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Abstract This paper proposes a novel distributed differential evolution algorithm,

namely Distributed Differential Evolution with Explorative–Exploitative Population

Families (DDE-EEPF). In DDE-EEPF the sub-populations are grouped into two

families. Sub-populations belonging to the first family have constant population

size, are arranged according to a ring topology and employ a migration mechanism

acting on the individuals with the best performance. This first family of sub-pop-

ulations has the role of exploring the decision space and constituting an external

evolutionary framework. The second family is composed of sub-populations with a

dynamic population size: the size is progressively reduced. The sub-populations

belonging to the second family are highly exploitative and are supposed to quickly

detect solutions with a high performance. The solutions generated by the second

family then migrate to the first family. In order to verify its viability and effec-

tiveness, the DDE-EEPF has been run on a set of various test problems and com-

pared to four distributed differential evolution algorithms. Numerical results show

that the proposed algorithm is efficient for most of the analyzed problems, and

outperforms, on average, all the other algorithms considered in this study.
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1 Introduction

Panmictic Evolutionary Algorithms [3], i.e., standard evolutionary algorithms

characterized by a unique population and global recombination among all the

possible individuals, are commonly used tools in optimization which have shown a

high performance on various problems in applied science and engineering. On the

other hand, these algorithms suffer from the well-known problems of stagnation and

premature convergence caused by an improper balance of the population diversity,

see e.g., [16]. In other words, the main drawback of a standard Evolutionary

Algorithm (EA) is the fact that it may fail to generate new promising solutions and

return a poorly performing suboptimal solutions.

In order to overcome this drawback, computer scientists and practitioners, since the

earliest EA implementations, have attempted to enhance the EA performance by

modifying the original ideas in various manners, e.g., proposing alternative search

structures [52], developing adaptation models [45], hybridizing EAs with local search

algorithms [33], or designing structured versions of EAs. The latter category, which is

the focus of this paper, consists of a decentralization of the population into a set of sub-

populations which have diverse roles and can somehow interact. Two most famous

examples of structured EAs are Cellular Evolutionary Algorithms (CEAs), see [1, 5,

24, 25, 26, 58], and Distributed Evolutionary Algorithms (DEAs), see [2, 7, 22, 56, 62]

and classification in Alba and Tomassini [3] and Alba and Troya [4]. In CEAs, the sub-

populations are constructed on the basis of a neighborhood criterion and thus each sub-

population has the role of exploring (and exploiting) a different region of the decision

space. In DEAs, all the sub-populations explore the entire decision space and develop a

parallel evolution for the solution of the same problem, usually cooperating in the

search of the optimum by means of some information exchange.

Due to their nature, EAs (as well as other population based metaheuristics) are

easy to be run in parallel over multiple machines or multiple core machines. The

oldest, simplest and most straightforward EA parallelization is the so called Single-

population Master-Slave Parallel Model (see [27,43]). In this kind of parallelization,

the EA runs with a single population and the fitness evaluations are distributed over

several cores. Clearly, this parallelization does not influence the EA structure (since

it is algorithmically equivalent to a standard EA) nor its performance.

Since structured EAs modify the normal EA by distributing the whole population

into a set of many sub-populations, a parallelization can be naturally performed by

assigning the management of a sub-population to each core. In this case, the

distribution over several computational cores and the algorithmic modifications/

enhancements are strictly connected issues. In literature several classifications of

parallel EAs have been proposed, see e.g., [10, 11, 13].

In terms of parallelization, a popular classification, see [38], distinguishes

between coarse-grained and fine-grained algorithms. Coarse-grained algorithms run

on a limited amount of populations with a relatively high number of individuals

while fine-grained algorithms run on many populations composed of only a few

individuals. This classification often coincides with the one mentioned above (DEA

and CEA) which sees the same issue from an alternative (according to the

algorithmic structure) viewpoint.

344 Genet Program Evolvable Mach (2009) 10:343–371

123



Although the sub-populations evolve separately, they interact somehow and

cooperate by exchanging information in order to pursue their common global

optimization goal. In other words, the sub-populations copy, transfer, and exchange

individuals according to various migration schemes, see e.g., [8, 11, 12, 14, 34].

Over the recent years, among the other EAs present in literature, Differential

Evolution (DE see [15, 42, 49, 51]) stimulated the interest of computer scientists

and practitioners. As many applications in engineering have proven, DE is a reliable

and versatile function optimizer which is especially efficient in continuous

problems. Thanks to, on one hand, its simplicity and ease of implementation, and

on the other hand, its reliability and high performance, DE became a very popular

solution for solving various real-world problems almost immediately after its

original definition.

Although DE has a great potential, it has been clear to the scientific community

that some modifications to the original structure were necessary in order to

significantly improve its performance. A popular way, especially during the latest

years, to enhance the DE is the integration of structured populations evolving in

parallel. For example, in Lampinen [30] a distributed DE scheme employing a ring

topology (the cores are interconnected in a circle and the migrations occur following

the ring) has been proposed for the training of a neural network. In Salomon et al.

[48], an example of DE parallelization is given for a medical imaging application. A

few famous examples of distributed DE are presented in Refs. [59, 60, 63]; in these

papers the migration mechanism as well as the algorithmic parameters are

adaptively coordinated on a criterion based on the genotypical diversity. In paper

[61], a distributed DE for preserving the diversity in the niches is proposed in order

to solve multi-modal optimization problems. In Tasoulis et al. [53], a distributed DE

characterized by a ring topology and the migration of the individuals with the best

performance, to replace random individuals of the neighbor sub-population, has

been proposed. An application of the algorithm in Tasoulis et al. [53] for the

training of a neural network has been presented in Pavlidis et al. [39]. Following a

similar logic, paper [29] proposes a distributed DE where the computational cores

are arranged according to a ring topology and, during the migration, the best

individual of a sub-population replaces the oldest member of the neighbor

population. In Refs. [17, 18, 19] a distributed DE has been designed for the image

registration problem. In these papers, a computational core acts as a master by

collecting the best individuals detected by the various sub-populations running in

slave cores. The slave cores are connected in a grid and a migration is arranged

among neighbor sub-populations. In Apolloni et al. [6], a distributed DE which

modifies the scheme proposed in Tasoulis et al. [53] has been presented. In [6], the

migration is based on a probabilistic criterion depending on five parameters. It is

worthwhile to mention that also some parallel implementations of panmictic DE are

available in literature, see [36]. An investigation about DE parallelization is given in

Lampinen and Zelinka [31].

