
ORI GIN AL PA PER

Dynamic limits for bloat control in genetic
programming and a review of past and current
bloat theories

Sara Silva Æ Ernesto Costa

Received: 16 June 2008 / Revised: 5 December 2008 / Published online: 13 January 2009

� Springer Science+Business Media, LLC 2009

Abstract Bloat is an excess of code growth without a corresponding improvement in

fitness. This is a serious problem in Genetic Programming, often leading to the stag-

nation of the evolutionary process. Here we provide an extensive review of all the past

and current theories regarding why bloat occurs. After more than 15 years of intense

research, recent work is shedding new light on what may be the real reasons for the

bloat phenomenon. We then introduce Dynamic Limits, our new approach to bloat

control. It implements a dynamic limit that can be raised or lowered, depending on the

best solution found so far, and can be applied either to the depth or size of the programs

being evolved. Four problems were used as a benchmark to study the efficiency of

Dynamic Limits. The quality of the results is highly dependent on the type of limit

used: depth or size. The depth variants performed very well across the set of problems

studied, achieving similar fitness to the baseline technique while using significantly

smaller trees. Unlike many other methods available so far, Dynamic Limits does not

require specific genetic operators, modifications in fitness evaluation or different

selection schemes, nor does it add any parameters to the search process. Furthermore,

its implementation is simple and its efficiency does not rely on the usage of a static

upper limit. The results are discussed in the context of the newest bloat theory.

Keywords Genetic programming � Bloat � Dynamic limits � Review �
Bloat theories

1 Introduction

Genetic Programming (GP) is the automated learning of computer programs [7, 28].

Theoretically, it can solve any problem whose candidate solutions can be measured

S. Silva (&) � E. Costa

CISUC, University of Coimbra, Polo II – Pinhal de Marrocos, 3030-290 Coimbra, Portugal

e-mail: sara@dei.uc.pt

123

Genet Program Evolvable Mach (2009) 10:141–179

DOI 10.1007/s10710-008-9075-9

and compared, making it a widely applicable technique. Furthermore, the solutions

found by GP are usually provided in a format that users can understand and modify

to their needs. But its high versatility is also the cause of some difficulties. Users

must set a number of parameters related to several aspects of the evolutionary

process, some of which may influence the search process so strongly as to actually

prevent an optimal solution to be found, if set incorrectly. And even when a

reasonable match between problem and parameters is achieved, a major problem

remains, one that has been studied for more than a decade: code growth.

The search space of GP is virtually unlimited and programs tend to grow in size

during the evolutionary process. Code growth is a healthy result of genetic operators

in search of better solutions, but it also permits the appearance of pieces of

redundant code that increase the size of programs without improving their fitness.

Besides consuming precious time in an already computationally intensive process,

redundant code may start growing rapidly, a phenomenon known as bloat1 [7, Chap.

7; 36, Chap. 11]. Bloat can be defined as an excess of code growth without a

corresponding improvement in fitness. This is a serious problem in GP, often

leading to the stagnation of the evolutionary process. Although many bloat control

methods have been proposed (see [63, Chap. 2] for a review), a definitive solution is

yet to be found.

This paper describes one of the newest approaches to bloat control. Unlike many

others available, our approach does not require specific genetic operators,

modifications in fitness evaluation or different selection schemes, nor does it add

any parameters to the search process. It is inspired by the most traditional technique

of imposing a fixed limit on the depth of the individuals allowed in the population,

introduced by Koza in tree-based GP [28]. It implements a dynamic limit that can be

raised or lowered, depending on the best solution found so far, and can be applied

either to the depth or size of the programs being evolved. Depth limits can only be

applied in the context of tree-based GP, but size limits are suitable also for linear GP

[7], where size can be defined as the number of code lines. In tree-based GP, size

can be defined as the number of tree nodes. The different variants of this approach

will be collectively referred to as Dynamic Limits [65, 66].

The next section deals with bloat, describing the main theories regarding why it

occurs. Section 3 describes the Dynamic Limits in detail, while Sect. 4 describes our

test problems and specifies the techniques and parameters used in our experiments,

also introducing and explaining the plots that are later used to present the results.

Section 6 reports the results of the comparisons among the different techniques, while

Sect. 6 discusses them and presents some considerations on the usage of limit

restrictions in GP. Finally, Sect. 7 concludes and Sect. 8 provides ideas for future work.

2 Bloat

When Koza published the first book on GP [28], most of the evolved programs

therein contained pieces of code that did not contribute to the solution and could be

1 Or, as Bill Langdon put it, the ‘‘survival of the fattest’’.

142 Genet Program Evolvable Mach (2009) 10:141–179

123

removed without altering the results produced. Besides imposing a depth limit to the

trees created by crossover to prevent spending computer resources on extremely

large programs, Koza also routinely edited the solutions provided at the end of each

run to simplify some expressions while removing the redundant code.

Two years later, Angeline remarked on the ubiquity of these redundant code

segments and, based on a slight biological similarity, called them introns [4]. In

spite of classifying them as extraneous, unnecessary and superfluous, Angeline

noted that they provided crossover with syntactically redundant constructions where

splitting could be performed without altering the semantics of the swapped subtrees.

Referring to some studies where the introduction of artificial introns was helpful or

even essential to the success of genetic algorithms, Angeline revels in the fact that

introns emerge naturally from the dynamics of GP. He even goes as far as to state

that ‘‘it is important then to not impede this emergent property as it may be crucial

to the successful development of genetic programs’’ [4].

It is possible that introns may provide some benefits. A non-intuitive effect that

introns may have in GP is code compression and parsimony. It is not the bloated

code full of redundant segments that is parsimonious, but the effective code that

remains after removing the introns. Under specific conditions, particularly in the

presence of destructive crossover, there is evidence that the existence of introns in

the population results in shorter and less complex effective solutions [49, 72, 73].

Compact solutions are thought to be more robust and generalize better [27, 49, 61,

77, 81]. Introns also do seem to provide some protection against the destructive

effects of crossover and other genetic operators [1, 11, 49, 70, 72] although this may

not always be helpful. The usage of explicitly defined artificial introns has yielded

generally good results in linear GP [38, 50, 51], but in tree-based GP it usually

degraded the performance of the search process [3, 10, 70].

Regardless of its possible benefits to GP, the side effects of intron proliferation

are very serious. Computational resources may be totally exhausted in the storage,

evaluation and swapping of code that contributes nothing to the final solution,

preventing GP from performing the effective search needed to find better solutions.

Bloat is now widely recognized as a pernicious phenomenon that plagues most

progressive search techniques based on discrete variable-length representations and

using fixed evaluation functions [9, 30, 33, 35, 37]. Bloat control has become a very

active research area in GP, already subject to different theoretic and analytic studies

[32, 38, 48, 53, 54, 61, 62]. Several theories concerning why bloat occurs have been

advanced, and many different bloat control methods have been proposed.

Next we describe the six main theories concerning the reasons why bloat occurs,

along with some related ideas that are presented alongside the main theories. The

different explanations for code growth are not necessarily contradictory. Some appear

to be generalizations or refinements of others, and several most certainly complement

each other. They are presented in logical, rather than precise chronological, order.

2.1 Hitchhiking

One of the first explanations for the multiplication of introns among GP programs,

advanced by Tackett, was the hitchhiking phenomenon [77]. This is a common and

Genet Program Evolvable Mach (2009) 10:141–179 143

123

undesirable occurrence in genetic algorithms, where unfit building blocks propagate

throughout the population simply because they happen to adjoin highly fit building

blocks. The introduction of artificial introns in genetic algorithms was partly an

attempt to counteract the deleterious effects of hitchhiking.

According to the hitchhiking explanation, the reason why naturally emerging

introns in GP become so abundant is that they, too, are hitchhikers. Tackett refutes

the hypothetical protection against crossover (see Sect. 2.2) as the explanation for

intron multiplication, based on the fact that the usage of brood recombination [1], a

less destructive recombination strategy, did not result in less code growth [77]. An

additional hypothesis for code growth, advanced by Altenberg and somewhat

related to the removal bias theory later advanced by Soule (Sect. 2.3), suggested that

it was caused by an ‘‘asymmetry between addition and deletion of code at the lower

boundary of program size’’, inherent to the recombination operator, and not

dependent on selection pressure [2]. Tackett also refutes this hypothesis by showing

that, on the contrary, code growth is directly proportional to selection pressure, and

the only time bloat does not occur is when fitness is totally disregarded along the

search process [77]. These results have later been reinforced by other experiments

showing the absence of bloat when selection is random [8, 33, 38].

2.2 Defense against crossover

Although early disputed, the idea of defense against crossover as being the

explanation for bloat has persisted in the literature for a long time [1, 11, 46, 49, 70,

72], also stated and referred to as the replication accuracy theory [46, 54], intron
theory [21, 22, 76], and protection theory [12]. It is based on the fact that standard

crossover is usually very destructive [7, Chap. 6; 49–51]. In face of a genetic

operator that seldom creates offspring better than their parents, particularly in more

advanced stages of the evolution, the advantage belongs to the individuals that at

least have the same fitness as their parents, those who were created by neutral

variations. Introns provide standard crossover and other genetic operators with

genetic material where swapping can be performed without harming the effective

code.

Curiously, most of the theory devoted to the defense against crossover was

developed in the context of linear GP [49] and may not be completely applicable to

tree-based GP [29, 40, 42, 61]. More specifically, introns can be roughly divided in

two categories: inviable code and unoptimized code (or syntactic/structural and

semantic introns [6, 12]). The former is code that cannot contribute to the fitness no

matter how many changes it suffers, either because it is never executed or because

its return value is ignored. The latter is viable code containing redundant elements

whose removal would not change the return value [42]. Defense against crossover

does not differentiate both types of introns, which is fine when considering only

linear GP. But in tree-based GP the effects of regular genetic operators are very

different in each type of intron. While inviable code effectively protects the

individual from having its fitness changed, unoptimized code is highly susceptible to

variations of its structure and its return value may greatly influence the fitness of the

individual. It is not surprising to verify that the experiments supporting the defense

144 Genet Program Evolvable Mach (2009) 10:141–179

123

against crossover in tree-based GP do not take into consideration any other type of

intron besides inviable code.

Some of these experiments were performed by Soule and Foster, using a form of

non-destructive hill-climbing crossover [52, 73] and studying its effects on code

growth. In this crossover the offspring are kept only if they are strictly better than

their parents in terms of fitness. Specifics apart, when offspring do not rise to these

standards they are replaced by their parents. This crossover resulted in a strong

limitation of code growth when compared to standard tree crossover, thus supporting

the defense theory, but Luke suggests that code growth is just being delayed by the

large amount of parents replicated along the generations [42, 43]. Additional

experiments by Soule and Heckendorn using single node mutations have however

suggested that code growth does occur in response to destructive operators [74].

Luke indeed rejects the defense theory in the context of tree-based GP [42] by

using a simple procedure called marking [11]. Inviable code is identified and

marked so that individuals cannot perform crossover within the inviable regions,

thus removing the hypothetical advantage conferred by intron multiplication. The

results showed a significant reduction of inviable code, but unoptimized code caused

tree growth to persist and even increase. The defense theory seems to be correct

when applied to those ‘‘syntactically redundant constructions’’ that Angeline called

introns, but clearly does not apply to unoptimized code in tree-based GP. And even

in linear GP, Brameier and Banzhaf have recently identified neutral crossover, not

destructive crossover, as the main cause of code growth [12].

2.3 Removal bias

Although presenting evidence to support the theory of defense against crossover

(Sect. 2.2), Soule performed additional experiments with another non destructive

but less ‘‘rigorous’’ hill-climbing crossover [71, 72]. While the previous crossover

retained only the offspring that were strictly better than their parents [73], this one

retains all the offspring that are equal or better in terms of fitness. Both are non-

destructive operators and yet the less rigorous one produces a substantial amount of

code growth, although smaller than with standard crossover. Soule concludes that

there must be a second cause for code growth besides the defense against crossover,

and presents a theory called removal bias [37, 71, 72].

