated in detail [25, 26, 39, 48, 49] and has been shown to be

extremely beneficial to the efficiency of the evolutionary process on a range of

test problems.

In CGP, each node in the directed graph represents a particular function and is

encoded by a number of genes. One gene encodes the function that the node

represents, and the remaining genes encode where in the graph the node takes its
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inputs from. The nodes take their inputs in a feed-forward manner from either the

output of nodes in a previous column or from a program input (terminal). Also, the

number of inputs that a node has, is dictated by the arity of the function it

represents. The program data inputs are given the data addresses 0 to n - 1 where

n is the number of program inputs. The data outputs of nodes in the genotype are

given sequentially addresses, column by column, starting from n to n ? m - 1

where m is the user-determined upper bound of the number of nodes (equal to the

number of rows multiplied by the number of columns). If the problem requires

k program outputs, then k integers are added to the end of the genotype, each one

being the address of the output of a node where the program output is taken from.

The two dimensional general form of a Cartesian Genetic Program is shown in

Fig. 1.

Figure 2 shows a CGP genotype and the corresponding phenotype that arose in

the evolution of a 2-bit parallel multiplier (one row was used in this case). Figure 3

shows how the CGP genotype is decoded to produce a phenotype.

In general, CGP uses a (l ? k) evolutionary strategy [34] with l = 1 and k = 4,

giving a population size of 5. The l value indicates the number of individuals

promoted to the next generation as parents and the k value indicates the number of

offspring generated from the promoted parents. The (1 ? 4) evolutionary strategy is

defined in Algorithm 1.

Algorithm 1: The (1 ? 4) evolutionary strategy

1: for all i such that 0 B i \ 5 do

2: Randomly generate individual i

3: end for

4: Select the fittest individual, which is promoted as the parent

5: while a solution is not found and the generation limit is not reached do

6: for all i such that 0 B i \ 4 do

7: Mutate the parent to generate offspring i

8: end for

9: Select the fittest individual using the following rules:

10: if a single offspring has a better or equal fitness than the parent then

11: The best offspring is promoted as the new parent

12: else if many offspring have an equal fitness which is a better or equal fitness than the parent then

13: A randomly selected offspring is promoted as the new parent

14: else

15: The parent is promoted

16: end if

17: end while

In the rules for selecting the fittest individual (on lines 10–15 of Algorithm 1), an

offspring is always chosen over the parent when they both have equal fitness, as the

offspring is phenotypically identical (in terms of fitness) but genetically different to

the parent. This allows neutral exploration of the search space until a phenotypically
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Fig. 2 A CGP genotype and corresponding phenotype for a 2-bit multiplier circuit. The underlined genes
in the genotype encode the function of each node. The function look-up table is: AND(0), AND with one
input inverted(1), XOR(2) and OR(3). The addresses are shown underneath each program input and node
in the genotype and phenotype. The inactive areas of the genotype and phenotype are shown in
gray dashes (nodes 6 and 10)

Fig. 1 General form of two-dimensional CGP. It is a grid of nodes whose functions are chosen from a set
of primitive functions. Two parameters c, and r, respectively, define the number of columns and rows in
the grid. Each node is assumed to take as many inputs as the maximum function arity a. Every data input
and node output are labelled consecutively (starting at 0) which gives it a unique data address which
specifies where the input data or node output value can be accessed (shown in the figure on outputs of
inputs and nodes). Nodes in the same column cannot be connected to each other. In most cases the graph
is directed (as in this paper) so that a node may only have its inputs connected to either input data or the
output of a node in a previous column. In general there may be a number of output genes (Oi) which
specify where the program outputs are taken from. The structure of the genotype is seen below the
schematic. All node function genes fi are integer addresses in a look-up table of functions. All connection
genes Cij are data addresses and are integers taking values between 0 and the address of the node at the
bottom of the previous column of nodes
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better offspring is discovered. If multiple offspring are tied for fitness (lines 12–13

of Algorithm 1), then one of the offspring is chosen at random to be promoted.

The mutation operator used in CGP is typically a point-mutation operator, in

which a number of randomly chosen genes in the genotype are changed to other

valid randomly chosen values. If a function gene is chosen for mutation, then a

valid value would be the address of any function in the function set. Whereas if an

input gene is chosen for mutation, then a valid value would be the address of the

output of any previous node in the genotype or of any program input. Also, a

valid value for a program output gene is the address of the output of any node in

the genotype but not the address of a program input. The number of genes in the

genotype that can be mutated in a single application of the mutation operator is

defined by the user, and is normally a percentage of the total number of genes in

the genotype or chromosome. An example of the point mutation operator is shown
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Fig. 3 The decoding procedure of a CGP genotype for the 2-bit multiplier problem. a Output A (oA)
connects to the output of node 4, move to node 4. b Node 4 connects to the program inputs 0 and 2,
therefore the output A is decoded. Move to output B. c Output B (oB) connects to the output of node 9,
move to node 9. d Node 9 connects to the output of nodes 5 and 7, move to nodes 5 and 7. e Nodes 5 and 7
connect to the program inputs 0, 3, 1 and 2, therefore output B is decoded. Move to output C. The
procedure continues until output C (oC) and output D (oD) are decoded (steps f) to h and steps i to j,
respectively). When all outputs are decoded, the genotype is fully decoded
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in Fig. 4, which highlights how a small change in the genotype can produce an

enormous change in the phenotype.

A crossover operator is not used in single-chromosome CGP, as a suitable

operator is yet to be discovered. Originally, a 1-point crossover operator was used in

CGP (similar to the n-point crossover in GAs) but was found to be disruptive to the

sub-graphs within the chromosome, and had a detrimental affect on the performance

of CGP [23]. Recent work by Clegg et al. [8] has investigated crossover in CGP

(and GP in general). Their approach uses a floating-point crossover operator, similar

to that found in Evolutionary Programming (EP) [11, 12], and also adds an extra

layer of encoding to the genotype, in which all genes are encoded as a floating-point

number in the range [0,1]. A larger population and tournament selection were also

used instead of the (1 ? 4) evolutionary strategy normally used in CGP, to try and

improve the population diversity. The results of the new approach appear promising

when applied to two symbolic regression problems, but further work is required on a

range of problems in order to assess its advantages [8].

