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Abstract
In the Neotropical region, one of the most diverse families of freshwater fishes is the monophyletic Serrasalmidae. Karyotypi‑
cally, the family shows high diversity in chromosome numbers (2n = 54 to 64). However, little is discussed about whether 
the chromosomal changes are associated with cladogenetic events within this family. In the present study, we evaluated the 
role of chromosomal changes in the evolutionary diversification of Serrasalmidae. Our phylogenetic sampling included 36 
species and revealed three main clades. The ancestral chromosome number reconstruction revealed the basic number 2n = 54 
and a high frequency of ascending dysploid events in the most derived lineages. Our biogeographic reconstruction suggests 
an Amazonian origin of the family at 48–38 Mya, with independent colonization of other basins between 15 and 8 Mya. 
We did not find specific chromosomal changes or increased diversification rates correlated with the colonization of a new 
environment. On the other hand, an increase in the diversification rate was detected involving the genus Serrasalmus and 
Pygocentrus in the Miocene, correlated with the stasis of 2n = 60. Our data demonstrate that chromosomal rearrangements 
might have played an important evolutionary role in major cladogenetic events in Serrasalmidae, revealing them as a possible 
evolutionary driver in their diversification.
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Introduction

The study of chromosomal changes in a macroevolutionary 
framework via Phylogenetic Comparative Methods is gain‑
ing substantial interest within the cytogenetics field (Mar‑
tinez et al. 2015; Lume et al. 2017; Sader et al. 2019). These 
integrated studies discuss chromosomal polymorphisms in 
a temporal, spatial and phylogenetic context, clarifying the 
role of these karyotypic variants in cladogenetic events driv‑
ing biodiversity (Jacobina et al. 2016; Cioffi et al. 2018; 
Costa et  al. 2020). A central organizing component of 
genome architecture is the chromosome number (2n), and 

changes in this trait play a key role in evolutionary processes 
(Schubert 2007; Freyman and Höhna 2018). Numerical and 
structural chromosomal alterations may have important 
evolutionary consequences, affecting recombination rates, 
increasing reproductive isolation between lineages, and 
driving diversification between species (Ratomponirina 
et al. 1988; Yoshida and Kitano 2021). These changes are 
usually detected in comparative studies, in the search for 
karyotypic trends among phylogenetically related groups 
(Jacobina et al. 2016; Sader et al. 2019).

In fish, chromosomal rearrangements such as centric 
fusion and fission (Robertsonian translocation), and peri‑
centric inversions have been some of the most determinant 
mechanisms of chromosomal alterations, differentiating both 
marine and freshwater lineages (Bertollo et al. 2000; Gal‑
etti et al. 2006; Jacobina et al. 2013; Sember et al. 2020). 
Fusions and fissions are readily identified in comparative 
karyotype studies, as both result in concomitant changes in 
chromosome morphology and chromosome number (Sem‑
ber et al. 2020). On the other hand, pericentric inversions 
change only the chromosomal morphology, without altering 
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chromosome number (Molina 2007; Jacobina et al. 2013). 
When discussing the significance of these chromosomal 
alterations to the diversification processes, it is common to 
attribute their importance to post-mating barriers, progres‑
sive isolation from populations, and incipient species (Ayala 
and Coluzzi 2005). Another trait that decisively impacts 
diversification rates is the colonization of new environments 
(Costa et al. 2020). This is mainly due to the morphological 
differentiation that often follows the arrival of a lineage in 
a new habitat (Friedman et al. 2020). These macroevolu‑
tionary changes are often associated with the absence of 
predation/competition in the new environment leading to 
the exploration of new niches and consequently speciation 
(Liem 1973; Schluter 2000). In this context, biogeographic 
changes may or may not be associated with chromosomal 
polymorphisms (Rosa et al. 2014; Costa et al. 2020; Nirchio 
et al. 2019).

