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Abstract In genetic programming, introns—fragments of code which do not con-

tribute to the fitness of individuals—are usually viewed negatively, and much research

has been undertaken into ways of minimising their occurrence or effects. However,

identification and removal of introns is often computationally expensive and some-

times intractable. We have therefore focused our attention on one particular class of

intron, which we refer to as dormant nodes. Mechanisms for locating such nodes are

cheap to implement, and reveal that the presence of dormancy can be extensive. Once

identified, dormancy can be exploited in at least three ways: improving execution

efficiency, improving solution-finding performance, and simplifying program code.

Experimentation shows that the gains to be had in all three cases can be significant.

Keywords Genetic programming � Introns � Efficiency � Performance �
Simplification

1 Introduction

Many of the individuals in a Genetic Programming (GP) population will contain

program fragments which, for a variety of reasons, make no contribution to the fitness of

those individuals. The label conventionally given to such a fragment is an intron. Much

research has been concentrated on the behaviour and effects of introns, primarily because

they tend to accumulate within individuals rapidly, leading to the phenomenon of code

bloat. In general, code bloat is viewed as an undesirable side-effect of the evolutionary

process because of the large, unwieldy and unfathomable programs that evolve, clogging

up memory and slowing execution. A large part of the aforementioned research has

therefore focused on understanding the role that introns may or may not play in code
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bloat so that it may be more effectively controlled [1–10]. However, there is also

research which stresses the more positive aspects of intron presence, to the extent that it

may sometimes be beneficial deliberately to inject them into the gene pool [11, 12].

In this paper we wish to consider the ways in which recognition of introns can be used

to our advantage. Specifically, we will focus on a subset of introns which we refer to as

dormant nodes. In the general case, introns can be difficult to locate within a program

without extensive and costly analysis; it may even be impossible to determine the

presence of some types of intron, particularly when loops and recursion are involved [3,

13]. One of the advantages of dealing with dormant nodes is that they are easily

identified; moreover, they correspond to the vast majority of introns usually found within

evolved programs. The mechanisms for locating such nodes will be described later.

Once identified, dormancy can be exploited in at least three ways. The first of

these involves improving the execution efficiency of a GP system. As we shall see, a

map of where dormant nodes lie within a program can, in many cases, act as an

indicator as to when the usual method for assessing the fitness of programs can be

circumvented. Secondly, it may be possible to use our knowledge of the dormancy

within programs to increase the success rate of GP systems in finding solutions. We

will also try to ascertain what it is about certain problems that makes such

performance improvements possible. Finally, a dormancy map offers us a means of

simplifying evolved programs, which are often huge and complex.

Before considering each of these techniques in turn, we need to define precisely

what is meant by dormant nodes, and also how we go about locating them.

2 Introns and dormant nodes

Although the term intron has been widely used in the GP literature to denote pieces

of program code that make no contribution to the fitness of an individual, the term is

often imprecisely defined. Nordin et al. [11] addressed this by defining five main

categories of intron, as follows:

Type 1: Code segments in which crossover never changes the behaviour of the
program for any input in the problem domain. In other words, replacing that

segment with a different program sub-tree cannot possibly affect the behaviour of

the individual as a whole. For example, in (MULT 0 (ADD X X)) the (ADD X X)

sub-tree is a Type 1 intron: any change to it will still result in a zero value for the

whole tree. Other Type 1 introns may be far more difficult to detect. Consider code

such as the following:
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Here, S2 is clearly unreachable, and so whatever code we might replace it with will

not affect the program. However, recognizing that the outer predicate (x \ 5)

impacts upon the inner predicate (x \ 0) is a difficult analytical problem in the

general case.

Type 2: Code segments where crossover never changes the behaviour of the
program for any of the fitness cases. For example, in (IF (AND X1 X2) (OR D0 D1)

(NOT D1)), the (OR D0 D1) sub-tree will be executed only when X1 and X2 are

both true. If the input test data is such that this is never the case for X1 and X2, then

(OR D0 D1) is a Type 2 intron. Note that this categorisation is very specific to a

given test data set: it says nothing about the problem domain as a whole unless input

coverage is exhaustive.

Type 3: Code segments which cannot contribute to the fitness and where each
node can be replaced by a no-operation without affecting the program for any input
in the problem domain. As an example, consider (PROGN2 FORWARD (PROGN2

LEFT RIGHT)). For some problems, the (PROGN2 LEFT RIGHT) sub-tree has no

overall effect, and can therefore be replaced by a null operation. This differs from

Type 1 and Type 2 introns in that replacing the sub-tree with alternative code could

still alter program behaviour. Note too that this example does not apply to those

problems in which functions have side-effects, e.g. the Santa Fe ant problem, where

each move consumes a unit of simulated time.

Type 4: Code segments which cannot contribute to the fitness and where each
node can be replaced by a no-operation without affecting the program for any of the
fitness cases. As with Type 2 introns, these are similar to the immediately preceding

category, but are determined upon program execution with the input data set only.

Type 5: More continuously defined intron behaviour where nodes are given a
numerical value of their sensitivity to crossover. These are common in symbolic

regression type problems, where values can become so large or small in magnitude

that they make no significant contribution. An example is (DIV (SUB X 2)(EXP

(EXP 20))), where the (EXP (EXP 20)) value is so huge that arithmetic rounding

almost always causes zero to be returned as the result of the division, no matter what

the numerator expression is. In other words, (SUB X 2) is a Type 5 intron here.

The above is probably the most detailed taxonomy of introns that has been

proposed, although a number of other categorisations and terminologies have been

devised. Soule and others [3, 14], for example, rejected the use of the word ‘intron’

because of its inaccuracy as an analogue for the biological term. In their alternative

nomenclature, an inoperative node is one in which replacement of the sub-tree

rooted at that node by a null operation (no-op) will not change the program’s output.

Similarly, a node is said to be inviable if there does not exist a sub-tree which will

change the program’s output when substituted for that node.

For the purposes of this paper, the key determination we need to make is whether

or not a given program node is executed for the set of test cases used to evaluate a

program. What makes this difficult to slot comfortably into existing taxonomies is

that we are less interested in making broader statements about the potential
contribution of such nodes. For example, nodes that are not executed during a fitness

evaluation are certainly of the Type 2 variety as defined by Nordin et al., but many

may also be of the Type 1 variety. In other words, the reason a node is not executed
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may be either because the test cases are not sufficient, or because the node is

unreachable in all circumstances. Conversely, there are Type 2 introns which are

classed as such not merely by virtue of remaining unexecuted. For example, in

(MULT (ADD X Y) (SUB X Y)), the (ADD X Y) sub-tree is a Type 2 intron if it

turns out that (SUB X Y) is zero in all test cases. In the general case, however, it is

likely that the (ADD X Y) sub-tree will be evaluated at some point, since it is not

possible to reason a priori that it need not be.

Other taxonomies are associated with similar difficulties. For example, the

categorisation of Soule et al. appears to be defined in terms of the problem domain,

rather than in terms of specific execution cases. Inviable code is often unexecuted

code, but the two are not synonymous.

For these reasons, we introduce a new terminology as follows:

Definition: A dormant node is a program node that is not executed for any of the

cases involved in evaluating the fitness of the individual. A non-dormant node is

said to be active.

It follows from this definition that if the root node of a sub-tree is dormant, then

the whole sub-tree is dormant, i.e. none of the nodes in that sub-tree is executed.

This is because a root node represents a function, and the sub-trees represent the

function arguments. If the function is never executed, then its arguments are never

evaluated. It is interesting to note that similar reasoning has been applied to other

forms of intron, e.g. Soule and Foster show formally that the descendants of an

inviable node are themselves inviable [15].

