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Abstract In this paper, we investigate the employment of evolutionary algorithms

as a search mechanism in a decision support system for designing chemotherapy

schedules. Chemotherapy involves using powerful anti-cancer drugs to help elim-

inate cancerous cells and cure the condition. It is given in cycles of treatment

alternating with rest periods to allow the body to recover from toxic side-effects.

The number and duration of these cycles would depend on many factors, and the

oncologist would schedule a treatment for each patient’s condition. The design of a

chemotherapy schedule can be formulated as an optimal control problem; using an

underlying mathematical model of tumour growth (that considers interactions with

the immune system and multiple applications of a cycle-phase-specific drug), the

objective is to find effective drug schedules that help eradicate the tumour while

maintaining the patient health’s above an acceptable level. A detailed study on the

effects of different objective functions, in the quality and diversity of the solutions,

was performed. A term that keeps at a minimum the tumour levels throughout the

course of treatment was found to produce more regular treatments, at the expense of

imposing a higher strain on the patient’s health, and reducing the diversity of the

solutions. Moreover, when the number of cycles was incorporated in the problem

encoding, and a parsimony pressure added to the objective function, shorter treat-

ments were obtained than those initially found by trial and error.
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1 Introduction

Chemotherapy involves using anti-cancer drugs to help control or prevent the

growth of cancerous tumours. A cell is considered cancerous when it has lost its

ability to regulate cell growth and division (mitosis). Thus, cancer consists of the

rapid uncontrolled growth of malignant cells. The main objective in cancer

chemotherapy is to kill the cancerous cells. Chemotherapy creates a damaging range

of side-effects, and so it is normally given in cycles of treatment which alternate

with rest periods, to allow the body to recover. Several cycles of treatment are

needed, as chemotherapy only attacks cells that are actively dividing. At any one

time, some cancer cells will be dormant, and may not be killed until a later round of

drug treatment. The number and duration of these rounds depends on many factors

including the type of cancer, how advanced it is, and the general health of the person

being treated. An oncologist schedules the chemotherapy treatment for each person.

Considering the complexity of designing a schedule that achieves certain goals

whilst moderating the cancer drug’s toxic side-effects, the idea of providing

computer-based decision support systems, is appealing. We propose evolutionary

algorithms (EAs) as a search tool in a decision support system for designing

chemotherapy schedules. Using an underlying mathematical model that captures the

essential qualitative features of a cancer tumour, the purpose is to use the

chemotherapy to control the system, and drive it into a desirable (minimal) tumour

level after which the body could eliminate the remaining cancerous cells. This

problem can be formulated as an optimisation problem, specifically an optimal
control problem which refers to the problem of finding a control scheme for a given

dynamical system such that a certain optimality criterion is achieved. The design of

chemotherapy schedules has been formulated before from the point of view of

optimal control [2, 3, 9], solving the stated optimisation problem either analytically

or numerically. However, for increasingly complex and realistic cancer models,

analytical or traditional numerical methods are no longer applicable, and some

authors have turned to meta-heuristics to optimise chemotherapy schedules.

Petrovski, McCall and colleagues, have extensively and successfully used EAs

and other modern heuristics in this domain [10–12]. Villasana and Ochoa [15],

compared the performance of three meta-heuristics (genetic algorithms, evolution

strategies, and simulated annealing) in a similar problem. The main difference

between the approaches of these two group of authors, lies in the underlying

mathematical model of tumour growth. Whilst Petrovsky et al. considered the

Gompertz growth model with linear cell-loss effect [17], without including

interactions with the immune system; Villasana et al. employed a more realistic

cancer model [16], including the interactions between tumour cells and immune

cells; and differentiating between cell phases for subsequent treatment with a cycle-

phase-specific drug (see Sect. 2). Another important difference lies in the number of
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drugs modelled, whilst Petrovsky et al. consider a combination of drugs, Villasana

et al. model a single cycle-specific agent. Finally, the solution representation in both

groups differs, with the former using binary encoding for values representing drug

concentrations at discrete times, and the latter employing real valued vectors

representing time lengths of application and resting periods.

The present study extends our previous contribution [15], by comparatively

assessing the effects, on both the quality and diversity of the solutions, of different

formulations of the objective function. We first considered the relative importance

of maintaining low tumour levels versus assuring the patient health (measured by

the level of immune cells); and, secondly, the inclusion of a term that keeps at a

minimum the tumour levels throughout the course of treatment (in addition to the

standard term that measures tumour levels at the end of the treatment). A third study

modified both the problem encoding and the objective function by considering

treatments with a variable number of cycles, with a parsimony pressure that favours

shorter treatments.