This paper deals with distributed versions of DE and proposes a novel

implementation of distributed DE, namely Distributed Differential Evolution with

Explorative–Exploitative Population Families (DDE-EEPF). The DDE-EEPF is a

distributed algorithm composed of two families of sub-populations. In the first

Genet Program Evolvable Mach (2009) 10:343–371 345

123



family the sub-populations have a fixed population size and employ a migration

scheme. In the second family, the sub-populations have a different behavior

depending on the generation number. During the beginning of the evolution, the

sub-populations evolve independently by applying a population size reduction

scheme. During the late stages of the evolution, the sub-populations belonging to the

second family allow a migration of the individuals with the best performance to the

sub-populations belonging to the first family. The distributed mechanism counts

then on a family of sub-populations for exploring the decision space and performing

the global search and on a family of sub-populations for exploiting the available

search directions and thus detecting high quality solutions. The second family is

then supposed to assist the first one by ‘‘injecting’’ high performance solutions

within its explorative frameworks in the middle of their optimization process. This

operation is supposed to enhance the overall algorithmic performance.

The remaining part of the paper is organized in the following way. Section 2

describes the working principles of DE and explains the reasons behind the

parallelization. Section 3 gives a short description of recently presented distributed

versions of DE and introduces the algorithms employed for comparison in the

experimental section. Section 4 describes the proposed algorithm. Section 5 shows

the experimental setup and numerical results of the present study. Section 6 gives

the conclusions of this paper.

2 Standard differential evolution

In order to clarify the notation used throughout this chapter we refer to the

minimization problem of an objective function f(x), where x is a vector of n design

variables in a decision space D.

According to its original definition given in Storn and Price [51], the DE consists

of the following steps. An initial sampling of Spop individuals is performed pseudo-

randomly with a uniform distribution function within the decision space D. At each

generation, for each individual xi of the Spop, three individuals xr, xs and xt are

pseudo-randomly extracted from the population. According to the DE logic, a

provisional offspring x0off is generated by mutation as:

x0off ¼ xt þ Fðxr � xsÞ ð1Þ

where F 2 ½0; 1þ ½ is a scale factor which controls the length of the exploration

vector (xr - xs) and thus determines how far from point xi the offspring should be

generated. With F 2 ½0; 1þ ½; it is meant here that the scale factor should be a

positive value which cannot be much greater than 1, see [42]. While there is no

theoretical upper limit for F, effective values are rarely greater than 1.0. The

mutation scheme shown in Eq. (1) is also known as DE/rand/1. Other variants of the

mutation rule have been subsequently proposed in literature, see [44]:

– DE/best/1: x0off = xbest ? F(xs - xt )

– DE/cur-to-best/1: x0off = xi ? F(xbest - xi ) ? F(xs - xt )

– DE/best/2: x0off = xbest ? F(xs - xt ) ? F(xu - xv )
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– DE/rand/2: x0off = xr ? F(xs - xt ) ? F(xu - xv )

– DE/cur-to-best/2: x0off = xi ? F(xbest - xi ) ? F(xr - xs ) ? F(xu - xv )

where xbest is the solution with the best performance among the individuals of

the population, xu and xv are two additional pseudo-randomly selected

individuals. It is worthwhile to mention the rotation invariant mutation shown

in Price [41]:

– DE/current-to-rand/1 xoff = xi ? K(xt - xi) ? F0(xr - xs)

where K is the combination coefficient, which, as suggested in Price [41], should

be chosen with a uniform random distribution from [0, 1] and F0 = K �F. For

this special mutation the mutated solution does not undergo the crossover

operation described below.

Recently, in Price et al. [42], a new mutation strategy has been defined. This

strategy, namely DE/rand/1/either-or, consists of the following:

x0off ¼
xt þ F xr � xsð Þ if rand 0; 1ð Þ\ pF

xt þ K xr þ xs � 2xtð Þ otherwise

�
ð2Þ

where for a given value of F, the parameter K is set equal to 0.5(F ? 1).

When the provisional offspring has been generated by mutation, each gene of the

individual x0off is exchanged with the corresponding gene of xi with a uniform

probability and the final offspring xoff is generated:

xoff ¼
xi;j if randð0; 1Þ\CR

x0off;j otherwise

�
ð3Þ

where rand(0, 1 ) is a random number between 0 and 1; j is the index of the gene

under examination.

The resulting offspring xoff is evaluated and, according to a one-to-one spawning

strategy, it replaces xi if and only if f(xoff) B f(xi); otherwise no replacement occurs.

It must be remarked that although the replacement indexes are saved, one by one,

during the generation, the actual replacements occur all at once at the end of the

generation. For the sake of clarity, the pseudo-code highlighting the working

principles of the DE is shown in Fig. 1.

2.1 Why distribute differential evolution?

As shown in Sect. 2, DE is based on a very simple idea, i.e., the search by means of

adding vectors and a one-to-one spawning for the survivor selection. Thus, DE is

very simple to implement/code and contains a limited number of parameters to tune

(only Spop, F, and CR). In addition, the fact that DE is rather robust and versatile has

encouraged engineers and practitioners to employ it in various applications. For

example, in Joshi and Sanderson [28], a DE application to the multisensor fusion

problem is given. In Storn [50], a filter design is carried out by DE. In Tirronen

et al. [54, 55], a DE based algorithm is implemented to design a digital filter for

paper industry applications. A review of DE applications is presented in Plagianakos

et al. [40].
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From an algorithmic viewpoint, the reasons of the success of DE have been

highlighted in Feoktistov [21]: the success of the DE is due to an implicit self-

adaptation contained within the algorithmic structure. More specifically, since, for

each candidate solution, the search rule depends on other solutions belonging to the

population (e.g., xt, xr, and xs), the capability of detecting new promising offspring

solutions depends on the current distribution of the solutions within the decision

space. During the early stages of the optimization process, the solutions tend to be

spread out within the decision space. For a given scale factor value, this implies that

the mutation appears to generate new solutions by exploring the space by means of a

large step size (if xr and xs are distant solutions, F(xr - xs) is a vector characterized

by a large modulus). During the optimization process, the solutions of the

population tend to concentrate on specific parts of the decision space. Therefore, the

step size in the mutation is progressively reduced and the search is performed in

the neighborhood of the solutions. In other words, due to its structure, a DE scheme

is highly explorative at the beginning of the evolution and subsequently becomes

more exploitative during the optimization.

Although this mechanism seems at first glance very efficient, it hides a limitation.

