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Abstract. This paper describes µGP, an evolutionary approach for generating assembly programs tuned for
a specific microprocessor. The approach is based on three clearly separated blocks: an evolutionary core, an
instruction library and an external evaluator. The evolutionary core conducts adaptive population-based search.
The instruction library is used to map individuals to valid assembly language programs. The external evaluator
simulates the assembly program, providing the necessary feedback to the evolutionary core. µGP has some
distinctive features that allow its use in specific contexts. This paper focuses on one such context: test program
generation for design validation of microprocessors. Reported results show µGP being used to validate a complex
5-stage pipelined microprocessor. Its induced test programs outperform an exhaustive functional test and an
instruction randomizer, showing that engineers are able to automatically obtain high-quality test programs.
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1. Background

While Alan Turing was probably the first to suggest that the computing machine could
manipulate itself just as well as any other data, the pioneering attempt of generating
programs in an automatic way date back to 1958. Friedberg defined an assembly language
and a set of random variations, then, he tested the randomly mutated code against a given
problem trying to cultivate a solution [1, 2]. Indeed, the approach showed limited success.
Evaluating programs to measure their performance was a very slow process, and the required
computational effort was probably the most limiting factor.

Nowadays, with the increased computational power brought by modern computers, evo-
lutionary techniques are routinely exploited in many combinatorial optimization problems.
Several different paradigms have been proposed, with different representations and op-
erators, or simulating the evolution process at different levels. However, there is quite a
significant difference between solving a numerical problem and generating a functioning,
and hopefully effective, program. Currently, the best known approach tackling the evolu-
tion of programs is Genetic Programming (GP). Koza defines it as “a domain-independent
problem-solving approach in which computer programs are evolved to solve, or approx-
imately solve, problems. Genetic programming is based on the Darwinian principle of
reproduction and survival of the fittest and analogs of naturally occurring genetic opera-
tions such as crossover (sexual recombination) and mutation” [3].



248 SQUILLERO

In the GP framework, however, the term “program” usually stands for “expression.” Such
expressions may be represented as trees (directed acyclic graphs where there is only one
path between any two nodes) and are traditionally implemented in the LISP language as
S-expressions (symbolic expressions) [4, 5]. Evaluating expressions with an interpreter
rather than a compiler is a source of inefficiency in GP, and the community tried to
overcome this drawback. Different techniques based on the idea of compiling GP programs
either to some lower level, more efficient, virtual-machine code or even into machine
code were reported. A genome compiler has been proposed in [6], which transforms
standard GP trees into machine code before evaluation. In recent years several researchers
proposed modifications to this representation. In [7] the whole population was stored as a
single directed acyclic graph, rather than as a forest of trees, considerably saving memory
(structurally identical sub-trees are not duplicated.) and computation (the value computed
by each sub-tree for each fitness case can be cached.). In [8] a significant speed-up was
achieved extending the representation from trees to generic graphs and parallelizing the
evolution process.

More radically, some authors suggested evolving the programs directly in a machine-
code form to completely remove the inefficiency of interpreting trees [9], or directly
manipulating machine code storing the program as linear strings [10]. The latter approach,
called CGPS (compiling genetic programming system), was first exploited on the SPARC,
a RISC (reduced instruction set computer) microprocessor. Then it was renamed to AIM-
GP (automatic induction of machine code—genetic programming) and extended to CISC
(complex instruction set computer) microprocessors [11]. The possibilities offered by the
Java virtual machine have also been explored [12].

Despite the important emphasis on evolving Turing complete programs, most of the
work has been performed to merely speed-up the evaluation of individuals. Differently,
this paper describes an evolutionary approach for generating Turing-complete programs
tweaked for a target microprocessor called MicroGP (µGP). The main goal of µGP is not
to optimize the evaluation of the individuals, but rather to generate syntactically correct
assembly programs of variable size that fully exploit the assembly syntax, including the
different addressing modes, the instruction set asymmetries, subroutines and interrupt calls.
Although the resulting method can be exploited in different context, it was initially designed
for test-program generation for microprocessors.