The paper is organised as follows. Section 2 gives a brief background on

chemotherapy and cycle-phase specific drugs. Section 3 describes the underlying

mathematical model of cancer growth; highlighting its advantages and disadvan-

tages as compared to other models in the literature. Thereafter, Sect. 4 describes

in detail the mathematical formulation of the problem, including three different

studies that extended our previous formulation in [15]. The Methods section

(Sect. 5), describes relevant implementation issues such as the problem’s

encoding, formulation of the different objective functions, type and parameter

settings of the evolutionary algorithm used, and the performance measures

devised to gauge both the quality and diversity of the solutions. Section 6

presents and discusses our results, and finally Sect. 7 sumarises and further

discusses our findings.

2 Biomedical background

All chemotherapy drugs work by attacking cells that are dividing rapidly. Normal

cells divide at a rate that is tightly controlled by the body. However, in cancer cells,

the division goes wrong, leading to the uncontrolled production of new cells and the

formation of a tumour or blood cancer. Chemotherapy drugs interfere with the

division of these cells and may cause the cancer to recede completely. The treatment

reduces the number of cancerous cells to a minimum level, at which point other

mechanisms (e.g. the immune system and the natural death of cells) will remove the

remaining tumour cells.

Cycle-phase-specific drugs are those acting on a specific phase of the cell cycle,

which is the process between two cell divisions or mitosis. The cell cycle

encompasses four stages: G1, S, G2, and M, where G1 and G2 are resting phases (or

Gap periods), S is the synthetic period, and M or mitosis is the time during which

cells segregate the duplicated DNA material between daughter cells.

An example of a cycle-phase-specific drug is Taxol (Paclitaxel) which has shown

high efficacy in the treatment of breast, ovarian, head and neck cancer. The action of
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this drug is carried through different mechanisms: it inhibits mitosis, induces

apoptosis (programmed cell death), and enhances tumour radio-sensitivity. Today,

Paclitaxel is used either as a single agent or accompanied by other drugs. The

optimal scheduling of, and possible drug interactions, for Paclitaxel are not fully

understood [6].

In medical practice, there are standard protocols and approved maximum dosages

for known commercial drugs (provided by institutions such as the FDA—US Food
and Drug Administration). However, it is often the case that the oncologist would

have to tailor the treatment according to the patient’s characteristics and disease

progression in a trial and error procedure.

3 Mathematical model for tumour growth

Cancer is among the most common causes of death in the developed world. It is

therefore not surprising that scientists around the world have been trying to

accurately model the disease. The overall goal is to gain understanding of the

disease, and thereby design better treatments to eradicate it, or at least to improve

the patient’s quality of life. Different types of models have been proposed, and each

contributes in its own way to a better understanding of cancer dynamics.

The patient’s model used in this work [16] is a competition model of tumour

growth that includes the immune system response, and a cycle-phase-specific drug

chemotherapy. The model considers three populations of cells: immune system,

tumour during interphase (period comprising G1 through G2), and tumour during

mitosis. Delay differential equations are used to take into account the phases of the

cell cycle. Previously reported models, do not segregate the phases in which cells

are vulnerable, instead the devised compartments usually comprise proliferating and

non-proliferating cells. Moreover many models do not include the interactions with

the immune system. Given that many cancer drugs are cycle-phase-specific, and the

immune system plays a vital role in fighting the disease, we argue that a deeper

understanding of efficient protocols can be achieved with a model that separates the

cell stages and includes interactions with the immune system. The model has

limitations at the moment, it considers treatments with a single cancer drug, whereas

in medical practice it is common to use drug cocktails (infusions of various drugs

during the treatment period). Another aspect not considered by our model, is the

phenomenon of drug resistance often occurring in cancer cells. Nevertheless, the

model is close enough to many situations, to mean that its study represents

significant potential for deepening our understanding of this aggressive and often

fatal disease.