If for some reasons, the algorithm does not succeed in generating offspring solutions

which outperform the corresponding parent, the search is repeated again with

similar step size values and likely fails by falling into the undesired stagnation

condition (see [32]). Stagnation is the undesired effect which occurs when a

population-based algorithm does not converge to a solution (even suboptimal) and

the population diversity is still high. In the case of the DE, stagnation occurs when

the algorithm does not manage to improve upon any solution of its population for a

prolonged number of generations. In other words, the main drawback of the DE is

Fig. 1 DE pseudocode
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that the scheme has, for each stage of the optimization process, a limited amount of

exploratory moves and if these moves are not enough for generating new promising

solutions, the search can be heavily compromised.

Thus, in order to enhance the DE performance, alternative search moves should

support the original scheme and promote a successful continuation of the optimization

process. The use of multiple populations in distributed DE algorithms allows an

observation of the decision space from various perspectives and, most importantly,

decreases the risk of stagnation since each sub-population imposes a high exploitation

pressure. In addition, the migration mechanism ensures that solutions with a high

performance are included within the sub-populations during their evolution. This fact

is equivalent to modifying the set of search moves. If the migration privileges the best

solutions, the new search moves promote the detection of new promising search

directions and thus allow the DE search structure to be periodically ‘‘refurbished’’.

Thus, the migration is supposed to mitigate the risk of stagnation of the DE (sub-)

populations and to enhance the global algorithmic performance.

In addition, within a DE framework there is, with respect to the other EAs, a

different relationship between algorithmic functioning and the population diversity.

As it is well known, the concept of population diversity is very important in many

EAs and, in order to obtain a proper algorithmic behavior, it is crucial to design a

system to maintain the diversity high throughout the evolution. It might likely

happen that a diversity loss in an EA can cause the premature convergence towards

solutions characterized by a poor performance. In DE, as for swarm intelligence

optimizers, there is not a quick diversity loss and the algorithm can perform the

entire optimization process and still keep the diversity high. This fact can cause an

excessively exploratory behavior and then the stagnation phenomenon mentioned

above. Thus a successful DE, as explained above, is supposed to explore the entire

decision space only during the early stage of the evolution and subsequently

narrows its search in a small (and interesting) portion of the domain. In summary,

DE is an atypical EA: operations which aim at maintaining the diversity high are

beneficial to most of the EAs while being detrimental to DE.

On the other hand, it must be remarked that many population-based metaheu-

ristics and not only the DE can greatly benefit from a proper parallelization.

Generally speaking, a distributed population structure can offer an alternative search

view to the algorithmic structures and generate compensation to the weak points of

the chosen algorithm. In DE stagnation problems and the limited set of available

moves have been highlighted. A classical example of the advantages of distribution

can be the Distributed Evolution Strategies, see [46]. Evolution Strategies,

especially those employing the ‘‘plus’’ strategy, suffer from premature convergence

and diversity loss. The use of a distributed population with a proper migration

mechanism can be an efficient countermeasure against diversity loss and thus an

enhancement in the algorithmic performance.

In other words, the distribution of the population can be beneficial to DE (as well

as to swarm intelligence algorithms) since it can generate extra moves in the search

logic, thus mitigating the stagnation effect, and to other EAs since it can produce

genotypes which increase the diversity, thus mitigating the premature convergence

inconveniences.
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The implementation of the parallelization e.g., occurrence of the migrations as

well as the choice of migrating individuals, replacement rules, and choice of

population involved in the migration events have been intensively discussed in

literature and, in many cases, are still points of investigation for computer scientists.

As a matter of fact, although the employment of structured populations can be

beneficial to many meta-heuristics, each case must be, in our view, separately

analyzed and the design of the distributed structure must be performed taking into

account the nature and the limitation of each core algorithm.

The next section illustrates three successful, recently developed distributed DEs

and highlights their differences and similarities.

3 Distributed differential evolution: recently developed algorithms

This section describes three distributed algorithm based on a DE structure recently

proposed in literature. The algorithms described in this section are, according to our

judgement, representative of the state of the art of structured DE algorithms and

have been included in the benchmark in order to compare the performance of the

proposed approach. Although the notation can generate some confusion, i.e., all the

algorithms are distributed and can easily be parallelized, we decided to indicate

them according to the original terminology defined by their respective authors.

3.1 Parallel differential evolution

In Tasoulis et al. [53], the problem of parallelization for DE schemes has been

studied through an experimental analysis and an algorithm, namely Parallel

Differential Evolution (here indicated with PDE) has been proposed.

The original PDE implementation uses the Parallel Virtual Machine (PVM),

allowing multiple computers (called nodes) to be organized as a cluster and

exchange arbitrary messages. PDE is organized around one master node and N sub-

populations running each on one node, and organized as a unidirectional ring, as

illustrated in Fig. 2. It must be noted that although the logical topology is a ring

which does not contain the master node, the actual topology is a star, where all

communications (i.e., the migrations of individuals) are passing through the master.

Each sub-population runs a regular DE algorithm while the master node

coordinates the migration of individuals between the sub-populations. On each

generation, the sub-population has a given probability to send a copy of its best

individual to its next neighbor in the ring. Figure 3 describes the behaviors of both

the master node and the sub-populations in more details.

The DE variant run by each sub-population is the same across all the sub-

populations. In Tasoulis et al. [53], six mutation strategies have been compared,

namely DE/best/1, DE/rand/1, DE/cur-to-best/1, DE/best/2, DE/rand/2 described in

Sect. 2, as well as the trigonometric operator described in Fan and Lampinen [20].

Each strategy is used with different values of the migration constant / and

compared over seven test functions whose dimensions vary between 2 and 30. The

results show that DE/best/1 is the most efficient mutation strategy and quite stable
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across different values of /, whereas the results of DE/rand/1 are average and quite

unstable when / varies.

3.2 Island based distributed differential evolution

In Apolloni et al. [6] a distributed DE, namely Island Based Distributed Differential

Evolution (IBDDE) has been proposed. The IBDDE is a modified version of the

PDE described in Sect. 3.1. The algorithm is described in a generic way, presenting

Fig. 2 Unidirectional ring
topology in the parallel
differential evolution algorithm

(b)

(a)

Fig. 3 Pseudo-code of the PDE algorithm
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a population P structured in m sub-populations Pp of np individuals. The size of P is

noted N =
P

i=1
n ni. The migration policy is then defined as a five-tuple

M¼ ðc; q;/s;/r; sÞ:c 2 N is the number of generations between two migrations,

q 2 N is the number of individuals which are migrated from a sub-population

during each migration, /s is the selection function which, applied to a sub-

population, returns the migrating individuals, /r is the replacement function that

selects the individuals to be replaced by the immigrants in the receiving sub-

population, and s : P ! 2P is the topological model, which selects what sub-

population can send to (or receive from) what other sub-population. Figure 4

describes the algorithm as pseudo-code.