3 Multi-chromosome representations

3.1 Digital circuits

The difference between a CGP genotype (described earlier in Sect. 2.2) and a Multi-

chromosome CGP genotype is that the Multi-chromosome CGP genotype is divided

into a number of equal length sections called chromosomes. In the case of digital

circuit evolution the number of chromosomes present in the genotype of an

individual is dictated by the number of program outputs required by the problem, as

each chromosome is connected to a single program output. This allows large

problems with multiple outputs (normally encoded in a single genotype) to be

broken down into many smaller problems (each encoded by a chromosome) with a

3 1 0 0 0 1

3 oA4

0 4 2 3 4 32 0 5 60 0 1

2 5 6 7

AND

NOR

AND

AND
OR

NOR

Input
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Input
B

Output
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2 0 50 4 20 0 1 7

3 oA42 5 6 7

3 1 0 0 0 1 3 4 3

(b)

Fig. 4 An example of the point-mutation operator before and after it is applied to a CGP genotype and
the corresponding phenotypes. A single point mutation occurs in the program output gene (oA), changing
the value from 6 to 7. This causes nodes 3 and 7 to become active, whilst making nodes 2, 5 and 6
inactive. The inactive areas are shown in gray dashes

424 Genet Program Evolvable Mach (2009) 10:417–445

123



single output. For multiple output digital circuits the separate outputs are defined by

its specification. In the case of image processing the outputs are defined by the

number of parts the image is chosen to be divided into. The idea is that this

approach should make the problem easier to solve. In the case of digital circuits,

Torresen has shown that evolving the outputs to a problem incrementally improves

evolvability [37]. However, in this paper all of the outputs are evolved

simultaneously. We argue that by allowing each of the smaller problems to be

encoded in a chromosome, the whole problem is still encoded in a single genotype

but the interconnectivity between the smaller problems (which can cause obstacles

in the fitness landscape) has been removed.

Each chromosome contains an equal number of nodes, and is treated as a

genotype of an individual with a single program output. The inputs of each node

encoded in a chromosome are only allowed to connect to the output of earlier nodes

encoded in the same chromosome or any program input (terminals). This creates a

form of compartmentalisation in the genotype which supports the idea of removing

the interconnectivity between the smaller problems encoded in each chromosome.

An example of a Multi-chromosome CGP genotype for a digital circuit problem

(2-bit multiplier) is shown in Fig. 5. The 2-bit multiplier problem has four outputs,

so it is broken down into four smaller problems. Each of the smaller problems has

one output and is encoded in a single chromosome.

The multi-chromosome approach to CGP shares some similarities with another

GP technique known as Parisian GP [9], which is inspired by the Michigan Approach

to Classifier Systems, in that both techniques form a solution to a problem from sub-

solutions. However, in Parisian GP, an individual only represents part of a solution,

and the whole solution is made up of a set of individuals from the population. This

differs from the multi-chromosome approach to CGP, as each chromosome encodes

a solution to a distinct sub-problem and the solution to the entire problem is

contained in a single individual (genotype), which consists of a number of

chromosomes, each encoding a different sub-problem. Another difference between

the two techniques is that Parisian GP uses two separate fitness functions; a local

fitness function to assess each individuals contribution and a global fitness function

to evaluate how well the set of individuals solves the problem. Whereas the multi-

chromosome approach to CGP uses a single fitness function to evaluate how well

3 3 1 0 42 39

154 203

0 1 3 2 41 22

104 153

1 3 2 0 11 42

54 103

0 0 2 2 24 5

4 53

21 95 142 201

oc0
c3

c2c1c0

oc1
oc2

oc3

Fig. 5 A multi-chromosome CGP genotype encoding a 2-bit multiplier (four outputs, oc0 - oc3)
containing four chromosomes (c0 - c3), each consisting of 50 nodes
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each chromosome solves the sub-problem it has been assigned. When all of the sub-

problems are solved, the entire problem is also solved.

3.2 Multi-chromosome evolutionary strategy

Rather than assigning a single fitness value to a number of program outputs, as

in the single chromosome CGP, a fitness value is assigned to the output of each

chromosome in Multi-chromosome CGP, as each chromosome’s output is also a

program output. Therefore, if an individual with a multi-chromosome genotype

has n program outputs, the individual’s genotype contains n chromosomes, and

the individual has n fitness values. This allows each chromosome of an

individual to be compared with the corresponding chromosome of other

individuals in the population, by using a variation of the (1 ? 4) evolutionary

strategy (described earlier in Sect. 2.2) called the (1 ? 4) multi-chromosome
evolutionary strategy.

The (1 ? 4) multi-chromosome evolutionary strategy selects the best chromo-

some at each position from all of the individuals in the population and generates a

new best of generation individual containing the fittest chromosome at each

position. The new best of generation individual may not have existed in the

population, as it is a combination of the best chromosomes from all the individuals,

so it could be thought of as a ‘‘super’’ individual. The multi-chromosome version of

the (1 ? 4) evolutionary strategy therefore behaves as an intelligent multi-

chromosome crossover operator, as it selects the best parts from all the individuals.

The overall fitness of the new individual (i.e. the sum of the fitness scores for all

chromosomes of an individual) will also be better than or equal to the fitness of

any individual in the population from which it was generated. An example of the

c0 c1 c2 c3

p0,5

p1,5

p2,5

p3,5

p4,5

p0,6

f(p0,5 ,c0 ) = 9 f(p0,5 ,c1 ) = 5 f(p0,5,c2 ) = 6 f(p0,5 ,c3) = 3

f(p2,5 ,c0 ) = 7 f(p2,5 ,c1 ) = 9 f(p2,5 ,c2) = 9 f(p2,5 ,c3) = 5

f(p3,5 ,c0 ) = 9 f(p3,5 ,c1 ) = 6 f(p3,5 ,c2) = 6 f(p3,5 ,c3) = 5

f(p4,5 ,c0 ) = 9 f(p4,5 ,c1 ) = 6 f(p4,5 ,c2) = 9 f(p4,5 ,c3) = 1

f(p0,6 ,c0) = 7 f(p0,6 ,c1) = 5 f(p0,6 ,c2) = 6 f(p0,6 ,c3) = 1

f(p1,5 ,c0 ) = 7 f(p1,5 ,c1 ) = 6 f(p1,5 ,c2) = 9 f(p1,5 ,c3) = 6

f(p0,5 ) = 23

f(p2,5 ) = 30

f(p3,5 ) = 26

f(p4,5 ) = 25

f(p0,6 ) = 19

f(p1,5 ) = 26

Fig. 6 The (1 ? 4) multi-chromosome evolutionary strategy used in Multi-chromosome CGP. px,g—
parent x at generation g, cy—chromosome y, f(px,g, cy)—fitness of chromosome y in parent x at generation
g, f(px,g)—fitness of parent x at generation g
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multi-chromosome evolutionary strategy is shown in Fig. 6, whilst an outline of the

(1 ? 4) multi-chromosome evolutionary strategy is shown in Algorithm 2.