In our underlying cancer model, TI(t) and TM(t) denote the population of tumour

cells during interphase and mitosis at time t respectively. I(t) represents the immune

system population at time t, that we take as the cytotoxic T cells (CTL) (See [16] for

a full discussion). Let u(t) be the concentration of drug present at time t, and s be the

resident time of cells in interphase. The governing equations for the system with

multiple applications of the drug are:
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T 0I ¼ 2a4TM � ðc1I þ d2ÞTI � a1TIðt � sÞ
T 0M ¼ a1TIðt � sÞ � d3TM � a4TM � c3TMI

� k1ð1� e�k2uÞTM

I0 ¼ k þ qIðTI þ TMÞ3

aþ ðTI þ TMÞ3
� c2ITI � c4TMI

� d1I � k3ð1� e�k4uÞI
u01 ¼ �k1u1 þ cðtÞ
u02 ¼ �k2u2 þ cðtÞ

ð1Þ

where 0 denotes derivatives with respect to time and with initial data given by:

TIðtÞ ¼ /1ðtÞ for t 2 ½�s; 0�
TMðtÞ ¼ /2ðtÞ for t 2 ½�s; 0�

IðtÞ ¼ /3ðtÞ for t 2 ½�s; 0�
u1ð0Þ ¼ 0

u2ð0Þ ¼ 0

The drug free system corresponding to model equations 1 can have up to five

different fixed points depending on the parameter values (see [16]), one of which is

always present, namely (0, 0, k/d1). This fixed point represents the desirable

scenario of a tumour-free environment with a positive immune population.

Paclitaxel has a decay rate that can be modelled with two separate elimination

terms: a fast decay rate while the drug is distributed through the blood to the tissues,

and a second, slower rate in the peripheral compartment or tissue [13]. Thus the

decay function is expressed as:

decayðtÞ ¼ r1e�k1t þ r2e�k2t ð2Þ

with r1, and r2 representing real non dimensional constants.

Letting u1 and u2 be such that the concentration of drug at any given time is a

linear convex combination represented by u(t) = r1u1(t) + r2u2(t). The last two

equations of system (1) model this situation with multiple drug applications in time,

identified with the function c(t), which is the concentration of Paclitaxel that goes in

the system at time t. With this choice and initial conditions we get,

uðtÞ ¼ cðtÞ � decayðtÞ

where * denotes convolution.

Parameter estimation was performed on the drug free system [16], and the

information available for Paclitaxel in [1, 6, 18] was used for estimating the drug

terms. The system was then non-dimensionalised and scaled so model quantities are

close to unity. Notice that the parameters will vary between tumour types and from

patient to patient. The set of parameters used in this study, represents a patient with
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a rapidly growing tumour and an immune system not able to control the tumour

progression, resulting in her/his eventual death if un-treated.

4 Problem formulation

In the design of an effective chemotherapy, two conflicting objectives are at play:

1. To eradicate the tumour

2. To ensure that the chemotherapy side-effects are maintained at an acceptable

level

Therefore, in our formulation, the goal is to design effective treatments with the

single agent Paclitaxel on the model described in (model equations 1), so that the

conflicting objectives mentioned above, are satisfied. In mathematical terms, the

goal is to drive the dynamical system model inside the estimated basin of attraction

of the tumour free fixed point, while maintaining the immune system population at

an acceptable level.

In our initial formulation [15], the main objective was to minimize the average

and final tumour size, and the patient’s health was modeled as a restriction on the

immune system’s level. The problem was, therefore, stated as follows:

Min TIðtf Þ þ TMðtf Þ þ 1
tf

Rtf

0

TIðtÞ þ TMðtÞdt

s.t Equations in system ð1Þ
ð3Þ

along with the added restriction:

I � cIthr� 0

Notice that there is no methodological way to determine the threshold imposed

over the immune system. In practice, we want the patient to be as healthy as

possible. In our experiments we required that the immune system does not fall

below its initial state. The control function c(t) (that appears in the model equations

1) is the amount of drug introduced into the system as a function of time,

determining the scheduling and dosing of the drug.

Pontryagin’s Maximum Principle was used to obtain the necessary conditions for

an analytical solution to this problem [15]. It turned out that such a solution is

prohibitive (as are also numerical solutions) which justifies the use of meta-

heuristics in our approach. The analysis also revealed that the problem is singular

(the Hamiltonian’s gradient does not provide information about the control when it

is zero). This occurs when the controls appear linearly in the state equations [7]. In

consequence, formulations of the objective function that do not have the control

variable explicitly, will not change the singular property of the problem. Since the

amount of drug (the control variable) in this formulation is bounded below and

above, the candidate solutions are bang–bang, which means that the optimal control

switches from one extreme to the other at certain times (i.e. is never strictly in

between the bounds).
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Below, we describe three studies that extended our initial formulation, mainly by

modifying the objective function. Further details and implementation are discussed

in Sect. 5.

First study (OF1): The first objective function considers the tumour level

deviation, at the end of treatment, from a desired level which is inside the tumor-

free basin of attraction. The patient’s health is again modeled as a restriction on

the immune system’s level. We assign weights to these contending objectives,

and study the effects of different weight combinations (from a discretised grid of

weights wi [[0..1] and
P

= 1) on the quality of the solutions.

