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Abstract
In this paper, we explain the concept of heritability and describe the different methods and the genotype–phenotype cor-
respondences used to estimate heritability in the specific field of human genetics. Heritability studies are conducted on 
extremely diverse human traits: quantitative traits (physical, biological, but also cognitive and behavioral measurements) 
and binary traits (as is the case of most human diseases). Instead of variables such as education and socio-economic status 
as covariates in genetic studies, they are now the direct object of genetic analysis. We make a review of the different assump-
tions underlying heritability estimates and dispute the validity of most of them. Moreover, and maybe more importantly, we 
show that they are very often misinterpreted. These erroneous interpretations lead to a vision of a genetic determinism of 
human traits. This vision is currently being widely disseminated not only by the mass media and the mainstream press, but 
also by the scientific press. We caution against the dangerous implication it has both medically and socially. Contrarily to 
the field of animal and plant genetics for which the polygenic model and the concept of heritability revolutionized selection 
methods, we explain why it does not provide answer in human genetics.
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Introduction

Understanding how genes contribute to complex traits has 
been at the center of many researches in the last century 
and remains a major question today. This question was at 
the origin of the field of quantitative genetics that devel-
oped, a century ago, after the seminal work of Ronald 
Fisher. In this work, Fisher (1918) aimed at explaining the 
observations of Biometricians on trait measure correlations 
between relatives by the effects of a large number of Men-
delian genetic factors. He introduced the concept of variance 

and its decomposition into a genetic and an environmental 
component that is at the basis of the concept of heritability. 
Indeed, genetic and environmental variations both contribute 
to the phenotypic variation of individuals. The phenotypic 
correlation between parents and their offspring only depends 
on the importance of the genetic variation part which is the 
so-called heritability. To estimate this heritability, it is nec-
essary to specify the correspondence between genotypes 
and phenotype and this is what Fisher proposed in his work 
by suggesting that quantitative traits could be explained by 
a polygenic model. This polygenic model and the related 
mathematical concept of heritability revolutionized animal 
and plant selective breeding, previously made on a purely 
empirical basis. Indeed, the response to selection of a trait 
was shown to depend on the heritability through what is 
called the breeder’s equation proposed by Lush in 1937 
(Lush 1937).

With 20,911 occurrences in articles from PubMed since 
1946 (search performed on February 2021), including 6860 
over the last five years, the term “heritability” is now com-
monly used in many studies although not always correctly. 
The concept is indeed a statistical concept that is often not 
well understood and misused. This is especially true in the 
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field of human genetics where several authors have already 
warned against its misusage (see for example, Feldman and 
Lewontin 1975). Recently, with the development of novel 
technologies to characterize genome variations and the pos-
sibility to perform association tests at the scale of the entire 
genome, heritability computations have become even more 
used in human genetics. Novel methods have been devel-
oped to estimate heritability from genetic data in order to 
determine how much of the phenotypic variation could be 
explained by the associated loci that were discovered by 
Genome-Wide Association Studies (GWAS). The game 
then consisted in comparing these genetically derived esti-
mates against estimates of heritability based on pedigrees 
or twin studies to determine how much additional efforts 
were needed to capture all the genetic component of trait 
variability. The hope was that by finding the genetic factors 
contributing to this genetic component, it would be possi-
ble to make some predictions on expected traits values in 
individuals.