In the Neotropical region, Characiformes fish represent 
one of the most diverse orders in terms of taxa, with more 
than 2150 species (Fricke et al. 2022). In addition, they pre‑
sent a high variation in chromosome number and morphol‑
ogy (Bertollo et al. 2000; Nakayama et al. 2012). Within this 
order, one of the most diverse families is the monophyletic 
Serrasalmidae, popularly known in Brazil as pacus, pira‑
nhas and tambaquis (Cione et al. 2009). This group, which 
includes about 101 valid species and 16 genera, has a high 
morphological diversity, with elevated bodies, laterally 
compressed, with abdominal spines and long dorsal fins 
(Kolmann, et al. 2021). Based on molecular hypotheses, the 
family is currently divided into two subfamilies, Colosso‑
matinae and Serrasalminae, with Serrasalminae composed 
of two tribes: Myleini (comprising most of pacus species) 
and Serrasalmini (represented by Metynnis, Catoprion, and 
remaining piranha’s genera) (Mateussi et al. 2020). They 
inhabit almost all the continental basins of South America 
(Jégu 2003; Fricke et al. 2022) and a variety of lotic and 
lentic environments (Goulding 1980), where they perform 
ecological functions, and support important continental fish‑
eries (Araujo-Lima and Goulding 1997). Ecologically, they 
are generally divided into two lineages, one composed of 
herbivores (pacus and tambaquis), and another more derived 
group, composed of carnivorous piranhas [Pygocentrus and 
Serrasalmus] (Géry 1977; Goulding 1980; Correa et al. 
2007). However, in recent years, studies of diets in these spe‑
cies have reinforced that they are considerably more diverse 
than previously predicted (Kolmann et al. 2021).

Regarding chromosomal aspects, representatives of this 
family have shown diversity in the chromosome (2n = 54 to 
2n = 64) and fundamental (FN = 108 to FN = 122) numbers 
(Nirchio et al. 2003; Nakayama et al. 2001). In previous 
studies, many karyotypes have been described in several spe‑
cies of serrasalmids (Almeida-Toledo et al. 1987; Cestari 
and Galetti 1992; Nakayama et al. 2000, 2001, 2002, 2008, 

2012; Centofante et al. 2002; Nirchio et al. 2003; Gaviria 
et al. 2005). A recent comparative cytogenetic analysis of 
Serrasalmidae based on classical and molecular cytoge‑
netic techniques revealed the distribution of heterochroma‑
tin predominantly in pericentromeric regions in all species 
(Favarato et al. 2021). The cytogenetic data, when superim‑
posed on the phylogeny of the family, revealed a tendency 
to increase the diploid chromosome numbers from 54 to 62 
chromosomes, which occurred in a nonlinear manner and is 
the result of several chromosomal rearrangements (Favarato 
et al. 2021). However, little is discussed about whether the 
chromosomal changes detected are associated with the clad‑
ogenetic diversification of this family, especially considering 
their phylogenetic and biogeographic context. Chromosomal 
information from an evolutionary phylogenetic perspective 
can shed light on plesiomorphic and apomorphic states in 
different lineages (Mezzasalma et al. 2016). Thus, compara‑
tive phylogenetic methods, integrating phylogenetic and eco‑
logical traits, have sought to clarify the evolutionary sys‑
tematic relationships between fish lineages (Kolman et al. 
2021). In addition, they can clarify the evolutionary trends 
of related groups, and their role in species diversification 
(Aprea et al. 2013). In the present study, we evaluated the 
role of chromosomal changes in the evolutionary diversifi‑
cation of the Serrasalmidae family from a phylogenetic and 
biogeographic perspective. We seek to clarify and discuss 
the powerful evolutionary forces that boosted its diversity 
in the Neotropical region. We tested the hypothesis that the 
diversification rate of a lineage can be increased following 
the arrival in a new environment (e.g. Costa et al. 2020) and 
associated with chromosomal rearrangements (e.g. Sader 
et al. 2019; Costa et al. 2020; Martinez et al. 2015).