For the actual experiments, the population size N is set to 20, and the population

is divided into two sub-populations of 10 individuals in one experiment, and into

four sub-populations of 5 individuals in a second experiment. The migration

parameters are set to c = 100, q = 1, the functions /s and /r are defined to

randomly select an individual, and the topology s is a unidirectional ring, very

similar to the logical topology used by PDE (see Sect. 3.1). The mutation strategy

for DE is DE/rand/1, and the algorithm is tested on 25 different test functions in 30

and 50 dimensions, for a total of 50 test functions.

3.3 Distributed differential evolution

In Falco et al. [17, 18, 19], in order to solve and image registration problem a distributed

DE (here indicated with DDE) has been proposed. This algorithm differs from PDE and

IBDDE by the topology it uses. Instead of a unidirectional ring, DDE uses a locally

connected topology, where each node is connected to l other nodes. Figure 5 represents

such a topology where the nodes are arranged in a mesh folded into a torus.

In this configuration l = 4, i.e., each node (such as the black disc in the figure)

has exactly four nearest neighbors (represented by the four grey discs). In DDE,

each node represents one processor running a DE algorithm with a DE/rand/1

mutation strategy on a sub-population. Every MI generations (the migration

interval), each sub-population is allowed to exchange SI (the migration rate)

individuals with its nearest neighbors. In the experimental setup, each node sends a

Fig. 4 Pseudo-code of the IBDDE algorithm for sub-population Pp
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copy of its best individual to its neighbors. Figure 6 describes the algorithm as

pseudo-code.

DDE also makes use of a master node, whose role is to collect the best solutions

found in each sub-population and to present the results to the user.

4 Distributed differential evolution with explorative–exploitative population
families

The proposed algorithm, namely distributed differential evolution with explorative–

exploitative population families (DDE-EEPF), consists of the following steps.

An initial population of Spop individuals is pseudo-randomly sampled within the

decision space D. These Spop individuals are distributed over m sub-populations;

each sub-population has a size equal to Ss�pop ¼ Spop

m : The m sub-populations are then

divided into two families: a are assigned to the first family (hereafter named Pp with

p = 1, 2, ..., a) and b to the second (named Qq with q = 1, 2, ..., b); a ? b = m.

The a sub-populations belonging to the first family are arranged according to a

ring topology following the suggestions given in Tasoulis et al. [53]. In the first

family, each sub-population Pp evolves like a standard DE and employs the

Fig. 5 Torus topology in the
distributed differential evolution
algorithm

Fig. 6 Pseudo-code of the DDE algorithm at a sub-population
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DE/rand/1 mutation strategy illustrated in Eq. (1) and the crossover described in Eq.

(3). The replacements of the individuals are performed according to the one-to-one

spawning shown in Sect. 2. These a sub-populations interact by means of a

migration scheme. For each population Pp, p = 1, ..., a, with a probability pmig, a

copy of the best individual x
Pp

best of sub-population Pp is sent to the next sub-

population in the ring. At that sub-population, the incoming x
Pp

best replaces a pseudo-

randomly selected (uniform distribution) solution, which is then discarded.

The behavior of the b sub-populations Qq composing the second family is

divided into two ages. During the first age, the sub-populations evolve indepen-

dently without the support of a migration scheme. Each sub-population employs the

population size reduction strategy introduced in Brest and Maučec [9] (see also

[23, 57]). This strategy requires that initial population size S1
s�pop (in our case

S1
s�pop ¼ Ss�pop), duration of the first age in terms of fitness evaluations (time budget

Tb), and number of stages Ns (the number of population sizes employed during the

algorithm’s run), are prearranged. Then, the first age (Tb) is divided into Ns periods,

each period being characterized by a population size value Sk
s�pop (for k = 1 we

obtain the initial population size). Each period is composed of Ng
k generations which

are calculated in the following way:

Nk
g ¼

Tb

NsSk
s�pop

$ %
þ rk ð4Þ

where rk is a constant non-negative value which takes a positive value when Tb is

not divisible by Ns. In this case rk extra generations are performed. The population

reduction is simply carried out by halving the population size at the beginning of the

new stage, see [9]. In other words, for k = 1, 2, ..., Ns, the population size is halved

Skþ1
s�pop ¼

Sk
s�pop

2
: The selection of the survivors occurs by dividing into groups the sub-

population according to their indexes and performing the one-to-one spawning to

each corresponding pair of individuals. Finally, it should be remarked that in order

to guarantee a proper functioning of the population reduction mechanism,

populations should never undergo sorting of any kind.

In this way, the population size is progressively reduced during the optimization

process until the budget of the first age (Tb) is reached. The concept behind this

strategy is that of focusing the search in progressively smaller search spaces in order

to inhibit the DE stagnation. During the early stages of the optimization process, the

search requires a highly explorative search rule, i.e., a large population size, in order

to explore a large portion of the decision space. During the optimization, the search

space is progressively narrowed by decreasing the population size and thus exploiting

the promising search directions previously detected. Although this strategy does not

guarantee the detection of the global optimum, it allows quick improvements in the

solution performance.

During the second age, the sub-populations composing the second family keep

their size constant at their minimum and a migration scheme is employed. At each

generation, for each sub-population belonging to the second family, its individual

with the best performance migrates to a sub-population of the first family. As for the

migration among sub-populations of the first family, individuals are copied and
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replace a pseudo-randomly selected individual of the target population. The choice

of the target population is performed at pseudo-random with a uniform probability.

It is important to remark that a synchronization of the computational overhead

has been implemented among the sub-populations belonging to the first and second

family. In other words, the amount of fitness evaluations during a generation is kept

constant for all the sub-populations. For example, if k = 2, the size of a sub-

population belonging to the first family is twice bigger than the size of a sub-

population of the second family. Under these conditions, for each generation in the

first family two consecutive generations are performed in the second family.

Figure 7 gives a graphical representation of the DDE-EEPF during both its ages

of the evolution.

According to the idea proposed in this paper, the whole DE population is divided

into sub-populations. These sub-populations are grouped into two families. Each

family plays a different role on the optimization process. The sub-populations of the

first family are supposed to explore the decision space and to attempt detecting the

global optimum. The risk of stagnation is mitigated by the migration mechanism

among the sub-populations of the first family. On the contrary, the sub-populations

belonging to the second family have a completely different role and behavior. The

sub-populations of the second family do not aim at exploring the entire decision

space, but their role is focused on the greedy achievement of solutions with a high

performance, despite the fact that these solutions can be suboptimal. There is no

migration mechanism within the second family in order to allow a full exploitation

of the available search directions. Migrations would slow down the search since

they result in an increase of the exploration properties. When the sub-populations of

the second family detected high quality solutions, the inter-family migration occurs.