Given the general destructive nature of standard crossover, offspring having the

same fitness as their parents often benefit from a selective advantage over their

siblings. The presence of inviable code provides regions where removal or addition

of genetic material does not modify the fitness of the individual. According to the

removal bias, to maintain fitness the removed branches must be contained within the

inviable region, meaning they cannot be deeper than the inviable subtree. On

the other hand, the addition of a branch inside an inviable region cannot affect

fitness regardless of how deep the new branch is. This asymmetry can explain code

growth, even in the absence of destructive genetic operators. A related explanation

had already been advanced by Altenberg (see Sect. 2.1).

When using the more rigorous non-destructive crossover that only allows

offspring with better fitness than their parents (Sect. 2.2), removal bias is disabled

Genet Program Evolvable Mach (2009) 10:141–179 145

123

and code growth effectively drops to a minimum, lending support to the theory.

However, Luke suggests that the more rigorous crossover is probably causing an

even larger amount of parent replication than the less rigorous crossover. He holds

the argument that this may be stalling the evolution, which could be the only reason

for the suppression of bloat [42, 43]. When using the more rigorous crossover, the

improvement of mean population fitness is indeed slower than when using the less

rigorous crossover [71]. When comparing only these two genetic operators, the

effect of slowing down fitness improvement and code growth does suggest that the

search process is simply being delayed, in this case by excessive parent replication.

However, when compared with standard crossover, the more rigorous crossover

improves fitness faster, despite producing much less code growth [71], which means

the search process is not being hampered by parent replication. Soule and

Heckendorn provided additional support to the removal bias theory by showing that

crossover destructiveness is positively correlated with removed branch size, but

mostly unaffected by inserted branch size [74].

2.4 Fitness causes bloat

The first theory that does not make introns responsible for bloat was advanced by

Langdon and Poli [30, 33, 35, 37]. Also called solution distribution [72], diffusion
theory [39, 40, 76], drift [12, 74], nature of search spaces [54] and entropy random
walk [38], it has recently been identified simply by its main claim, fitness causes
bloat [45]. Given its general characteristics, this theory is applicable to any

progressive search technique using a discrete variable-length representation and a

static evaluation function.

The fitness causes bloat theory basically states that with a variable-length

representation there are many different ways to represent the same program, long

and short, and a static evaluation function will attribute the same fitness to all, as

long as their behavior is the same. Given the inherent destructiveness of crossover,

when better solutions become hard to find there is a selection bias towards programs

that have the same fitness as their parents. Because there are many more longer

ways to represent a program than shorter ways, a natural drift towards longer

solutions occurs, causing bloat. Although this explanation does not directly

implicate introns in the process, the odds are that the code growth observed in the

progressively longer alternative representations is ultimately caused by introns,

either inviable or unoptimized code. Fitness causes bloat is strongly supported by

theoretical evidence [36, Chap. 8].

If selection did not punish individuals worse than their parents, there would be no

need to search for alternative representations for the same solutions, and bloat

would not occur. So, fitness causes bloat. Confirming previous results by Tackett

[77], experiments have shown that code growth does not occur when using random

selection [8, 33, 38], not even when standard mutation is the only genetic operator

[35]. Selection pressure has been further linked to code growth by Gustafson et al.,

who have found that increased problem difficulty induces higher selection pressure

and loss of diversity, which together lead to bloat [23]. Studying bloat from a

statistical learning theory viewpoint, Zhang and Mühlenbein have stated that

146 Genet Program Evolvable Mach (2009) 10:141–179

123

programs tend to grow until they fit the fitness data perfectly [81], and Gelly et al.,

have also found evidence to support the claim that fitness causes bloat [21, 22].

2.5 Modification point depth

Another explanation for bloat in tree-based GP was advanced by Luke [39, 40, 42].

It has been called depth-correlation theory [76], but can also be referred to as depth-
based theory or simply modification point depth [42].

Confirming previous results [24], Luke has observed that when a genetic operator

modifies a parent to create an offspring, there is a correlation between the depth of

the modified node and its effect on the fitness of the offspring when compared to the

parent: the deeper the modification point, the smaller the change in fitness. Once

again, because of the destructive nature of crossover, small changes will eventually

benefit from a selective advantage over large changes, so there is a preference for

deeper modification points. The larger the individual, the deeper its nodes can be, so

large parents have an advantage over small parents. Plus, the deeper the

modification point, the smaller the branch that is removed, thus creating a removal

bias (Sect. 2.3). This may be regarded as a generalization of the original removal

bias theory [74].

Luke denies that introns cause bloat [39]. In fact, according to the theory of

modification point depth, size is a consequence of fitness, and Luke adds that size

itself is what allows the propagation of inviable code [40, 42, 45]. Streeter also

suggests that code growth may be related to a measure of resilience, where

resilience is directly related to tree size [76].

2.6 Crossover bias

The most recent theory concerning bloat is the crossover bias theory by Poli et al.

[15, 16, 55, 56]. It explains code growth in tree-based GP by the effect that standard

subtree crossover has on the distribution of tree sizes in the population. Whenever

subtree crossover is applied, the amount of genetic material removed from the first

parent is the exact same amount inserted in the second parent, and vice versa. The

mean tree size remains unchanged. However, as the population undergoes repeated

crossover operations, it approaches a particular distribution of tree sizes (a Lagrange
distribution of the second kind [25, 26, 55]), where small individuals are much more

frequent than the larger ones. For example, crossover generates a high amount of

single-node individuals. Because very small individuals are generally unfit,

selection tends to reject them in favor of the larger individuals, causing an increase

in mean tree size. It is the proliferation of these small unfit individuals, perpetuated

by crossover, that ultimately causes bloat. The theory also holds for the popular

10/90% crossover that uses a non-uniform selection of crossover nodes, preferring

non-terminal nodes with 90% probability.

Strong theoretical and empirical evidence supports the crossover bias theory. It

has been shown that the bias towards smaller individuals is more intense when the

population mean tree size is low, and that the initial populations resembling the

Lagrange distribution bloat more easily than the ones initialized with traditional

Genet Program Evolvable Mach (2009) 10:141–179 147

123

methods [15]. A somewhat unexpected finding was that one common bloat control

method, the usage of size limits, actually speeds code growth in the early stages of

the run. The reason is that size limits promote the proliferation of the smaller

individuals, thus biasing the population towards the Lagrange distribution [16].

Along with further theoretical developments, it has also been shown that smaller

populations bloat more slowly [56], and that elitism reduces bloat [57, 58].

2.7 Discussion

Looking back at all the bloat explanations suggested so far, one cannot help but

notice the one thing that all the theories have in common, the one thing that if

removed would cause bloat to disappear, ironically the one thing that cannot be

removed without rendering the whole process useless: the search for fitness.

Remove fitness from the hitchhiking theory, and redundant code no longer

propagates because the building blocks to which it associates cease to be selectively

advantageous. Remove fitness from the defense theory, and individuals no longer

need protection from a crossover that ceases to be destructive. Remove fitness from

the removal bias theory, and the bias to remove small branches disappears. Remove

fitness from the fitness causes bloat theory, and the drift towards longer alternative

solutions no longer occurs. Remove fitness from the modification point depth

theory, and deeper individuals no longer hold any advantage. Remove fitness from

the crossover bias theory, and selection no longer rejects the numerous small

individuals created by crossover. In short, remove fitness from the search process

and bloat vanishes.2

All this may sound as obvious as saying that if you climb a mountain high

enough you will suffer from lack of oxygen. Altitude causes lack of oxygen, so to

avoid it you must not climb. But the goal is to climb! And yet the question remains:

what causes the lack of oxygen, the climbing itself or the particular way you climb?

Can we find a climbing technique to avoid lack of oxygen? Can we find the GP

equivalent of the oxygen bottle?

3 Dynamic limits

This section describes our set of original bloat control techniques collectively

designated as Dynamic Limits, from the initial idea of applying a dynamic limit to

the depth of evolving trees, called Dynamic Maximum Tree Depth [65], to the

variants where the limit can be applied to either depth or size, and is allowed to

increase or decrease during the run [66].

2 There are two assumptions to this statement: (1) Selection must be random, not only in terms of fitness

but also in terms of size. A selection scheme that always selects the larger individuals would cause bloat;

(2) Genetic operators must not, by themselves, bias the population towards larger sizes. An operator that

takes an individual and always doubles its size would cause bloat.

148 Genet Program Evolvable Mach (2009) 10:141–179

123

3.1 Dynamic maximum tree depth

Tree-based GP traditionally uses a depth limit to avoid excessive growth of its

individuals. When an individual is created that violates this limit, one of its parents

is chosen for the new generation instead [28]. This technique effectively avoids the

growth of trees beyond a certain point, but it does nothing to control bloat until the

limit is reached. The static nature of the limit may also prevent the optimal solution

to be found for problems of unsuspected high complexity.

3.1.1 Dynamic depth limit

Dynamic Maximum Tree Depth [65] is a bloat control technique inspired by the

traditional static limit. It also imposes a depth limit on the individuals accepted into

the population, but this one is dynamic, meaning that it can be changed during the

run. The dynamic limit is initially set with a low value, but at least as high as the

maximum depth of the initial random trees. Any new individual who breaks this

limit is rejected and replaced by one of its parents instead (as with the traditional

static limit), unless it is the best individual found so far. In this case, the dynamic

limit is raised to match the depth of the new best-of-run and allow it into the

population. Figure 1 shows the pseudo code of this procedure. The result is a

succession of limit risings, as the best solution becomes more accurate and more

complex.

Dynamic Maximum Tree Depth does not necessarily replace the traditional depth

limit: both dynamic and fixed limits can be used at the same time (not shown in

Fig. 1). When this happens, the dynamic limit always lies somewhere between the

initial tree depth and the fixed depth limit. The simplicity of Dynamic Maximum

Tree Depth makes it easy to use with any set of parameters and/or coupled with

other techniques for controlling bloat.

The dynamic limit may also be used for another purpose besides controlling

bloat. In real world applications, one may not be interested or able to invest a large

f o r a l l newly c r e a t e d i n d i v i d u a l s

d e p t h i = d e p t h of i n d i v i d u a l
f i t n e s s i = f i t n e s s of i n d i v i d u a l

i f d e p t h i ≤ d y n a m i c l i m i t
a c c e p t i n d i v i d u a l

i f f i t n e s s i > b e s t f i t n e s s
b e s t f i t n e s s = f i t n e s s i

i f d e p t h i > d y n a m i c l i m i t and f i t n e s s i > b e s t f i t n e s s
a c c e p t i n d i v i d u a l

b e s t f i t n e s s = f i t n e s s i
d y n a m i c l i m i t = d e p t h i

Fig. 1 Pseudo code of the basic Dynamic Maximum Tree Depth procedure (with no static limit)

Genet Program Evolvable Mach (2009) 10:141–179 149

123

amount of time in achieving the best possible solution, particularly in approximation

problems. Instead, one may consider a solution to be acceptable only if it is

sufficiently simple to be understood, even if its accuracy is known to be worse than

the accuracy of other more complex solutions. Plus, shorter solutions tend to

generalize better (Sect. 2).

One way to avoid the over-specialization of the solutions found by GP is to

choose termination criteria that will not force the evolutionary process to go on

indefinitely in search of a perfect solution. A less stringent stop condition yields a

somewhat inaccurate solution, but one that is also simpler and hopefully generalizes

better. However, setting the right stop condition may be a major challenge in itself,

as one cannot predict the complexity needed to achieve a certain level of accuracy.

By starting the search with a low dynamic limit for tree depth, the search is forced to

concentrate on simple solutions first. The limit is then raised when a new solution is

found that is more complex, but also more accurate, than the previous one. As the

evolution proceeds, the limit is repeatedly raised as more and more complex

solutions achieve increasingly higher levels of accuracy. Regardless of the stop

condition, the Dynamic Maximum Tree Depth technique can in fact provide a series

of solutions of increasing complexity and accuracy, from which the users may

choose the one most adequate to their needs.