This paper describes the µGP framework, reporting the new experimental evaluation
on a test-program generation problem for design validation of a pipelined microprocessor.
Remarkably, the approach enables getting meaningful results on such a complex device in
reasonable CPU time. All new results are compared with previous ones.

The next section describes the approach; Section 3 reports an experimental evaluation;
Section 4 concludes the paper.

2. Automatic test program generation

A test program is an assembly program devised to extract information that reveals the
correctness or valid operation of the machine that executes it, rather than calculating a
function or performing a task. Test programs may be used to validate the correctness of a
microprocessor design or to check the correct functionality of a device after production. In
the former case, the goal of test-program generation is to achieve maximal code coverage
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and a collection of test programs are used in a process similar to debugging. In the latter,
the goal is to generate a program capable of exposing internal malfunctions via observable
outputs. The term test program is commonly used whether the goal is validation or testing.

An early attempt to evolve assembly programs for post production test was presented in
[13]. The approach relied on a library of fragments of code carefully and skillfully written
by hand, called macros. The optimal sequence of macros was heuristically determined, and
then a genetic algorithm optimized their parameters. The approach is quite effective, but
hardly scalable. An Intel i8051, a very simple microprocessor, required 213 macros; and
the macro list was carefully compiled by an experienced engineer in two working days.

The embryonic idea of a general framework for generating assembly language program
starting from simple instructions and not macros, was presented in [14]. It represented
programs as directed acyclic graphs, and implemented a straightforward (µ + λ) evolution.
Remarkably, the overall structure resembled the linear graph GP, developed independently,
and concurrently, in [15]. Shortly after, the naı̈ve approach was successfully used in [16] for
validating a microprocessor design, and provided effective results in an almost completely
automatic way.

Subsequently, µGP was improved, adding recombination and self-adaptation [17] (called
auto-adaptation in the paper) and the evaluation procedure was expanded. The enhanced
methodology was used on different problems [18, 19] and the results of [13] were easily
outperformed. Paraphrasing Samuel [20], µGP was eventually able to do what was needed
to be done, without being told exactly how to do it. This is true at least in the very specialized
context of microprocessor validation.

In 2003, µGP was rewritten from scratch. It has now the ability to exploit single in-
structions as in [14], complex macros as [13] or a combination of them. The internal
representation has been completely disconnected from assembly specification. The number
of different nodes has been reduced, and their expressiveness increased. The directed acyclic
graph representation has been transformed to handle generic directed cyclic graphs. A new
abstraction level has been added, enabling support for subroutines and software interrupts.

3. The µGP architecture

The µGP architecture is biased by the goal of being broadly applicable. It is composed of
three clearly separated blocks (Figure 1): an evolutionary core, an instruction library and
an external evaluator. The evolutionary core adapts and generates a population of individ-
uals. It uses self-adaptation mechanisms, dynamic operator probabilities, dynamic operator
strength, and variable population size. The instruction library is used to map individuals
to valid assembly language programs. It contains either a highly concise description of
the assembly syntax, or more complex, parametric fragments of code. Finally, the exter-
nal evaluator simulates the assembly program, providing the necessary feedback to the
evolutionary core.

The next subsections detail the architecture.

3.1. Instruction library

An assembly program may be seen as composed of different sections. Those sections are
pieces of code each with a kind of syntactic format. For instance, the main body of the
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Figure 1. µGP is based on three clearly separated blocks: an evolutionary core which conducts population-
based search, an instruction library which maps individuals to valid assembly programs and an external evaluator
that simulates the assembly program, providing the necessary feedback to the evolutionary core in the form of a
coverage percentage.