The introduction of high quality solutions into the exploratory search structure of

the first family is supposed to further decrease the risk of stagnation and, most

importantly, to assist the global search by proposing the exploration of promising

(a) (b)

Fig. 7 Operation scheme of the DDE-EEPF
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search directions. Hence, during the second age, the sub-populations of the first

family have the role to improve upon the immigrants coming from the second

family and continue the search towards the optimum. In this sense, the first family is

meant to be explorative while the second is to be exploitative.

5 Experimental results

The test problems listed in Table 1 have been considered in this study.

The rotated version of some of the test problems listed in Table 1 have been

included into the benchmark set. These rotated problems have been generated by

means of the multiplication of the vector of variables by a randomly generated

orthogonal rotation matrix. In total, 24 test problems have been considered in this

study with both n = 500 and n = 1, 000. Each algorithm has been run for 500, 000

fitness evaluations in the case of n = 500 and for 1, 000, 000 fitness evaluations

when n = 1, 000. Fifty independent runs have been performed for each algorithm

involved in this paper.

The DDE-EEPF has been tested and compared with the PDE, IBDDE, DDE and

one more algorithm designed by us for comparison (see below). Preliminary

experiments related to the sequential DE have shown that DE is not at all

Table 1 Test problems

Test problem Function Decision space

Ackley �20þ eþ 20 exp �0:2
n

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1 x2

i

p� �
� exp 1

n

Pn
i¼1 cosð2p � xiÞxi

� � [-1, 1]n

Alpine
Pn

i¼1 jxi sin xi þ 0:1xij [-10, 10]n

Axis-parallel hyper-ellipsoid
P

i=1
n i xi

2 [-5.12, 5.12]n

DeJong ||x||2 [-5.12, 5.12]n

DropWave �1þcos 12
ffiffiffiffiffiffiffi
kxk2
p� �

1
2
kxk2þ2

[-5.12, 5.12]n

Griewangk
kxk2

4000
�
Qn

i¼0 cos xiffi
i
p þ 1 [ -600, 600]n

Michalewicz �
Pn

i¼1 sin xi sin
i�x2

i

p

� �� �20

[0, p]n

Pathological
Pn�1

i¼1 0:5þ sin2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
100x2

i þx2
iþ1

p
�0:5ð Þ

1þ0:001� x2
i �2xixiþ1þx2

iþ1ð Þ2
� �

[-100, 100]n

Rastrigin 10n ?
P

i=0
n (xi

2 - 10cos(2p xi)) [-5.12, 5.12]n

Rosenbrock valley
Pn�1

i¼1 100 xiþ1 � x2
i

� �2þ 1� xið Þ2
� �

[-2.048, 2.048]n

Schwefel
Pn

i¼1�xi sin
ffiffiffiffiffiffi
jxij

p� �
[-500, 500]n

Sum of powers
P

i=1
n |xi|

i?1 [-1, 1]n

Tirronen
3 exp �kxk

2

10n

� �
� 10 exp �8kxk2

� �
þ2:5

n

Pn
i¼1 cos 5 xi þ ð1þ i mod 2Þcos kxk2

� �� �� � [-10, 5]n
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competitive with the above distributed ones, and has therefore been left out from

these result presentation.

The algorithms considered in this study have been run with the following

parameter setting.

– The DE used within the sub-populations of each of the distributed algorithms

has been run with F = 0.7 and CR = 0.3, in accordance with the suggestions

given in Zielinski and Laur [64] and Zielinski et al. [65].

– The PDE has been run with populations of 200 or 400 individuals divided into 5

sub-populations of 40 or 80 individuals each, for the 500 and 1,000-dimensional

problems, respectively. Despite [53] showing better performance for the DE/

best/1 mutation strategy in 30 and 50 dimensions, it has proven excessively

exploitative and has lead to premature convergence of the solutions when used

on higher dimension problems. In order to perform a fair comparison, an

analysis on mutations strategies has been made, leading to the choice of DE/

rand/1 and setting the migration constant to / = 0.2. These are the settings

which have been chosen for the experiments described below.

– Similarly to PDE, the IBDDE has been run with populations of 200 or 400

individuals divided into 5 sub-populations of 40 or 80 individuals each,

depending on the dimensionality of the test problems. The other parameters

have been chosen according to the values in Apolloni et al. [6]: the sub-

populations exchange one individual (q = 1) every 100 generations (c = 100).

/s and /r have been defined so as to choose a uniformly random individual, and

s has been set to a unidirectional ring.

– For the 500-dimensional problems, the DDE has been run with a population of

200 individuals divided into 16 sub-populations of alternatively 12 or 13

individuals. In the case of the 1,000-dimensional problems, the population has

been set to 400 individuals divided into 16 sub-populations of 25 individuals.

Following the suggestions in Falco et al. [18] the sub-populations have been

organized into a 4 9 4 grid folded into a torus (l = 4). Each sub-population

migrated only its best individual (SI = 1) every MI = 5 generations.

– The DDE-EEPF has been run with Spop = 200 or Spop = 400 (representing 5

populations of 40 or 80 individuals, for the 500 or 1,000-dimensional problems,

respectively). The first family has been composed of a = 3 sub-populations

while the second family has been made of b = 2 sub-populations. Although we

do not have a theoretical explanation for the choice of a and b, it is worthwhile

commenting the performed setting. Since in this algorithm a sub-populations are

supposed to explore the decision space while b are supposed to exploit it, the

choice of a and b should be made in order to efficiently balance the exploration

and exploitation features of the algorithm. Our preliminary experiments have

clearly shown that a should be greater than b. On the other hand, the role of the

second family is very important and requires some computational effort. As a

general guideline, on the basis of empirical observations, we suggest to set b
about 20–40% of m. With both 500 and 1,000-dimensional problems, the

migration constant has been set to pmig = 0.5, and the Tb parameter for the

population reduction algorithm has been set to 60% of the total budget, i.e., Tb
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= 300, 000 and Tb = 600, 000 for 500 and 1,000 dimensions respectively. This

proportion of the budget seems to guarantee a robust behavior of the algorithm:

according to our interpretation, a too low value of Tb implies a too short duration

of the first age, which makes the algorithm too exploitative during the process,

promoting quick improvements in the fitness values, but also causing premature

convergence. Conversely, if Tb is too high (e.g., the first age lasts for 80% of the

duration of the optimization process), the algorithm is too explorative and the

second age does not have the opportunity to exploit the promising search

directions generated by the population size reduction algorithm. The other

parameters of the population reduction algorithms have been set to rk = 0 for all

k values, and to Ns = 4 steps of reduction; see [9] for parameter setting.