It may also be appreciated that the decision as to whether a node is deemed

dormant or active can be based purely on information gathered dynamically, and

requires no sophisticated analysis of the containing program. To derive this

information, we adopt a marking method similar to that used by Blickle and Thiele

[16], who used it as a means for approximating the amount of ‘redundancy’ present

in a program.

Since we need to record possible dormancy for all nodes of all trees present in the

GP population, every individual is allocated what we call a visit tree. This has the

same size and structure as the individual’s code tree. When an individual is

presented to the fitness function for evaluation, all of the nodes in its visit tree are

initialised to a pre-defined NOT-VISITED value. Whenever the fitness function

causes a node of the program tree to be evaluated, the corresponding node of the

visit tree is set to VISITED. To implement this we use a visit tree pointer that

mirrors the navigation of the code tree pointer as the individual’s program tree is

traversed. Care must be taken to ensure that the visit tree pointer is properly updated

when sub-tree arguments are skipped during, for example, the evaluation of an

IF-THEN-ELSE node.

3 The extent of dormancy

Now that we have more precisely specified the sub-class of introns in which we are

interested, we are in a position to discuss the extent to which they appear within

program code. The visit trees mentioned above can be used to build up this
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information for each individual and for the population as a whole as evolution

proceeds. We will consider this firstly in relation to the well-known Santa Fe trail

problem [17], in which an artificial ant has to navigate a trail of food pellets within a

fixed time period. The parameters for this problem as we have used them are

presented in Table 1.

Since the function set for this problem contains an IF-THEN-ELSE construct

(if_food_ahead) there is at least the potential for some sections of program code

never to be executed for a given individual (i.e. to be dormant code). In Fig. 1 we

chart the total number of program nodes present in the population during one run of

the ant problem, together with the number of active (executed) nodes. As might be

expected, the phenomenon of code bloat is clearly evident, with the total number of

nodes in the population rising rapidly: from generation 10 onwards this number rises

from 19,000 to 196,000 nodes—more than a ten-fold increase. In contrast, the

number of active program nodes remains remarkably constant at about the 12,600

mark.

Table 1 Tableau for the artificial ant problem

Objective To evolve a program that guides an ant along

a trail of food particles

Terminal set Left, right, move

Function set If-food-ahead, progn2, progn3

Initial population Ramped half-and-half, no duplicates

Evolutionary

process

Steady-state; 5-candidate tournament selection

Fitness cases One: the Santa Fe trail

Fitness Number of food pellets (0–89) not found by the ant

Restrictions Programs timed-out after 600 steps (left, right or move)

Other parameters Population size = 500; Generations (total offspring/population size) = 51; prob.

crossover = 0.9; no mutation; prob. internal node used as crossover point = 0.9
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Fig. 1 Extent of dormancy in one run of the ant problem
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To put these figures another way, we can state that the level of dormancy in the

population increases dramatically. At generation zero, approximately 20% of all

program nodes are dormant, but by generation 50, the dormancy figure reaches 93%.

The given run profile is not an extreme example. Figure 2 shows the percentage

of dormancy present in the population at the end of each of a sequence of 20 runs (in

all cases, runs are not terminated prematurely, but are allowed to proceed until

generation 50). It can be seen that in all of these runs the dormancy level never

drops below 75%; indeed, in 13 of the runs it exceeds 90%, reaching a peak of 96%

in run 12.

4 Efficiency

4.1 Approach

In a paper on the GP of data structures, Langdon [18] pointed out that, for certain

forms of crossover taking place at the sites of known introns, it might be possible to

avoid invoking the fitness function used to evaluate the new offspring, possibly

resulting in considerable savings in execution time. The remark was made almost as

an aside, and Langdon presented no experiments or results to support the idea. As

has already been mentioned, one of the difficulties of realising such techniques is in

the prior identification of the introns, the cost of which can considerably outweigh

the envisaged execution savings. By restricting ourselves to dormant nodes, where

identification effort is low, a cost-effective approach may become more viable.

Using the marking technique we have described, it becomes easy to determine

when crossover must lead to children whose fitness values are known prior to

execution. During crossover, a sub-tree of one parent is replaced by a selected sub-

tree of another parent to create a new child. In this and future discussion we will

sometimes refer to the receiving parent as the mother, and the sub-tree donor parent

as the father. If the mother’s sub-tree is known to be dormant, then the newly-

inserted sub-tree must also be dormant, and so fitness cannot alter. This is true even

if the transplanted sub-tree was active in the father, and perhaps even of immense
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Fig. 2 Final dormancy levels in 20 successive runs of the ant problem
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operative value there. Note that the converse can also happen in crossover, with

‘sleeping’ nodes being awakened upon transfer to another individual. Indeed, one of

the reasons the term ‘dormant’ was chosen was to reflect this context-dependency.

We use the term fitness-preserving crossover (FPC) to denote the situation in

which crossover is made at a dormant node and which therefore must create a child

which has a fitness value that is identical to that of its mother. This is to distinguish

it from the more commonly used term neutral crossover, which refers to the

creation of a child which, upon evaluation, is found to have the same fitness as its

parent. By contrast, FPCs are determined prior to (and, as we shall see, obviate the

need for) any fitness evaluation. Moreover, there may be crossovers which do not

take place at dormant nodes and yet still lead to equivalent fitness; in other words,

FPCs are a subset of neutral crossovers. It should also be noted that saying that FPCs

do not alter fitness is not the same as saying that they are worthless: they may play a

valuable role in propagating useful genetic material.

By definition, then, the occurrence of any FPC implies that the fitness evaluator

need not be invoked to assess the fitness of the new offspring. This represents a

saving in execution time, but for the proposed technique to be effective these

occurrences must be frequent enough to ensure that they are not swamped by the

computational costs of the marking technique. In the particular case of the ant

problem referred to earlier, it might be expected that since dormancy has been

shown to be so prevalent, then FPCs should occur frequently during evolution. This

is borne out in Fig. 3, which shows the growth in the percentage of FPCs taking

place during the typical run of that problem. In generation fifty, 93% of all

crossovers are FPCs. Over the whole run, 59% of all crossovers are FPCs. As

before, we can widen the picture to our sequence of 20 runs (Fig. 4). In all but three

of the runs, the FPC count across the whole of the run is above 50%, and in one run

reaches almost 80%.

For each of these FPCs, then, we can avoid invoking the fitness evaluation

function, and simply assign the child the same fitness as its mother. A complication

with this is that, for the approach to work as we have described, every individual

must have a visit tree telling us which nodes are executed and which are not. If an
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Fig. 3 Percentage of Fitness-Preserving Crossovers (FPCs) in one run of the artificial ant problem
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FPC-generated child is not executed, how do we create its visit tree for use in the

recognition of future FPCs?

The answer lies in the recognition that, like the individual’s code tree, its visit

tree can also be created via an analogous crossover operation. Figure 5 shows how

this works. In this particular crossover, node g of Parent 1’s code tree is replaced by

the sub-tree n-o-p of Parent 2 to create the child on the right. However, the flattened

form of the visit tree for Parent 1 shows that node g is a dormant node, and this is

therefore an FPC. The new visit tree for the child can be derived from its parent visit

trees simply by replacing the appropriate nodes with a new sequence that is of the

same length of the sub-tree brought in from Parent 2. Moreover, since the new sub-

tree must be dormant, all of the nodes in the inserted sequence can and should be

initialised to dormant (zero in the diagram), rather than copied from Parent 2.

To compare the efficiency of a standard GP approach, in which fitness evaluation

is performed for every crossover, with an approach in which fitness evaluation is
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Fig. 4 Percentage of FPCs throughout each of 20 successive runs of the ant problem

a

b c

d g h

e f

m

n q

o p

a

b c

d h

e f

n

o p

Parent 1                                         Parent 2       Child

Fig. 5 Manipulation of visit trees during crossover. Node g in Parent 1 is being replaced by sub-tree n-o-
p of Parent 2 to produce the child on the right. The binary visit tree indicates whether a node is active (1)
or dormant (0)
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performed only for those crossovers which are not FPCs, we can count the total

number of program nodes that are executed in a sequence of runs. Table 2 gives

these figures for 100 runs of the ant problem. For both approaches, the GP system

was initialised with the same random number seed to ensure that the evolutionary

process and the results obtained in terms of best programs etc. were identical.