Second study (OF2): The second objective function considers not only the tumour

levels at the end of treatment, but also the average tumour level throughout the

course of treatment, 1
Tf

R Tf

0
ðTM þ TIÞdt: This term may be important to prevent

spikes for the tumor orbit which can compromise the patients’ health. Such spikes

were seen in [3], and the integral term was included in our initial formulation [15]

to rule out this undesirable behaviour. We study in detail, here, the effect of

including such a term on the quality of the solutions.

Third study (OF3): We modified both the problem encoding, by allowing

treatments of a variable number of cycles, and the objective function by favouring

shorter treatments. The idea behind this formulation is to automatically find the

shortest possible treatment that achieves the desired goals. Shorter treatments

would lessen the patient’s burden.

5 Methods

Since the control variable is the amount of drug administered, and solutions are

bang–bang, the problem reduces to finding the times where the solution c(t)
switches from ‘‘on’’ to ‘‘off’’. That is, the times at which we begin and cease

administering the drug. Each of these on-off switches constitutes a chemotherapy

cycle. In order to admit variable time intervals, these switching times were encoded

as real numbers. Two types of control variables are distinguished: administration-

time lengths and resting-time lengths (measured in days). These variables are

intercalated and concatenated to encode a potential solution to the problem of

designing an effective chemotherapy (see Fig. 1).

The range of values for administration and resting times were set as follows.

According to the literature, the maximum tolerated dose for Paclitaxel is 5 days of

infusion at 30 mg/m2/day, every 3 weeks [6] which imposes an upper bound for

drug administration times. A lower limit of 3 h infusions is also a common practice

resting
time 1

application
time n

resting
time 2

resting
time n

application
time 1

application
time 2     . . .

Fig. 1 Schematic view of a candidate solution (control variable). Both the application and resting times
are real numbers representing days

Genet Program Evolvable Mach (2007) 8:301–318 307

123



when using Paclitaxel. Thus, the range of values for application-times was set to be

[0.2, 5].1 On the other hand, the resting-times were set in the interval [0, 30] days,

where 0 means that there is no resting period and the treatment continues, and

30 days (4 weeks) follows the current practice in a standard chemotherapy schedule

(i.e, infusions taking up to a week and a resting period of at least 3 weeks). An

external parameter, NC, indicates the number of treatment cycles.

The course of treatment is simulated starting from a constant initial function

outside the tumour-free basin of attraction. Specifically, the initial conditions were

set as TIð0Þ; TMð0Þ; Ið0Þð Þ ¼ ð1:3; 1:2; 0:9Þ; where these values represent the

populations of tumour cells (in interphase and mitosis) and immune system cells,

normalised by a factor of 106. These values are taken as an example, and actually

represent a specific patient2 with a tumour which cannot be controlled by her/his

own immune system. Therefore, the goal is to apply the drug to drive the tumour

population inside the tumour-free basin of attraction (which in our simulations is

given by ðT�I ; T�MÞ ¼ ð0:3; 0:3Þ), while maintaining the immune system level above

its initial value (Ithr = 0.9).

5.1 Proposed objective functions

Three objective functions were considered:

Objective function 1 (OF1): The equation jTM � T�Mj þ jTI � T�I j was used for

measuring the distance between the final tumour level to the desired target value.

This term penalizes excursions, both upper and lower, from the desired level

((TI
*,TM

* ) = (0.3,0.3)). The objective function can, therefore, be formulated

as the combination of the two goals: J1 ¼ r1ðjTM � T�Mj þ jTI � T�I jÞ þ r2

ðimmune restrictionÞ, with r1, and r2 real positive constants, such that r1 + r2 =

1. We wish to assess the relative importance of each term, thus we systematically

explored the range of factors between 1/4 and 3/4 with a step of 1/4, that is, pairs

(r1,r2), taken from the set {(1/4,3/4), (1/2,1/2), (3/4,1/4)}. The set of weights (0,1)

and (1,0) were not tested as they do not consider both goals simultaneously. We

express the immune restriction as the violation of the threshold imposed on the

immune system, which is written mathematically as:

Immune Restriction ¼ 0 if IðtÞ[ Ithr

Ithr � IðtÞ ifIðtÞ� Ithr

�

ð4Þ

where Ithr = 0.9. This study assumed a constant number of cycles, set to 12, which

gives 24 switching times. Therefore, candidate solutions are vectors of 24 real

numbers. We found, empirically, [15] that 12 treatment cycles were enough to drive

the tumour towards the target value.