– In order to evaluate the impact, in DDE-EEPF, of the injection of individuals

from the second family of sub-populations into the first family, a variant of

DDE-EEPF named Parallel Differential Evolution With Random Injections

(PDE-WRI) has been run, under the exact same conditions as DDE-EEPF. The

only difference between DDE-EEPF and PDE-WRI is that, at the point when

DDE-EEPF would send an individual from the second family to the first one,

PDE-WRI introduces instead a new, randomly generated (uniform distribution)

individual into the first family.

It is worthwhile commenting the choice of the population sizes Spop = 200 and

Spop = 400. Although in Storn and Price [52] it is suggested to set the DE

population size equal to about ten times the dimensionality of the problem, this

indication is not confirmed by a recent study in Neri and Tirronen [35] where it is

shown that a population size lower than the dimensionality of the problem can be

optimal in many cases.

Table 2 shows the average of the final results detected by each algorithm ± the

standard deviations, for the 500 dimension case, for the DE with additional

components. Table 3 shows the results for the 1, 000 dimension case. The best

results are highlighted in bold face.

Results in Tables 2 and 3 show that the proposed DDE-EEPF seems promising in

terms of final result, since it detected (on average) the best performing solutions in

fourteen cases out of the 24 considered in this study in 500 dimensions. PDE

obtained the best results only in two cases, DDE is the best in three cases and PDE-

WRI in five cases. In 1,000 dimensions, DDE-EEPF detected on average the best

performing solutions in nine cases out of 24, DDE is the best in nine cases, and PDE

and PDE-WRI win in three cases each.

In order to prove the statistical significance of the results, the two-tail unequal

variance t-test has been applied according to the description given in Ruxton [47] (see

also [37]) for a confidence level of 0.95. Tables 4 and 5 show the results of the test. A

‘‘?’’ indicates the case when the DDE-EEPF statistically outperforms, for the

corresponding test problem, the algorithm mentioned in the column; a ‘‘=’’ indicates

that the pairwise comparison leads to the success of the t-test, i.e., the two algorithms

have the same performance; a ‘‘-’’ indicates that DDE-EEPF is outperformed.

In the case of 500-dimensional problems, the t-test results show that the DDE-

EEPF outperforms PDE in 54.1% of the cases, IBDDE in 95.8%, DDE in 75.0% and
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PDE-WRI in 58.3% of the cases. On the opposite, DDE-EEPF is outperformed by

PDE in 33.3% of the cases, by IBDDE in 4.17%, by DDE in 8.33% and by PDE-

WRI in 25.0% of the cases. In the 1,000-dimensional problems, the t-test results

show that DDE-EEPF wins against PDE, IBDDE, DDE and PDE-WRI in

79.1, 95.8, 50.0 and 41.7% of the cases, respectively. It loses in 4.17, 0.00, 25.0

and 12.5% of the cases against PDE, IBDDE, DDE and PDE-WRI, respectively.

In order to carry out a numerical comparison of the convergence speed

performance, for each test problem, the average final fitness value returned by the

best performing algorithm G has been considered. Subsequently, the average fitness

value at the beginning of the optimization process J has also been computed. The

threshold value THR = J - 0.95(G - J) has then been calculated. The value

THR represents 95% of the decay in the fitness value of the algorithm with the best

performance. If an algorithm succeeds during a certain run to reach the value THR,

the run is said to be successful. For each test problem, the average amount of fitness

evaluations �ne required, for each algorithm, to reach THR has been computed.

Subsequently, the Q-test (Q stands for Quality) described in Feoktistov [21] has

Table 4 Results of the unequal variance t-test for 500 dimensions problems

PDE IBDDE DDE PDE-WRI

Ackley ? ? ? ?

Alpine ? ? ? ?

Ax.-par. hyp.-ell. ? ? ? ?

DeJong ? ? ? ?

DropWave ? ? ? ?

Griewangk ? ? ? ?

Michalewicz ? ? ? ?

Pathological - - ? -

Rastrigin ? ? ? ?

Rosenbrock - ? - ?

Schwefel ? ? ? ?

Sum of powers = ? ? =

Tirronen = ? ? ?

Rt. Ackley ? ? = ?

Rt. Alpine - ? = -

Rt. Ax.-par. hyp.-ell. ? ? = ?

Rt. Griewangk ? ? = ?

Rt. Michalewicz ? ? ? =

Rt. Pathological - ? ? -

Rt. Rastrigin - ? ? -

Rt. Rosenbrock - ? - =

Rt. Schwefel - ? ? -

Rt. Sum of powers = ? ? =

Rt. Tirronen - ? ? -
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been applied. For each test problem and each algorithm, the Q measure is computed

as:

Q ¼ �ne

R
ð5Þ

where the robustness R is the percentage of successful runs. It is clear that, for each

test problem, the smallest value equals the best performance in terms of

convergence speed. The value ‘‘?’’ means that R = 0, i.e., the algorithm never

reached the THR. It is important to remark that the Q-measure implicitly includes a

piece of information on the computational time needed to reach a reasonably good

performance. More explicitly, in order to determine the time that each algorithm

requires in order to reach the threshold value it is enough to compute Q 9 number of
runs (50) 9 time of a single fitness evaluation. The time of each fitness evaluation

clearly depends on the test problem and on the hardware involved. The ? value

means that the corresponding algorithm required an infinite time to reach the

threshold.

Table 5 Results of the unequal variance t-test for 1,000 dimensions problems

PDE IBDDE DDE PDE-WRI

Ackley ? ? ? ?

Alpine ? ? ? ?

Ax.-par. hyp.-ell. ? ? = ?

DeJong ? ? - ?

DropWave ? ? ? ?

Griewangk ? ? - =

Michalewicz ? ? ? =

Pathological - ? ? -

Rastrigin ? ? ? ?

Rosenbrock ? ? - =

Schwefel ? ? ? =

Sum of powers = ? = =

Tirronen = ? ? =

Rt. Ackley ? ? = ?

Rt. Alpine ? ? = =

Rt. Ax.-par. hyp.-ell. ? ? - ?

Rt. Griewangk ? ? = ?

Rt. Michalewicz ? ? ? =

Rt. Pathological ? ? - -

Rt. Rastrigin ? ? ? =

Rt. Rosenbrock ? ? - ?