Birth of the concept of heritability

History and definition

The origin of the word heritability is difficult to trace. It 
is often attributed to Lush and his book entitled “Animal 
Breeding Plans” (Lush 1937) is referred. However, the word 
is not used in the first edition of Lush’s book. As explained 
by Bell (1977), the usage of the term has evolved from an 
initial stage in the middle of the nineteenth century when 
it was used to denote “the hereditary transmission of char-
acteristics or material things, simply having the capability 
(legally of biologically) of being inherited”. Then, at the 
beginning of the twentieth century, Johannsen introduced the 
terms “gene”, “genotype” and “phenotype” and described 
phenotypic variation as arising from environmental and 
genotypic fluctuations (Johannsen 1911). Lush himself sug-
gested that Johannsen was probably the first who captured 
the idea of heritability. Lush wrote to Bell (Bell 1977) “Wil-
helm Johannsen deserves credit for distinguishing clearly 
between variance caused by differences among the individu-
als in their genotypes and variance due to differences in the 
environments under which they grew. This is close to what 
I call "heritability in the broad sense”. I take it that "Erbli-
chkeit" can be translated fairly as heritability”. Although 
the term is not used in the first edition of his book “Animal 
Breeding Plan” published in 1937, Lush was the first one to 
define heritability in its modern-day usage. In the second 
version of the book, published in 1943, the term “heritabil-
ity” is used in several places and even appears in the index 
(Lush 1943).

An important step in the formulation of the concept of 
heritability was the work of Ronald Fisher and his famous 
article, “The Correlation between Relatives on the Suppo-
sition of Mendelian Inheritance”, published in 1918, that 
marked a decisive step in the development of quantitative 
genetics. From a mathematical point of view, Fisher pro-
posed to decompose the phenotypic variance P (note that 
Fisher introduced the concept of variance at that time) into 
the sum of the genotypic variance G and the environmental 
variance E:

Fisher did not use the word “heritability” in his 1918 
paper but pointed out the importance of the ratio var(G)/
var(P) that is precisely what we call the broad-sense herit-
ability H2. Thus,

H2 measures how much of the phenotypic variance is 
attributable to genotypic variance.

The genotypic variance G can be further decomposed 
into its additive A, dominance D and epistasis Ep compo-
nents. The ratio of the additive genetic variance (which cor-
responds to the addition of the average effects of the two 
alleles of each genetic locus) over the phenotypic variance 
is called “narrow-sense heritability”, and noted h2:

The first uses of heritability for animal and plant 
selection

The ratio of the variance of the additive genetic effects over 
the phenotypic variance was shown by Fisher (1918) to be 
directly related to the correlation of phenotypes between 
relatives. For the special case of parent–offspring for exam-
ple, he found that the phenotype correlation is simply ½ 
h2 and he derived similar equations for different degrees of 
kinship. Thus, the narrow-sense heritability measures the 
resemblance between relatives, and hence is also a way to 
predict the response to selection.

Indeed, if we denote by R the response to selection 
defined as the difference in mean phenotype between off-
spring and parental generations, then, it could be shown that 
R depends on h2. This was first shown by Fisher (1930) when 
considering the evolution of fitness under natural selection, 
leading to the so-called “Fundamental Theorem of Natural 
Selection”. The same is also true under artificial selection 
with R being a simple function of h2 and the selection dif-
ferential S defined as the difference between the phenotype 

(1)var(P) = var(G) + var(E)

(2)H
2 =

var(G)

var(P)

(3)h
2 =

var(A)

var(P)
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mean in the parental population and the phenotype mean of 
the population that reproduces (among those that have been 
selected):

This formula was first derived by Lush (1937) and later 
called “the breeder’s equation” (Ollivier 2008). It can predict 
how successful artificial selection will be given the mean 
value of the selected individuals.

The genotype–phenotype relationship model 
underlying the concept of heritability

Underlying the concept of heritability is the idea that any 
quantitative trait can be described as the sum of a genetic 
and a non-genetic (or environmental) component, and that 
the genetic component involves a large number of Mende-
lian factors with additive effects. This model referred to as 
the “infinitesimal model” or “the polygenic additive model” 
has its roots in the observations made by Galton (1877), and 
their analysis by Pearson (1898), followed by the Mende-
lian interpretation made by Fisher (1918). Under this model, 
each locus makes an infinitesimal contribution to the geno-
typic variance and thus this latter variance remains constant 
over time even when natural selection is occurring.