The non-FPC approach offers an average saving of approximately 62% of the

number of nodes that need to be evaluated per run. In one of the runs the saving is as

high as 83%. A statistical t-test indicates that the improvements are significant at the

99.9% confidence level.

How do these savings impact upon execution timings? Summing over the 100

runs, standard GP involves the execution of nearly 3 billion nodes, while the non-

FPC-only approach requires just over a billion node firings. However, the overheads

of visit tree creation, initialisation and maintenance already described may mean

that these figures may not necessarily translate into equivalent run-time gains.

Table 3 therefore also shows the elapsed execution times for 100 runs of both

approaches. The timings were performed on a PC with a 2.8 GHz Pentium 4

processor and 512 MB dual DDR RAM. It will be seen that the non-FPC-only

approach does in fact run in about one-third of the time of the standard approach.

4.2 Other problems

Providing convincing evidence of the efficacy of our approach requires that it be

applied in more than just a single domain. Experiments have therefore been

performed on the following problems:

4.2.1 Maze navigation

One of the reasons for choosing this particular problem is that it has already been

used as the subject for intron research by Soule et al. [3, 14]. In our slightly adapted

version, the objective is to navigate successfully not one but a number of mazes (we

Table 2 Program node

evaluations for the ant problem
Avg. nodes per run using conventional GP (9106) 29.5

Avg. nodes per run using non-FPC approach (9106) 11

Avg. reduction 62%

Max. reduction 83%

Min. reduction 21%

Statistically significant? Yes

Table 3 Execution efficiency

comparison for the ant problem
Fitness evaluation

performed

Nodes evaluated

in 100 runs (9109)

Elapsed time

for 100 runs (s)

Conventional 2.95 136

Non-FPC only 1.1 48
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used 20). One of these mazes has a pre-defined topology; the others are generated at

random. The pre-defined maze is shown in Fig. 6; this is identical to the maze used

by Soule et al., except for the addition of a single exit square in the right-hand wall.

The initial position and orientation of the entity to be guided through the maze is

indicated by the arrow. The other parameters for the problem are presented in

Table 4; for this and the other problems described here, only those parameters

which differ from those of the ant problem in Table 1 are given.

The agent can turn left or right, move forward or backward, and test whether

there is a wall ahead or not. A no-op terminal does nothing except to expend an

instruction cycle. Decision making is via an if-then-else function, whilst iteration is

achieved via a while function. For a given maze, program fitness is measured in

terms of how close the agent gets to the exit: zero fitness indicates escape from the

maze. Navigation continues until a maze is successfully completed, or an upper

bound of 3,000 instruction cycles is reached.

4.2.2 Defence strategy

In this problem, the idea is to determine whether GP can be used to evolve winning

battle strategies for a single defender facing multiple simultaneous attackers. The

problem is couched in the form of the well-known ‘Space Invaders’ arcade game,

and full details of our original approach to evolving such strategies can be found

     

     

     

                    

                    

    

                    

                    

     

     

                    

Fig. 6 Pre-defined maze used in the maze navigation problem

Table 4 Tableau for the maze

navigation problem
Objective To navigate a set of mazes

Terminal set Forward, back, left, right, no-op, wall-ahead,

no-wall-ahead

Function set If-then-else, while, progn2

Fitness cases 20 mazes: 1 pre-defined, 19 random

Fitness Closest distance to exit (0–18), summed

over all mazes

Restrictions Programs timed-out after 3,000 instructions

98 Genet Program Evolvable Mach (2010) 11:89–121

123



elsewhere [19]. For the research described here, the relevant parameters are

presented in Table 5.

The defender can move only left or right. It can fire a missile and determine

whether it is in the flight path of a bomb. It can also detect whether attackers are to

its right or left. The function set contains an if-construct and LISP-type PROGN

connectives. The fitness of an evolved strategy is assessed according to how

successfully a defender manages to cope with the invading hordes of aliens. Missile

launches which miss their targets are penalised according to the distance by which

they go wide. If the defender is killed or an attacker manages to land unscathed, then

additional heavy penalties are applied. Hence, optimum (zero) fitness can be

achieved only if a strategy results in the elimination of all attackers in all 50

randomised scenarios.

4.2.3 Parsing

In this problem, the aim is to evolve programs which are capable of parsing

arithmetic and logical expressions. The output of a successful parser is the postfix

(Reverse Polish) form of each test expression. Again, full details can be found

elsewhere [20], but the relevant parameters are given in Table 6.

The terminals for this problem are used for inspecting and manipulating the input

expression items and the operator stack. The function set has an if-construct, a while

loop and a progn2 connective. The test data set comprises 30 arithmetic and logical

expressions of varying complexity. To prevent programs from becoming stuck in

infinite loops, a timeout mechanism is used to terminate programs if they execute

more than 2,000 instructions. A successfully evolved solution is therefore one which

correctly parses each of the 30 input expressions within this instruction limit.

It will be seen that each of the above problems contains an if-then-else construct;

additionally, the maze and parsing problems have a while-loop construct available.

Table 6 Tableau for the

parsing problem
Objective Convert arithmetic and logical expressions to postfix

Terminal set Item-val, stack-top, operand, lteq, output-item,

output-stack, push-item

Function set If-then-else, while, progn2

Fitness cases 30 Expressions

Fitness Number of incorrect postfix expressions

Restrictions Programs timed out after 2,000 instructions

Table 5 Tableau for the

defence strategy problem
Objective To win a sequence of wargames

Terminal set Left, right, fire, attacked, target-left, target-right

Function set If-then-else, progn2, progn3

Fitness cases 50 Randomised games

Fitness Based on proximity of missiles to attackers,

with penalties for defender being destroyed

and attackers landing
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There is therefore at least the potential for dormancy to arise in all three. Figure 7

shows how dormancy increases during typical runs of each problem. Although the

numbers of nodes involved vary considerably, the shapes of the graphs are

remarkably similar to that for the ant problem. Code bloat is evident in all three, but

in each case the number of active nodes soon reaches a plateau and stays there until

the end of the run.

Figure 8 charts the extent of dormancy in a sequence of 20 runs of each problem,

while Fig. 9 shows the percentages of FPCs occurring in the same sequence. The

levels of each are considerable, suggesting that the execution savings to be gained

via the evaluation avoidance technique described earlier might also be substantial.

As before, we can perform comparisons based on the total number of program nodes

evaluated, and the elapsed times taken for a sequence of 100 runs. The results are

presented in Table 7. The average reduction in the number of nodes evaluated per

run is remarkably consistent, both for these problems and the ant problem discussed

previously. Moreover, the maximum reduction achieved in any run is, again like

the ant problem, above 80% for each problem. Focusing on the elapsed times, the

savings obtained by moving to a non-FPC-only approach are 57% in the case of the

maze problem, 60% for the defence problem, and 59% for the parsing problem.