Rt. Schwefel ? ? ? =

Rt. Sum of powers = = = =

Rt. Tirronen = ? ? -

362 Genet Program Evolvable Mach (2009) 10:343–371

123



Tables 6 and 7 show the Q values for 500-dimensional problems and 1,000-

dimensional problems respectively. The best results are highlighted in bold face.

Regarding the Q-measures in Table 6, in 500 dimensions, the DDE-EEPF

obtained the best results in 7 cases, while PDE, DDE and PDE-WRI obtained the

best results in 4, 10 and 3 cases, respectively. In 1,000 dimensions (Table 7), DDE-

EEPF obtained the best results in 8 cases, while PDE, DDE and PDE-WRI obtained

the best results in 0, 12 and 4 cases, respectively. It is worthwhile commenting the

DDE behavior: due to its grid structure, the DDE seems very fast in the early stages

of the evolution but it tends to focus its search on not so promising areas of the

decision space since it is often outperformed by PDE and DDE-EEPF in terms of

quality of final solutions. Nevertheless, considering that the DDE was designed for a

domain-specific application, it can be considered a rather robust algorithm.

Regarding the IBDDE, this study highlights that although the algorithm was very

promising in 30 dimensions as showed in Apolloni et al. [6], it seems to suffer from

the curse of dimensionality and to lose its high-quality performance.

Table 6 Results of the Q-test for 500 dimensions problems

PDE IBDDE DDE PDE-WRI DDE-EEPF

Ackley 4.01e?03 ? 3.46e?03 3.70e?03 3.43e103

Alpine 4.77e?03 ? 1.25e?04 3.72e?03 3.46e103

Ax.-par. hyp.-ell. 2.11e?03 ? 1.18e103 1.67e?03 1.67e?03

DeJong 2.32e?03 ? 1.32e103 1.94e?03 1.94e?03

DropWave ? ? ? ? 5.80e103

Griewangk 2.30e?03 ? 1.37e103 1.92e?03 1.92e?03

Michalewicz ? ? ? 5.67e?03 4.53e103

Pathological 1.69e103 3.98e?03 3.92e?04 1.78e?03 1.80e?03

Rastrigin ? ? ? 1.08e?04 4.05e103

Rosenbrock 1.56e?03 ? 7.12e102 1.22e?03 1.22e?03

Schwefel ? ? ? 6.04e?04 4.39e103

Sum of powers 2.32e?02 3.52e?04 7.97e101 1.39e?02 1.39e?02

Tirronen 2.70e103 ? ? 8.79e?03 3.89e?03

Rt. Ackley 3.96e?03 ? 3.23e103 3.85e?03 3.58e?03

Rt. Alpine 3.78e?03 ? 3.08e103 3.14e?03 3.32e?03

Rt. Ax.-par. hyp.-ell. 1.98e?03 ? 9.97e102 1.53e?03 1.53e?03

Rt. Griewangk 2.11e?03 ? 1.14e103 1.67e?03 1.67e?03

Rt. Michalewicz 5.91e?04 ? ? 5.11e?03 4.75e103

Rt. Pathological ? ? ? 5.33e103 ?

Rt. Rastrigin 4.32e?03 ? 9.63e?04 3.87e103 5.79e?03

Rt. Rosenbrock 1.38e?03 ? 5.97e102 1.01e?03 1.01e?03

Rt. Schwefel 4.32e?03 ? ? 4.00e103 1.01e?04

Rt. Sum of powers 4.12e100 1.24e?01 4.28e?00 4.40e?00 4.40e?00

Rt. Tirronen 3.98e103 ? ? 1.40e?04 9.06e?04
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It is important to remark that the proposed DDE-EEPF displays in Tables 6 and 7

the smallest number of ? values, which means that there is only one case in which

it is not competitive with the best algorithm in 500 dimensions, and zero case

in 1,000 dimensions. For the remaining test problems, the DDE-EEPF is either the

best or a competitive algorithm. Thus, the DDE-EEPF demonstrated the best

performance in terms of robustness.

Figure 8 shows average performance trends of the five considered algorithms

over a selection of the test problems listed in Table 1 in 500 dimensions.

Figure 8 a, c, d and f show that IBDDE improves only marginally. DDE, on the

contrary, shows in those figures a very steep curve in the beginning of the

optimization, outperforming at this point all the other algorithms, but quickly ceases

to improve on its solutions. PDE’s start is less steep than DDE’s, but it continuously

improves on its solutions and outperforms the algorithms above by a large margin.

Finally, PDE-WRI and DDE-EEPF start with a steeper slope than PDE (although

less steep than DDE’s), but show hints that their improvement rates will deteriorate

more quickly than PDE’s. This can be explained by the fact that DDE-EEPF uses

the same algorithm as PDE in the beginning, albeit with only three populations

Table 7 Results of the Q-test for 1,000 dimensions problems

PDE IBDDE DDE PDE-WRI DDE-EEPF

Ackley ? ? 1.24e?04 1.28e?04 8.88e103

Alpine ? ? 6.68e103 7.97e?03 7.90e?03

Ax.-par. hyp.-ell. 7.53e?03 ? 4.31e103 5.83e?03 5.83e?03

DeJong 8.04e?03 ? 4.77e103 6.45e?03 6.43e?03

DropWave 7.74e?04 ? ? ? 1.26e104

Griewangk 8.03e?03 ? 4.84e103 6.45e?03 6.43e?03

Michalewicz ? ? ? 9.69e?03 9.59e103

Pathological 6.79e?03 ? ? 4.99e103 4.99e?03

Rastrigin ? ? 8.16e?04 8.45e?03 8.30e103

Rosenbrock 5.58e?03 ? 2.60e103 4.23e?03 4.23e?03

Schwefel ? ? ? 8.82e?03 8.72e103

Sum of powers 6.84e?02 ? 1.90e102 4.06e?02 4.06e?02

Tirronen 7.15e?03 ? 7.74e?03 5.84e?03 5.70e103

Rt. Ackley 4.95e?05 ? 8.04e103 1.04e?04 8.77e?03

Rt. Alpine ? ? 5.73e103 7.62e?03 7.61e?03

Rt. Ax.-par. hyp.-ell. 7.26e?03 ? 3.84e103 5.37e?03 5.37e?03

Rt. Griewangk 7.45e?03 ? 4.21e103 5.69e?03 5.69e?03

Rt. Michalewicz ? ? ? 9.63e?03 9.17e103

Rt. Pathological ? ? 1.54e?04 1.01e104 4.95e?05

Rt. Rastrigin ? ? 1.40e?04 8.16e?03 8.08e103

Rt. Rosenbrock 4.96e?03 ? 2.07e103 3.58e?03 3.58e?03

Rt. Schwefel ? ? 4.92e?05 8.94e103 9.19e?03

Rt. Sum of powers 1.29e?01 3.62e?01 1.12e101 1.38e?01 1.38e?01

Rt. Tirronen 1.22e?04 ? ? 8.68e103 1.37e?04
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(instead of five for PDE) and with a higher migration constant which makes it more