Algorithm 2: The (1 ? 4) multi-chromosome evolutionary strategy

1: for all i such that 0 B i \ 5 do

2: Randomly generate individual i

3: end for

4: Select the fittest individual, which is promoted as the parent

5: while a solution is not found and the generation limit is not reached do

6: for all i such that 0 B i \ 4 do

7: Mutate the parent to generate offspring i

8: end for

9: Generate the fittest individual using the following rules:

10: for all j such that 0 B j \ number of chromosomes do

11: if an offspring chromosome j has a better or equal fitness than the parent chromosome j then

12: Offspring chromosome j is promoted as the new parent chromosome j

13: else if many offspring chromosome j’s have an equal fitness which is a better or equal fitness

than the parent chromosome j then

14: A randomly selected offspring chromosome j is promoted as the new parent chromosome j

15: else

16: The parent chromosome j is promoted

17: end if

18: end for

19: end while

3.3 Mammography

Mammograms are high resolution X-ray images of the breast which are used as a

diagnostic as well as a screening tool for breast cancer. The process of identifying

and evaluating signs of cancer from mammograms is a very difficult and time-

consuming task that requires skilled and experienced radiologists. This assessment

is also, by its nature, highly subjective and susceptible to error, leading to cancers

being missed and the patients misdiagnosed. To achieve a more accurate and

reliable diagnosis, Computer Aided Detection (CAD) systems have been investi-

gated which provide an objective, quantitative evaluation. CAD systems have the

potential to help in two main ways: (i) the detection of suspicious areas in the

mammogram that require further investigation and (ii) the classification of such

areas as cancerous (malignant) or non-cancerous (benign) [13].

The long term aim of this work is to assess the potential benefit of a new

representation of evolutionary algorithm in the classification of mammograms as

part of a CAD system and determine whether further development of such

algorithms will lead to a more confident diagnosis. One important feature of
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mammograms are microcalcifications—small deposits of calcium whose size, shape

and distribution within the breast tissue have been used to help diagnosis of cancer.

In this paper, we investigate the application of Multi-chromosome CGP to the

characterisation and classification of microcalcifications. Selected regions of interest

(RoI) of mammograms from the Lawrence Livermore National Laboratory database

[1] have been cropped to a uniform size of 128 9 128 pixels, each providing at least

one microcalcification for classification. The size restriction of 128 9 128 pixels is

faster to process than larger images and has previously been used by [16].

Furthermore, it is common to only use a RoI for classification purposes. RoIs

containing microcalcifications are typically found by a detection system, such as

that described in [18] or selected manually, as described in [40].

The images are then divided into 256, non-overlapping 8 9 8 pixel areas. The 64

grey scale pixel values (0–255) for each of these areas form the inputs to an

individual chromosome. Thus, each genotype consists of 256 independent CGP

chromosomes, each of which uses a large grid of 32 rows and 128 columns. This

provides a level of redundancy proven to be advantageous, as reported in previous

work by Miller and Smith [25]. Each chromosome has a single output gene.

The fitness of chromosome ci is defined using Eqs. 1 and 2. Firstly, the output of

the chromosome, oi (a value between [0,255]), is rescaled (r(oi)) into the range

[0,127] or [128,255] depending on whether it is classified as malignant or benign by

the output threshold, oth (also a value in the range [0,255]). The fitness of the

chromosome, f(ci), is then determined by whether the radiologist classifies the

section of the image corresponding to the chromosome as malignant or benign.

r oið Þ ¼
128� oi

oth
if oi\oth;

128� oi�oth
255�oth

þ 128 if oi� oth:

�
ð1Þ

f cið Þ ¼
255� r oið Þ if image section classified malignant;
r oið Þ if image section classified benign:

�
ð2Þ

For the mammography application, a (1 ? 2) multi-chromosome evolutionary

strategy was used. A chromosome rearrangement stage is then applied to the

‘‘super’’ individual, as described in Algorithm 3. According to a re-arrangement

mutation rate, the chromosomes may either be swapped or replaced with another of

the 256 chromosomes, chosen at random. A number of rearrangement strategies are

investigated over independent evolutionary runs, which consist of:

1. a random swap, in which any chromosome might be swapped with another.

2. a neighbouring swap, in which a part might only be swapped at random with its

four direct spatial neighbours. The neighbouring swap has been implemented to

target structures that continue from one part of the image to the next.

Neighbouring parts might therefore have similar image properties and are likely

to respond equally well to the same chromosome.

3. a copying operation, where a random chromosome is chosen to overwrite a

different chromosome (re-use).
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Algorithm 3: The chromosome rearrangement strategy

1: The ‘‘super’’ individual is constructed according to Algorithm 2

2: for all i such that 0 B i \ number of offspring do

3: Generate offspring by point mutation of the ‘‘super’’ individual

4: Apply rearrangement mutation to the offspring

5: end for

6: Offspring and ‘‘super’’ individual form next generation

If after a mutational rearrangement the fitness of an individual’s chromosome

declines compared to its fitness before the swap, then the rearrangement is

disallowed. However, if the rearrangement makes an improvement to the

resulting fitness, then the exchange is preserved. Although there is a risk that the

diversity of chromosomes might be reduced by deleting ones that do not perform

well and substituting them with a copy of a fitter one, this approach gives the

genotypes a higher opportunity for individual mutation which in itself has the

potential of restoring diversity to some extent. We can see this because if every

chromosome is unique (no copies) then mutations can only be beneficial

independently. If there are duplicated chromosomes, any mutation occurring in

those would have to be, on average, beneficial to all of them. This means one

chromosome’s fitness might be reduced if all other copies gained a higher fitness,

through the rearrangement.