0

250000

500000

750000

1000000

1250000

1500000

1750000

2000000

2250000

2500000

0 5 10 15 20 25 30 35 40 45 50

Generation

N
o

. n
o

d
es

No. nodes

Active nodes

0

100000

200000

300000

400000

500000

600000

700000

800000

900000

1000000

0 5 10 15 20 25 30 35 40 45 50

Generation

N
o

. n
o

d
es

No. nodes

Active nodes

0

100000

200000

300000

400000

500000

600000

0 5 10 15 20 25 30 35 40 45 50

Generation

N
o

. n
o

d
es

No. nodes

Active nodes

(a) (b)

(c)

Fig. 7 Extent of dormancy in a typical run of a the maze navigation problem; b the defence strategy
problem; and c the parsing problem
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4.3 Boolean problems

The technique described in the above sections provides a simple and easily

implemented method for minimizing fitness evaluations and hence lowering

execution times. It is especially suited to problems which satisfy two conditions:

firstly, the computational cost of invoking the fitness function should be relatively
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Fig. 8 Final dormancy levels in a sequence of 20 runs of a the maze navigation problem; b the defence
strategy problem; and c the parsing problem
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Fig. 9 Percentage of FPCs throughout each of 20 runs of a the maze navigation problem; b the defence
strategy problem; and c the parsing problem
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high; and secondly, the function set for the problem should offer the possibility of

non-execution of some program nodes (via, say, WHILE or IF functions). With

these conditions in mind, the nature of Boolean logic problems is such that they are

of particular interest.

Consider, for example, the problem of evolving multiplexer logic. A multiplexer

has a number of data inputs and a number of address inputs. The binary value

present on the address lines selects one of the data inputs, the value of which is then

passed directly onto the single output. In a 6-multiplexer (6-mux), the binary

address held on 2 addressing inputs selects one of 4 data inputs to be passed

through. In evolving programs to implement a 6-mux, fitness evaluation is often

exhaustive: i.e. each program is applied to all 64 possible combinations of the inputs

in order to determine its fitness value. More complex multiplexers require

correspondingly greater computation time if evaluation is to be exhaustive; for

example, an 11-mux, with 3 address and 8 data lines, has 2,048 possible test cases.

The 6-mux problem as it is stated for GP purposes usually has the function and

terminal sets given in Table 8. This table also shows the other parameters that we

will use in the experiments to be described here.

It will be seen that the function set for this problem contains an IF-statement, and

so the potential for dormancy is already present. However, it may be possible to

increase the amount of dormancy (and hence the chances of FPCs occurring) still

further.

In writing the fitness function for the 6-mux problem, code must be written to

evaluate each of the node types in the function and terminal sets. One way of

implementing, say, the AND function might be as follows:

Table 7 Execution efficiency comparisons for the maze, defence and parsing problems

Maze Defence Parsing

Avg. nodes/run (conventional) (9106) 387 193 248

Avg. nodes/run (non-FPC) (9106) 150 102 74

Avg. reduction 63% 64% 65%

Max reduction 81% 87% 85%

Min reduction 37% 10% 45%

Significant? Yes Yes Yes

Time 100 runs (conventional) (s) 1,203 1,422 635

Time 100 runs (non-FPC) (s) 515 578 259

Table 8 Tableau for the 6-mux

problem
Objective To evolve a program equivalent in operation

to a 6-multiplexer

Terminal set D0, D1, D2, D3, A0, A1

Function set AND, OR, NOT, IF

Fitness cases 64, Representing all combinations of inputs

Fitness Number of mismatches with expected

outputs (0–64)
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This code simply calls the evaltree() function to evaluate each of the expression

sub-trees forming the two arguments, and then ANDs the results. However, an

alternative way of writing the code for this node type is as follows:

In this version, the value of the first operand is determined via a call to evaltree().

If the result of this expression is FALSE (logic 0), then the result of the AND

function as a whole must be zero, irrespective of the value of the second argument

tree. Hence, the second sub-tree can be skipped over and a zero value returned as the

result. Only if the first argument evaluates to TRUE (logic 1) must the second

argument be evaluated, as it then determines the value of the final output.

This implementation approach is often referred to as short-circuit evaluation, and

it also applies to OR functions and some other forms of Boolean logic. In

conventional GP, its advantage lies in the fact that it is sometimes possible to skip

evaluation of parts of a program tree, leading to savings in computation time. With

regard to the work described in this paper, the approach may offer a further

advantage: if some sub-trees are always skipped, then those sub-trees can be

regarded as dormant, and the chances of fitness-preserving crossovers (FPCs)

occurring are increased. The first thing to be determined is how much of an effect

short-circuit evaluation can have on the extent of dormancy in a population.

In the graph of Fig. 10, the uppermost line shows how the total number of

program nodes in a population changes for a single run of the 6-mux problem. As

with the other problems considered so far, the phenomenon of code bloat is clearly
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evident as evolution proceeds. The line below that charts the number of nodes which

are active (i.e. executed) in the population when Boolean functions are fully

evaluated (i.e. both expression sub-trees traversed). The gap between these two lines

represents the amount of dormancy, which by generation 50 has reached 33% (one-

third) of all nodes. If we now convert our Boolean functions to use short-circuit

evaluation, we obtain the bottom line in the graph. The widened gap at generation

50 now represents a level of dormancy that is approximately 75% of all nodes in the

population.

The graph of Fig. 11 charts the final levels of dormancy in a sequence of 20 runs

of the 6-mux problem. It can be seen that in some cases, such as run 12, converting

full evaluation to short-circuit evaluation has little effect on the extent of dormancy

in the population. In others, the impact can be dramatic. For example, the

introduction of short-circuit evaluation raises the dormancy level from 7 to 67% in

run 9, and from 8 to 70% in run 17. A statistical t-test on these figures indicates that

the increases are significant at the 99.9% confidence level.

Figure 12 shows the percentage of FPCs for the same sequence of 20 runs of the

6-mux problem. Even if full evaluation is used, the number of FPCs is often large,

but again the use of short-circuit evaluation can increase this level markedly. In run

9, for example, the number of FPCs performed using full evaluation is, over the

whole run, so small as to be indiscernible on the chart. However, moving to
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short-circuit evaluation raises this number to almost 70% of all crossovers in the

run. In 14 out of the 20 runs, the level of FPCs obtained using short-circuit

evaluation is at least 70%. Again, a t-test shows that these increases are statistically

significant at the 99.9% level.

Table 9 compares the various fitness evaluation methods for 100 runs of the

6-mux problem. Conventional GP is compared with our method of minimising

fitness evaluations, using both full evaluation of Boolean operands, and short-circuit

evaluation.

It will be seen from these figures that the use of short-circuit evaluation alone is

worthwhile as a means for improving efficiency. In conventional GP, it reduces by

about a half the number of nodes evaluated during execution. However, the savings

in execution time are not as great because the number of fitness function calls

remains unchanged. Adding in our fitness function avoidance method reduces the

number of node evaluations by almost half again, and provides further benefits in

terms of the elapsed execution time: the figure of 57 s represents a saving of 54% on

the conventional approach using full evaluation, and a saving of 44% on the

conventional approach using short-circuit evaluation.

The reduction in execution time for the 6-mux problem derives in part from the

conversion of the Boolean evaluation method to a short-circuit mechanism, but also

from the fact that the problem as stated contains an IF-statement which may give

rise to dormancy. A natural question concerns what will happen for Boolean logic

problems which do not make use of IF functions or loops, but contain only

traditional gate-type functions such as AND, NAND and OR.

The even-5 parity problem provides one such GP experiment. The idea is to

attempt to evolve a program which, given 5 inputs, will return TRUE if the number

of inputs set to logic 1 is even, and FALSE otherwise. The function set comprises

only the four truth gates AND, OR, NAND, NOR. The parameters for this problem

are given in Table 10, and match those used by Koza [17].

If, in a problem such as this, we make use of full evaluation of all arguments to

the Boolean functions, then there will of course be no dormancy and hence no FPCs.

FPCs arise only when we introduce short-circuit evaluation. The prevalence of FPCs

for a sequence of 20 runs of the even-5 parity problem is shown in Fig. 13. It can be

seen that the figure tends to hover around the 50% mark.