Materials and methods

Phylogenetic analyses and divergence time

A total of 36 species from the family Serrasalmidae and 
two outgroups (Schizodon vittatus and Steindachnerina 
argentea) were utilized for the phylogenetic analysis (see 
Supplementary Material 1). We aligned the sequences of the 
genes cytochrome oxidase subunit I gene COI (580pb), ribo‑
somal DNA 16S (518pb) and 12S (318pb), and the recom‑
bination activating protein gene Rag1 (1246 pb) and Rag2 
(1031 pb) using ClustalOmega as a plugin implemented in 
Geneious v.7.1.9 (Kearse et al. 2012; Supplementary Mate‑
rial 1). We then used the SeaView4 software (Gouy et al. 
2010) to concatenate the different loci; the final matrix com‑
prised 3,693 bp. A concatenated alignment containing was 
imported into BEAST v. 1.10.1 (Drummond and Rambaut 
2007; Drummond et al. 2012). The Bayesian analysis was 
conducted considering all partitions simultaneously under 
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the most general substitution model (GTR + G). Uncorre‑
lated relaxed lognormal clock (Drummond and Rambaut 
2007) and Birth–Death speciation model (Gernhard 2008) 
were applied. One run of 50,000,000 generations was 
performed, sampling every 5000 generations. In order to 
verify the effective sampling of all parameters and assess 
the convergence of independent chains, we examined their 
posterior distributions in TRACER v.1.6. (Rambaut et al. 
2014). The MCMC sampling was considered sufficient 
at effective sampling sizes higher than 200. After remov‑
ing 25% of samples as burn-in, the independent runs were 
combined and a maximum clade credibility (MCC) tree 
was constructed using TreeAnnotator v.1.8.2. (Drummond 
et al. 2012). For divergence time estimates, we used four 
calibration points, employing a standard deviation of 10% 
of the node age. Three secondary calibrations were done, 
one according to Betancur et al. (2015), which presented 
a phylogeny of 1407 ray-finned fish, dated with over 200 
fossil records. For the other calibrations, we used fossils, 
one of pacu teeth described by DeCelles and Horton (2003) 
(minimum age = 38.0 Ma/offset, mean = 6.75). Another 
calibration points for Mylopus in the Miocene (minimum 
age/offset = 11.2 Ma, mean = 9.0), (Roberts 1975; Dahdul 
2004). And finally, another with Megapiranha paranensis 
(Cione et al. 2009), to calibrate all piranha genera (minimum 
age = 6.8 Ma/offset, mean = 10.4).

Chromosome number reconstruction

A priori chromosomal information was obtained from the 
Arai checklist book (2011) and was later updated until 
2022 (for more details, see supplementary material 2). The 
MCC tree obtained in the BEAST analysis was used for the 
reconstruction of the haploid chromosome number with the 
ChromEvol software (Glick and Mayrose 2014). This soft‑
ware uses a Maximum Likelihood Estimate (MLE) approach 
to infer ancestral chromosome numbers along a phylogeny. 
This is done under customizable models that use different 
weights for events of polyploidy (whole genome duplica‑
tion), demiploidy (1.5 × genome increase) and disploidy 
(gain or loss of a chromosome). The analysis ran for 10,000 
simulations under all eight pre-existent chromosome evolu‑
tion models available on the software. The Akaike infor‑
mation criterion was used to assess the best-fitted model 
(Mayrose et al. 2010).

Ancestral area reconstruction

To investigate the historic biogeography of Serrasalmi‑
dae, we employed a model-based likelihood approach 
implemented in the R package BioGeoBEARS (Matzke 
2013). First, the MCC tree yielded by BEAST was pruned 
to exclude the outgroup using the function “drop.tip” 

implemented in the R package phytools (Revell 2012). Our 
samples were drawn from the following three ecoregions: 
(A) Amazon and Orinoco basins, (B) São Francisco basin 
and Atlantic Coastal drainages and (C) Paraguay, Parana, 
and Uruguay basins. These areas were chosen based on the 
distribution of Serrasalmidae species in river basins accord‑
ing to Fishbase information (Froese and Pauly 2022). The 
distribution data was retrieved from the Global Biodiversity 
Facility (GBIF) database. We remove duplicates and records 
with obvious georeferenced errors. This procedure excluded 
occurrences in the ocean or outside the Neotropical region, 
those without country names, coordinates with zero latitude 
or longitude, and coordinates annotated on the coarse-scale 
grid without decimal precision (Supplementary Material 2).