1 Notice that 3 h corresponds to 0.125 as a fraction of a day, however, we decided to round this value to

0.2, as 0.125 was found to be too small to provide visible differences in our simulations.
2 According to the oncologists consulted during Dr. Villasana’s doctorate degree (personal

cominucation).
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Objective function 2 (OF2): The objective function was stated as

J2 ¼ r1ðjTM � T�Mj þ jTI � T�I jÞ þ r2ðimmune restrictionÞ þ 1
Tf

R Tf

0
ðTM þ TIÞdt:

The problem encoding and number of treatment cycles was set as in the first

study.

Objective function 3 (OF3): We incorporated, within the problem encoding, an

additional integer variable representing the number of cycles. This parameter was

allowed to vary in the range of 6–12. These values were set according to our

simulations, since we noticed that under 6 cycles the system could not enter the

basin of attraction, and less than 12 cycles were in general able to reach this

basin. Therefore, restricting this range would reduce the search space and thus

produce a faster search. An additional term was added to the objective function to

penalise long treatments. Thus, the objective function used is the following:

J3 ¼ ðjTM � T�Mj þ jTI � T�I jÞ þ ðimmune restrictionÞ þ NC=k

where NC is the number of treatment cycles, and k = 120 is a constant selected to

properly scale this term to the same order of magnitude of the remaining terms in

the objective function. The appropriate order of magnitude is roughly 10*NC, since

12 cycles is the maximum. We use this scale as a reference.

5.2 An evolutionary algorithm

To solve the minimization problems described above, we selected the de-

randomised Evolution Strategy (ES) with covariance matrix adaptation (CMA-

ES) [5]. This is a state of the art evolutionary algorithm, that was found to have

convergence velocity improvements over other evolutionary strategies on a large

function optimization test suite [4]. Notice also that this was, by far, the best

performing algorithm in our previous study [15], where we compared it with a

Genetic Algorithm with real-number encoding, and a Simulated Annealing

algorithm with various neighborhood operators. Moreover, the authors [5] provide

a freeware, modular, and well documented Matlab implementation, with useful

default settings for its strategy parameters. Specifically, the number of offspring k,

has a value of k ¼ 4þ b3 ln Nc (where N is the problem size, in our case 24); the

number of parents, l, is set to l ¼ bk=2c; and the weights (wi,...,wl) for weighted

recombination, are given by:

wi ¼ ln
kþ 1

2
� ln i

for i = 1,...,l. We selected these default values. As the stopping criteria, a fixed

number of iterations was set for each objective function individually after observing

very little decrease in its evaluation through successive iterations. Notice the

plateaus seen in Figs. 2 and 3, which also reveal the very fast speed of convergence

of this algorithm.
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5.3 Performance measures

In order to asses the relative merits of the proposed objective functions, two sets of

measures where devised. The first set gauges the quality of the solutions, whereas

the second set measures the diversity of the best solutions across several runs. The

interest of gauging the diversity of the obtained solutions, lies in the consideration

that providing different solutions with similar quality, could be an advantage for a

decision maker using our proposed automated system. In such a case the medical

practitioner would have several treatment suggestions that he or she could asses

according to other external factors not considered in the model.
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Fig. 2 Average best performance of the algorithm (CMA-ES) using OF1 for the three different
combinations of weights considered
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Fig. 3 Average best performance of the algorithm (CMA-ES) using OF2 (which includes the integral term)
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We ran 10 experiments for each objective function. We are aware that 10 replicas

is a small number for statistical analysis purposes. Thus we rely on a study of typical

runs, and stress the qualitative value of the results. It is worth mentioning that each

function evaluation required the integration of a DDE (Delay Differential

Equations) system for large periods of time. Thus, a single run of the evolutionary

algorithm took in the order of three days to complete on a up to date PC (Pentium 4,

3.4 GHz). Performing any extensive statistical analysis of the results was, therefore,

no feasible on our current implementation.

5.3.1 Quality measures

The best individual at the end of each of the 10 run was taken in order to report

some simple statistics (mean, maximum, minimum, and standard deviation), of the

measures described below:

Area under the Solution Curve (AUC): given a solution vector, AUC is the

integral under the control variable that represents the total amount of drug given

during the course of treatment. This quantity is important because a treatment

schedule that minimises the total amount of drug may be generally preferred.

Tumour Deviation from the desired level (TD): is the quantity calculated as

|TM – TM
* | + |TI – TI

*|, that is the amount of the tumour level deviation from its

desired target at the end of treatment.