3.1.2 Early results

Early tests have shown that Dynamic Maximum Tree Depth is able to effectively

contain code growth in a Symbolic Regression and the Even-3 Parity problems [65].

Two different settings for the initial value of the dynamic limit were tried: 6 and 9.

The first value (6) is the traditional maximum depth of the trees in the initial

population. Setting the dynamic limit to this value means that trees cannot even

grow beyond their initial maximum depth unless they prove to be the best so far.

Using the second value (9), trees can grow freely from their initial maximum depth

of 6 until they reach depth 9, and only then see their growth restricted by the

dynamic limit. The most restrictive value (6) resulted in lower mean tree size along

the run without any impairment on the ability to converge to good solutions.

Dynamic Maximum Tree Depth was also tested against and together with another

bloat control technique, Lexicographic Parsimony Pressure [44]. Lexicographic

Parsimony Pressure is based on a modified tournament that always selects smaller

trees when their fitness is the same. The experiments showed a clear superiority of

the dynamic limit, with the best results achieved when both techniques were

coupled together.

3.2 Variations on size and depth

The original Dynamic Maximum Tree Depth was soon extended to include

additional variants: a heavy dynamic limit, called heavy because it falls back to

lower values whenever allowed, and a dynamic limit on size instead of depth.

Figure 2 shows the general acceptance procedure (including all the variants,

using no static limit) that all newly created individuals must pass before being

150 Genet Program Evolvable Mach (2009) 10:141–179

123

accepted into the new generation. This is an extension of the procedure in Fig. 1.

Only the shaded parts are completely new. Both the new code and the small

differences in the common code will be explained in the next sections. Any

individual that does not meet the size/depth/fitness requirements of the Dynamic

Limits method will not be accepted by this procedure, but instead replaced by one of

its parents.

3.2.1 Heavy dynamic limit

Dynamic Maximum Tree Depth is capable of withstanding a considerable amount

of parsimony pressure, as proven by the results obtained by initializing the dynamic

limit with the lowest possible value, the maximum depth of the initial random trees

[65] (Sect. 3.1.2). So there seems to be no reason why the limit should not be

allowed to fall back to lower values in case the depth of the new best individual

becomes lower than the current limit, an occurrence which is actually very common.

So the first variation introduced to the original Dynamic Maximum Tree Depth is

the Heavy dynamic limit, one that accompanies the depth of the best individual, up

or down, with the sole constraint of not going lower than its initialization value [66].

An additional variation is the VeryHeavy limit, similar to the heavy variant but

allowed to fall back even below its initialization value. Both these variants are

covered in the second shaded block of Fig. 2.

f o r a l l newly c r e a t e d i n d i v i d u a l s

i l l e g a l p a r e n t s i = whe ther i n d i v i d u a l has i l l e g a l p a r e n t s

i f i l l e g a l p a r e n t s i
m y l i m i t i = s i z e / d e p t h of l a r g e s t / d e e p e s t p a r e n t

e l s e
m y l i m i t i = d y n a m i c l i m i t

s i z e i = s i z e / d e p t h of i n d i v i d u a l
f i t n e s s i = f i t n e s s o f i n d i v i d u a l

i f s i z e i ≤ m y l i m i t i
a c c e p t i n d i v i d u a l

i f f i t n e s s i > b e s t f i t n e s s
b e s t f i t n e s s = f i t n e s s i

i f VeryHeavy
or (Heavy and s i z e i ≥ i n i t i a l d y n a m i c l i m i t)

d y n a m i c l i m i t = s i z e i

i f s i z e i > d y n a m i c l i m i t and f i t n e s s i > b e s t f i t n e s s
a c c e p t i n d i v i d u a l

b e s t f i t n e s s = f i t n e s s i
d y n a m i c l i m i t = s i z e i

Fig. 2 Pseudo code of the general Dynamic Limits acceptance procedure (all variants, no static limit).
This is an extension of the procedure in Fig. 1. Only the shaded code is completely new

Genet Program Evolvable Mach (2009) 10:141–179 151

123

As expected, whenever the limit falls back to a lower value, some individuals

already in the population immediately break the new limit, becoming ‘illegals’.

There was a vast range of options to deal with them, the more drastic being their

immediate removal from the population, possibly replacing them by new random

individuals. However, since these new ‘illegals’ could be the ones who managed to

produce the new best individual, eliminating them could be harmful for the search

process. A much softer option was adopted: the ‘illegals’ are allowed to remain in

the population as if they were not breaking the limit, but when breeding, their

children cannot be deeper than the deepest parent. This naturally and gradually

places the population within limits again. The first shaded block of Fig. 2 deals with

choosing the right limit (my limit i) to use for the new individual, depending on

whether it has illegal parents. The first comparison involving the variable

dynamic limit in Fig. 1 ðif size i� dynamic limitÞ is now performed using

the variable my limit i in Fig. 2 ðif size i� my limit iÞ.

3.2.2 Dynamic size limit

Even though bloat is known to affect many other search processes using variable-

length representations (Sect. 2), depth limits cannot be used on non tree-based GP

systems. Extending the idea of a dynamic limit to other domains must begin with the

removal of the concept of depth, replacing it with the concept of size. The second

variation on the original Dynamic Maximum Tree Depth is the usage of a dynamic

size limit, where size is the number of nodes [66]. If a static limit is to be used along

with this dynamic limit, it should also be on size, not depth. The variable depth i

of the pseudo code in Fig. 1 is now called size i in Fig. 2, although it can refer to

either size or depth.

Tree initialization in tree-based GP also typically relies on the concept of depth.

This is the case with the popular Grow, Full, and Ramped Half-and-Half

initialization methods [28]. Both Grow and Full methods create trees by adding

random nodes until a maximum specified depth. The Grow method adds internal or

terminal nodes, except at the maximum depth, where the choice is restricted to

terminals. This creates trees with different shapes and sizes. The Full method creates

balanced trees, with all terminal nodes at the maximum depth. It does this by adding

random internal nodes except at the maximum depth, where it selects only

terminals. The Ramped Half-and-Half method is a combination of the two, where

half the population is initialized with Grow, and the other half with Full. In each half

trees are created with depth limits ranging from 2 to a specified maximum value,

ensuring a very diverse initial population.

When using the dynamic size limit, it makes no sense to keep using depth as a

restriction on tree initialization. So a modified version of the Ramped Half-and-Half

initialization method was created [66], where an equal number of individuals are

initialized with sizes ranging between 2 and the initial value of the dynamic size

limit. For each size, half or the individuals are initialized with the Grow method, and

the other half with the Full method, that have also been modified to fit the size

constraints only. In the modified Grow method, the individual grows by addition of

random nodes (internal or terminal) without exceeding the maximum specified size;

152 Genet Program Evolvable Mach (2009) 10:141–179

123

the modified Full method chooses only internal nodes until the size is close to the

specified, and only then chooses terminals. Unlike the original Full method, it may

not be able to create individuals with the exact size specified, but only close (and

never exceeding). Figure 3 shows the pseudo code of both methods.

3.2.3 Early results

Both heavy and size variations have been tested on the same problems as the

original Dynamic Maximum Tree Depth technique (Symbolic Regression and Even-

3 Parity) against and coupled with Lexicographic Parsimony Pressure [66] (Sect.

3.1.2). The heavy dynamic limit adds parsimony pressure during the run. Even

without taking drastic measures towards the individuals that suddenly break the

lower limit, the mean tree size along the run was kept significantly lower than with

either the original Dynamic Maximum Tree Depth or Lexicographic Parsimony

Pressure alone. Once again the best results were achieved by joining both

techniques, and fitness was still not affected by such high levels of parsimony

pressure. The dynamic size, however, did not perform as well in one of the problems

(Parity), where the ability to find good solutions was compromised. These early

results did not yet include the VeryHeavy variation.

3.2.4 New implementation of dynamic size

Because the early results obtained with the dynamic size techniques were not so

brilliant, a new implementation of the size limit was developed and tested for this

paper. In the previous implementation, when the population approached the limit it

became very difficult for the parents to produce valid offspring. Any slight increase

of the number of nodes usually conflicted with the limit, causing the new offspring

n o d e s l e f t = maximum s p e c i f i e d s i z e

whi le n o d e s l e f t > 0

i f n o d e s l e f t = 1
poo l = t e r m i n a l s

e l s e
s e l e c t e d f u n c t i o n s = f u n c t i o n s wi th a r i t y < n o d e s l e f t

i f Grow
pool = s e l e c t e d f u n c t i o n s + t e r m i n a l s

i f F u l l
poo l = s e l e c t e d f u n c t i o n s
i f poo l i s empty

poo l = t e r m i n a l s

add a random node from t h e poo l
n o d e s l e f t = n o d e s l e f t − 1

Fig. 3 Pseudo code of the modified Grow and Full initialization methods

Genet Program Evolvable Mach (2009) 10:141–179 153

123

to be rejected. It was hypothesized that this total lack of freedom to explore the

search space around the current solution was the cause for the poorer results of the

dynamic size techniques.

With the new implementation it becomes possible to explore the search space

beyond the current size limit. When breeding, if both parents are within the limit

then their offspring will be accepted into the new generation, regardless of their

size. But the children who break the limit are accepted as ‘illegals’, the same status

given to the individuals that suddenly break the limit when it falls back in the heavy

variants (Sect. 3.2.1). From then on, the same simple restriction applies to all the

illegal individuals: when breeding, their children cannot be deeper than the deepest

parent. Figure 4 shows the supplemental pseudo code (to be added at the end of the

procedure in Fig. 2) for the implementation of the new dynamic size limit.

4 Experiments

This section introduces the experiments that were performed in order to study the

efficiency of Dynamic Limits as a bloat control method. It provides a description of

the problems used as benchmarks, summarizes the set of tested techniques, specifies

the procedures and parameter settings used in the experiments, and finally describes

how the results will be presented.

All the experiments were performed with tree-based GP in generational mode

using GPLAB3—A Genetic Programming Toolbox for MATLAB4 [64]. Statistical

significance of the null hypothesis of no difference was determined with (pairwise)

Kruskal–Wallis ANOVAs at p = 0.01. A non-parametric ANOVA was used

because the data is not guaranteed to follow a normal distribution. For the same

reason, the median was preferred over the mean in all the evolution plots (Sect. 4.4).

The median is also more robust to outliers, and has already been used in similar

studies [75].

4.1 Problems

Four different problems were chosen to test the Dynamic Limits: Symbolic

Regression, Artificial Ant, 5-Bit Even Parity and 11-Bit Boolean Multiplexer. This

particular set of problems was chosen because it has been widely used in the

literature [13, 14, 17–19, 31, 32, 39–45, 59, 60, 63, 65–69, 78–80], as it represents a

i f n o t i l l e g a l p a r e n t s i
a c c e p t i n d i v i d u a l

Fig. 4 Additional pseudo code for the implementation of the new dynamic size limit (size limits only, no
static limit)

3 http://gplab.sourceforge.net.
4 http://www.mathworks.com/matlab.

154 Genet Program Evolvable Mach (2009) 10:141–179

123

http://gplab.sourceforge.net
http://www.mathworks.com/matlab

varied selection in terms of bloat dynamics and response to different bloat control

techniques.

4.1.1 Symbolic regression

The goal of the Symbolic Regression problem is to evolve a function that best

approximates a set of points. In this particular case, 21 equidistant points of the

quartic polynomial (x4 ? x3 ? x2 ? x) in the interval -1 to ? 1 are used.

The function and terminal sets for this problem are, respectively, fþ;�;
�;�; sin; cos; log; expg and {x} (no random constants are used). The division and

logarithm are protected as in [28]: the division returns 1 whenever the denominator

is 0, and the argument of the logarithm is always converted to its absolute value.

Fitness is measured as the sum of the absolute differences between the expected and

predicted values of each point. It can take any real non-negative number, so there is

a potentially infinite number of possible fitness values. Early results [65, 66] have

suggested that the Symbolic Regression problem is not prone to the propagation of

inviable code, but very much affected by unoptimized code, although these notions

are contradicted in [45]. For simplicity, from now on this problem will be referred to

simply as Regression.