Table 9 Execution efficiency

comparisons for 6-mux problem
Full

evaluation

Short-

circuit

Avg. nodes/run (conventional) (9106) 63 31

Avg. nodes/run (non-FPC) (9106) 46 17

Avg. reduction 36% 50%

Max reduction 76% 77%

Min reduction 0.9% 14%

Significant? Yes Yes

Time 100 runs (conventional) (s) 124 101

Time 100 runs (non-FPC) (s) 95 57
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Table 11 gives the node evaluation counts and execution times for the even-5

parity problem, using the various methods. Because of the larger population size and

doubling of the generations per run, evolution takes much longer, and we have

therefore restricted our figures to just 20 runs. Perhaps the most striking figures in

this table are those for the conventional approach to fitness determination using full

argument evaluation, the huge number of node evaluations per run leading to a
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Fig. 13 Percentage of FPCs in 20 runs of the even-5 parity problem. Short-circuit evaluation is in use

Table 11 Efficiency comparisons for the even-5 parity problem

Full evaluation Short-circuit

Avg. nodes/run (conventional) (9106) 12,424 955

Avg. nodes/run (non-FPC) (9106) – 483

Avg. reduction – 52%

Max reduction – 66%

Min reduction – 34%

Significant? – Yes

Time 20 runs (conventional) (s) 4,947 811

Time 20 runs (non-FPC) (s) – 439

Table 10 Tableau for the even-5 parity problem

Objective To evolve a program capable of determining if the number of logic 1 s

on the 5 inputs is even

Terminal set D0, D1, D2, D3, D4

Function set AND, OR, NAND, NOR

Fitness cases 32, Representing all combinations of inputs

Fitness Number of mismatches with expected outputs (0–32)

Other parameters Population size = 4,000; Generations (total offspring/population size) =

101; prob. crossover = 0.9; no mutation; prob. internal node used

as crossover point = 0.9
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substantial execution time. Since all operands are evaluated, there are no dormant

nodes and therefore no scope for improving efficiency. As before, however, the

introduction of a short-circuit mechanism improves things dramatically, with

the fitness evaluation avoidance method adding further substantial savings. In fact,

the combination of the two techniques provides a 91% reduction in execution time

when compared against the full evaluation approach.

From this we can deduce that even purely Boolean problems (i.e. those for which

the function set comprises only Boolean operators) are amenable to efficiency gains

via the introduction of our technique for avoiding fitness evaluations. The criterion

is that the operators should be capable of being implemented in the form of IF-

statements that may have the opportunity of circumventing the execution of one or

more of their branches. This criterion is satisfied not only by the binary versions of

the operators we have already used in the problems above (AND, NAND, OR, etc.),

but also multi-input versions such as 3-input AND-gates etc.

The execution savings achieved depend greatly upon the amount of work that is

performed in the fitness evaluator function. In general, as problems scale up, so does

the complexity of the fitness function, and avoidance of its execution therefore

becomes even more beneficial in improving run-times. To take an example, consider

an 11-input multiplexer, in which 3 address lines select one of 8 data inputs. Using a

population size of 2,000, the average time for a single run when using full

evaluation in a conventional GP system is 163 s. This is largely due to the fact that

the fitness evaluator must apply 211 = 2,048 test data cases to each individual. If

our fitness evaluation avoidance method is introduced, this time reduces to 138 s.

Similarly, if short-circuit evaluation is used, the conventional system takes 146 s,

while the FPC-excluding system takes 100 s. These mean times for single runs

should be compared with the times for 100 runs of the 6-mux problem as given in

Table 9.

5 Performance

So far, we have concentrated on the efficiency gains that can be achieved via the

avoidance of fitness evaluations of individuals created by FPCs. A natural question

is whether FPCs should be allowed to proceed in the first place, the argument being

that, since they create individuals that are functionally identically to one of their

parents, they do nothing to widen the search of the program space. This is not to

argue that FPCs are entirely worthless, since they may still involve the transport and

dissemination of valuable code segments, but it seems worth investigating whether a

potentially more extensive search can achieve gains in the numbers of solutions

discovered and the effort required to find them.

To make suitable comparisons, we can make use of performance graphs such as

those employed by Koza [21]. In these graphs, one line indicates the probability of

success in attaining a solution at each generation, whilst another line indicates the

number of individuals that must be processed in order to achieve a 99% probability

of evolving a solution at each generation. The minimum value of this second line is

sometimes referred to as the ‘computational effort.’
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In Fig. 14 we show the performance graph for the standard artificial ant problem,

using the parameters presented earlier. The probability of success P(M, i) is charted

for a population size M (500 in our case) at each generation i. I(M, i, z) refers to the

number of individuals that must be processed to achieve probability z (=0.99) that a

solution will be found at the ith generation. The minimum value, or computational

effort E, is indicated by the vertical line drawn at generation 14, and equates to

300,000 individuals. The number of runs required to achieve this value of E is

denoted as R(z) = 40 runs to generation 14. All of these statistics are gathered over

N = 100 runs.

Figure 15 shows what happens when FPCs are disallowed. To achieve this, the

crossover operation has been altered so that the sub-tree insertion point cannot be at

the site of a dormant node: it must be active, and it must therefore lead to the

creation of a child with dynamic behaviour that is different from the parent

receiving the sub-tree. It can be seen that, although the shape of this graph is slightly

different from the preceding one, the general performance characteristics are

remarkably similar. The probability of success at generation 50 remains the same at

13%, while the computational effort has in fact increased, but only marginally.
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Hence, for this particular problem, the scope for wider exploration of the

program space seems to have had little impact on evolutionary performance. It is

worth noting that Blickle and Thiele [16] carried out a similar experiment for the ant

problem, and that they too found no significant differences between the two

approaches; however, they did not consider the range of problems we shall consider,

nor perform the same in-depth analysis.

Rather than present a whole series of graphs, Table 12 summarises the

performance characteristics for each of the problems we have used in this paper.

A minor exception is that for the parity problem we have chosen to use 4 inputs

rather than 5. This is not merely because the even-5 problem has very lengthy run

times: it also results in an extremely low solution count, making comparisons

difficult. Moving to 4 inputs allows us to drop the population size to 500 and the

number of generations to 50, consistent with the other problems whilst still

generating a sufficient number of solutions to make comparisons meaningful. All

other parameters for the problem remain unchanged. For each problem in the table,

the figures for the standard approach appear above that for the approach in which

FPCs are disallowed.

It will be seen that, as with the ant problem, the two Boolean problems (6-mux

and even-4) show very little difference between the two approaches. In contrast, the

maze and parsing problems show more than a two-fold increase in performance

when FPCs are disallowed, and the defence problem also exhibits a substantial

improvement. It is worth remarking that Blickle and Thiele also performed this

experiment with the 6-mux problem, and reported a two-fold gain in performance

for that problem too. However, the explanation for this seems due less to the benefits

of a non-FPC approach and more to the poor showing of their conventional GP

approach, which for some reason achieved substantially weaker performance results

than our own.

Why should some problems experience a performance gain, and not others? A

comparison of the dormancy graphs reveals that the three biggest performance

beneficiaries—maze, parsing and defence—are also the leaders in terms of the total

Table 12 Performance

comparisons for problems with

and without FPCs

Problem P (success) Comp. effort

Ant 13 300,000

Ant, FPCs prevented 13 315,000

Maze 35 315,000

Maze, FPCs prevented 79 70,000

Defence 56 56,000

Defence, FPCs prevented 70 36,000

Parse 22 440,000

Parse, FPCs prevented 50 103,500

6-Mux 68 44,000

6-Mux, FPCs prevented 65 38,500

Even-4 14 700,000

Even-4, FPCs prevented 17 490,000
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number of nodes contained in the population at generation 50, even though the

numbers of individuals remains constant. When FPCs are prevented, the dynamic

behaviour of children must differ from the parents (even if the overall fitness does

not), and it is commonly recognized that crossover is a generally destructive

operation. On this evidence alone, a plausible reason for the performance difference

is that the large trees appearing in the maze, parsing and defence problems are more

resistant to the deleterious effects of crossover, whilst the smaller trees appearing in

the other problems are more heavily disrupted. Larger trees contain sub-trees of

greater depth, and experimental evidence suggests that evolutionary operators

applied to deep sub-trees have less impact on fitness [22]. However, it should be

borne in mind that the graphs under consideration here are for single runs only; to

reach more general conclusions regarding the observed differences in performance

we need to move on to a much deeper analysis of problem behaviour.