Immune System Health (ISH): s is the average immune system’s level, calculated

with the difference

ISH ¼
ZTf

0

IðtÞdt � Ithr � Tf :

this measure accounts for the average immune level through the course of the entire

treatment minus the established threshold (Ithr). Notice that ISH gives the average

deviation above the threshold, but it does not give information about possible

immune population drops below Ithr.

In general, we should favour treatments with low AUC and TD values, and high

ISH values.

5.3.2 Diversity measures

In order to measure the diversity of the treatments obtained across several runs, we

considered the best solution at the end of each of the 10 runs for each objective

function, and calculated the following metrics:

Deviation from average best solution (DAB): is a vector containing the standard

deviations of each of the treatment cycles (application and resting times), from

the average best treatment values.
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Moment of inertia (Inertia): proposed by Morrison and De Jong [8], is inspired

by concepts from mechanical engineering, specifically on the moment of

inertia which measures the mass distribution of an object. The centroid of a

set of p points in a k-dimensional space has coordinates given by

ci ¼
Pp

j¼1
xi;j

p ; for i ¼ 1; 2; . . .; k; where xi,j is the ith coordinate in the jth point.

The moment of inertia of the set of p points, is given by:

Inertia ¼
Xk

i¼1

Xp

j¼1

ðxi;j � ciÞ2:

The higher the values in the vector DAB, the higher the diversity of the set of

best solutions. Similarly, the higher the value of I the higher the diversity of this set.

6 Results

Table 1 summarises the quality measures for the three objective functions explored.

We found no observable differences between the measures of the three weight

combinations (r1, r2) considered for OF1, which suggest that these weights do not

greatly affect the portion of the search space being explored by this function. In

consequence, and for the sake of simplicity, we report results for an equal

distribution of weights (that is, r1 = r2). As for OF3, where the number of cycles of

a treatment was also subject to evolution, solutions with 10, 11 and 12 cycles were

obtained and reported.

The efficient convergence behaviour of the CMA-ES can be appreciated in

Figs. 2 and 3 for OF1 (with different weight combinations) and OF2, respectively.

Table 1 Quality measures for OF1 and OF2 with 12 cycles, and for OF3 with 10, 11 and 12 cycles. AUC

represents the total amount of drug given, TD the tumour level deviation from the desired target, and ISH

the immune system health. Treatments with low AUC and TD values, and high ISH values, are preferred

OF1 OF2 OF3(10) OF3(11) OF3(12)

AUC Mean 40.526 40.519 38.3579 39.3832 40.9365

Max 41.202 40.601 40.5871 40.3464 43.3180

Min 40.008 40.427 33.1596 35.4110 39.9468

Std 0.370 0.056 2.6189 1.4673 1.0934

TD Mean 0.009 0.010 0.0484 0.0209 0.0184

Max 0.010 0.011 0.1744 0.1060 0.0739

Min 0.008 0.010 0.0085 0.0087 0.0085

Std 0.001 0.000 0.0592 0.0302 0.0245

ISH Mean 9.2944 11.5093 8.4338 8.5121 9.0263

Max 11.0767 12.5324 9.5778 10.8347 11.2354

Min 7.6793 11.1424 7.3929 6.0307 7.1073

Std 1.3467 0.4442 0.8147 1.7208 1.3229
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Notice that the convergence for OF2 is somewhat slower as compared to that of OF1,

requiring more iterations to reach a plateau. Notice that these curves show the

objective function values. This measure is not adequate to compare the solution’s

quality, since the weights have an effect on the mean value of the objective function,

and this does not properly reflect the tumor levels at the end of treatment. Thus,

although in Fig. 2, it appears that the weight combination producing the best

performance is (r1, r2) = (1/4, 3/4), a closer look revealed that all the weight

combinations produced similar values for the three quality measured considered (i.e.

tumour levels at the end of treatment (TD), total amount of drug given (AUC), and

immune system health (ISH)).

We see from Table 1, that there is no observable quantitative difference in AUC

and TD between the chemotherapy schedules obtained with OF1 and OF2 (that

incorporates the integral term). The main differences are seen in the qualitative

features, and diversity measures of the schedules. Table 2 shows the diversity

measures of the solutions obtained with OF1 and OF2. The first row shows the

moment of inertia (Inertia), and the remaining rows the standard deviations of each

of the treatment cycles (application and resting times), from the average best

Table 2 Diversity measures for

OF1 and OF2 with 12 cycles.