We used the pruned maximum credibility tree for ances‑
tral range estimation to test likelihood implementations of 
three different biogeographic models in BioGeoBEARS. 
The DEC model treats dispersal and extinction as anagenetic 
events (modeled as free parameters) and sympatry, subset 
sympatry, and vicariance as cladogenetic events (modeled as 
fixed parameters) (Ree and Smith 2008). The DIVA model 
is similar, but it allows widespread vicariance as a possible 
cladogenetic event (Ronquist 1997). The BAYAREA model 
assumes that cladogenetic events are not accompanied by 
changes in geographic areas (Landis et al. 2013). Each of 
these models was also tested with the addition of the free 
parameter j, which treats jump dispersal as a cladogenetic 
event and has been shown to improve model likelihood 
(Matzke 2014). We compared the results of the models with 
and without the parameter j using likelihood ratio tests; the 
model weights were calculated under the Akaike information 
criterion (AIC). In order to measure the numbers of disper‑
sal, vicariance, and sympatry events, we conducted 100 sto‑
chastic mapping replicates under the best model yielded by 
BioGeoBEARS. Each stochastic map represents a possible 
biogeographic history considering the chosen model and the 
estimated parameters (Duplin et al. 2017).

Diversification rate analysis

Shifts in diversification rates were calculated using specia‑
tion/extinction model type analysis in BAMM (Rabosky 
et al. 2014). For this, we used the same pruned phylogeny 
of the previous analysis. The missing taxa per tip (subge‑
nus) in the phylogenetic tree was estimated according to 
the total number of species reported for each genus on the 
FishBase database (Froese and Pauly 2022). We divided the 
genera in three clades based on the MCC tree to state the 
percentage of species informed by clade: Clade I, subfam‑
ily Colossomatinae (Colossoma + Mylossoma + Piarac-
tus), Clade II, tribe Myleini (Myleus + Myloplus + Mylesi-
nus) and Clade III (subclade a Metynnis) and (subclade 
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b Catoprion + Pristobrycon + Pygopristis + Pygocen-
trus + Serrasalmus), tribe Serrasalmini.

Priors for the BAMM control file were generated using 
the dated phylogenetic tree input into the function set 
BAMM priors in the package BAMM tools v. 2.5.0 imple‑
mented in R. The control file was set for 1,000,000 gen‑
erations and the analysis was run twice as recommended, 
returning similar results. Resulting MCMC Log likelihoods 
were tested against generation number using the CODA 
package (Plummer et  al. 2006) implemented in R. All 
remaining outputs contained in the event data file were ana‑
lysed using BAMMtools in R.

Results

Phylogenetic analyses and divergence time

The MCC tree yielded by BEAST (Fig. 1) showed the fam‑
ily Serrasalmidae as monophyletic with a high support 
(pp = 0.97) with estimated origin around 48 Mya. Within the 
family, the genera Serrasalmus and Pygocentrus were para‑
phyletic, forming a well-supported clade (pp = 1) that origi‑
nated approx. 16.9 Mya. The individuals of genera Catop-
rion, Pygopristis and Prystobrycon formed a monophyletic 
group with approx. 21.5 My (pp = 0.99). The monophyletic 

genus Metynnis (pp = 0.99) was found to be the sister of 
these subclades, with an estimated origin of approx. 25.9 
Mya a. These three subclades together were named here as 
Clade III. The Clade II (pp = 0.99) was formed by genera 
Myleus and Mylesinus, diverging around 28.9 Mya. Lastly, 
Clade I was composed of the monophyletic genus Piaractus 
(pp = 0.99), the paraphyletic genus Mylossoma and the rep‑
resentant from genus Colossoma (pp = 0.98) and sister to the 
remaining Serrasalmidae clades (Fig. 1).

Phylogenetic comparative methods

We reconstructed the haploid chromosome number across 
the phylogeny of subfamily Serrasalminae based on Maxi‑
mum Likelihood using ChromEvol. After all runs were 
completed, the AIC scores were assessed for choosing 
the best-fitted model. The models M1 (CONST_RATE), 
M2 (CONST_RATE_DEMI), and M4 (CONST_RATE_
NO_DUPL) presented lower AIC scores, all very simi‑
lar (91.32, 91.32, and 89.32 respectively). These three 
models presented almost identical results when plotted 
on the phylogeny, therefore the simplest model (M1) 
was chosen for the discussion of the results (Fig. 2). The 
ancestral haploid chromosome number of the subfamily 
was inferred to be n = 28 (pp = 0.5), with a very close 
probability of n = 29 (pp = 0.43). All the main clades 
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Fig. 1   Ancestral area reconstruction inferred by the DIVALIKE 
model implemented on BioGeoBEARs. Pies at the nodes repre‑
sent the posterior probability of a given area, with colors coded as 