Table 13 presents a number of statistics relating to each of our problems. For

ease of use, column 2 repeats the probability of success figures previously given in

Table 12. In column 3 we present the sizes of individuals selected to mate in

crossover operations, averaged over 100 runs. On the whole, this column tends to

support the notion that problem-solving performance is related to the sizes of trees

involved in crossover. The ant problem, for example, has the smallest parent size of

all in its FPC-free version. It also experiences a huge decrease in parent size when

moving from the standard version of the problem to that in which FPCs are

disallowed. It seems possible, therefore, that any improvement in the scope of the

search of the program space may be counteracted by the greater relative disruption

of the program trees. In contrast, the maze problem involves the crossover of parents

that are very much bigger than those in the other problems, and so the potential for

disruption is lessened. Similarly for the parsing problem, in which the average

parent size for the FPC-free version is the next biggest after maze.

Table 13 Execution statistics

Problem P (succ) Av.

parent

size

Destructive

crossovers

(%)

Av.

fitness

shift

Improving

crossovers

(%)

Av.

improvement

Ant 13 217 33.8 -0.13 0.8 0.06

Ant, FPCs prevented 13 71 80.4 -0.33 1.3 0.06

Maze 35 2,574 24.6 -0.03 1.3 0.02

Maze, FPCs prevented 79 2,962 70.1 -0.08 5.9 0.02

Defence 56 330 30.8 -0.1 1.1 0.08

Defence, FPCs prevented 70 93 61.2 -0.197 2.5 0.08

Parse 22 330 18.0 -0.05 0.1 0.08

Parse, FPCs prevented 50 408 38.2 -0.1 0.5 0.08

6-Mux 68 178 27.2 -0.03 1.5 0.04

6-Mux, FPCs prevented 65 161 33.5 -0.03 1.6 0.04

Even-4 14 299 28.0 -0.03 0.2 0.06

Even-4, FPCs prevented 17 253 37.5 -0.04 0.2 0.06
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The even-4 and 6-mux problems also involve the selection of parents which are

significantly larger than those in the FPC-free version of the ant problem, and so one

might expect a greater improvement for these problems too. However, attempting to

compare across problems in this way may not be so straightforward. Unlike the ant

problem, the even-4 and 6-mux problems show very little change in average parent

size when moving from the standard to the FPC-free approach, and so it may be the

case that the amount of disruption caused by crossover remains fairly constant.

More difficult to explain away are the results obtained for the defence strategy

problem. The change in average parent size for this problem is similar to that

obtained in the ant problem, and yet the defence problem manages to attain a

significant improvement in performance.

To analyse this further, we need to discover exactly how much disruption is being

caused by the crossover operations in each problem, and whether this is in fact

related to tree size. To do so, we will define a destructive crossover operation to be

one in which the offspring has a fitness value that is worse than that of the parent

receiving the donated sub-tree (the mother). Of course, some crossovers are more

destructive than others, so we also need a metric for the amount of disruption

caused. To do this, we introduce the notion of fitness shift, defined in such a way as

to be comparable across problems.

Definition: Let the child program’s fitness be C, and its mother’s fitness be M. Let

the worst possible fitness for the given problem be W (assuming that a fitness value

of zero indicates a perfect solution). Then we define the fitness shift F for a given

crossover operation to be F = (M-C)/W.

Suppose, for example, that the fitness range for a given problem is 0–100, with 0

indicating a solution. If, via crossover, a maternal parent with fitness value 100 (a

wholly unfit mother!) were to generate an offspring with perfect (zero) fitness, then

that would denote a fitness shift of exactly 1.0. Similarly, a perfect solution that

produced a wholly unfit child by crossover would denote a fitness shift of -1.0. All

other crossovers can be tagged with a fitness shift somewhere between these two

extremes, with negative values indicating destructive crossovers and positive values

indicating improving crossovers.

Also contained in Table 13 is the percentage of destructive crossovers and the

average fitness shift of all crossover operations, taken over 100 runs of each problem.

The worsening of these figures when moving from standard GP to an FPC-free version

is to be expected, since we are replacing the neutral FPCs by fitness-altering crossovers

which are known to be mostly destructive. In 6-mux and even-4 (which showed little

change in performance) the increase in destructive crossovers is not huge, and the

fitness shift barely alters. Conversely, the ant problem exhibits a huge leap in the

number of destructive crossovers and a corresponding worsening of the average fitness

shift. This is supportive of the notion that smaller parents suffer most from crossover.

Again, however, these figures do not offer a full explanation as to why some

problems perform better than others when FPCs are eliminated. The three problems

which attain the greatest performance boost all exhibit large increases in the

percentage of destructive crossovers and in the degradation of the fitness shift. In the

case of the maze problem these figures are almost tripled, despite the large tree

sizes.
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To help explain this, Table 13 also shows the percentage of improving

crossovers. It should be noted that, in the FPC-free approach, this figure is not

equal to 100 minus the percentage of destructive crossovers; this is because even

though crossovers at dormant sites are prevented, there will still be a significant

proportion of crossovers which result in a child with fitness equivalent to that of

the mother. The final column in the table gives the average fitness shift over

these improving crossovers alone. These figures therefore tell us not only how many

improving crossovers there are, but also the extent of their contribution to

improving overall fitness.

It will be seen that in all cases the average fitness shift does not alter in moving

from the standard crossover system to the FPC-free version, and also that these

average improvements are all fairly small (\10% of the fitness range). The number

of improving crossovers is also very much smaller than the number of destructive

crossovers. The figures therefore support the widely accepted notion that crossover

is an inherently destructive mechanism.

In terms of explaining the performance results, however, the key thing to note

here seems to be the change in the percentage of improving crossovers. For 6-mux

and even-4, which showed little in the way of performance enhancement when

moving from the standard to the FPC-free approach, there is also little or no change

in the number of improving crossovers. For the two problems which achieved the

greatest performance boost (maze and parse) there is roughly a five-fold increase in

the percentage of improving crossovers. For the next-best performer (defence), there

is more than a two-fold increase. The evidence therefore tends to suggest that, even

in the presence of large numbers of destructive crossovers, a small increase in the

number of improving crossovers can radically enhance performance.

The ant problem requires a little more explanation: the change in the percentage

of improving crossovers is only small in absolute terms, but it still represents more

than a 50% increase, and it might be wondered why this problem does not fare better

when FPCs are disallowed. The answer, it is suggested, is that the positive effects of

this increase are counteracted by the massive leap in the number of destructive

crossovers. Indeed, it may well be the case that the increase in improving crossovers

is the only thing which prevents the FPC-free version of the ant problem from being

so very much worse than the standard version.

6 Simplification

The rapid increases in the size and complexity of population members during GP

runs means that evolved programs are often extremely difficult to understand. In

particular, programs that are flagged as ‘solutions’ (in that they pass all the tests

embodied within a GP fitness evaluator) are often not very amenable to subsequent

analysis and verification. This approach to generating products which appear to

work but which cannot be understood can have the effect of lowering confidence in

the suitability of GP as a solution-finding tool.