Figure 2. A simple macro.

program is a section. Usually, a few starting lines are fixed and required by the operating
system and by the environment. Conversely, all subroutines may be considered a different
section. Some keywords, like “proc” always appear at the beginning of definitions, while
some others, like “endp,” always conclude them. We use this concept of sections to group
code of the same syntactic format within an assembly source program

The instruction library is designed to easily be set up and understood by a human operator.
It allows the operator to specify most syntactic details of the assembly language, like the
format of labels, subroutines and comments. The operator also enumerates each different
section of a program and defines a set of macros, i.e., fragments of code of arbitrary length,
with an arbitrary number of parameters represented as “$n.” A very simple macro is shown
in Figure 2. It encodes a single instruction, an “add” instruction, between a register and
an 8-bit constant. The register is the first parameter ($1) and may be either R1 or R2. The
8-bit constant is the second parameter ($2) and takes values between –128 and 127.

A sensible use of the instruction library allows enumerating all valid instructions in a
very compact way. Parameters may be used to encode operands, instructions and addressing
modes, as in Figure 3.

Formally, the instruction library supports seven different types of parameters:
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Figure 3. A macro describing some arithmetic/logic instructions and different addressing modes.

• Integer: represents a numeric value and may be used as immediate value, offset or
any other numeric data supported by the assembly language. The valid range must be
specified.

• Constant: represents a string inside a predefined set. They are usually used for specifying
a register together with a specific addressing mode. For instance, the third parameter in
Figure 3 specifies either R1 or R2, and two possible addressing modes, denoted with
“@” and “#.“

• Inner forward label: a reference to a subsequent macro in the same section.
• Inner backward label: a reference to a preceding node in the same section. Such labels

may produce endless loops and non-terminating programs.
• Inner generic label: a reference to a generic node in the same section, either preceding

or subsequent. Such labels may produce endless loops and non-terminating programs.
• Outer label: a reference to the first macro in a different section. Typically the entry point

of a subroutine.
• Unique tag: a string guaranteed to be unique during program evolution. It can be used

to define local labels inside the macro. For example, see the complex macro shown in
Figure 4.

The first and the last macro of a section are called respectively prologue and epilogue
and are kept distinct from the other macros.

Figure 4. A more complex macro.
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Finally, most of the macros are used to specify single instructions. However, more
complex structures can be used, and this opportunity may be useful in some context.

The instruction library also allows specifying most syntactic details of the assembly
language, like the format of label and subroutines, the format of comments, etc.

3.2. Representation

Individuals are represented as directed graphs, and each graph may be seen as a collection
of loosely linked sub-graphs, each one associated with a specific section of the instruction
library. Each node has an ancestor and a successor, except two special nodes: the head and
the tail. The head has no ancestor, while the tail has no successor. Nodes that are neither tails
nor heads are called internal. The presence of head and tail is required in all sub-graphs,
even if they may have no internal nodes. The successor of node n is denoted with succ(n).

Each node implements a macro of the instruction library. The first node encodes the
prologue of a section, the last the epilogue. All internal nodes implement random macros.
Each node contains a link to its successor and encodes all parameters required by the macro,
thus a node may be connected to any number of other nodes, according to the number of
label parameters specified in the macro. An inner forward label, an inner backward label,
or an inner generic label specifies an edge connecting a node to an internal node of the same
sub-graph. An outer label specifies an edge connecting a node to the head of a different
sub-graph.

Figure 5 details a node implementing a 3-parameter macro in a program. Each node is
linked to its successor by a vertical arrow. The third parameter of the macro is a label and
its value is represented by an arrow pointing to a previous node.

3.3. Evolutionary core

The µGP evolutionary core exploits a generational strategy. A population of µ individuals
is stored and in each generation λ genetic operators are applied. Operators are chosen
according to their activation probabilities. Since each genetic operator produces a variable
offspring, the number of individuals at the end of each generation is not fixed. After
offspring generation the population is sorted, the best µ individuals are selected for survival
and transferred to the next generation. The evolutionary core implements both a crossover
(recombination) operator and different mutation operators. All activation probabilities are
endogenous parameters automatically self-adapted by the algorithm.