4.1.2 Artificial ant

In the Artificial Ant problem the goal is to evolve a strategy to follow a food trail.

In this particular case, the Santa Fe trail is used. The trail is represented on a 32

9 32 (toroidal) grid and the ant begins its search on the upper left corner, facing

east.

The function and terminal sets for the Artificial Ant problem are, respectively,

{if-food-ahead, progn2, progn3} and {left, right, move}, as defined in [28]. With

the if-food-ahead function, the ant checks the cell directly in front of it and

performs a certain action in case it finds a food pellet there. progn2 and progn3

allow the ant to perform any two or three consecutive actions. With the terminals

left and right the ant can turn around 90� without moving from its cell. move allows

the ant to move to the adjacent cell it is facing. When the ant stands on a cell

containing a food pellet, it immediately eats it. A foraging strategy is built using

these functions and terminals and each ant is given 400 time steps5 to apply it

repeatedly in search of the 89 food pellets available in the trail. Fitness is measured

as the number of pellets remaining afterwards. Many different foraging strategies

may result in the same fitness, and this seems to be correlated to the proliferation of

inviable code.

5 The number of time steps actually used in the original work by Koza [28] was 600, but a typographical

error caused the number 400 to become more popular in the literature, the reason why we also use it.

Genet Program Evolvable Mach (2009) 10:141–179 155

123

4.1.3 5-Bit even parity

The 5-Bit Even Parity problem is in fact a symbolic regression problem where the

function to evolve takes five boolean arguments and returns a single output

indicating the parity of the arguments: 1 (or true) if an even number of arguments

are 1, and 0 (or false) otherwise.

This problem uses the function and terminal sets {and, or, nand, nor} and

{x1,...,x5}, respectively. Fitness is measured as the number of misclassified cases, so

it may only take values between 0 and 32, even fewer than in the Artificial Ant

problem. Once again, a large amount of structurally distinct individuals may have

the same fitness. For simplicity, from now on this problem will be referred to simply

as Parity.

4.1.4 11-Bit Boolean multiplexer

Also similar to a symbolic regression problem, the 11-Bit Boolean Multiplexer

problem can however be viewed as a problem of electronic circuit design. The

function to evolve takes three address arguments (a0, a1, a2) plus eight data

arguments (d0,…,d7), all boolean. The value returned by the function is the

particular data bit that is singled out by the address bits.

The 11-Bit Boolean Multiplexer problem uses the function and terminal sets

{and, or, not, if} and {a0, a1, a2, d0,...,d7}, respectively. Note that both address and

data arguments are simply treated as terminals, undistinguishable from one another.

Fitness is measured as the number of misclassified cases. This theoretically allows

fitness values between 0 and 2048, but in practical terms the values usually fall into

multiples of 32 [45]. The 11-Bit Boolean Multiplexer problem suffers from

relatively little inviable code [45]. For simplicity, from now on it will be referred to

simply as Multiplexer.

4.2 Techniques

Table 1 summarizes all the techniques compared within the Dynamic Limits

approach. Koza is the baseline technique because of its popularity, and also to stress

the improvements introduced when a dynamic limit is used instead of a static one.

The names (and acronyms) of the other techniques are composed of several parts to

Table 1 Techniques compared

within the Dynamic Limits

approach

Technique Acronym Short description

Koza K Static depth limit

DynDepth D Dynamic depth limit

DynNodes N Dynamic size limit

hDynDepth hD Heavy dynamic depth limit

hDynNodes hN Heavy dynamic size limit

vhDynDepth vhD Very heavy dynamic depth limit

vhDynNodes vhN Very heavy dynamic size limit

156 Genet Program Evolvable Mach (2009) 10:141–179

123

help their identification: Dyn stands for Dynamic Limits; Depth (D) and Nodes (N)

relate to depth and size limits, respectively; h and vh identify the respective Heavy

and VeryHeavy variants. All the dynamic size techniques follow the new

implementation described in Sect. 3.2.4.

4.3 Settings

Table 2 lists the parameters common to all the experiments. A total of 30 runs were

performed with each technique for each problem. All the runs used populations of

1000 individuals allowed to evolve for 50 generations. Most of the remaining

parameters follow the settings indicated in [28] and [45]. The initial populations

were generated with the Ramped Half-and-Half procedure [28], modified when

using the dynamic size limit (see Sect. 4.3.2 for details). Although some effort was

put into promoting the diversity of the initial population, the tree initialization

procedure does not guarantee that all individuals are distinct from one another. For

each newly created individual that is structurally identical to any of the members

already in the population, the process is retried until a different individual is

generated or until 20 attempts have been made.

In all four problems, fitness was calculated such that lower values represent better

fitness. Selection for reproduction was made with tournaments of size 7. A

reproduction rate of 0.1 was used, meaning that there was a 10% probability of

copying an individual intact into the next generation instead of choosing a genetic

operator to create new individuals. Standard tree crossover was used, but with

uniform distribution of the random crossover points, instead of the more typical

10/90% choice of terminal/internal nodes. It has been suggested that a leaf crossover

higher than 10% may be beneficial [5], and total random selection of crossover

points may not even affect the results [40]. No mutation was used. Selection for

survival was not elitist (in the traditional sense only, since the techniques using

variable size populations can be considered highly elitist, and the reproduction rate

is also a form of elitism), meaning that the best individual of a given generation is

not guaranteed to survive into the next generation.

4.3.1 Depth limits

Table 3 specifies the maximum depth/size of the individuals on the initial population,

as well as the minimum and maximum limit values, for all the techniques compared

Table 2 Settings used

in the experiments
Runs 30

Generations 50

Population size 1000

Population initialization Ramped Half-and-Half

Selection for reproduction Tournament size 7

Genetic operators Tree crossover, no mutation

Reproduction rate 0.1

Selection for survival No elitism

Genet Program Evolvable Mach (2009) 10:141–179 157

123

within the Dynamic Limits approach. The limit of the Koza technique has the same

minimum and maximum value, as it remains static along the run. Heavy and non-

heavy variants use the same limit range (hence they appear together), with the only

difference that the non-heavy techniques can only increase the limit, while the heavy

techniques can also decrease it as low as the maximum depth/size allowed on the

initial population. The limit of the very heavy variants has no lower bound. An upper

bound exists only in the Koza technique, with the traditional value of 17. The

maximum depth of the individuals on the initial population is the also traditional

value of 6. Whenever a dynamic limit is used, its initial value is exactly the same as

the maximum depth/size allowed on the initial population.

4.3.2 Size limits

In terms of size instead of depth, appropriate values had to be found that somehow

produced the same behavior as their corresponding values for depth. Tree

initialization was performed using the modified Ramped Half-and-Half procedure

described in Sect. 3.2.2.

The characteristics of the initial random population depend on the tree

initialization method and the maximum depth/size allowed for the new individuals.

They also depend on the function and terminal sets, with functions of higher arity

producing bushier trees, and a high frequency of terminals producing sparser trees.

So it is no surprise to verify that, when performing a depth based initialization, the

total amount of nodes of all the individuals in the new population is different for the

several problems considered.

When switching from depth to size, we searched for size limits that would

generate populations containing similar amounts of nodes as the ones observed for

the depth based initializations. We began by calculating the median amount of

nodes of 30 depth based initializations, using a maximum depth of 6. Several sets of

30 size based initializations were then attempted, using different values for the

maximum tree size (in multiples of 5). We selected the size limit that resulted in a

median amount of nodes closest to the median found for the corresponding depth

based initializations. As expected, this value was different for each problem: 20

nodes for the Regression problem, 105 nodes for the Artificial Ant, and 50 nodes for

the Parity and Multiplexer problems. These are listed in Table 3. There is no

maximum size limit.

Table 3 Limits used within the Dynamic Limits approach

Technique Initial population Minimum limit Maximum limit

Koza 6 17 17

(h)DynDepth 6 6 –

(h)DynNodes 20/105/50a 20/105/50a –

vhDynDepth 6 – –

vhDynNodes 20/105/50a – –

a Regression/artificial ant/parity & multiplexer

158 Genet Program Evolvable Mach (2009) 10:141–179

123

4.4 Plots

The results of the experiments will be presented as boxplots and evolution curves

concerning several aspects of the evolutionary process. There will be three figures

for each problem, each figure containing more than one plot.

The first figure is dedicated to fitness, and contains two plots. See, for example,

Fig. 6. On the left (a) there is a boxplot of the best fitness achieved by each

technique during the run. Each technique is represented by a box and pair of

whiskers. Each box has lines at the lower quartile, median, and upper quartile

values, and the whiskers mark the furthest value within 1.5 of the quartile ranges.

Outliers are represented by ?, and 9 marks the mean. Any comparative statement

regarding the performance of the techniques appearing on this boxplot is supported

by statistical evidence, as described in the beginning of this section. This boxplot

also indicates the success rate achieved by each technique, on the bottom of each

box (numbers in bold). The success rate is the percentage of runs that found an

optimal solution. On the right (b) there is a plot showing the evolution of the best

fitness along the run, one line per technique. The evolution curves are obtained by

connecting the 51 values of best fitness obtained so far, one value per generation

(initial generation included). As in all the other evolution plots, each value is the

median calculated over the 30 runs (see beginning of section).

The second figure is dedicated to size and contains two plots analogous to the

previous. See, for example, Fig. 7. On the left (a), a boxplot of the mean tree size of

run for each technique. On the right (b), the evolution of the mean tree size along the

run. Tree size is the number of nodes of a tree. The mean tree size is the average

number of nodes of the trees in the population. The mean tree size of run is the

average of the mean tree size calculated over all the generations of the run.

Comparative statements made on the results presented in the boxplot are also

supported by statistical evidence.

The third and last figure contains four evolution plots. See, for example, Fig. 8.

The first plot (a) shows the evolution of the percentage of inviable code in the

individuals of the population. Inviable code is code that cannot contribute to the

fitness of the individual, either because it is never executed or because its return

value is always ignored. Non-inviable code is called effective code. Figure 5 shows

the pseudo code of the (recursive) function that measures the amount of inviable

code in a tree. The basic idea is to compare the fitness of the tree with the fitness of

its branches, where a branch is a subtree rooted just below the root node of the tree.

If a branch has the same fitness as the entire tree, then everything can be considered

inviable code except (the effective code on) that branch. To maximize the amount of

inviable code found in a tree, when several branches have the same fitness as the

entire tree it is the one with the lowest amount of effective code that is chosen as the

effective branch. To draw the plot, the percentage of inviable code in each

individual is calculated, and then averaged for the entire population.

Still using Fig. 8, as example, the second plot (b) shows the evolution of the

population diversity, measured as the percentage of structurally distinct individuals

in the population (based on the variety measure [29]). The third plot (c) shows the

evolution of the percentage of cloning due to limit restrictions. When using limits,

Genet Program Evolvable Mach (2009) 10:141–179 159

123

either static or dynamic, whenever a new individual is rejected for breaking the limit,

one of its parents is cloned and accepted into the new generation instead. The values

in the plot represent the percentage of crossovers that resulted in a cloning operation.

The fourth and last plot (d) shows the evolution of the tree fill rate. The tree fill

rate is calculated as the percentage of tree nodes relative to the number of nodes that

would be expected in a random full tree, given its depth and the function and

terminal sets used. Higher tree fill rates represent fuller trees. The average fill rate is

calculated for the entire population. The expected number of nodes in a random full

tree is given by

Xd

i¼0

avg kidsi

where d is the number of edges in the longest path between the root node and any

terminal node, and avg_kids is calculated as

1

jFj
X

f2F

arityf

where F is the function set, and arityf is the number of arguments of function f.

5 Results

This section presents the results of all the experiments. Several plots and their brief

descriptions are presented separately for each of the four problems studied.