4 Experiment details

4.1 Computational effort

In each experiment on digital circuits, the results for all independent runs were

assessed using a statistic called computational effort. This metric was introduced by

Koza in [17], as a measure of the computational effort required to solve a problem

based on the data from all of the independent runs. The formula to calculate

computational effort is shown in Eq. 3. The notation is taken from [17] as follows:

Ns(i)—the number of successful independent runs by generation i, Ntotal—the total

numberof independent runs, P(M, i)—the cumulative probability ofsuccess for an

independent run with population size M producing a solution by generation i,
R(P(M, i), z)—the number of independent runs required to satisfy the success

predicate by generation i with probability z, I(M, i, z)—the number of individuals

that need to be processed to produce a solution with probability z, using population

size M, at generation i, CE—the minimum number of individuals to be processed

with probability z, using population size M, hence the minimum computational

effort. In this paper, we use z = 0.99.
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P M; ið Þ ¼ Ns ið Þ
Ntotal

R PðM; iÞ; zð Þ ¼ log 1� zð Þ
log 1� P M; ið Þð Þ

� �

I M; i; zð Þ ¼ M � R PðM; iÞ; zð Þ � ðiþ 1Þ
CE ¼ min

i
I M; i; zð Þ

ð3Þ

The computational effort statistic used is a popular performance measure in the

GP community. However, it is by no means perfect and has numerous inadequacies.

Christensen and Oppacher [7] found that the ceiling operator in Eq. 3 has a

tendency to overestimate R(z), whilst the min operator tends to underestimate the

computational effort required. Furthermore, the underestimation increases in

systems with a high number of generations, which is the case in the approach

used in this paper. Niehaus and Banzhaf [28] later found that the underestimation of

the computational effort statistic is inversely proportional to the number of runs

used in the calculation, so for a small number of runs, the underestimation of

computational effort is very large. In this paper, only 50 independent runs are used

(which is classed as a small number of runs) for each experiment, as this was the

number of runs used in the work we compare with. Therefore, the computational

effort figures are likely to be underestimates of the theoretical value for

computational effort and should only be used as a rough guide. However, Niehaus

and Banzhaf [28] also found that as the probability of a run ending in failure

increased, the computational effort deviated further from the theoretical value. In

Sect. 5, every run continues until a solution is found, thereby producing a 100%

success rate, which should improve the accuracy of the computational effort values.

4.2 Confidence interval

Walker et al. [45, 46] state that computational effort is only a point statistic, with no

confidence interval, so any comparisons made with other techniques are inconclu-

sive. However, they do propose an approach for defining a 95% confidence interval

for the true computational effort of a technique, using Wilson’s method. The

approach starts by defining formulae for the upper and lower bounds of the

confidence interval for the number of successful runs given a probability z, which

are shown in Eqs. 4 and 5. The proportion of successes, p, is defined as p = r/n,

where r is the number of successful runs, and n is the total number of runs. The znorm

value is set to 1.96, as this was used in [45, 46].

upperðp; nÞ ¼ 2npþ z2
norm þ znorm

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2

norm þ 4npð1� pÞ
p

2ðnþ z2
normÞ

ð4Þ

lowerðp; nÞ ¼ 2npþ z2
norm � znorm

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2

norm þ 4npð1� pÞ
p

2ðnþ z2
normÞ

ð5Þ

Equations 4 and 5 can then be used to define the upper and lower bounds of the

confidence interval for the true computational effort at generation i, s(i), by
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substituting upper(p, n) and lower(p, n) for P(M, i) in Eq. 3 and dropping the

ceiling operator from the R(P(M, i), z) formula, as shown in Eq. 6.

MRðupperðp; nÞ; zÞðiþ 1Þ� sðiÞ�MRðlowerðp; nÞ; zÞðiþ 1Þ ð6Þ

The confidence interval produced by Eq. 6 is always valid regardless of the

probability of success or the number of runs [45, 46].

In order to find the confidence interval for the true minimum computational

effort, s(j), the minimum generation, j, and the proportion of successes, p, at which

the minimum computational effort occurs must be known. However, this is virtually

always unknown when using any form of evolutionary computation. Therefore, a

good estimate for the minimum computational effort is required, in order to find

these values. Koza’s proposed approach for calculating the minimum computational

effort (Eq. 3) does provide a good estimate for the minimum generation, and also

the proportion for successes. Using this estimate for the minimum generation and

proportion of successes makes it possible to calculate the confidence interval for the

estimated minimum computational effort [45, 46].

4.3 Non-parametric statistics

Since there are still questions concerning the accuracy of the computational effort

statistic, a variety of other statistics have also been compiled. The results from the

digital circuit experiments in Sect. 5 are positively skewed (i.e. not normally

distributed), since the minimum number of evaluations is 1. Therefore, parametric

measures, such as the mean and standard deviation can not used, as they would not

provide an accurate and meaningful representation of the data. Hence, a number of

non-parametric statistics are used. These are the median number of evaluations,

median absolute deviation (MAD), and inter-quartile range (IQR). The MAD is a

measure of variability within a distribution, and is similar to standard deviation,

except it is based on the median rather than the mean. Also, the IQR measures the

dispersion of the middle 50% of the distribution, and is the difference between the

third and first quartiles.

The significance of the results for Sect. 5 have also been assessed using the non-

parametric Mann-Whitney U test [21] (also known as the Wilcoxon Rank-sum test

[47]), which assesses whether two independent samples come from the same

distribution.

In order to allow authors to compare with the figures presented in this paper and

conduct their own statistical tests, the CGP data sets collected from all runs will be

made available from the CGP website.1

5 Digital circuit results

The performance of both the multi-chromosome and single chromosome versions of

CGP were tested on a number of multiple output digital circuit problems shown in

Table 1 with their corresponding number of inputs and outputs.

1 The CGP website is currently under construction and can be found at http://www.cartesiangp.co.uk.

Genet Program Evolvable Mach (2009) 10:417–445 431

123

http://www.cartesiangp.co.uk.


The n-bit adder takes two n-bit integers and a 1-bit carry-in (2n ? 1 inputs) and

performs addition to produce a n-bit integer output and a 1-bit carry-out (n ? 1

outputs). The n-bit multiplier takes two n-bit integers (2n inputs) and multiplies

them together to produce a 2n-bit integer (2n outputs). The 3:8-bit de-multiplexer

converts a signal consisting of three components (3 inputs), which has already been

compressed by a multiplexer, back into its original uncompressed signal consisting

of eight components (8 outputs). The 4 9 1-bit comparator takes four 1-bit integers

(4 inputs) and compares every possible pair combination of them to find out if the

first number of the pair is less than, equal to or greater than the second number of the

pair (six pair combinations each with 3 outputs, totalling 18 outputs overall). An

example is shown in Fig. 7a to illustrate the point. The final problem tested was a

possible implementation of a 3-bit arithmetic logic unit (ALU), which takes two

3-bit integers and a low and a high carry-in (totalling 8 inputs) and performs the

functions of addition, subtraction, multiplication and protected division, all in

parallel, on the two 3-bit integers to produce two 4-bit numbers from addition and

subtraction, a 6-bit number from multiplication and a 3-bit number from protected

division (17 outputs overall). This is illustrated in Fig. 7b.