The evolution process iterates until population reaches a steady state condition, i.e.,
no improvements are recorded for a number St of generations, or a maximum number of
generations have been evaluated.

Parents are selected using tournament selection with tournament size τ .

3.3.1. Crossover. The crossover operator recombines the genetic material of two different
parents, generating two new individuals. The strongly connected nature of the graphs
prevents the straightforward usage of canonical approaches, such as the exchanging sub-
trees crossover or even the structure-preserving crossover. On the other hand, a simplistic
crossover such as uniform crossover would annihilate the structure of the individuals,
resulting in an almost-complete random rebuilding of the whole genetic material.
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Figure 5. A program with one node implementing a 3-parameter macro.

The crossover operator developed in the evolutionary core is able to recombine genetic
materials, while preserving the structure and the successful strategies evolved in the parents.
Crossover is performed by swapping two compatible cores. A core κ is defined as a strict
subset of nodes where:

• no node contains, as a parameter, an edge to a node outside the core;
• no node outside the core contains, as a parameter, an edge to a node inside the core.
• all nodes are consecutive: ni ∈ κ ∧ succ(succ(ni )) ∈ κ ⇒ succ(ni ) ∈ κ .

A core may span multiple sections. If a node in the core contains an edge to the head of
a different sub-graph (i.e., an outer label), all that sub-graph is included in the core.

Two cores are compatible if they include the same sections. A core including the head of
a section is compatible only with cores that include the head of the same section. Similarly,
a core including the tail of a section is compatible only with cores that include the tail of
the same section. These rules guarantee that cores may be exchanged maintaining graphs
consistency.

To select a core, first a random sequence of nodes is chosen from a sub-graph. Then, the
core is iteratively extended to fulfill all requirements. Once two cores are selected in the
two parents, if they are compatible they are swapped, generating two new individuals.

3.3.2. Mutations. The µGP evolutionary core takes advantage of four different mutation
operators. In addition, to control the evolution process further, µGP exploits the concept
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of mutation strength. The mutation strength S ∈ [0, 1[ measures how deeply a genetic
mutation transforms the parent (when S → 1 the diversity increases). Since most mutation
operators perform an elementary modification, the number of consecutive modifications
may be increased in order to tune the overall mutation strength. The number of consecutive
elementary operations performed is probabilistically determined according to the value of
S. Each time an elementary step is performed, there is a probability S to apply a subsequent
mutation on the same parent. Thus, the expected number of consecutive mutations may be
calculated as N = 1

1−S .
Mutation strength is an endogenous parameter self-adapted during evolution. In most of

the experiments, µGP exploits large mutations at the beginning of the evolution process,
while it reduces their strength in the end. Thus, it autonomously molds the search process
from the exploration of the space to the exploitation of the results.

Four different mutation operators have been included in the current version of the evo-
lutionary core:

• Add: New nodes are added to the target graph, in a randomly chosen sub-graph. New
nodes encode random macros and all parameters are randomly chosen. Generating an
outer label may require creating a new sub-graph as well.

• Remove: Nodes are deleted from the target graph, from a randomly chosen sub-graph. If
the removal of a node creates a disconnected sub-graph, the disconnected sub-graph is
entirely deleted.

• Add/remove: Either a new node is added or an old one is deleted, as in the two previous
mutations. This mutation quickly increases diversity and is mostly used in the earliest
phases of the evolution.

• Change: All parameters in some nodes are randomly modified. Removing a node contain-
ing outer label (a reference to a macro in a different section) may create a disconnected
sub-graph, causing its deletion. Conversely, creating a outer label may require creating
a new sub-graph.

3.4. Self adaptation

The µGP evolutionary core internally tunes the activation probabilities of all genetic op-
erators and the mutation strength. By modifying these parameters, the algorithm is able to
shape the search process significantly improving its performance.