5.1 Symbolic regression

Figure 6a shows a boxplot of the best fitness of run and the success rates achieved

by each technique on the Regression problem, and (b) shows the evolution of the

t r e e s i z e = number of nodes i n t r e e

i f t r e e s i z e = 1
n i n v i a b l e = 0

e l s e
e v a l u a t e t r e e
e v a l u a t e a l l t h e b r a n c h e s of t r e e

i f none of t h e b r a n c h es has t h e same f i t n e s s as t r e e
n i n v i a b l e = sum of t h e amount of i n v i a b l e code i n each branch

e l s e
measure i n v i a b l e code i n b r a n c h es wi th same f i t n e s s as t r e e
my branch = branch wi th l o w e s t amount of e f f e c t i v e code
n i n v i a b l e = t r e e s i z e minus amount of e f f e c t i v e code i n my branch

Fig. 5 Pseudo code of the recursive function that measures the number of inviable nodes (given by
n_inviable) in a tree

160 Genet Program Evolvable Mach (2009) 10:141–179

123

best fitness along the run. The Koza (K) technique achieved the highest success rate,

followed by DynDepth (D). Koza (K) also reached significantly better fitness of run

than most of the other techniques, except DynDepth (D) and hDynNodes (hN). No

other significant differences were observed.

Figure 7a shows a boxplot of the mean tree size of run for each technique on the

Regression problem, and (b) shows the evolution of the mean tree size along the run.

K D hD vhD N hN vhN

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

be
st

 fi
tn

es
s

of
 r

un

techniques

Regression (a)

60 43 17 23 13 23 17

0 10 20 30 40 50

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
Regression (b)

generations

be
st

 fi
tn

es
s

K
D
hD
vhD
N
hN
vhN

Fig. 6 Boxplot (a) and evolution curves (b) of the best fitness of run on the Regression problem. See
Table 1 for the names of the techniques, and Table 4 for the p-values of the boxplot

K D hD vhD N hN vhN
0

20

40

60

80

100

120

m
ea

n
tr

ee
 s

iz
e

of
 r

un

techniques

Regression (a)

0 10 20 30 40 50
0

5

10

15

20

25

30

35

40

45

50
Regression (b)

generations

m
ea

n
tr

ee
 s

iz
e

K
D
hD
vhD
N
hN
vhN

Fig. 7 Boxplot (a) and evolution curves (b) of the mean tree size on the Regression problem. See
Table 1 for the names of the techniques, and Table 4 for the p-values of the boxplot

Genet Program Evolvable Mach (2009) 10:141–179 161

123

Both DynDepth (D) and vhDynDepth (vhD) used significantly smaller trees than

Koza (K) and most of the size variants. No other significant differences were

observed.

Figure 8a shows the evolution of the percentage of inviable code on the

Regression problem. The results support the notion that this problem is not prone to

the propagation of inviable code (Sect. 4.1.1). The small percentage of inviable code

present in the initial random individuals quickly dropped to values close to zero.

Only Koza (K) and DynDepth (D) maintained a slightly higher level of inviable

0 10 20 30 40 50
0

2

4

6

8

10

12

14

16

18
Regression (a)

generations

%
 in

vi
ab

le
 c

od
e

K
D
hD
vhD
N
hN
vhN

0 10 20 30 40 50
0

10

20

30

40

50

60

70

80

90

100
Regression (b)

generations

po
pu

la
tio

n
di

ve
rs

ity

0 10 20 30 40 50
0

5

10

15

20

25
Regression (c)

generations

%
 c

lo
ni

ng

0 10 20 30 40 50
0

10

20

30

40

50

60

70

80

90

100
Regression (d)

generations

tr
ee

 fi
ll

ra
te

Fig. 8 Percentage of inviable code, population diversity, percentage of cloning, and tree fill rate on the
Regression problem. See Table 1 for the names of the techniques

162 Genet Program Evolvable Mach (2009) 10:141–179

123

code, curiously the two techniques that ranked first in best fitness and presented the

highest success rates of all.

The second plot of Fig. 8b shows the evolution of the population diversity.

Beginning with 75 to 85% of structurally distinct individuals in the population, this

diversity quickly dropped in the beginning of the run, and after a slight recuperation

it continued dropping until it roughly stabilized in different values for each

technique, with the depth variants presenting the lowest values, around 10 to 20%.

Only DynNodes (N) was able to increase the population diversity beyond the values

reached in the initial drop, ending the run with roughly 70%.

The third plot (c) shows the evolution of the percentage of cloning caused by limit

restrictions. The results show that the depth variants performed more cloning

operations than the other techniques, which may account for the lower population

diversity observed on the previous plot. All the dynamic techniques performed

cloning operations throughout the entire run. As expected, the Koza (K) technique

did not perform cloning until later in the run, when its static limit was finally reached.

The last plot (d) shows the evolution of the tree fill rate. The size variants adopted

sparser trees than the depth variants, a phenomenon that was already expected

considering the nature of the limits used. Unlike depth limits, size limits do not

constrain the shape of the trees. The Koza (K) technique did not suffer from much

shape constraints either, as its static limit was only reached relatively late in the run

(see previous plot).

5.2 Artificial ant

Figure 9a shows a boxplot of the best fitness of run and the success rates achieved

by each technique on the Artificial Ant problem, and (b) shows the evolution of the

K D hD vhD N hN vhN

0

5

10

15

20

25

30

35

40

45

be
st

 fi
tn

es
s

of
 r

un

techniques

Artificial Ant (a)

17 17 23 30 40 13 13

0 10 20 30 40 50
0

10

20

30

40

50

60

70
Artificial Ant (b)

generations

be
st

 fi
tn

es
s

K
D
hD
vhD
N
hN
vhN

Fig. 9 Boxplot (a) and evolution curves (b) of the best fitness of run on the Artificial Ant problem. See
Table 1 for the names of the techniques, and Table 5 for the p-values of the boxplot

Genet Program Evolvable Mach (2009) 10:141–179 163

123

best fitness along the run. The highest success rate was achieved by DynNodes (N),

the technique that also reached the best fitness along the run, although not

significantly. In fact, there were no significant differences in best fitness of run

between any of the studied techniques.

Figure 10a shows a boxplot of the mean tree size of run for each technique on the

Artificial Ant problem, and (b) shows the evolution of the mean tree size along the

run. All the dynamic depth variants, as well as vhDynNodes (vhN), used

significantly smaller trees than the other techniques. There were no significant

differences between Koza (K), DynNodes (N), and hDynNodes (hN), or between the

depth variants.

Figure 11a shows the evolution of the percentage of inviable code on the Artificial

Ant problem. Knowing that this problem is very prone to inviable code (Sect. 4.1.2),

it is no surprise that, from an initial percentage of around 80%, the amount of inviable

code hardly dropped below 60%, reaching as high as 85% by the end of the run.

DynNodes (N) was the technique that reached higher percentages of inviable code,

followed closely by hDynNodes (hN). It is interesting to verify that, as in the

Regression problem, the highest level of inviable code belongs to the technique

achieving the highest success rate. The depth variants were the least prone to inviable

code, maybe the reason why they managed to use significantly smaller trees.

The second plot (b) shows the evolution of the population diversity, where two

distinct behaviors can be observed. Koza (K) and two of the size variants,

DynNodes (N) and hDynNodes (hN), quickly increased the population diversity

from its initial value of around 75%, reaching as high as 95% by the end of the run.

The depth variants, accompanied by vhDynNodes (vhN), dropped the population

diversity in the first half of the run, and then steadily increased it until reaching 80 to

90%.

K D hD vhD N hN vhN
0

20

40

60

80

100

120

140

160

180

200

m
ea

n
tr

ee
 s

iz
e

of
 r

un

techniques

Artificial Ant (a)

0 10 20 30 40 50
0

20

40

60

80

100

120

140
Artificial Ant (b)

generations

m
ea

n
tr

ee
 s

iz
e

K
D
hD
vhD
N
hN
vhN

Fig. 10 Boxplot (a) and evolution curves (b) of the mean tree size on the Artificial Ant problem. See
Table 1 for the names of the techniques, and Table 5 for the p-values of the boxplot

164 Genet Program Evolvable Mach (2009) 10:141–179

123

The third plot (c) shows the evolution of the percentage of cloning caused by

limit restrictions, where once more different behaviors can be observed. The depth

variants, once again accompanied by vhDynNodes (vhN), performed intensive

cloning right from the beginning of the run. Koza (K) and the remaining size

techniques performed very little cloning in the beginning of the run, and then

steadily increased its frequency until the end, but the curve of the size techniques is

much more steep. As in the Regression problem, a higher amount of cloning

operations seems to be associated with a lower population diversity.

0 10 20 30 40 50
55

60

65

70

75

80

85

90
Artificial Ant (a)

generations

%
 in

vi
ab

le
 c

od
e

0 10 20 30 40 50
60

65

70

75

80

85

90

95

100
Artificial Ant (b)

generations

po
pu

la
tio

n
di

ve
rs

ity

0 10 20 30 40 50
0

5

10

15

20

25
Artificial Ant (c)

generations

%
 c

lo
ni

ng

0 10 20 30 40 50
0

10

20

30

40

50

60

70

80

90

100
Artificial Ant (d)

generations

tr
ee

 fi
ll

ra
te

K
D
hD
vhD
N
hN
vhN

Fig. 11 Percentage of inviable code, population diversity, percentage of cloning, and tree fill rate on the
Artificial Ant problem. See Table 1 for the names of the techniques

Genet Program Evolvable Mach (2009) 10:141–179 165

123

The last plot (d) shows the evolution of the tree fill rate. All the techniques

quickly dropped the fill rate right from the start, reaching very low values by the end

of the run.

5.3 5-Bit even parity

Figure 12a shows a boxplot of the best fitness of run and the success rates achieved

by each technique on the Parity problem, and (b) shows the evolution of the best

fitness along the run. The success rates were all null, as none of the techniques was

ever able to find an optimal solution. In terms of best fitness of run, all the size

variants did worse than Koza (K). No other significant differences were observed.

Figure 13a shows a boxplot of the mean tree size of run for each technique on the

Parity problem, and (b) shows the evolution of the mean tree size along the run. All

the dynamic techniques used significantly smaller trees than Koza (K). Among the

dynamic depth techniques, the very heavy variant used significantly smaller trees

than DynDepth (D). Both hDynNodes (hN) and vhDynNodes (vhN) also used

significantly smaller trees than DynDepth (D). No other significant differences were

observed.

Figure 14a shows the evolution of the percentage of inviable code on the Parity

problem. There was relatively little inviable code in this problem, with initial values

of 25 to 30% and many variations along the run, but never reaching higher than

30%.

The second plot (b) shows the evolution of the population diversity. All the

techniques were able to increase their initial diversity and maintain very high values

throughout the run (between 85 and 100%). Koza (K) was the technique sustaining

K D hD vhD N hN vhN

2

4

6

8

10

12

be
st

 fi
tn

es
s

of
 r

un

techniques

Parity (a)

0 0 0 0 0 0 0

0 10 20 30 40 50
0

2

4

6

8

10

12

14

16
Parity (b)

generations

be
st

 fi
tn

es
s

K
D
hD
vhD
N
hN
vhN

Fig. 12 Boxplot (a) and evolution curves (b) of the best fitness of run on the Parity problem. See Table 1
for the names of the techniques, and Table 6 for the p-values of the boxplot

166 Genet Program Evolvable Mach (2009) 10:141–179

123

the highest diversity values, followed by the depth variants, and finally the size

variants.

The third plot (c) shows the evolution of the percentage of cloning caused by

limit restrictions. During most of the run it was the size variants that performed the

highest number of cloning operations, followed by the depth variants, and finally the

Koza (K) technique. As in the previous two problems, more cloning seems to be

related to lower population diversity.

The last plot (d) shows the evolution of the tree fill rate. As in the Artificial Ant

problem, all the techniques quickly drop the fill rate right from the beginning of the

run, reaching extremely low values by the end of the run.

5.4 11-Bit Boolean multiplexer

Figure 15a shows a boxplot of the best fitness of run and the success rates achieved

by each technique on the Multiplexer problem, and (b) shows the evolution of the

best fitness along the run. The highest success rate was achieved by the Koza (K)

technique, followed by vhDynDepth (vhD). In terms of best fitness of run, all the

size variants did worse than Koza (K), and vhDynNodes (vhN) also did worse than

the depth variants. No other significant differences were observed.