greedy and more prone to lose its ability to improve on its solutions. In Fig. 8, they

are even slightly outperformed by PDE. However, at 300,000 fitness evaluations,

PDE-WRI’s and DDE-EEPF’s first sub-population families start to be refreshed by

individuals from the second sub-population family and by random new individuals,

respectively. This shows on the curve as a ‘‘knee’’, a sudden change in the slope,

which becomes again much steeper. In these four examples, at the end of the run,

PDE-WRI and DDE-EEPF clearly outperform PDE and the other two algorithms by

a large margin, DDE-EEPF also outperforming PDE-WRI, albeit only slightly in

Fig. 8a and f. Figure 8b shows the same behavior as described above, but PDE-WRI

and DDE-EEPF lose very quickly their ability to make any improvement, until the

time when the first family of sub-population is being refreshed. At this point, the
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slope of the curve becomes suddenly very much steeper. PDE-WRI is eventually

outperformed by PDE, but DDE-EEPF outperforms PDE by a very large margin.

Figure 8e shows an example where PDE is on a par with DDE-EEPF and PDE-

WRI: starting from 200,000 fitness evaluations, DDE-EEPF and PDE-WRI seem to

become unable to improve on their solutions, while PDE continues improving. At

300,000 fitness evaluations, the sub-populations of the first family start receiving

new individuals, causing DDE-EEPF and PDE-WRI to start improving again. DDE-

EEPF eventually catches up with PDE around 500,000 fitness evaluations. One can

also notice that on this function, IBDDE performs much better than on the other

ones, without, however, being able to compete with the other algorithms.

In these six examples of 500-dimensional problems, IBDDE, DDE and PDE

show similar behaviors whatever the test problem when one considers the general

shape of their curves. PDE-WRI and DDE-EEPF behave identically during the first

age of the algorithms, while the improvement in DDE-EEPF brought by the

solutions of the second family of sub-populations, compared to the introduction of

new, random individuals in PDE-WRI, ranges from very small in two cases to

considerably large in one other case.

Figure 9 shows average performance trends of the five considered algorithms

over a selection of the test problems listed in Table 1, in 1,000 dimensions.

Similarly to the 500-dimensional problems, IBDDE in 1,000 dimensions

improves on its solutions only marginally (see Fig. 9 d–f) or not at all (see

Fig. 9a–c).

In Fig. 9b, PDE, DDE, PDE-WRI and DDE-EEPF present the same behavior as

in 500 dimensions: DDE improves very quickly at first, but ceases to find any better

solutions after about 200,000 fitness evaluations. DDE-EEPF and PDE-WRI seem

to suffer from the same problem at first (although with a slower improvement rate

than DDE), but at 600,000 fitness evaluations, the sub-populations of the first family

start being refreshed, and the algorithms progress again, eventually finding better

solutions than PDE. The difference between PDE-WRI and DDE-EEPF is

unnoticeable on the graph.

In Fig. 9c–f, PDE, DDE, PDE-WRI and DDE-EEPF exhibit very similar

behaviors across the different test problems: DDE improves very quickly at the

beginning, faster than the other two algorithms, but improves only marginally on its

solutions after about 400,000 fitness evaluations. PDE, PDE-WRI and DDE-EEPF

both show a steady rate of improvement, PDE-WRI’s and DDE-EEPF’s being better

than PDE’s, with a slight advantage for DDE-EEPF over PDE-WRI. Contrary to the

500-dimensional problems, DDE-EEPF’s second age is not marked by a sharp

change in the slope of the curve although the figures do present a ‘‘knee’’ in the

curve at 600,000 fitness evaluations, at the start of the second age. The absence of a

sharp ‘‘knee’’ is explained by the fact that in 500 dimensions, PDE-WRI and DDE-

EEPF are not anymore improving on their solutions near the end of the first age,

while in 1,000 dimensions they still are.

Figure 9a, c and d show examples where DDE outperforms PDE and, in Fig. 9a,

PDE-WRI as well: its sharper improvement rate in the beginning allows it to reach a

better solution than the other algorithms, although all three reach similar solutions
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near the end. In Fig. 9a one can notice that the difference between DDE-EEPF and

PDE-WRI is perceptibly larger than it is in Fig. 9c–f.

In these six examples of 1,000-dimensional problems, as was the case with the

500-dimensional problems, the shapes of the curves presented by IBDDE, DDE and

PDE are very similar across the various test problems. Moreover, while PDE was

outperforming DDE on the 500-dimensional problems, the latter is better than the

former in 1,000 dimensions.

The comparison between DDE-EEPF and PDE-WRI shows that although the

random injection leads to satisfactory results both in 500 and 1,000 dimensions, and

thus requires further investigation in the future, DDE-EEPF shows better results on

average. This fact confirms that the injection of proper, high quality solutions is

beneficial. We believe that a proper selection of these high quality solutions to be

injected might have a great potential on a various set of problems.
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6 Conclusion

The DDE-EEPF algorithm proposed in this paper is compared against three state-of-

the-art, distributed DE algorithms and one designed ad hoc in this study. DDE-

EEPF is characterized in that it uses two families of sub-populations instead of only

one, as is the case in the three distributed DE algorithms. The first family has sub-

populations of constant size organized into a ring topology, where the best

individuals of a sub-population can migrate to another sub-population. The second

family has sub-populations with a dynamic population size, which is reduced

progressively. This scheme allows the first family to explore the search space, while

the second family independently attempts to detect high performance solutions.

These solutions then migrate to the first family in order to direct the exploration

towards better solutions.

Numerical results show that DDE-EEPF outperforms the other algorithms in the

majority of the 24 high-dimensional test problems. The injection of individuals from

the second family of sub-populations into the first family has, in most of the cases, a

beneficial effect as it gives a ‘‘second breath’’ to the process and allows it to explore

the search space further. The numerical results presented in this paper additionally

show that the use of a structured population improves greatly the performance of the

DE algorithm compared to its original, serial version, when applied to high-

dimensional problems.

Future development of this work will consider a generalization and extension of

the two-family mechanism. A first direction of the research could aim at testing the

proposed distributed system for Particle Swarm Optimizers and Covariance Matrix

Adaptation Evolution Strategy. A second could involve different algorithms

operating on the sub-populations, or include local search algorithms instead of the

second family of sub-populations in order to generate high quality solutions.
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