informed on the map on the lower left corner. The axis scale repre‑
sents the time of divergence in millions of years
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presented different ancestral chromosome numbers. 
Clade III presented n = 30 (pp = 0.87), with independent 
disploidy events responsible for n = 31 in Pristobrycon 
and Pygopristis, and n = 32 in a few Serrasalmus spe‑
cies. Clade II presented n = 29 (pp = 0.95), without further 
number changes. Clade I presented n = 27 (pp = 0.51) with 
a close possibility of n = 28 (pp = 0.43). According to the 
results, chromosome evolution on this group was mainly 
directed by ascending and descending disploidy (exp. of 
7 and 5.6 respectively), with no incidences of polyploidy 
or demipolyploidy.

We used BAMM to detect heterogeneity in evolution‑
ary rates across Serrasalmidae phylogeny. The 95% cred‑
ible set of rate shift configurations sampled with BAMM 
presented three distinct shift configurations. The set 
with the highest probability (f = 0.4, Fig. 3) presented 
one shift of diversification on the ancestral node of the 
clade formed by Serrasalmus and Pygocentrus at around 
11 Mya.

We tested whether this increase in the rate of diversi‑
fication in clade III was associated with biogeographic 
colonization of new environments. To this, we used 
BioGeoBEARS for ancestral area reconstruction based 
on the Bayesian topology. The DIVALIKE model pre‑
sented the lowest AIC score (90.87), being considered the 
best-fitted model (Fig. 1). The cladogenetic events were 
majorly sympatry events (83.9%) with only a few vicari‑
ance events (16.1%) mainly at the more recent nodes of 
the phylogeny. The whole subfamily and each of the main 
clades was confirmed to have originated in the Amazon 
region of Brazil, with the first incursions to other regions 
occurring ~20 Mya on Clade III.

Discussion

Our phylogenetic analyses provided molecular support 
for the recognition of three main clades in Serrasalmidae, 
congruent with previous studies (Ortí et al. 2008; Cione 
et al. 2009; Thompson et al. 2014; Mateussi et al. 2020; 
Favarato et al. 2021). The previous phylogenies currently 
subdivide Serrasalmidae into two subfamilies: Colosso‑
matinae [Clade I] and Serrasalminae (split into the tribes 
Myleini [CladeII] and Serrasalmini [Clade III]) (Mateussi 
et  al. 2020). When evaluating the ancestral karyotype 
in our topology, it was revealed that during the clado‑
genesis of this family, there were two distinct events of 
chromosomal rearrangements. The first one, leading to a 
descending dysploidy to n = 27 (2n = 54) in the subfam‑
ily Colossomatinae (Clade I), and the other, an ascending 
dysploidy in the subfamily Serrasalminae with Myleini 
and Serrasalmini tribes (Clade II and III), showing n = 29 
(2n = 58), n = 30 (2n = 60), 31 (2n = 62) and n 32 (2n = 64) 
respectively. Regarding the first diverging lineage of the 
family, some studies have suggested n = 27 as the most ple‑
siomorphic karyotype, due to its presence in older groups, 
such as the genera Mylossoma, Brachypomus, Colossoma 
and Piaractus (Nakayma et al. 2012). The chromosome 
number 2n = 54 was also detected in other representatives 
of the order Characiformes, such as the families Anosto‑
midae and Prochilodontidae, which have a high degree 
of chromosomal conservation (Vicari et al. 2006; Aguilar 
and Galleti 2008). However, upon conducting the ances‑
tral chromosomal reconstruction, we did not obtain evi‑
dence that would support this hypothesis. During the early 
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divergence of the Serrasalmidae family, we observed two 
distinct trends: one characterized by chromosomal conser‑
vation and the other by variation, resulting in an increase 
in the chromosomal number.