Inertia refers to the Moment of

Inertia. A stands for Application

periods, and R for resting

periods

Period OF1 OF2

Inertia 9498.3 437.4

Cycle 1 A 0.1929 0.1610

R 5.2004 0.2387

Cycle 2 A 1.1581 0

R 8.5673 0.2427

Cycle 3 A 1.3401 1.0443

R 8.1281 0.2752

Cycle 4 A 1.0475 0

R 8.7046 0.2599

Cycle 5 A 1.7431 0

R 8.8508 0.4638

Cycle 6 A 0.6741 0.0014

R 9.0996 6.3292

Cycle 7 A 1.1146 0

R 9.6003 0.0284

Cycle 8 A 1.6767 0.0049

R 7.8766 0

Cycle 9 A 0.5452 1.0535

R 12.2226 0.0152

Cycle 10 A 1.8878 1.7673

R 10.1883 0

Cycle 11 A 1.0541 1.9505

R 10.7173 0

Cycle 12 A 1.4727 0

R 10.5228 0
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treatment values. Notice that, the Inertia value is lower for OF2. Moreover, across

all the cycles the diversity in the schedules produced by OF2 is much lower,

reaching zero for most application periods. In both OF1 and OF2, there is greater

variability in the resting periods as compared to the application periods. These

qualitative differences can be further appreciated in Figs. 4 and 5, which illustrates

the best obtained schedules with OF1 and OF2, respectively (where best means

lower tumour value at the end of treatment).

The treatment obtained with OF2 shows a more regular pattern, with short resting

periods of about 10 days in the first half of the cycle, and longer resting periods

towards the end of the treatment. OF2 stresses the importance of minimizing the

tumour levels from the beginning of the treatment, whilst OF1 does not reinforce

this behaviour. We hypothesize that this relaxation on initial minimization explains

the greater variability in the solutions found when using OF1. Thus, while OF2

produces more regular treatments; OF1 has the potential of producing a variety of

schedules which increases the options available to the oncologist when designing a

chemotherapy schedule. Notice that having regular patterns of treatments (with

fixed resting and application times) could also be considered to be advantageous

from the patient’s point of view, given logistic and personal circumstances.

1 2 3 4 5 6 7 8 9 10 11 12
0

10

20

30

cycle

tim
e 

(d
)

Best OF
1

application

rest

0 50 100 150 200 250
−0.5

0

0.5

1

time (d)

co
nt

ro
l v

al
ue

0 50 100 150 200 250 300
0

0.5

1

1.5

time (d)

ce
ll 

le
ve

l

T
M

T
I

CTL

(a)

(b)

(c)

Fig. 4 The best chemotherapy schedule obtained with OF1. (a) Application and resting times for each
cycle. (b) Application times (horizontal lines at level1), and resting times (horizontal lines at level 0. (c)
Behavior of the dynamical system across the treatment time: TM = tumour level in mitosis, TI = tumour
level in interphase, and CTL = immune system level
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In our experiments, we did not observe the spikes of the tumour orbit reported in

[3], that can compromise the patients’ health. Thus, the necessity of the integral

term can be questioned. Furthermore, when we analysed the patient outcome under

the best treatments, the one obtained with OF1 is, on average, more considerate of

the immune system, in the sense that the immune level fluctuates around a higher

level than the initial state. Meanwhile the best treatment obtained with OF2 is more

severe with the immune system at the initial stages of the treatment, even minimally

violating the immune restriction (see Fig. 6). However, the values for ISH in

Table 1 are higher than those for OF1, but this measure reflects the average immune

system dynamics, hiding its particular features and possible violations of the

imposed restriction. We conjecture that the need for the integral term for

chemotherapy scheduling is dependent on the underlying model dynamics. For

the mathematical model in [3], Jeff’s phenomenon was explained through the

appearance of these spikes in the solutions for their proposed optimal control

formulation (which was also singular). The mathematical model used here explains

such a phenomenon as instability with respect to the delay parameter [14, 16].
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Fig. 5 The best chemotherapy schedule obtained with OF2 (including the integral term). (a) Application
and resting times for each cycle. (b) Application times (horizontal lines at level 1), and resting times
(horizontal lines at level 0. (c) Behaviour of the dynamical system across the treatment time:
TM = tumour level in mitosis, TI = tumour level in interphase, and CTL = immune system level
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With respect to our third study, OF3, the intention was to let the evolutionary

algorithm design not only the course of treatment for a pre-fixed number of cycles,

but also to provide the minimum number of cycles needed to achieve the desired

goals, which would lower the patient’s burden by minimizing the treatment length.