Activation probabilities are initially set to a common value: pxover = pmut/A = pmut/R =
pmut/AR = pmut/C = 1

5 . During evolution, probability values are updated according to the
operator results: let NOP be the number of activations of the operator OP in the last
generation; let SOP be the number of successful invocations of the genetic operator OP in
the last generation, i.e., the number of activations where the resulting individual attained a
fitness value higher than its parents’. At the end of each generation, the new value of the
activation probability for the operator OP is calculated as pnew

O P = α · pO P + (1 − α) · SO P

N O P .
Activation probabilities are then normalized and forced to avoid values below .01 and over
0.9. If NOP = 0, then activation probability is slowly pushed towards its initial value. The
coefficient α introduces an inertia to avoid unexpected abrupt changes.

Experimental data shows that in the beginning of the evolution, the evolutionary core
takes most advantage from the Add and Add/Remove mutations, making individuals grow
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Figure 6. Mutation strength self adapting over one typical run.

quickly. Later, in the end of the process, those operands are overridden by the Sub and
Change mutations.

During evolution, mutation strength is also varied according to the evolution results.
Intuitively, in the beginning it is better to adopt a high value, allowing the offspring to
strongly differ from parents. On the other hand, at the end of the search process, it is
preferable to reduce diversity, allowing only for small mutations.

Let IH be the number of newly created individuals attaining a fitness value higher than
their parents over the last H generations. At the end of each generation, the new mutation
strength S is calculated as Snew = α · S + (1 − α) · IH

H ·λ . Then S is saturated to 0.9.
Initially, the maximum value is adopted (S = 0.9), considering all H(µ + λ) individuals as
improvements. The coefficient α introduces an inertia. Figure 6 shows the mutation strength
during a typical run of µGP.

3.5. External evaluator

The external evaluator is a key element in the µGP architecture. It performs the phenotypic
evaluation of each individual and sends back a fitness score to the evolutionary core. The
versatility of µGP strongly depends on it.

Depending on the evaluation setup, the assembly program may be assembled, linked and
simply executed to evaluate it. Or its execution may be simulated against a hardware model
of a target microprocessor. During this simulated execution, the behavior of the hardware
model is observed and the results of the simulation are eventually used as a feedback to the
evolutionary core. Thus, the result produced by the program is not directly considered, but
the program is evaluated with respect to how it is executed by the target hardware model.
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3.6. Implementation

The evolutionary core of µGP was implemented in ANSI C language with about 6000
lines, and the source is freely available from the CAD Group web site.1 Instruction library
and external evaluator are strictly problem dependent, and need to be developed manually
for each application.

4. Experimental evaluation

To evaluate the effectiveness of the proposed approach, it has been used to generate a test
program for validating a microprocessor design. All parameters were set to their default
values as shown in Table 1.

Despite the recent advance of formal methods, such as model checking [21], equivalence
checking [22], theorem proving [23], etc., simulation is still a key step in the validation
of modern microprocessors. Engineers run massive simulations to increase confidence
on device correctness and to get insightful information. Results may be compared to
an instruction set simulator, and extensive simulations emphasize the effectiveness of
assertions and other checks. Even more, simulation results may be recorded and used to
check local optimizations and run regression tests in subsequent phases. For example, in
[24], Bentley describes how formal techniques, together with simulation techniques, were
successfully used to debug Pentium

R©
4 designs.

Devising effective test programs is becoming both more important and more challenging.
Hand-written test programs are only a first line of defense against bugs, since they focus
on basic functionalities and important but rarely-occurring corner cases. Automatic test-
generation systems have been proposed [25–28]. Although impressive results were shown,
they are far from being fully automated, requiring high amount of manual work performed
by skilled experts, and are biased towards corner cases and not broadly usable.

In contrast, µGP is more automatic, broadly-applicable and does not rely on skilled
experts. It generates a test program that is able to effectively maximize a metric based on
the design description. Furthermore, since endogenous parameters are automatically self-
adapted to their optimal values, human intervention is usually limited to the enumeration
of all available instructions and their possible operands. In no experiment the users were
required to modify the initial mutation strength S, nor the self-adaptation inertia α.

Table 1. µGP parameters.