Throughout our chromosome number reconstruction, it 
was possible to identify ascending dysploid events (increas‑
ing the chromosome numbers) in the most derived genera, 
such as Mylesinus, Myleus and Myloplus, which present 
2n = 58. This increase becomes accentuated in representa‑
tives of the most diverse genera, Pygopristis, Pygocentrus 
and Serrasalmus with 2n = 60, 62 and 64. The differential 
morphology of karyotypes with more derived chromosome 
numbers, such as an increase in acrocentric chromosomes, 
indicates that chromosomal fission rearrangements drive the 

karyoevolution of the Serrasalmidae family (Nakayama et al. 
2012). Centric fissions lead to karyotype diversity within 
a population, consequently increasing the probability of 
genetic isolation and speciation (Perry et al. 2004). Indeed, 
these processes appear to have been one of the main mecha‑
nisms in cladogenetic events in this family.

Our biogeographic reconstruction and molecular dating 
also allowed us to understand the phylogenetic relationships 
in a temporal context and discuss geographic distribution 
across space and time. Regarding the geographic distribu‑
tion, most of the representatives of Serrasalmidae occur in 
the Amazon basins, which suggests that this region is the 
center of origin of the group. On the other hand, much is 
discussed about the evolutionary origin of the family, which 
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lower right corner, we present a speciation rate x time of divergence 
(in My) for the subfamily
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has often been controversial. Some authors suggest an older 
origin, around 66–56 Ma, during the Middle Paleocene, but 
with the beginning of its diversification around 45 Ma, in the 
late Eocene (Thompson et al. 2014; Burns and Sidlauskas 
2019). Another study pointed to a younger age, between 42 
and 38 Ma (Kolmann et al. 2021). Our analyses point to a 
scenario between 48 and 38 Ma, within the threshold of pre‑
vious studies, associated with the uplift of the Andes (Arm‑
ijo et al. 2015). In this context, the diversification scenario 
has been congruent with these studies (Burns and Sidlauskas 
2019; Kolmann et al. 2021).

The cladogenetic events that separate the three major 
clades are related to the late Eocene and early Oligocene 
(38 to 30 Mya) in our study, which coincides with the great 
division of the West–East Amazon drainage, with the origin 
of the Purus Arc and a period of mega-wetland formation in 
the proto-Orinoco-Amazonas (Lundberg et al. 1998; Albert 
and Reis 2011). The uplift of this arc is due to an oroge‑
netic response to the initial elevation of the Andes Moun‑
tain range, which consequently may have caused allopatric 
speciation in some fish species (Armijo et al. 2015). This 
context of allopatry is reinforced by the presence of fos‑
sils of C. macropomum, known as pacus, in the Magdalena 
River basin in Colombia, which today is an inhabitant of the 
Amazon and Orinoco rivers. This has suggested that this 
taxon inhabited ancient systems that connected the Ama‑
zon and Magdalena River basins, today separated by the 
Andes Mountain range (Lundberg et al. 2009). Ecological 
factors have also been associated with the diversification 
of frugivorous pacus, which coincides with the diversifica‑
tion of fruit plants during the Eocene (Correa et al. 2015). 
However, with regard to chromosomal aspects, the subfamily 
Cossolomatinae was the group that presented descending 
dysploidy (2n = 54), which has not presented an increase in 
chromosomal diversification, contrary to the subfamily Ser‑
rasalminae, constituted by an ascending to dysploidy with 
2n = 58 to 64.

During the Lower Eocene and Upper Miocene (30–20 
Mya), the uplift of the Andes in the North and Central region 
culminated in a change in the course of several rivers (Lun‑
dberg et al. 1998). These orogenetic processes significantly 
altered the hydrography in South America, leading to frac‑
turing processes in several basins, with redirection of river 
courses and headwater capture events (Hoorn et al. 2010; 
Evenstar et al. 2015). These processes may have provided 
ecological opportunities and colonization of Serrasalmideos 
for new habitats, providing speciation events (Melo et al. 
2018, 2022; Roxo et al. 2019; Ochoa et al. 2020). Together 
with these cladogenetic mechanisms, they may have trig‑
gered chromosomal rearrangements with a tendency towards 
ascending dysploidy. However, our biogeographic recon‑
struction demonstrated that dispersal/ vicariance events 
apparently did not accompany karyotypic changes.