Simplicity of evolved programs is therefore highly desirable, but it is often

overlooked as an objective of GP systems. A nod towards it can be achieved by
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defining the ‘best’ program in a population to be the shortest of those programs with

the highest fitness. This can be useful if it is only the fittest programs that are of

interest, but it does nothing physically to reduce the number of tree nodes in the

population.

Other techniques take more direct action. For example, program trees can be

constrained to be less than a certain size or depth. However, limiting the program

search space in this way can reduce the effectiveness of a GP system at finding

solutions. More sophisticated approaches involve altering the fitness function so that

it penalises excessively long or complex population members by lowering their

fitness scores. This ‘parsimony pressure’ has to be applied judiciously, else it can

again be highly constraining on the GP system’s freedom to explore the program

search space [23].

To avoid altering the nature of the evolutionary process, code simplification is

usually done (if at all) as a post-evolutionary event, i.e. at the end of a run. In its

usual form, it involves the analysis of the program tree to determine whether sub-

trees can be replaced by simpler but functionally equivalent structures, and can be

performed either manually or automatically. To achieve such editing, a set of

replacement rules must be derived in advance. For example, one rule might be:

multða; 0Þ ! 0

meaning that the multiplication of any sub-tree by zero can be replaced by a zero

node.

There are several disadvantages to such an approach. The first is that it is

problem-dependent. A new set of replacement rules must be derived for each and

every problem. Moreover, if the editing is to be performed automatically, then

significant implementation work may be required each time. The effort this entails

depends not only on the nature of the problem, but also on how extensive the rule

matching is to be. For example, consider the replacement rule

ifða; b; bÞ ! b

which states that the entire if-statement can be replaced if its then-part is equivalent

to its else-part. Based on this, it is easy to see that a sub-tree such as if(a0, d1, d1)

can be replaced by d1. However, it would be difficult for an automated system to

deal with more complex arguments to the if-statement. Even relatively simple

constructs such as if(a0, and(d0, d1), and(d1, d0)) require additional checking to

determine that the then-part and the else-part are functionally identical albeit

structurally different.

Another problem with this editing approach is that it is based on a static analysis

of the program code. Replacement decisions have to be made with respect to the

problem domain, i.e. they are based on what could possibly occur rather than what

actually does occur during the evolutionary run. The consequence is that

replacement decisions are often overly conservative. An example is

while(wall ahead, turn leftÞ

which in itself appears not to be capable of simplification. However, perhaps

because of the nature of the maze being navigated or the behaviour of the preceding
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code, it may be the case that wall_ahead is never true when this loop is reached, in

which case it could be deleted. The problem is that static analysis may not be able

to uncover this characteristic; only dynamically gathered information can tell us

whether the loop does in fact make any contribution to the fitness of the individual.

A third difficulty with static post-evolutionary simplification is that what seem to

be obvious replacement strategies are sometimes complicated by the need to

consider side-effects of functions and terminals. In the Santa Fe artificial ant

problem it might seem at first sight that a sub-tree such as

PROGN2 LEFT; PROGN3ðLEFT, LEFT, LEFTÞð Þ

could be deleted, since it merely causes the ant to execute four left turns, leaving it

exactly as it started. However, this overlooks the fact that in the ant problem each

movement consumes a unit of time, and so deleting this construct would alter the

program’s timing. The only justification for removing it would be if it were never

executed at all, but again ascertaining this will usually require dynamic monitoring.

In previous sections of this paper we have outlined a method for gathering

information about individuals during the execution runs of a GP system. This tells

us exactly which nodes of an individual’s program tree were never executed in

determining its fitness. It follows from this that an obvious and easily-implemented

simplification algorithm is to replace the root node of each dormant sub-tree with a

single node from the terminal set (it doesn’t matter which, since it will not be

executed) [24]. The prevalence of dormancy as discussed in earlier sections suggests

that this will immediately lead to dramatic simplification of many of the individuals

in a population.

Since it is based on dynamic information, the technique does not suffer from

many of the problems associated with static approaches: there is no need to worry

about the side effects of, or to be wary of deleting, code that is never activated; it

can perform simplifications that are impossible or costly to detect statically; it is

problem-independent, and so requires no re-implementation effort for each problem;

and it re-uses information already gathered via the visit tree, making it cheap to put

in place and run.

However, what we wish to explore further in this section are the ways in which

the simplification algorithm can be extended beyond mere collapse of dormant sub-

trees. We shall do this using the example of the 6-multiplexer. It will be recalled that

this problem makes use of a function set comprising {AND, OR, NOT, IF} and a

terminal set {D0, D1, D2, D3, A0, A1}. In a solution, the two-bit address on A0 and

A1 specifies which of the four data inputs D0-D3 is passed onto the output.

Consider now the sub-tree AND(a, b) in an evolved program, where a and b are

argument sub-trees, and suppose that the visit tree tells us that b is dormant. As we

have already discussed, a possible simplification would be to replace b by an

arbitrary terminal. However, this neglects a broader implication of the dormancy: If

b has never been visited, then that can only be because a has always evaluated to

zero; and if a is always zero, then the value returned by the AND operation must

always be zero. Hence, we can do better than simply replacing b: by introducing a

ZERO token we can replace the whole AND(a, b) sub-tree. Note that this new

ZERO token is purely a notational convenience for the purposes of presenting
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programs in a more simplified form after evolution has taken place; it is not being

suggested that it become incorporated into the terminal set and used during the

evolutionary process.

Similar reasoning applies to the OR function. If the second argument sub-tree is

dormant, then it must be because the first argument always evaluates to logic one,

and so the whole OR-tree can be replaced by a ONE token.

For the IF function, we can begin by examining the visit tree corresponding to the

then-part (the second argument). If that sub-tree is dormant, then that must be

because the predicate forming the first argument always evaluates to FALSE, and so

we can replace the entire IF-tree by the sub-tree forming the else-part (third

argument). If, on the other hand, the then-part is active but the else-part is dormant,

then we can replace the entire IF-tree by the then-part. Note that irrespective of any

simplifications applied to the IF-tree as a whole, further simplifications may be

possible for each of its three argument sub-trees.

Application of this algorithm to a program leaves it in a simplified form perhaps

containing some ZERO and ONE nodes. However, this is still not necessarily the

end of the simplification process. If either of the arguments of an AND function

turns out via simplification to be ZERO, then the whole sub-tree must be ZERO; if

either argument is ONE, then the value of the function is simply the sub-tree

forming the other argument. Similarly, if either of the arguments of an OR function

is ONE, the value of the function as a whole must be ONE; if either argument is

ZERO, the function can be replaced by the other argument sub-tree. Finally, a NOT

node can of course be replaced if its argument simplifies to ONE or ZERO. Each

replacement action introduces the possibility for further substitutions, and so

repeated passes of this second stage of simplification can remove most if not all of

the temporary ZERO and ONE tokens that have been introduced.

Figure 16 shows the pseudocode form of the algorithms we have described. The

tree to be simplified is passed to the simplify function. The phase1 function

recursively collapses sub-trees into ZERO and ONE values where possible. The

phase2 recursive function then attempts to make additional simplifications by

removing as many of these ZERO and ONE constants as it can. This second stage is

repeated until no further reductions are possible.