Table 1 The digital circuit

problems used to test the

performance of the single and

multi-chromosome versions of

CGP

The abbreviation for each

problem is shown in parenthesis

Digital circuit Number

of inputs

Number

of outputs

2-bit Adder (Add) 5 3

3-bit Adder (Add) 7 4

2-bit Multiplier (Mul) 4 4

3-bit Multiplier (Mul) 6 6

3:8-bit De-multiplexer (DeMUX) 3 8

4 9 1-bit Comparator (Comp) 4 18

3-bit Arithmetic Logic Unit (ALU) 8 17

4 x 1-bit
Comparator
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i0
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<
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Inputs Outputs

(a)

3-bit ALU3-bit i0

3-bit i1

1

0
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Protected
Division

Inputs Outputs

(b)

Fig. 7 Examples of the 4 9 1-bit comparator (a) and the 3-bit ALU (b) showing the inputs and outputs
of each circuit. In a, each of the six output blocks constitutes a comparison, and produces a result of less
than (\), equal to (=) or greater than ([) at one of the three outputs for that block
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The parameters used for the multi-chromosome and single chromosome versions

of CGP are shown in Table 2. The operator rates and probabilities were determined

to be fairly optimal by means of an experimental optimisation process in previous

work [41–43]. The digital multiplier and Arithmetic Logic Unit problems used a

function set consisting of: AND, AND (one input inverted), OR and XOR, whilst

the other problems used the function set: AND, NAND, OR and NOR.

In most GP experiments, the maximum number of generations allowed is set

quite low (for example, 1,000 generations), normally resulting in a success rate that

is less than 100%. However, the aim of each experiment in this section is to achieve

100% success. Therefore, the maximum number of generations allowed for each

independent run was set to 20 million. This allows ample time for each independent

run to find a solution (at which point the independent run terminates), whilst

guaranteeing that each independent run always terminates after 20 million

generations, if a solution is not found.

5.1 Results and discussion

The method used for comparing the techniques is the computational effort statistic

described in Sect. 4.1. The computational effort figures for both the multi-

chromosome and single chromosome versions of CGP are calculated over fifty

independent runs and are shown in Table 3. Unfortunately, GP researchers tend to

avoid problems with multiple outputs, therefore we have no figures for GP (with and

without ADFs) to perform fair comparisons with multi-chromosome CGP.

However, Walker et al. have shown that CGP performs favourably when compared

with GP (with and without ADFs) on a number of problems (including some single

output digital circuit problems) [44].

For all of the digital circuit problems tested, CGP and Multi-chromosome CGP

produced 100% successful solutions, except for the 3-bit Arithmetic Logic Unit,

where CGP failed to find a solution after twenty million generations. This gives a

good indication of how difficult it is to evolve a solution to the 3-bit Arithmetic

Logic Unit problem.

Comparing the results for CGP and Multi-chromosome CGP, it is clear that the

use of multiple chromosomes to break down the test problems into smaller, simpler

problems provides a distinct advantage. Multi-chromosome CGP significantly

Table 2 The parameters

used for CGP
Parameter Value

Population size 5

Initial chromosome size

(nodes/genes)

100/300

Initial genotype size Initial chromosome size 9

number of chromosomes

Genotype point mutation rate (%) 3

Genotype point mutation probability 1

Number of independent runs 50
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outperforms CGP on all of the problems tested. Multi-chromosome CGP

approximately improves performance between 3 and 392 times when compared

with CGP (see Table 3). It is also worth noting that the speedup increases with

problem complexity on the adder and multiplier problems, implying that Multi-

chromosome CGP may perform even better on larger, more complex problems of

this nature. These results are supported by the statistics and the results of the Mann-

Whitney significance test in Table 4, as every comparison between the single and

multi-chromosome approaches of CGP are classed as highly significant, indicating

that there is only a very small probability (P \ 0.001) that the results of the single

and multi-chromosome techniques are from the same distribution.

The variance between the speedup for Multi-chromosome CGP compared with

CGP for different problems, appears to be related to the number of problem outputs.

Notice how the biggest speedup recorded was found on the 4 9 1-bit comparator

problem, which is also the problem with the most outputs. This suggests problem

Table 3 The computational effort (CE) figures for CGP and Multi-chromosome CGP (MC-CGP)

CGP MC-CGP

Problem CIlower CE CIupper CIlower CE CIupper

2-bit Add 577,067 834,246 1,237,329 82,718 140,800 168,025

3-bit Add 6,315,127 8,599,682 12,827,903 700,668 1,286,000 1,442,657

2-bit Mul 24,675 33,602 50,123 5,971 11,200 12,362

3-bit Mul 16,448,737 24,152,005 33,867,501 513,220 873,600 1,042,503

3:8-bit DeMUX 44,180 75,000 89,742 2,346 4,400 4,858

4 9 1-bit Comp 2,304,080 3,922,000 4,680,272 5,876 10,000 11,936

3-bit ALU – – – 1,016,914 1,908,000 2,105,517

Also included are the lower (CIlower) upper and (CIupper) bounds of the confidence interval for the true

computational effort

Table 4 The median number of evaluations (ME), median absolute deviation (MAD), and inter-quartile

range (IQR) of CGP and Multi-chromosome CGP (MC-CGP)

CGP MC-CGP

Problem ME MAD IQR ME MAD IQR U

2-bit Add 132,565 76,228 178,335 29,239 13,350 25,663 133z

3-bit Add 1,943,585 996,482 2,174,500 174,625 82,050 222,178 96z

2-bit Mul 6,197 4,130 8,489 1,721 662 1,872 315z

3-bit Mul 4,030,201 2,181,656 6,110,863 140,643 52,722 102,960 0z

3:8-bit DeMUX 13,797 4,842 9,635 845 274 524 0z

4 9 1-bit Comp 770,475 335,916 672,160 1,693 704 1,442 0z

3-bit ALU – – – 304,345 127,312 246,988 –

Also shown are the U values from the Mann-Whitney significance test when comparing CGP and Multi-

chromosome CGP (MC-CGP)

z The U values are classed as highly significant (P \ 0.001)
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complexity and the number of program outputs are directly linked, implying the

multi-chromosome approach is less affected by an increase in problem complexity

than the single chromosome approach.