Figure 16a shows a boxplot of the mean tree size of run for each technique on the

Multiplexer problem, and (b) shows the evolution of the mean tree size along the run.

All the dynamic techniques used significantly smaller trees than Koza (K), except

DynNodes (N) that showed no significant difference. While there are no significant

differences among the depth variants, all the size variants were significantly different

from each other. Both hDynDepth (hD) and vhDynDepth (vhD) were identical to

their size counterparts hDynNodes (hN) and vhDynNodes (vhN).

K D hD vhD N hN vhN
0

50

100

150

200

250

m
ea

n
tr

ee
 s

iz
e

of
 r

un

techniques

Parity (a)

0 10 20 30 40 50
0

50

100

150

200

250
Parity (b)

generations
m

ea
n

tr
ee

 s
iz

e

K
D
hD
vhD
N
hN
vhN

Fig. 13 Boxplot (a) and evolution curves (b) of the mean tree size on the Parity problem. See Table 1 for
the names of the techniques, and Table 6 for the p-values of the boxplot

Genet Program Evolvable Mach (2009) 10:141–179 167

123

Figure 17a shows the evolution of the percentage of inviable code on the

Multiplexer problem. As expected (Sect. 4.1.4), the percentage of inviable code in

this problem was relatively low. From the initial percentages of 10 to 12%, only

DynNodes (N) substantially increased it, with the remaining techniques finishing the

run with only 12 to 14% of inviable code. Unlike what happened with the

Regression and Artificial Ant problems, the technique with the largest amount of

inviable code was not among the most successful.

The second plot (b) shows the evolution of the population diversity. After an initial

drop, all the techniques increased their diversity and maintained extremely high

0 10 20 30 40 50
10

15

20

25

30

35
Parity (a)

generations

%
 in

vi
ab

le
 c

od
e

0 10 20 30 40 50
70

75

80

85

90

95

100
Parity (b)

generations

po
pu

la
tio

n
di

ve
rs

ity

0 10 20 30 40 50
0

5

10

15

20

25
Parity (c)

generations

%
 c

lo
ni

ng

0 10 20 30 40 50
0

10

20

30

40

50

60

70

80

90

100
Parity (d)

generations

tr
ee

 fi
ll

ra
te

K
D
hD
vhD
N
hN
vhN

Fig. 14 Percentage of inviable code, population diversity, percentage of cloning, and tree fill rate on the
Parity problem. See Table 1 for the names of the techniques

168 Genet Program Evolvable Mach (2009) 10:141–179

123

values throughout the run (between 90 and 100%), as in the Parity problem. Koza (K)

was the technique sustaining the highest diversity values, followed by the depth

variants accompanied by DynNodes (N), and finally the remaining size variants.

The third plot (c) shows the evolution of the percentage of cloning caused by limit

restrictions. Once more an apparent relationship between cloning and diversity stands

out, with Koza (K) performing the least number of cloning operations, followed by the

depth variants and DynNodes (N), and finally the remaining size variants.

K D hD vhD N hN vhN

0

100

200

300

400

500

be
st

 fi
tn

es
s

of
 r

un

techniques

Multiplexer (a)

27 10 13 23 3 10 3

0 10 20 30 40 50
0

100

200

300

400

500

600

700

Multiplexer (b)

generations
be

st
 fi

tn
es

s

K
D
hD
vhD
N
hN
vhN

Fig. 15 Boxplot (a) and evolution curves (b) of the best fitness of run on the Multiplexer problem. See
Table 1 for the names of the techniques, and Table 7 for the p-values of the boxplot

K D hD vhD N hN vhN
0

20

40

60

80

100

120

140

160

180

200

m
ea

n
tr

ee
 s

iz
e

of
 r

un

techniques

Multiplexer (a)

0 10 20 30 40 50
0

20

40

60

80

100

120

140

160

180

200
Multiplexer (b)

generations

m
ea

n
tr

ee
 s

iz
e

K
D
hD
vhD
N
hN
vhN

Fig. 16 Boxplot (a) and evolution curves (b) of the mean tree size on the Multiplexer problem. See
Table 1 for the names of the techniques, and Table 7 for the p-values of the boxplot

Genet Program Evolvable Mach (2009) 10:141–179 169

123

The last plot (d) shows the evolution of the tree fill rate. As in the previous two

problems, all the techniques quickly dropped the fill rate (after an initial increase by

the size variants) and reached extremely low values by the end of the run.

6 Discussion

This section summarizes and discusses the results obtained. It also debates the

general usage and implementation details of depth and size limits in GP.

0 10 20 30 40 50

6

8

10

12

14

16

18

20

22
Multiplexer (a)

generations

%
 in

vi
ab

le
 c

od
e

0 10 20 30 40 50
40

50

60

70

80

90

100
Multiplexer (b)

generations
po

pu
la

tio
n

di
ve

rs
ity

0 10 20 30 40 50
0

5

10

15

20

25
Multiplexer (c)

generations

%
 c

lo
ni

ng

0 10 20 30 40 50
0

10

20

30

40

50

60

70

80

90

100
Multiplexer (d)

generations

tr
ee

 fi
ll

ra
te

K
D
hD
vhD
N
hN
vhN

Fig. 17 Percentage of inviable code, population diversity, percentage of cloning, and tree fill rate on the
Multiplexer problem. See Table 1 for the names of the techniques

170 Genet Program Evolvable Mach (2009) 10:141–179

123

6.1 Summary and quality of the results

The quality of the results obtained with the Dynamic Limits approach revealed to be

highly dependent on the type of limit used: depth or size. The depth limits

performed very well across the set of problems studied. In all except the Regression

problem, all the depth variants were able to achieve similar fitness to Koza using

significantly smaller trees. In the Regression problem, one of the variants

(DynDepth) was also able to attain the same achievement. Only in one of the

problems (Artificial Ant) does this tree size reduction seem to be related to a lower

percentage of inviable code. Curiously enough, in two of the problems (Regression

and Artificial Ant) the highest percentages of inviable code belonged to the most

successful techniques. There seems to be no real advantage in using the heavy

variants. In one of the problems (Parity) the heavy and very heavy depth provided

significantly lower mean tree size without impairing fitness, but on another

(Regression) they caused the best fitness of run to be significantly worse than the

non-heavy variant.

The dynamic limits on size did not perform so well. Most of the size variants

achieved significantly worse fitness than Koza or the depth variants in the majority

of the problems. There was only a modest success on the Artificial Ant problem,

where one of the variants (DynNodes) had a higher success rate than the rest, but

with no significant improvement in the best fitness achieved. Furthermore, on the

few cases when the size variants reached similar fitness to Koza and the depth

variants, they failed to attain significantly lower mean tree size. Although it is not

possible to directly compare the present size limits with their previous implemen-

tation [66], due to the usage of different parameters, it is clear that the new

implementation did not improve the results.

The amount of cloning operations performed due to depth or size restrictions

seems to be inversely related to the population diversity, which is not surprising.

However, the results showed no evidence that the techniques maintaining higher

diversity achieve better fitness than the ones with lower diversity. In terms of tree

fill rate, the depth variants always obtained higher values, which was also expected

from the nature of their limits. The size variants always behaved very similarly to

the Koza technique. The tree fill rate does not seem to influence the performance of

the techniques, since different behaviors in the evolution of tree fill rate (particularly

in the Regression problem) yielded similar results in terms of best fitness of run.

There are obvious differences in the initial values of cloning, diversity, and fill

rate of the size variants, caused by the specific population initialization adopted for

size limits (Sect. 3.2.2). Although tempting it may be to blame the poor performance

of the size limits on the fact that they are subject to different initial conditions than

the other techniques, the results have not suggested that either of the indicators

(inviable code, diversity, fill rate) are determinant in the success of the different

techniques. Furthermore, the observation of the plots suggests that, during the first

few generations, most of the initial differences are quickly ‘‘corrected’’ and

overridden by the particular behavior produced by the size restrictions.

All in all, the dynamic depth limits were very successful at controlling bloat. In

particular, the DynDepth technique never failed to achieve the same fitness as Koza,

Genet Program Evolvable Mach (2009) 10:141–179 171

123

while using significantly smaller trees. Furthermore, this was accomplished without

relying on any static limit. On the other hand, none of the studied indicators (amount

of inviable code, population diversity, amount of cloning, tree fill rate) seem to

provide an explanation to why the size limits, both old and new implementations,

failed in most of the problems.

6.2 Considerations on the usage of limit restrictions

There is a considerable amount of concern regarding the usage of depth or size

limits in GP. Studies have suggested that the usage of size or depth limits can

interfere with search efficiency once the average program size approaches the limit,

leading to premature convergence [36, Chap. 10; 20, 34]. Another study deals with

the impact of size limits on the average size of the individuals in the population

[47], and recent work related to the crossover bias theory reports that size limits

actually speed code growth in the early stages of the run [16] (see Sect. 2.6). The

most traditional way of implementing the limits is to reject the invalid individuals

and replace them with one of their parents. Although this effectively prevents the

individuals from growing too large, the replication of the parents may have

undesirable effects. The larger parents are the ones that usually produce invalid

offspring, so they tend to be replicated more often than the smaller parents. The

population is filled with the largest individuals, and quickly rushes to the limit.

Alternative ways of implementing the depth or size limits are: (1) retry the

genetic operator until a valid offspring is produced, either with the same parents or

using different ones; (2) accept the invalid individuals but give them such bad

fitness values that they will not be selected for reproduction in the next generation.

In the light of the crossover bias theory (Sect. 2.6), retrying the genetic operator may

not be advisable, since it provides another opportunity for the creation of more small

unfit individuals. Accepting the large invalid offspring seems like a better measure

against the undesirable crossover bias, since the large nullified individuals will

never reproduce. However, in the presence of a dynamic and highly constrained

limit that does not rise easily, parent replication may still provide advantages over

these other options.

In the present implementation of Dynamic Limits, the traditional parent

replication is indeed the action taken when the offspring violate the limit. But,

unlike typical (static) limits, the initial dynamic limit is very low, as low as the

maximum depth/size of the initial trees, and it will not be increased until a deeper/

longer individual proves to be better than any other found so far. This highly

constrains the search space, and for most problems it is known that the good

solutions lie somewhere beyond this limit, not below. When a larger and better

individual pushes the limit up, it means the process has entered a better searching

ground—better solutions can be found within the new allowed depth/size. So,

rushing the population towards this better, but still highly constrained, search space,

may actually speed the convergence to better solutions. Parent replication along

with a slowly increasing limit does not necessarily entail the drawbacks of using a

high static limit. This is supported by the quality of the results obtained and

discussed previously.

172 Genet Program Evolvable Mach (2009) 10:141–179

123

7 Conclusions

We have reviewed the past and current theories regarding the reasons why bloat

occurs in GP, and introduced the concept of Dynamic Limits, a new approach to

bloat control. Dynamic Limits is inspired by the most traditional technique of

imposing a fixed limit on the depth of the individuals allowed in the population,

introduced by Koza in tree-based GP. It implements a dynamic limit that can be

raised or lowered, depending on the best solution found so far, and can be applied

either to the depth or size of the programs being evolved.

Four different problems were used as a benchmark to study the efficiency of

Dynamic Limits. The quality of the results obtained revealed to be highly dependent

on the type of limit used: depth or size. The depth limits performed very well across

the set of problems studied, with one of its variants always achieving similar fitness

to the Koza technique, while using significantly smaller trees. The size limits did not

perform so well, most of the times obtaining significantly worse fitness than Koza or

the depth limit variants.

A strong bloat control method should be able to deal with any type of problem,

and be quite insensitive to the choice of parameters and even the combination of

algorithmic elements like the evaluation, selection, and breeding procedures. The

Dynamic Limits follow these criteria, and the dynamic depth techniques have

proven to be very successful at controlling bloat. Unlike many other methods

available so far, this new approach does not require specific genetic operators,

modifications in fitness evaluation or different selection schemes, nor does it add

any parameters to the search process. Furthermore, its implementation is very

simple and can be coupled with other bloat control techniques. Finally, it does not
rely on the usage of a static upper limit to obtain high quality results, which is a very

desirable property.