Parameter Value Description

µ 30 Population size

λ 20 Genetic operators applied in each generation

α 0.8 Self-adaptation inertia

τ 2 Tournament size

M 300 Maximum number of generations

St 50 Steady-state threshold
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The experimental evaluation was performed against a DLX/pII, a complex, 5-stage
pipelined implementation of the DLX microprocessor [29]. µGP was given the goal to
maximize a validation metric called instantiated statement coverage i.e., to generate a test
program that, when its execution is simulated against the VHDL model of the processor,
attains 100% on the selected code coverage metric. That is to say, to generate a test program
able to stress the functionalities of the microprocessor.

To avoid confusion, in the following the term “statement” will refer to a statement in an
RT-level description, while the term “instruction” will denote an instruction in an assembly
program. Since RT-level descriptions closely resemble programs, the term “execute” is
commonly used in both domains: statements in a VHDL description are executed when the
simulator evaluates them to infer design behavior; instructions in a program are executed
when the processor fetches them and operates accordingly.

The metric used in this paper measures the percentage of executed (evaluated.) RT-level
statements over the total when the execution of a given test program is simulated. The
metric is calculated against the elaborated design. Thus, if a component (e.g., an adder) is
used 13 times in the design, 13 independent components are considered when computing
the metric.

Statement coverage can be considered as a required starting point for any design valida-
tion process. Attaining complete coverage ensures that no part of the design missed func-
tional test during simulation, as well as reducing simulation effort from “over-validation”
or redundant testing.

4.1. The DLX/pII

The DLX/pII is a 5-stage pipelined implementation of the DLX microprocessor [29]. It
realizes 79 of the instructions described in [30], including arithmetic and logic ones, tests,
branches, specials, and load/store. Floating point instructions are not supported. The DLX
uses 3 addressing modes: register, immediate, displacement (offset, register deferred and
absolute). The hardware architecture is described at the RT-level by 979 VHDL statements,
while the synthesized core is composed of about 38000 logic gates and 650 memory
elements.

The instruction library for the DLX consists of 91 entries: prologue, epilogue, 7 con-
ditional branches and 82 sequential instructions. Listing instructions and their syntax was
a trivial task. The prologue contains a routine for initializing RAM memory, while the
epilogue contains an empty endless loop to allow the evaluator to stop the simulation. The
adopted external evaluator is based on Modelsim v5.7a by Mentor Graphics a commercial
VHDL simulator.

The DLX/pII takes advantage of a pipelined architecture. A pipeline contains several
independent units, called stages. Each stage executes concurrently, feeding its results to the
following units. Instruction execution steps are arranged so that the CPU does not have to
wait for one operation to finish before starting the next: consecutive instructions are likely
to have their execution overlapped in time.

The first interesting consequence of this architecture is that the behavior of the DLX/pII
is not determined by one instruction and its operands, but by a sequence of instructions and
all their operands.
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In general, the simultaneous execution of multiple instructions leads to several difficulties
[31]. The set of pipeline peculiarities is prohibitively long to describe but it is insightful to
sketch three types of potential problems: data, control and structural hazards.

Data hazards are caused by data dependency between instructions. For instance, one
instruction may depend on the result of a previous one, already in the pipeline. Control
hazards are caused by instructions that alter the usual flow of the program. For example,
a conditional branching instruction invalidates the execution of all instructions following
the incorrectly-predicted branch. Finally, structural hazards are produced by instructions
contending non-sharable resources, such as the floating-point unit.

While in all cases the simplest solution is to “stall” the pipeline until the hazard is
resolved, an excessive stalling may significantly degrade the overall performance. Thus, to
reduce stalls, designers adopt mechanisms such as data forwarding. The basic idea of data
forwarding is to pass a result directly to the functional unit that needs it, forwarding data
from the output of one unit to the input of functional unit(s) requiring it.

Verifying the pipeline correctness is a complex task. It is not sufficient to check func-
tionalities of all possible instructions with all possible operands. It is further necessary to
check all possible interactions between instructions and operands inside the pipeline. Data
forwarding and similar mechanisms may lead to complex interactions.