To rule out the possibility that the increased overall genotype length in the multi-

chromosome approach is responsible for the performance difference between the

single and multi-chromosome versions of CGP, further runs of CGP were performed

on the adder and multiplier problems, where the initial genotype length is equivalent

to that of the multi-chromo-some approach. The computational effort figures from

these runs are shown in Table 5. By comparing the figures in Table 5 with the

previous results for CGP in Table 3, it is possible to see that giving CGP extra

resources by increasing the genotype length does improve the performance of the

techniques on the adder problem, but is actually detrimental to the performance on

the multiplier problem. However, the performance on the adder problem is still

much worse than that of Multi-chromosome CGP. This provides further evidence

that breaking down a complex, difficult problem into many smaller, simpler

problems that are co-evolved is beneficial to performance.

The noticeable speedup caused by the use of multiple chromosomes in CGP

clearly indicates that the approach could be used to evolve much harder, multiple-

output problems (such as digital circuits), which CGP currently fails to solve. The

only drawback of the multi-chromosome approach is the solutions are much larger

(in terms of number of nodes used) than the optimal solution. However, our

objective in this paper is not to find efficient solutions, our main concern is with

improving performance.

The larger solutions appear to be a result of severing the interconnections

between the smaller problems, as early sections of the evolved solution which are

normally re-used later in the solution are being replicated. However, one advantage

of the representation used in the Multi-chromosome CGP is the whole solution is

present in a single genotype, which can be easily converted to a single chromosome

genotype (as in CGP), by removing the chromosome restrictions. This feature of the

representation allows us in our future work to investigate the use of Multi-

chromosome CGP to evolve efficient solutions, using the technique from [24] to

reduce the size of the evolved solutions. Once a solution is found, the fitness

function is changed to minimise the total number of nodes used in the phenotype of

Table 5 The computational effort (CE) figures for CGP with the same initial genotype length (len), in

terms of nodes, as the multi-chromosome approach

CGP

Problem len CIlower CE CIupper

2-bit Add 300 275,645 469,200 559,917

3-bit Add 400 4,811,660 8,190,400 9,773,914

2-bit Mul 400 30,550 52,000 62,057

3-bit Mul 600 35,231,021 65,416,400 78,074,575

Also included are the lower (CIlower) and upper (CIupper) bounds of the confidence interval for the true

computational effort

Genet Program Evolvable Mach (2009) 10:417–445 435

123



the solution (either by minimising each chromosome phenotype or the phenotype of

the whole solution). This allows the evolved solutions from Multi-chromosome

CGP to be minimised to a size comparable to those found using CGP.

5.2 Investigating the multi-chromosome evolutionary strategy

To see how much of an impact the multi-chromosome evolutionary strategy had on

the results, further experiments were carried out on the 2-bit and 3-bit adder

problems using Multi-chromosome CGP with the (1 ? 4) evolutionary strategy used

in CGP, instead of the (1 ? 4) multi-chromosome evolutionary strategy. This has

the effect of grouping all of the chromosomes within a genotype together, and

treating the individual like a CGP genotype that has been compartmentalised.

Therefore, good chromosomes are not allowed to be exchanged between individuals

in the selection process to form and promote a ‘‘super’’ individual.

Comparing the results from Tables 3 and 6 clearly shows the use of a (1 ? 4)

evolutionary strategy with Multi-chromosome CGP does not perform as well as

Multi-chromosome CGP with the (1 ? 4) multi-chromosome evolutionary strategy.

This implies the use of the multi-chromosome evolutionary strategy to select the

fittest individual in the population (by selecting the fittest chromosomes from each

position) is beneficial to the performance of Multi-chromosome CGP, in contrast to

the selection of the fittest individual based on the individual’s overall fitness (the

sum of all of its chromosome fitness values). However, Multi-chromosome CGP

with a (1 ? 4) evolutionary strategy does perform marginally better than the single

chromosome version of CGP with a (1 ? 4) evolutionary strategy, respectively.

Therefore implying the multi-chromosome evolutionary strategy is not solely

responsible for the improvement in performance, but the use of a multi-chromosome

representation, as opposed to a single chromosome representation (as in CGP), also

improves the performance of CGP.

6 Mammography results

The chromosome mutation rate defines the percentage of genes in each chromosome

that are mutated. The function set is shown in Table 7, where x and y represents the

Table 6 The computational effort (CE) figures for Multi-chromosome CGP (MC-CGP�) with a (1 ? 4)

evolutionary strategy

MC-CGP�

Adder CIlower CE CIupper

2-bit 140,262 249,600 276,764

3-bit 3,938,076 7,008,000 7,770,571

Also included are the lower (CIlower) and upper (CIupper) bounds of the confidence interval for the true

computational effort

436 Genet Program Evolvable Mach (2009) 10:417–445

123



bitwise AND function. The output from all node operations is kept within the range

[0,255], by truncation.

Images used in this study are constructed from mammograms in the Lawrence

Livermore National Laboratory database that feature microcalcifications [1]. In each

case, a RoI consisting of a 128 9 128 pixel image is constructed containing at least

one microcalcification from a particular mammogram. Each RoI image is divided

into 256 parts and the status of each part labelled as either being benign or

malignant according to the radiologist.

When an image is processed by the system the output value generated for each

CGP chromosome is compared to a predetermined threshold. An output value below

the threshold is interpreted as an indication of malignancy and an output value

above the threshold is an indication of benign tissue. In this study, output values

ranged from 0 to 255 and the threshold adopted was 4. This bias toward benign

results reflects the relative scarcity of malignant areas within the images (some

images having no malignant areas). As described in Sect. 6, a fitness value can then

be calculated on the basis of this predicted value and the predetermined status of

that part of the image as identified by the radiologist.

6.1 Training image classification

In total 31 images were created, of which 13 contained malignant microcalcifications

and 18 benign microcalcifications. A random selection of 21 images (8 malignant, 13

benign) were used for training the Multi-chromosome CGP program, and the

remaining 10 images (5 malignant, 5 benign) were used for the testing stage.