8 Future work

As future work it would be interesting to adopt alternative actions when an

individual violates the limit. Instead of replicating one of the parents into the next

generation, the options discussed in Sect. 6.2 could be tested: (1) retrying the

genetic operator until a valid offspring is produced, either with the same parents or

using different ones; (2) accepting the invalid individuals but null their fitness so

they will not be selected for reproduction in the next generation. In the context of

the Dynamic Limits approach, the results of such experiments could reveal the

dynamics and expose the factors that are allowing the dynamic depth to produce

such good results, and eventually provide some insight on how to improve the

dynamic size. In the context of the newest bloat theory (Sect. 2.6), the experiments

could be used to validate and study the role played by the crossover bias on the

emergence of bloat, by measuring how much it varies in the presence of alternative

offspring survival schemes.

Genet Program Evolvable Mach (2009) 10:141–179 173

123

Acknowledgements This work was partially supported by grant QLK2-CT-2000-01020 from the

European Commission and grants SFRH/BD/14167/2003 and POCTI/1999/BSE/34794 from Fundação

para a Ciência e a Tecnologia, Portugal. We would like to thank Jonas Almeida (University of Texas MD

Anderson Cancer Center, USA) for his collaboration in the early stages of this research, and Riccardo

Poli (University of Essex, UK) for fruitful discussions leading to a substantial improvement of the

manuscript.

Appendix

Table 4 p-Values concerning the mean tree size (top right half) and best fitness of run (bottom left half)

on the Regression problem, using pairwise non-parametric ANOVAs

Mean tree size

K D hD vhD N hN vhN

K 0.0093 0.0493 0.0000 0.1008 0.7117 0.6574 K

D 0.1168 0.8941 0.0141 0.0001 0.0039 0.0736 D

hD 0.0003 0.0530 0.0345 0.0004 0.0089 0.1103 hD

vhD 0.0001 0.0117 0.2537 0.0000 0.0000 0.0003 vhD

N 0.0030 0.3020 0.3541 0.0446 0.1558 0.0333 N

hN 0.0106 0.4694 0.1372 0.0267 0.6402 0.4688 hN

vhN 0.0003 0.0685 0.9232 0.1876 0.2827 0.1518 vhN

K D hD vhD N hN vhN

Best fitness

Statistical significance is considered where p \ 0.01 (in bold). See Figs. 6–7a for the boxplots. See

Table 1 for the names of the techniques

Table 5 p-Values concerning the mean tree size (top right half) and best fitness of run (bottom left half)

on the Artificial Ant problem, using pairwise non-parametric ANOVAs

Mean tree size

K D hD vhD N hN vhN

K 0.0000 0.0000 0.0000 0.9058 0.8941 0.0000 K

D 0.8997 0.4965 0.0256 0.0000 0.0000 0.3912 D

hD 0.5725 0.6939 0.0195 0.0000 0.0000 0.9176 hD

vhD 0.8060 0.6659 0.4506 0.0000 0.0000 0.1316 vhD

N 0.1127 0.1641 0.3398 0.1446 0.6898 0.0000 N

hN 0.7726 0.8822 0.7106 0.6340 0.1765 0.0000 hN

vhN 0.6352 0.7054 0.8528 0.5568 0.2204 0.9527 vhN

K D hD vhD N hN vhN

Best fitness

Statistical significance is considered where p \ 0.01 (in bold). See Figs. 9–10a for the boxplots. See

Table 1 for the names of the techniques

174 Genet Program Evolvable Mach (2009) 10:141–179

123

Table 6 p-Values concerning the mean tree size (top right half) and best fitness of run (bottom left half)

on the Parity problem, using pairwise non-parametric ANOVAs

Mean tree size

K D hD vhD N hN vhN

K 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000 K

D 0.7452 0.0891 0.0081 0.1071 0.0010 0.0004 D

hD 0.9879 0.8926 0.3516 0.8245 0.0690 0.0219 hD

vhD 0.1172 0.4805 0.3706 0.3831 0.3077 0.1137 vhD

N 0.0049 0.0787 0.0637 0.1973 0.1316 0.0298 N

hN 0.0075 0.0773 0.0590 0.1954 0.9222 0.4508 hN

vhN 0.0093 0.0792 0.0719 0.1829 0.8391 0.9343 vhN

K D hD vhD N hN vhN

Best fitness

Statistical significance is considered where p \ 0.01 (in bold). See Figs. 12–13a for the boxplots. See

Table 1 for the names of the techniques

Table 7 p-Values concerning the mean tree size (top right half) and best fitness of run (bottom left half)

on the Multiplexer problem, using pairwise non-parametric ANOVAs

Mean tree size

K D hD vhD N hN vhN

K 0.0000 0.0000 0.0000 0.0863 0.0000 0.0000 K

D 0.4589 0.2871 0.3516 0.0000 0.6361 0.0006 D

hD 0.4420 0.8755 0.9176 0.0000 0.1882 0.0141 hD

vhD 0.7118 0.7592 0.6246 0.0000 0.1646 0.0228 vhD

N 0.0068 0.0294 0.0445 0.0171 0.0000 0.0000 N

hN 0.0093 0.0356 0.0542 0.0289 0.9045 0.0002 hN

vhN 0.0001 0.0005 0.0027 0.0004 0.2412 0.1125 vhN

K D hD vhD N hN vhN

Best fitness

Statistical significance is considered where p \ 0.01 (in bold). See Figs. 15–16a for the boxplots. See

Table 1 for the names of the techniques

References

1. L. Altenberg, The evolution of evolvability in genetic programming, in Advances in Genetic Pro-
gramming, ed. by K.E. Kinnear Jr. (MIT Press, Cambridge, MA, 1994), pp. 47–74

2. L. Altenberg, Emergent phenomena in genetic programming, in Proceedings of the 3rd Conference
on Evolutionary Programming, ed. by A.V. Sebald, L.J. Fogel (World Scientific Publishing, River

Edge, NJ, 1994), pp. 233–241

3. D. Andre, A. Teller, A study in program response and the negative effects of introns in genetic

programming, in Proceedings of GP’96, ed. by J.R. Koza et al. (MIT Press, Cambridge, MA, 1996),

pp. 28–31

Genet Program Evolvable Mach (2009) 10:141–179 175

123

4. P.J. Angeline, Genetic programming and emergent intelligence, in Advances in Genetic Program-
ming, ed. by K.E. Kinnear Jr. (MIT Press, Cambridge, MA, 1994), pp. 75–98

5. P.J. Angeline, Two self-adaptive crossover operators for genetic programming, in Advances in
Genetic Programming 2, ed. by P.J. Angeline, K.E. Kinnear Jr. (MIT Press, Cambridge, MA, 1996),

pp. 89–110

6. P.J. Angeline, A historical perspective on the evolution of executable structures. Fundam. Infor-

maticae 35(1–4), 179–195 (1998)

7. W. Banzhaf, P. Nordin, R.E. Keller, F.D. Francone, Genetic Programming—An Introduction
(dpunkt.verlag and Morgan Kaufmann, Heidelberg and San Francisco, CA, 1998)

8. W. Banzhaf, W.B. Langdon, Some considerations on the reason for bloat. Genet. Program. Evolvable

Mach. 3(1), 81–91 (2002)

9. W. Banzhaf, F.D. Francone, P. Nordin, Some emergent properties of variable size EAs. Position

paper at the Workshop on Evolutionary Computation with Variable Size Representation at ICGA-97

(1997)

10. T. Blickle, Theory of evolutionary algorithms and applications to system design. PhD thesis, Swiss

Federal Institute of Technology, Computer Engineering and Networks Laboratory (1996)

11. T. Blickle, L. Thiele, Genetic programming and redundancy, in Genetic Algorithms within the
Framework of Evolutionary Computation, ed. by J. Hopf (Max-Planck-Institut für Informatik,

Saarbriicken, 1994), pp. 33–38

12. M. Brameier, W. Banzhaf, Neutral variations cause bloat in linear GP, in Proceedings of EuroGP-
2003, ed. by C. Ryan et al. (Springer, Berlin, 2003), pp. 286–296

13. J. Cuendet, Populations dynamiques en programmation génétique. MSc thesis, Université de Lau-

sanne, Université de Genève (2004)

14. L.E. Da Costa, J.A. Landry, Relaxed genetic programming, in Proceedings of GECCO-2006, ed. by

M. Keijzer et al. (ACM Press, New York, NY, 2006), pp. 937–938

15. S. Dignum, R. Poli, Generalisation of the limiting distribution of program sizes in tree-based genetic

programming and analysis of its effects on bloat, in Proceedings of GECCO-2007, ed. by D. Thierens

et al. (ACM Press, New York, NY, 2007), pp. 1588–1595

16. S. Dignum, R. Poli, Crossover, sampling, bloat and the harmful effects of size limits, in Proceedings
of EuroGP-2008, ed. by M. O’Neill et al. (Springer, Berlin, 2008), pp. 158–169

17. A. Ekart, S.Z. Németh, Selection based on the pareto nondomination criterion for controlling code

growth in genetic programming. Genet. Program. Evolvable Mach. 2(1), 61–73 (2001)

18. F. Fernandez, L. Vanneschi, M. Tomassini, The effect of plagues in genetic programming: a study of

variable-size populations, in Proceedings of EuroGP-2003, ed. by C. Ryan et al. (Springer, Berlin,

2003), pp. 317–326

19. F. Fernandez, M. Tomassini, L. Vanneschi, Saving computational effort in genetic programming by

means of plagues, in Proceedings of CEC-2003, ed. by R. Sarker et al. (IEEE Press, Piscataway, NJ,

2003), pp. 2042–2049

20. C. Gathercole, P. Ross, An adverse interaction between crossover and restricted tree depth in genetic

programming, in Proceedings of GP’96, ed. by J.R. Koza et al. (MIT Press, Cambridge, MA, 1996),

pp. 291–296

21. S. Gelly, O. Teytaud, N. Bredeche, M. Schoenauer, A statistical learning theory approach of bloat, in

Proceedings of GECCO-2005, ed. by H.-G. Beyer et al. (ACM Press, New York, NY, 2005),

pp. 1783–1784

22. S. Gelly, O. Teytaud, N. Bredeche, M. Schoenauer, Universal consistency and bloat in GP. Rev.

Intell. Artif. 20(6), 805–827 (2006)

23. S. Gustafson, A. Ekart, E. Burke, G. Kendall, Problem difficulty and code growth in genetic pro-

gramming. Genet. Program. Evolvable Mach. 5(3), 271–290 (2004)

24. C. Igel, K. Chellapilla, Investigating the influence of depth and degree of genotypic change on fitness

in genetic programming, in Proceedings of GECCO-1999, ed. by W. Banzhaf et al. (Morgan

Kaufmann, San Francisco, CA, 1999), pp. 1061–1068

25. K. Janardan, Weighted Lagrange distributions and their characterizations. SIAM J. Appl. Math.

47(2), 411–415 (1987)

26. K. Janardan, B. Rao, Lagrange distributions of the second kind and weighted distributions. SIAM J.

Appl. Math. 43(2), 302–313 (1983)

27. K.E. Kinnear Jr., Generality and difficulty in genetic programming: evolving a sort, in Proceedings of
ICGA’93, ed. by S. Forrest (Morgan Kaufmann, San Francisco, CA, 1993), pp. 287–294

176 Genet Program Evolvable Mach (2009) 10:141–179

123

28. J.R. Koza, Genetic Programming – On the Programming of Computers by Means of Natural
Selection (MIT Press, Cambridge, MA, 1992)

29. W.B. Langdon, Genetic Programming ? Data Structures = Automatic Programming! (Kluwer

Academic Publishers, Boston, MA, 1998)