Table 2 compares 17 programs in terms of instance statement coverage (ISC). The list
includes 15 functional test programs provided by microprocessor implementers (arith s,
carry su, except, fak, intrpt1, jump1, loadstore s, loadstore su, mul su, set s, set su), short
applications (mul32 and div32), system software (system01) and an exhaustive functional
test that checks all possible instructions (all instr). The last two rows report the result
attained by induced test programs. Row [CCSS03] contains the results attained by the
previous version of the algorithm and published in [18], while the performance of current
version is shown in row [µGP].

To allow for the comparison to the previous results it is necessary to remember that the
previous work exploited a different code-coverage metric. It counted lines in the source files,
while instantiated statements are considered here (after the elaboration phase). Adopting
the same setup of [18], the code-coverage of the proposed approach would be 97.96%,
significantly above the previous results of 94.59%. However, with the more precise metric
adopted in this paper, the old result is 96.20% and the new is 99.63%.

All experiments were run on the same Sun Enterprise 250 with two UltraSPARC-II CPUs
at 400 MHz, and 2 GB of RAM. Remarkably, [18] required about two days (elapsed time),
while the improved µGP only took about one single day.

Reasonably, mul32, a 32-bit multiplication performed through shifts and sums, and test
benches, like set s, attained very low statement coverage. It is well known that general
application code is seldom effective to fully validate a design.

Results are further detailed by examining the different pipeline stages: instruction fetch
(IF), decode (DEC), execution (EXE), memory access (MEM), write-back (WB). For the
sake of completeness, also the two spare blocks of input/output pads (PADS) and special-
register control logic (SREG) are considered. Remarkably, the induced test programs
outperform all other programs in all stages. The all instr, a program able to test all possible
instructions, is unable to thoroughly verify pipeline stages, attaining a coverage around
90%. The statement coverage attained by the test program generated by our automatic
method is more than 10% higher.
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Table 2. DLX Summary.

Instance statement coverage (%)

Program TOT IF DEC EXE MEM WB PADS SREG

arith s 56.29 80.72 54.14 100.00 31.06 100.00 96.55 79.38

carry su 57.17 80.72 55.13 100.00 31.06 100.00 96.55 79.38

except 60.02 89.76 57.01 100.00 50.00 100.00 100.00 90.72

fak 58.41 80.72 56.54 100.00 31.06 100.00 96.55 79.38

intrpt1 52.22 80.72 49.54 100.00 31.06 100.00 96.55 78.35

jump1 55.56 80.72 53.33 100.00 31.06 100.00 96.55 78.35

loadstore s 58.06 86.75 55.13 100.00 52.27 100.00 100.00 79.38

loadstore su 56.59 86.75 53.46 100.00 52.27 100.00 100.00 79.38

mul su 51.44 74.10 49.07 100.00 31.06 100.00 96.55 73.20

set s 55.53 80.72 53.28 100.00 31.06 100.00 96.55 79.38

set su 57.00 80.72 54.95 100.00 31.06 100.00 96.55 79.38

div32 60.80 80.72 59.26 100.00 31.06 100.00 96.55 79.38

mul32 59.59 77.71 57.98 100.00 31.06 100.00 96.55 79.38

system01 59.19 89.76 56.07 100.00 50.00 100.00 100.00 90.72

all instr 89.14 89.76 89.87 100.00 56.06 100.00 100.00 90.72

[CCSS03] 96.20 93.98 96.37 100.00 94.70 100.00 100.00 90.72

µGP 99.63 97.59 99.92 100.00 100.00 100.00 100.00 90.72

The execution of multiple instructions in the pipeline leads to intricate interactions, and
corner cases hardly appear by chance. For instance, the instruction-fetch stage handles jump
destinations, data hazards and delay slots, and it is not sufficient to execute all instructions
with all operands in order to cover it.