In this study, the number of cycles was encoded as an additional ‘‘gene‘‘ at the end

of the chromosomal representation, and this parameter was allowed to vary in the

range of 6–12. We conducted enough simulations, to accumulate at least 10

experimental results for each of the number of cycles predicted by the algorithms

(10, 11 and 12). On average, we observed that 30% of the experiments resulted in

treatments consisting of 10 cycles, 45% of treatments had 11 cycles, and 25% were

12 cycles long. Therefore, approximately 75% of all outcomes predicted shorter

treatment schedules than previously used. In this experiment it makes sense to

monitor the health of the immune system, because shorter treatments can take a toll

on the body’s ability to sustain them.

The quality measures obtained with OF3 are outlined in Table 1. Notice that, as

expected, the lower the number of cycles the lower the amount of drug is used by

the schedule (AUC). All the obtained solutions reached tumour levels inside the

desired basin of attraction. Moreover, the immune system restriction was not

violated throughout the course of the simulated treatments with 11 cycles, while

small movements below the Ithr = 0.9 level were observed in one experiment with

12 cycles, and another with 10 cycles. Comparing these results with those of the

OF1, we observe that there is no observable quantitative differences. This shows that

it is possible to attain the desired goals with less treatment cycles than those

previously used. This would imply a treatment reduction of approximately

6 months. The ISH values obtained for the experiments with 12 cycles are similar

to those obtained with OF1 and OF2, because the number of cycles are the same in

each case. Meanwhile, this measure is lower for experiments with 10 and 11 cycles.

This is due to a reduction in treatment times, because the amount of drug needed to
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drive the tumour to the desired level seems to be roughly around 40 (see AUC

values in Table 1). So, there is less time for the immune system to recover with

these shorter treatments. The diversity of the obtained solutions, was similar to that

observed for OF1. Thus, for the sake of brevity we report the Inertia measures only

(Table 3). Notice that it has the same order of magnitude as OF1, and greater

diversity for OF3 with 11 cycles.

7 Discussion and conclusions

We have studied the effects, on the quality and diversity of the solutions, of

different objective functions in an optimal control formulation of cancer chemo-

therapy. A highly competent evolutionary algorithm (CMA-ES) was used to address

the formulated search problem, and the patient’s dynamic was simulated through a

mathematical model of tumour growth that includes interactions with the immune

system and multiple applications of a single cycle-phase specific drug. The goal of

the chemotherapy is to eradicate the tumour, while maintaining the drug side-effects

above an acceptable level. These conflicting objectives were captured in a single-

objective function (to be minimised) with several terms: (a) the deviation of the

tumour level at the end of treatment, from a desired (low) level, (b) the tumour level

throughout the course of treatment and (c) the amount of violation to a threshold

imposed on the immune system. It is worth noticing that, since this threshold on the

immune system reflects the patient’s state of health, treatments with different

severities can be obtained by modulating this value. The effect of these terms on the

quality and characteristics of the treatments produced, was carefully analysed. We

found that the relative weights of terms (a) reaching tumour level close to the

desired target and (c) securing immune system level above the pre-established

threshold; did not produce an observable effect on the quality and features of the

obtained solutions On the other hand, including a term that considers the tumour

level throughout the course of treatment (b), produced treatments with similar

quality measures, but with different features (for example, a more regular treatment

pattern). This term was also found to double the computational time, and drastically

decrease the variability of the solutions obtained. Thus, the requirement of this term

in a formulation depends on the underlying model dynamics, and treatment goals.

Finally, when the number of treatments cycles was incorporated in the problem

encoding, and a parsimony pressure was included to the objective functions, the

proposed approach obtained shorter treatments (with a lower number of treatment

cycles) than those initially found by a trial and error procedure.

This study testifies that the outcome from a computational tool supporting the

design of cancer chemotherapy schedules, greatly depends on the formulation of the

desired treatment goals, and the modelling of patient dynamics. This confirms that

Table 3 Diversity measure (Inertia) for OF3 and solutions with 10, 11 and 11 cycles

10 Cycles 11 Cycles 12 Cycles

Inertia 7,526.1 7,722.2 5,481.8
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these systems are in no way a substitute for the practitioner but rather a decision

support tool at their disposal. However, the potential versatility of such decision

support systems, serving as test-beds for newly discovered drugs and able to be

tailored to each patient needs, should encourage their improvement. Motivated by

this line of thinking we are currently exploring a multi-objective formulation that

would produce, not a single outcome, but a set of alternative treatments, leaving the

final decision to the practitioner.
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