An example may serve to illustrate this two-stage process. Figure 17 shows a tree

that appeared early in one run of our GP system on the 6-multiplexer problem. This

is not a huge tree, but a fair amount of thought would be required to determine how

to simplify it by hand. Examination of our visit tree, however, reveals that there are

three nodes that are dormant; these are denoted by the dashed rectangles in the

diagram. The trivial strategy of replacing dormant root nodes by arbitrary terminals

is clearly not going to have any effect in reducing the size of this tree, but consider

what happens when we apply the first phase of our simplifier algorithm. The way

that this has been implemented is as a recursive algorithm applied initially to the

root node of the tree. When the sub-tree labelled S1 in the diagram is reached, the

simplifier detects that the D0 node is dormant, and so replaces the whole of S1 by a

logic ONE token, as described earlier. Similarly, when S2 is reached, it finds that D3

is dormant and replaces the whole of S2 by a ZERO token. This gives us the

simplified tree shown in Fig. 18.
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Fig. 16 Pseudocode for
program simplification. To
avoid confusion with node
names, the logical AND
operator is represented using the
&& symbol
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It is now easier to understand why the three dormant nodes were never visited in

the first place. Since it is the rightmost argument of an AND function, sub-tree S1 is

visited only when A1 has the value one. If A1 is one, then the value of OR(A1,D2)

must be one, and this can be determined without seeking the value of D2. Further, if

OR(A1,D2) is one, then the value of D0 in S1 is redundant, and it can remain

dormant. It then follows from this that S2 is visited only when A1 is zero; when that

is the case, the leftmost argument of the root AND function of S2 is zero, and the

value of D3 is not required.

The tree shown in Fig. 18 is that obtained following phase one of our

simplification. In phase two, we make multiple recursive passes over the tree,

looking for opportunities to make further replacements. Firstly, AND(A1, 1) can be

replaced by A1; following that, OR(A1,0) can be replaced by A1. The final

simplified tree is shown in Fig. 19. It represents a reduction from 15 nodes down to

just three—an 80% saving in size.

Figure 20 illustrates another simplification example, this time containing an if-

statement. The visit tree tells us that the then-part of the IF-statement is never

traversed. This is because the root OR function needs to know the value of the IF-

function only when D0 is false (logic zero). Hence, the whole IF sub-tree can be

replaced by its else-argument, giving the minimised tree shown in Figure 20b.

OR 

OR D2 

AND 

A1 OR 

OR D0 

A1 

AND 

AND 

D1 A1 

D3 

S1 S2 
D2 

Fig. 17 Example program to
be simplified. This individual
occurred during a run of the
6-mux problem

OR 

OR D2 

AND 

A1 ONE 

ZERO 

Fig. 18 Simplified program
from 6-mux run, with S1 and S2
replaced by logic ONE and
ZERO, respectively
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Table 14 shows the effects of our simplification algorithm over 100 runs of the

6-multiplexer problem. As in all our previous experiments, significance is tested

using a t-test at the 99.9% confidence level. The first row deals only with programs

that represent complete solutions to the problem, since they are usually of more

interest than partially correct programs. Each run was terminated as soon as a

solution was generated. It can be seen that the biggest reduction was 97%; this was

for a solution that was cut down from 716 to 20 nodes. On average, the algorithm

reduced solution size by 40%.

The second row of the table shows what happens when each run is allowed to

proceed for the full 50 generations, following which all population members are

simplified. The maximum reduction achieved was 99.5%, for a program that was

condensed from 2,596 nodes down to just 12 nodes. On average, population

members were reduced in size by 85%.

7 Conclusions

In this paper, we have considered a particular subset of introns that arise during runs

of GP problems. Specifically, we have focused on those nodes of a program code

tree which are never executed for any of the test cases applied during fitness

evaluation. We refer to such nodes as dormant, whilst those nodes which are

executed are termed active. The identification and location of dormant nodes does

Table 14 Simplification statistics for the 6-mux problem

Simplification coverage Maximum reduction (%) Average reduction (%) Significant?

Solutions only, with early termination 97 40 Yes

All programs, after 50 generations 99.5 85 Yes

OR 

D2 A1 

Fig. 19 Final simplified form
of program from 6-mux run

OR 

IF 

D0 A0 

D0 

A1 

OR 

A0 D0 

(a) (b)

Fig. 20 Another example program from 6-mux run, a before simplification; and b after simplification
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not require computationally expensive analysis of the code; it can be gleaned purely

from information gathered dynamically during execution. The mechanism for

achieving this is simple and easily implemented in a GP system.

Experimentation reveals that the presence of dormancy in a population is

extensive across a range of problems, and we have investigated three ways in which

this phenomenon can be exploited. The first of these concerns the execution

efficiency of a GP system when evolving solutions to these problems. Whenever an

individual is created via crossover at the site of a dormant node, the fitness of that

individual cannot differ from that of its mother, and so the invocation of the fitness

function for that program can be avoided. Experimentation shows that the

occurrence of such FPCs is frequent, and that the consequent reduction in the

number of fitness evaluations can lead to substantial lowering of execution times.

For Boolean logic problems in particular, the use of so-called ‘short-circuit’

evaluation can increase dormancy still further, thereby providing additional

efficiency gains.

It should be noted that nothing need be sacrificed to achieve these gains. The

evolutionary process itself remains unaffected. In other words, the population

evolves in exactly the same way, leading to identical solutions produced at identical

points in the process. The only difference is that it all happens much faster. For the

approach to be suitable for a given problem, however, one of the requirements

(others, such as a fixed test data set, are discussed later) is that fitness evaluation be

relatively expensive to perform. Avoidance of fitness evaluations which execute

quickly will not be sufficient to counteract the overheads which the approach

introduces. On the other hand, problems which are more computationally intensive

than those which we have used in this paper may bring even greater efficiency gains

(e.g. higher-order parity problems). Furthermore, since it is clear that the percentage

of dormant code increases during a run, the approach is likely to have greater

beneficial impact as users of GP systems tackle ever more complex problems

requiring larger populations running over more generations.

The second way in which dormant code can be exploited concerns the

effectiveness of a GP system in finding solutions to problems. The idea is that

instead of allowing FPCs to proceed, they are identified and eliminated in the hope

that a more extensive search of the program space will encourage diversity and

provide a greater chance of finding solutions. The experiments we performed

indicate that this approach works for some problems but not for others. Further

investigation suggests that the decisive factor may be a change in the number of

improving crossovers occurring. However, this is a determination that can only be

made following a GP run; it is not known whether there are other characteristics of a

given problem that will allow the determination to be made prior to execution, and

this may be a possible avenue for future work.

Thirdly, we have examined ways in which the known presence of dormancy can

be used to aid in the simplification of evolved programs. The techniques we have

described go beyond the mere replacement of dormant sub-trees by single arbitrary

nodes. Even though the reductions in tree sizes achieved are not guaranteed to be

maximal, experimentation shows that they are certainly substantial. Because the

simplification method works by replacing the sub-tree containing the dormant code,
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rather than replacing the dormant code with a simpler unexecuted node, all
dormancy is removed from the program tree.

It should be pointed out that success of these three forms of exploitation for a

given problem relies on the existence of certain properties of that problem. Firstly,

its function set must allow at least the potential for the non-execution of some

program tree nodes. This may entail the presence of, say, an if-construct or while-

loop, in which the possibility exists that one or more paths through the program are

never pursued over the range of test data inputs. For Boolean problems, it may

involve the re-writing of some of the function algorithms so that they are made

equivalent to if-constructs. Encouragingly, the experiments suggest that the

presence of only one such construct is sufficient to give rise to a level of dormancy

that is significant enough to be exploitable in the ways we have outlined.

The other property that a problem must possess is that its test data set remain

fixed for each invocation of the fitness function. This does not necessarily mean that

the test set has to be known in advance of execution—it may still be produced by,

say, a random number generator (as we did in our maze and defence problems)—but

once produced it must not vary each time an individual is evaluated. The definition

of dormancy is with respect to a given data set; if these values are allowed to vary,

then previously unexecuted paths may become active.

That said, both of these restrictions give rise to other possibilities for future work.

We are interested, for example, in the range of problems to which the approach

described here is applicable. In particular, symbolic regression problems, which

usually contain neither alternation or iteration, are currently under investigation.

Another path of research concerns those problems in which the data set does not

remain fixed, where interesting questions are whether it is still possible to mark

some nodes as dormant, and whether this requires some foreknowledge about the

possible test inputs.
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