For the sake of comparison, random test programs of about 1000 instructions each have
been generated and simulated for one week. Random programs were generated exploiting
the instruction library developed for the µGP, but no evolutionary operators. Cumulatively,
all random programs attain an effective instantiated statement coverage of about 99%. This
means that the adoption of the µGP evolutionary mechanisms reduces by 7 times the time
required to reach comparable statement coverage with respect to a random approach. It
must be noticed that the maximum attainable coverage may be lower than 100%, and that
the proposed method leads to a sensible reduction of the amount of simulation output that
needs to be analyzed by validation engineers.

After a detailed analysis of the covered statements, µGP appears able to stress the
forwarding logic more than other approaches: the generated test set completely covers
multiplexers and registers in the instruction fetch unit, exciting different types of data
collisions. Moreover, test programs are able to generate several exception types in delay
slots (e.g., a new test immediately after a branch-if-not-equal-to-zero instruction). Finally,
the µGP-induced test set fully covers memory module, accessing aligned and non-aligned
data of different size, while other programs only exploit standard (and faster) memory
accesses.
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As an example, there are two lines in an instruction decoder that are triggered only when
a JR (an absolute jump to the address contained in a register) is found immediately after a
TRAP (a software trap). They are essential since, differently from delayed control-transfer
(delay slots), the microprocessor must handle the exception before executing any subsequent
instructions. However, neither hand-written programs, nor random ones are able to stress
them. Thus, after simulating the 15 programs in the test set and all the random programs, a
few RT-level lines are still not verified. In contrast, the µGP is able to automatically induce
a fragment of code for testing the behavior.

A closer examination shows that uncovered statements in the instruction-fetch control the
program counter overflow. Since µGP was given the additional goal of program parsimony,
it never managed to generate sufficiently long code to trigger a program counter overflow.

In the decode stage, most of the 113 uncovered statements control the 32 × 32-bit
register file and the output multiplexers. Specifically, two possible configurations in the
output multiplexers are never selected. This result indicates that µGP was not able to fully
test all possible operands, however it turns out that some of the registers are not accessible
to the programmer or µGP. Also the forwarding logic was not fully tested, showing that
µGP was not able to generate sufficiently elaborate tests. Finally, in the execution unit,
the analysis shows that a logic operation was not used, so the 32-bit adder was not fully
checked. Moreover, µGP was not able to cover some statements controlling carry and
overflow conditions.

5. Conclusions

µGP was originally devised to help microprocessor engineers in the automatic generation
of test programs, a challenging task due to the difficulty and dimension of the problems
involved. After two years of development, the internal individual representation and the
instruction library allow assembly programs to be efficiently devised and impose very few
syntactic restrictions. The flexible, modular architecture permits easy exploitation within
different contexts for different goals. Moreover, the self-adaptation mechanisms effectively
enhance the population-based search.

µGP has been used to devise a test program for validating a complex 5-stage pipelined
microprocessor, maximizing a suitable code-coverage metric. Induced test programs have
outperformed other approaches and surpassed the (supposedly) exhaustive test benches
provided by designers. More than 99% of the executable statements were covered by the
automatically generated test program. The few limitations of the approach were identified
and are currently under study.

The experiments showed that engineers could get high-quality test programs with ac-
ceptable computation effort and reduced human effort. The evolved programs include
combinations of instructions and branches that are likely to excite corner-case events that
would be unlikely to be detected by manually-written targeted test programs. Thus, the tool
could be adopted during the design cycle and used to add new content to the existing set of
test programs.

The main difficulties with the approach are caused by the nature of the goal: the evolution-
ary fitness landscape is completely unknown and evaluating each candidate test program is
computationally very intensive. Consequently, in practical applications, it is usually more
useful to reach a local optimum as soon as possible. The design of the evolutionary core
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may have been biased by this consideration. An external evaluator (based on a hardware
accelerator) which will allow the execution of massive simulations that could reveal a
better understanding of the mechanisms of the evolutionary process is currently under
development.
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