Although the ratio of benign to malignant images may not, on the face of it represent

the incidence of microcalcifications in clinical practice there are two factors that

should be noted. Firstly, it is intended that this system be used to support existing

clinical practice and, as such, the mammogram will be pre-screened by a radiologist

or other software system to highlight ‘‘suspicious’’ areas. Secondly, each malignant

image is split into parts, of which, typically, 95% represent tissue which is benign.

From the evolved individuals at the end of each of the 10 training runs, the best

evolved chromosome from each chromosome position in the genotype was

Table 7 Parameters for

multiple CGP network
Parameter Value

No. parts per image 256 (16 9 16)

Part size (Pixels) 8 9 8

Chromosome rearrangement rate (%) 3

Chromosome mutation rate (%) 1

No. runs 10

No. generations 1000

No. columns in each CGP network 128

No. rows in each CGP network 32

Function set x, x ? y, |x - y|, |2x - y|,

x & y, max(x, y), min(x, y)
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extracted to form a ‘‘super’’ individual (similar to the multi-chromosome

evolutionary strategy) for the testing phase. The chromosomes in this ‘‘super’’

individual reached different fitness values, which on average range from 81.2% to

90.6% depending on the chromosome recombination method used. The results from

the training stage are given in Table 8, which also details the performance of the

chromosome rearrangement strategies. Graphs for average and best fitness are also

given in Fig. 8.

Table 8 The best, average and

worst fitness scores for the

chromosomes in the CGP

genotype after training

Recombination Best (%) Worst (%) Average (%)

No swap, re-use 95.7 67.8 85.5

Neighbouring swap, no re-use 96.9 62.0 87.8

Neighbouring swap, re-use 96.9 63.9 89.0

Random swap, no re-use 96.5 70.6 89.4

Random swap, re-use 96.9 71.4 90.6
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Fig. 8 The best (a) and average (b) fitness scores of the multi-chromosome CGP with different
recombination strategies during the training phase
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The results show that although all three recombination strategies (with and

without re-use) perform well in terms of the best chromosome in the ‘‘super’’

individual, there are differences between how effective they are overall. It appears

that the use of a chromosome swapping operator improves the worst and average

chromosome fitness in the genotype. This could be attributed to the fact that the vast

majority of the sections in training images are benign. If a chromosome that is a

good benign classifier in one section of the image is able to swap with chromosomes

in other benign sections of the image, then it can be trained on a larger and more

diverse set of possible benign image sections. Likewise, it also allows the possibility

for chromosomes that would not see a malignant section of the training images,

under the no swap strategy, to actually gain experience of such sections.

It is also possible to see from the results that the ability to re-use chromosomes in

other sections of the training images also improves the best, worst and average

fitness of all three recombination strategies. This could also be attributed to the fact

that the majority of the training images contain benign sections. If a chromosome is

found which is a good benign classifier, it can quickly replicate to other

chromosome locations that are classifying benign sections of the training images

and thereby quickly improve the fitness score.

6.2 Test image classification

One of the problems that might occur when applying the evolved program to

classifying the test images is that some of the CGP chromosomes may not have been

trained on sections of images containing a microcalcification and therefore will only

recognise background breast tissue. To overcome this problem every section of each

test image is evaluated with every evolved CGP chromosome from the ‘‘super’’

individual from the training phase. Two possible classification approaches are used

on the test images. The first investigates how well each single chromosome from the

‘‘super’’ individual can classify the entire test image. The second uses a voting

procedure, in which a classification from every chromosome is made for each

section of a test image. If the number of chromosomes that classify the section as

malignant is greater than a user-defined threshold (VTH), then the section of the

image is classified as malignant.

The results from the first classification approach, which are based on the

classification of all 256 single chromosomes are shown in Table 9. The classifi-

cation breakdown for the best chromosome from each recombination technique is

Table 9 The best, average and

worst test image classifications

for each of the individual

chromosomes

Recombination Best (%) Worst (%) Average (%)

No swap, no re-use 80 20 53.3

No swap, re-use 80 30 51.4

Neighbouring swap, no re-use 80 20 50.3

Neighbouring swap, re-use 80 20 50.3

Random swap, no re-use 70 30 50.2

Random swap, re-use 70 50 50.2
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shown in Table 10, which includes: the elements from the confusion matrices, the

true and false positive and negative rates, the precision rate, and the result of the

F1 measure [38]. From these results, it is possible to see that the best chromosomes

for the no swap and neighbourhood swap recombination strategies (with and without

re-use) are capable of classifying 80% of the test images correctly, whereas the

random swap strategy performs slightly worse, as the best chromosome is only

capable of classifying 70% of the test images correctly. Looking at the classification

breakdown for the chromosomes that reached 80% accuracy, it is possible to see

that although they classified 20% of the test images incorrectly, these 20% were

classified as false positive, so it is possible to say that the classifier always identified

a malignant image.

However, the worst chromosome classifier in both the no swap and neighbour-

hood swap recombination strategies is far worse than the respective chromosome in

the random swap recombination strategy. Overall, the majority of the chromosomes

for all three recombination strategies are only capable of classifying 50% of the test

images correctly. This is not surprising, as most of the chromosomes have only been

trained on the benign sections of the images, so have no concept of malignancy. For

each recombination strategy, there only existed one or two chromosomes that

produced the best classification result, so it is highly probable that these were the

chromosomes that would have been tested on a section of the image which was

classified by the radiologist as malignant.

As the majority of the single chromosomes only classified 50% of the test images

correctly, it would be interesting to see if using the second classification approach,

which involved voting amongst all the chromosomes for each section, improved the

classification accuracy. The results for this classification approach for two different

voting thresholds are shown in Tables 11 and 12. From the results, it can be seen

that the voting threshold has a pronounced impact on the results. For a voting

threshold of 1 (more than 1 chromosome classifies the image section as malignant),

the random swap recombination strategy can classify 60% and 70% of the test

images correctly, depending on whether re-use is used. However, with a voting

Table 10 Test image classification by the best individual chromosomes

Confusion matrices Statistics

Recombination Bb Bm Mb Mm TP TN FP FN P F1

No swap, no re-use 3 2 0 5 1 0.6 0.4 0 0.71 0.83

No swap, re-use 3 2 0 5 1 0.6 0.4 0 0.71 0.83

Neighbouring swap, no re-use 3 2 0 5 1 0.6 0.4 0 0.71 0.83

Neighbouring swap, re-use 3 2 0 5 1 0.6 0.4 0 0.71 0.83

Random swap, no re-use 3 2 1 4 0.8 0.6 0.4 0.2 0.67 0.73

Random swap, re-use 2 3 0 5 1 0.4 0.6 0 0.63 0.77

The confusion matrices show the correlation between the actual (B and M) and predicted (b and m)

number of benign and malignant classifications. The statistics provide details of the true positive (TP),

true negative (TN), false positive (FP) and false negative (FN) rates, in addition to the precision (P) and

the F1 measure (F1)
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threshold of 2, the random swap with re-use strategy does not perform well any

more but the neighbourhood swap with re-use and the random swap without re-use

strategies both classify 70% of the test images correctly. Overall, it may be possible

to deduce that the best performing recombination strategy when chromosome voting

is used, is the random swap without re-use, as it appears to be more robust to

changes of the voting threshold and never classifies any of the test images as false

negative, so a malignant test image is always detected.