30. W.B. Langdon, The evolution of size in variable length representations, in Proceedings of the 1998
IEEE International Conference on Evolutionary Computation (IEEE Press, Piscataway, NJ, 1998),

pp. 633–638

31. W.B. Langdon, Size fair and homologous tree genetic programming crossovers. Genet. Program.

Evolvable Mach. 1(1/2), 95–119 (2000)

32. W.B. Langdon, Quadratic bloat in genetic programming, in Proceedings of GECCO-2000, ed. by

D. Whitley et al. (Morgan Kaufmann, San Francisco, CA, 2000), pp. 451–458

33. W.B. Langdon, R. Poli, Fitness causes bloat, in Proceedings of the Second On-line World Conference
on Soft Computing in Engineering Design and Manufacturing, ed. by P.K. Chawdhry et al. (Springer,

Berlin, 1997), pp. 13–22

34. W.B. Langdon, R. Poli, An analysis of the MAX problem in genetic programming, in Proceedings of
GP’97, ed. by J.R. Koza et al. (Morgan Kaufman, San Francisco, CA, 1997), pp. 222–230

35. W.B. Langdon, R. Poli, Fitness causes bloat: mutation, in Proceedings of EuroGP’98, ed. by

W. Banzhaf et al. (Springer, Berlin, 1998), pp. 37–48

36. W.B. Langdon, R. Poli, Foundations of Genetic Programming (Springer, Berlin, 2002)

37. W.B. Langdon, T. Soule, R. Poli, J.A. Foster, The evolution of size and shape, in Advances in Genetic
Programming 3, ed. by L. Spector et al. (MIT Press, Cambridge, MA, 1999), pp. 163–190

38. W.B. Langdon, W. Banzhaf, Genetic programming bloat without semantics, in Proceedings of PPSN-
2000, ed. by M. Schoenauer et al. (Springer, Berlin, 2000), pp. 201–210

39. S. Luke, Code growth is not caused by introns, in Late Breaking Papers at GECCO-2000 (2000),

pp. 228–235

40. S. Luke, Issues in scaling genetic programming: breeding strategies, tree generation, and code bloat.

PhD thesis, Department of Computer Science, University of Maryland (2000)

41. S. Luke, G.C. Balan, L. Panait, Population implosion in genetic programming, in Proceedings of
GECCO-2003, ed. by E. Cantú-Paz et al. (Springer, Berlin, 2003), pp. 1729–1739

42. S. Luke, Modification point depth and genome growth in genetic programming. Evol. Comput. 11(1),

67–106 (2003)

43. S. Luke, L. Panait, Fighting bloat with nonparametric parsimony pressure, in Proceedings of PPSN-
2002, ed. by J.M. Guervos et al. (Springer, Berlin, 2002), pp. 411–420

44. S. Luke, L. Panait, Lexicographic parsimony pressure, in Proceedings of GECCO-2002, ed. by

W.B. Langdon et al. (Morgan Kaufmann, San Francisco, CA, 2002), pp. 829–836

45. S. Luke, L. Panait, A comparison of bloat control methods for genetic programming. Evol. Comput.

14(3), 309–344 (2006)

46. N.F. McPhee, J.D. Miller, Accurate replication in genetic programming, in Proceedings of ICGA’95,

ed. by L. Eshelman (Morgan Kaufmann, San Francisco, CA, 1995), pp. 303–309

47. N.F. McPhee, A. Jarvis, E.F. Crane, On the strength of size limits in linear genetic programming, in

Proceedings of GECCO-2004, ed. by K. Deb et al. (Springer, Berlin, 2004), pp. 593–604

48. N.F. McPhee, R. Poli, A schema theory analysis of the evolution of size in genetic programming with

linear representations, in Proceedings of EuroGP-2001, ed. by J. Miller et al. (Springer, Berlin,

2001), pp. 108–125

49. P. Nordin, W. Banzhaf, Complexity compression and evolution, in Proceedings of ICGA’95, ed. by

L. Eshelman (Morgan Kaufmann, San Francisco, CA, 1995), pp. 318–325

50. P. Nordin, F. Francone, W. Banzhaf, Explicitly defined introns and destructive crossover in genetic

programming, in Proceedings of the Workshop on Genetic Programming: From Theory to Real-
World Applications, ed. by J.P. Rosca (1995), pp. 6–22

51. P. Nordin, F. Francone, W. Banzhaf, Explicitly defined introns and destructive crossover in genetic

programming, in Advances in Genetic Programming 2, ed. by P.J. Angeline, K.E. Kinnear Jr.

(MIT Press, Cambridge, MA, 1996), pp. 111–134

52. U.-M. O’Reilly, F. Oppacher, Hybridized crossover-based search techniques for program discovery,

in Proceedings of the 1995 World Conference on Evolutionary Computation (IEEE Press, Piscata-

way, NJ, 1995), pp. 573–578

53. R. Poli, General schema theory for genetic programming with subtree-swapping crossover, in

Proceedings of EuroGP-2001, ed. by J. Miller et al. (Springer, Berlin, 2001), pp. 143–159

Genet Program Evolvable Mach (2009) 10:141–179 177

123

54. R. Poli, A simple but theoretically-motivated method to control bloat in genetic programming, in

Proceedings of EuroGP-2003, ed. by C. Ryan et al. (Springer, Berlin, 2003), pp. 200–210

55. R. Poli, W.B. Langdon, S. Dignum, On the limiting distribution of program sizes in tree-based

genetic programming, in Proceedings of EuroGP-2007, ed. by M. Ebner et al. (Springer, Berlin,

2007), pp. 193–204

56. R. Poli, N.F. McPhee, L. Vanneschi, The impact of population size on code growth in GP: analysis

and empirical validation, in Proceedings of GECCO-2008, ed. by M. Keijzer et al. (ACM Press, New

York, NY, 2008), pp. 1275–1282

57. R. Poli, N.F. McPhee, L. Vanneschi, Elitism reduces bloat in genetic programming, in Proceedings of
GECCO-2008, ed. by M. Keijzer et al. (ACM Press, New York, NY, 2008), pp. 1343–1344

58. R. Poli, N.F. McPhee, L. Vanneschi, Analysis of the effects of elitism on bloat in linear and tree-

based genetic programming, in Genetic Programming Theory and Practice VI, ed. by R. Riolo et al.

(Springer, Berlin, 2008), pp. 91–111

59. D. Rochat, Programmation génétique parallèle: opérateurs génétiques variés et populations dynam-

iques. MSc thesis, Université de Lausanne, Université de Genève (2004)

60. D. Rochat, M. Tomassini, L. Vanneschi, Dynamic size populations in distributed genetic program-

ming, in Proceedings of EuroGP-2005, ed. by M. Keijzer et al. (Springer, Berlin, 2005), pp. 50–61

61. J.P. Rosca, Generality versus size in genetic programming, in Proceedings of GP’96, ed. by

J.R. Koza et al. (MIT Press, Cambridge, MA, 1996), pp. 381–387

62. J.P. Rosca, Analysis of complexity drift in genetic programming, in Proceedings of GP’97, ed. by

J.R. Koza et al. (Morgan Kaufmann, San Francisco, CA, 1997), pp. 286–294

63. S. Silva, Controlling bloat: individual and population based approaches in genetic programming. PhD

thesis, Departamento de Engenharia Informatica, Universidade de Coimbra (2008)

64. S. Silva, J. Almeida, GPLAB—a genetic programming toolbox for MATLAB, in Proceedings of the
Nordic MATLAB Conference, ed. by L. Gregersen (2003), pp. 273–278

65. S. Silva, J. Almeida, Dynamic maximum tree depth—a simple technique for avoiding bloat in tree-

based GP, in Proceedings of GECCO-2003, ed. by E. Cantú-Paz et al. (Springer, Berlin, 2003),

pp. 1776–1787

66. S. Silva, E. Costa, Dynamic limits for bloat control—variations on size and depth, in Proceedings of
GECCO-2004, ed. by K. Deb et al. (Springer, Berlin, 2004), pp. 666–677

67. S. Silva, P.J.N. Silva, E. Costa, Resource-limited genetic programming: replacing tree depth limits, in

Proceedings of ICANNGA-2005, ed. by B. Ribeiro et al. (Springer, Berlin, 2005), pp. 243–246

68. S. Silva, E. Costa, Resource-limited genetic programming: the dynamic approach, in Proceedings of
GECCO-2005, ed. by H.-G. Beyer et al. (ACM Press, New York, NY, 2005), pp. 1673–1680

69. S. Silva, E. Costa, Comparing tree depth-limits and resource-limited GP, in Proceedings of CEC-
2005, ed. by D. Corne et al. (IEEE Press, Piscataway, NJ, 2005), pp. 920–927

70. P.W.H. Smith, K. Harries, Code growth, explicitly defined introns, and alternative selection schemes.

Evol. Comput. 6(4), 339–360 (1998)

71. T. Soule, J.A. Foster, Removal bias: a new cause of code growth in tree based evolutionary pro-

gramming, in Proceedings of the 1998 IEEE International Conference on Evolutionary Computation
(IEEE Press, Piscataway, NJ, 1998), pp. 781–786

72. T. Soule, Code growth in genetic programming. PhD thesis, College of Graduate Studies, University

of Idaho (1998)

73. T. Soule, J. Foster, Code size and depth flows in genetic programming, in Proceedings of GP’97,

ed. by J. Koza et al. (Morgan Kaufmann, San Francisco, CA, 1997), pp. 313–320

74. T. Soule, R.B. Heckendorn, An analysis of the causes of code growth in genetic programming. Genet.

Program. Evolvable Mach. 3(1), 283–309 (2002)

75. J. Stevens, R.B. Heckendorn, T. Soule, Exploiting disruption aversion to control code bloat, in

Proceedings of GECCO-2005, ed. by H.-G. Beyer et al. (ACM Press, New York, NY, 2005),

pp. 1605–1612

76. M.J. Streeter, The root causes of code growth in genetic programming, in Proceedings of EuroGP-
2003, ed. by C. Ryan et al. (Springer, Berlin, 2003), pp. 443–454

77. W.A. Tackett, Recombination, selection, and the genetic construction of genetic programs. PhD

thesis, Department of Electrical Engineering Systems, University of Southern California (1994)

78. M. Tomassini, L. Vanneschi, J. Cuendet, F. Fernandez, A new technique for dynamic size popula-

tions in genetic programming, in Proceedings of CEC-2004 (IEEE Press, Piscataway, NJ, 2004),

pp. 486–493

178 Genet Program Evolvable Mach (2009) 10:141–179

123

79. T. Van Belle, D.H. Ackley, Uniform subtree mutation, in Proceedings of EuroGP-2002, ed. by

J.A. Foster et al. (Springer, Berlin, 2002), pp. 152–161

80. L. Vanneschi, Theory and practice for efficient genetic programming. PhD thesis, Faculty of Sci-

ences, University of Lausanne (2004)

81. B.-T. Zhang, H. Mühlenbein, Balancing accuracy and parsimony in genetic programming. Evol.

Comput. 3(1), 17–38 (1995)

Genet Program Evolvable Mach (2009) 10:141–179 179

123

	Dynamic limits for bloat control in genetic programming and a review of past and current�bloat theories
	Abstract
	Introduction
	Bloat
	Hitchhiking
	Defense against crossover
	Removal bias
	Fitness causes bloat
	Modification point depth
	Crossover bias
	Discussion

	Dynamic limits
	Dynamic maximum tree depth
	Dynamic depth limit
	Early results

	Variations on size and depth
	Heavy dynamic limit
	Dynamic size limit
	Early results
	New implementation of dynamic size

	Experiments
	Problems
	Symbolic regression
	Artificial ant
	11-Bit Boolean multiplexer

	Techniques
	Settings
	Depth limits
	Size limits

	Plots

	Results
	Symbolic regression
	Artificial ant
	5-Bit even parity
	11-Bit Boolean multiplexer

	Discussion
	Summary and quality of the results
	Considerations on the usage of limit restrictions

	Conclusions
	Future work
	Acknowledgements
	Appendix
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [5952.756 8418.897]
>> setpagedevice