As the ancestral chromosome reconstruction shows, 
ascending dysploidy lead to higher chromosome numbers 
at the most derived lineages of Serrasalminae, culminating 
in the 2n = 60 karyotype being predominant in the Serras-
almus and Pygocentrus genera. In addition to this, our data 
revealed an increase in the diversification rate during the 
Miocene (11–8 Mya), involving these genera. These find‑
ings are in agreement with other studies, which also pointed 
to rapid and recent radiation involving this group of pira‑
nhas, which have diversified greatly in the plains of South 
America (Hubert and Renno 2006; Hubert et al. 2007). The 
apparent correlation between the 2n = 60 karyotypes and the 
increase in diversification rate, coupled with the tendency for 
ascending dysploidy in the family, may point to a scenario in 
which high chromosome numbers are associated with spe‑
cies diversification and evolutionary success. However, cau‑
sation would be hard to infer until further and more detailed 
genomic studies for these groups are provided.

During the late Miocene and Pliocene, hydrological and 
paleogeographic events may have driven changes in the 
diversification rates of this group. In relation to other river 
basins, the Amazon separated from the Paraná-Paraguay 
system by 10 Ma, leading to the separation of the ichthyo‑
fauna in these systems (Hubert and Renno 2006). Headwater 
capture events have also been identified between the Upper 
Paraná and São Francisco basins around 10 Mya (Hubert 
and Renno 2006). Dispersions such as separations between 
watersheds, provided by tectonic activations and changes 
in the course of rivers (geodispersion), may have provided 
a certain advantage for carnivorous piranhas, in dispersing 
species and conquering new habitats, reducing predation and 
competition. These processes can lead to increased rates of 
speciation and diversification, as happened in the subfamily 
Hipostominae (Cardoso et al. 2012). In addition to oroge‑
netic movements, sea level fluctuations may also have fur‑
ther contributed to promoting this diversification (Hubert 
and Renno 2006). In the last 10 Mya, the sea level has varied 
from 35 m above to 122 m below the current level and may 
also have contributed to accelerate this process (Hubert et al. 
2007). In this context, in addition to allopatric speciation, 
processes of sympatric speciation have also been detected in 
some sister lineages of piranhas, associated with habitat het‑
erogeneity. As is the case of S. compressus n = 30 and S. hol-
landi n = 32, which live in the Madeira River and diverged 
in the last 2 Ma (Hubert et al. 2007).

All the discussed scenarios highlight that historical 
and ecological processes seem to have shaped this fam‑
ily's genetic and phylogenetic diversity, involving several 
types of chromosomal rearrangements. In this context, 
ascending dysploidy seems to have driven the karyotypic 
evolution of some lineages towards higher chromosome 
numbers,resultin in highly diversified persistent lineages 
across different hydrographic basins of South America. 
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These data, combined with previous studies (Correa et al. 
2015), demonstrate that the rate of diversification in Ser‑
rasalmidae is not correlated with biogeographic changes, 
but that it could possibly be linked to ecological processes 
that lead to morphological changes (Kolmann et al. 2021), 
as well as karyoevolutionary differentiation by dysploidy. 
Generally, dysploidy does not necessarily imply changes in 
DNA content, only in the structure of chromosomal rear‑
rangements that can occur in the genome. These processes, 
so far, have been considered to have a neutral effect in rela‑
tion to the diversification of evolutionary processes over the 
long term (Escudero et al. 2014).

Final considerations

Our data demonstrate that chromosomal rearrangements 
played an important evolutionary role in major cladogenetic 
events in Serrasalmidae, revealing them as a powerful evo‑
lutionary driver in family diversification. Our results sup‑
port the hypothesis that ascending dysploidy acted as one 
of the main drivers in the chromosomal evolution of the 
Serrasalminae family and seems to be more correlated with 
diversification patterns than biogeographic history. In this 
context, we suggest the importance of integrating cytoge‑
netic studies to evaluate the systematic aspects of the Ser‑
rasalmidae family. In addition, we highlight the importance 
of correctly interpreting the karyotype in a phylogenetic and 
biogeographic context.
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