An example result is shown in Fig. 9. Each figure represents an image part

(8 9 8 pixel area), the number 1 indicates malignant tissue in that area and the

number 0 indicates benign tissue. The radiologists classification of malignancy is

indicated by grey shading and a white oval in the figure representation and

mammogram RoI, respectively.

Table 11 Test image classification using multi-chromosome voting with a voting threshold of 1

(VTH = 1)

Confusion matrices Statistics

Recombination Bb Bm Mb Mm TP TN FP FN P F1

No swap, no re-use 0 5 0 5 1 0 1 0 0.5 0.67

No swap, re-use 0 5 0 5 1 0 1 0 0.5 0.67

Neighbouring swap, no re-use 0 5 0 5 1 0 1 0 0.5 0.67

Neighbouring swap, re-use 0 5 0 5 1 0 1 0 0.5 0.67

Random swap, no re-use 1 4 0 5 1 0.2 0.8 0 0.56 0.71

Random swap, re-use 2 3 0 5 1 0.4 0.6 0 0.63 0.77

The confusion matrices show the correlation between the actual (B and M) and predicted (b and m)

number of benign and malignant classifications. The statistics provide details of the true positive (TP),

true negative (TN), false positive (FP) and false negative (FN) rates, in addition to the precision (P) and

the F1 measure (F1)

Table 12 Test image classification using multi-chromosome voting with a voting threshold of 2

(VTH = 2)

Confusion Matrices Statistics

Recombination Bb Bm Mb Mm TP TN FP FN P F1

No swap, no re-use 0 5 0 5 1 0 1 0 0.5 0.67

No swap, re-use 0 5 0 5 1 0 1 0 0.5 0.67

Neighbouring swap, no re-use 0 5 0 5 1 0 1 0 0.5 0.67

Neighbouring swap, re-use 3 2 1 4 0.8 0.6 0.4 0.2 0.67 0.73

Random swap, no re-use 2 3 0 5 1 0.4 0.6 0 0.63 0.77

Random swap, re-use 0 5 0 5 1 0 1 0 0.5 0.67

The confusion matrices show the correlation between the actual (B and M) and predicted (b and m)

number of benign and malignant classifications. The statistics provide details of the true positive (TP),

true negative (TN), false positive (FP) and false negative (FN) rates, in addition to the precision (P) and

the F1 measure (F1)
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7 Conclusions and future work

Parallel and distributed methods for evolutionary algorithms have concentrated on

the advantages of using multiple populations of genotypes. Each individual

genotype encoding a potential solution to the problem. We refer to this as Single-

chromosome evolution (SCE). In this paper we have proposed the parallelisation on

the individual genotype itself into a collection of chromosomes. We call this Multi-

chromosome evolution (MCE). Such an approach allows one to re-examine the role

of evolutionary operators and selection methods. In addition to mutating genes or

recombining genes we can recombine, shuffle or select at a whole chromosome

level.

Certain problems are naturally amenable to MCE. One such class of problems is

digital circuit with multiple outputs as one can assign each output its own separate

chromosome. We investigated both SCE and MCE on seven digital circuit problems

using Cartesian Genetic Programming. We found that MCE could evolve solutions

much faster than SCE. The speedup varied from 3 to 392 times faster depending on

the benchmark problem. In the case of a small ALU with seventeen outputs, we

were unable to evolve a correct solution with SCE, whereas we could evolve a fully

correct solution using MCE.

When MCE was used for the digital circuit problems we used a generalisation of

a (1?4) evolutionary strategy in which each chromosome of the parent genotype is

formed of fittest chromosomes from the population. This acts like a enhanced form

of recombination. The new population is formed by mutational offspring of the best

possible combination of chromosomes from the previous population.

Having established that MCE has distinct advantages on multiple output digital

circuit problems we carried out a case study of MCE on a different sort of

problem. One in which there was not multiple outputs, but a problem that could

naturally be divided into many parts, namely, the classification of mammograms.

MCE can readily be applied to this problem by assigning an independent

chromosome to each part of the image (in our case 256 parts). Unlike the digital

Fig. 9 An example of a Multi-chromosome CGP classification (a), for the corresponding region of
interest in the mammogram (b). A ‘‘1’’ indicates the classification of malignant tissue by the Multi-
chromosome CGP and ‘‘0’’ benign tissue, for the respective part in the region of interest. The
gray shading and white outline depict the radiologist’s classification of malignancy in a and b,
respectively
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circuit problem where chromosomes are dedicated to particular outputs, we can

usefully swap chromosomes that operate on one part of an image for ones that

operate on a different part. We investigated a number of ways to carry out this

swapping (for instance, random swapping, and neighbouring swapping) to

ascertain which ones are most effective. In addition, because in the image task,

each chromosome can be applied to any part of the image, even parts it was not

trained on, we have the opportunity of utilising the entire collection in decisions.

For instance after evolution we can apply all chromosomes to every image part

and make decisions based on a majority verdict.

Our results presented have demonstrated that the method obtains good

classification performance on the problem of deciding whether microcalcifications

are malignant or benign. Given the limitations of the training and the test sets

available, and the lack of any pre-processing stage, our results are very encouraging.

The main limitation of the image database we used is the low number of usable

images. To overcome this problem, new databases of mammograms are being

sought through a collaboration with a hospital.

A meaningful comparison with other Computer-aided Diagnosis (CAD)

techniques is difficult to achieve due to the different methods used to assess

performance. These issues are considered fully in [29] and will be investigated in

future work.

Employing multi-chromosomes as population members, where chromosomes can

be evaluated independently, offers the prospect of further research to explore the

interaction and optimisation of multi-chromosomes in combination with other

parallel and distributed evolutionary techniques.
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