The infinitesimal model was derived for quantitative 
traits such as height, weight or any other trait that is meas-
urable and normally distributed in the population. Several 
human traits and in particular diseases are not quantitative 
but dichotomous (or binary)—e.g., affected or unaffected by 
the disease of interest. Some of these dichotomous traits can 
be explained by simple Mendelian models. It is for exam-
ple the case for rare diseases that segregate within family. 
For most common diseases, however, this is not the case 
and the observed familial aggregation cannot be explained 
by a simple monogenic model. To study such traits, Carter 
(1961) proposed the so-called “liability model” that assumes 
that, underlying these binary traits, there is an unobserved 
normally distributed quantitative variable, the liability, that 
measures individual’s susceptibility to the disease. When the 
liability value exceeds a given threshold, the individual is 
affected and otherwise, the individual is unaffected.

The uses of heritability in human genetics

A short history

Fisher's model was first applied to human measurable 
physical traits such as height or weight but also to another 
quantitative trait, intelligence quotient (IQ), using the 

(4)R = h
2
S

results of IQ tests. The original test proposed by  Binet 
and Simon (1916) as a measure of child's mental age was 
standardized and published in 1916 to become the stand-
ard intelligence test used in the U.S. It is from the end 
of the 1960s that the heritability of IQ becomes widely 
debated, in particular after publication of the work of 
Jensen (1969). Using data on IQ collected in different 
studies, Jensen estimated that the heritability of IQ was 
about 80%. He concluded that differences in intelligence 
between social groups are largely genetic in origin and that 
educational policies aiming at reducing inequalities would 
therefore be ineffective. This type of reasoning is notori-
ously extended in Herrnstein and Murray's The Bell Curve 
(1994) or in the work of Robert Plomin and von Stumm 
(2018). At the same time, the study of the heritability of 
IQ was the subject of a great deal of theoretical, meth-
odological, moral and political criticism (among others, 
Kempthorne 1978; Jacquard 1978; Lewontin et al. 1984).

Studies of the heritability of cognitive and cultural 
traits have multiplied since the 1970s, notably through the 
development of a new research specialty, behavior genet-
ics (Panofsky 2011, 2014), which aims to study the nature 
and origin of individual behavioral differences. Heavily 
invested by psychologists, behavior genetics is interested, 
for example, in personality traits, social attitudes and men-
tal illnesses. More recently, the study of the heritability 
of behavioral traits has been taken up in other disciplines 
of the human sciences, with the development of research 
currents in criminology (“biosocial criminology”, see 
Larrègue 2016, 2017, 2018a), political science (“genopo-
litics”, Larrègue 2018b), economics (“genoeconomics”, 
Benjamin et al. 2012) or sociology (“sociogenomics” or 
“social science genetics”, see Robette 2021), and the study 
of traits as diverse as delinquency, electoral behavior, 
income, educational attainment, social mobility or fertility.

Apart from quantitative traits, there have also been con-
siderable interest in estimating the heritability of differ-
ent common human diseases. Diabetes is an example of 
such disease that has been at the center of many studies to 
understand the genetic contribution and estimate heritabil-
ity (for a review, Genin and Clerget-Darpoux 2015b). As 
explained above, for these disease traits that are dichoto-
mous, rather than the heritability of the binary trait, it is 
the heritability of this liability that is estimated (Falconer 
1965).

The evolution of the data used and the estimation 
method

Human genetic studies on heritability are based on a vari-
ety of data and methods that have evolved with scientific 
and technological advances.
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Use of phenotypic covariance between relatives: 
twin studies

Following on from Fisher (1918), Falconer shows in his 
book Introduction to Quantitative Genetics (1960) that the 
phenotypic covariance between relatives is a function of the 
additive variance according to the degree of kinship. The 
first heritability estimates were derived from empirical data 
on phenotype correlations between relatives and different 
approaches were proposed that compare these correlations 
between different types of relatives (Tenesa and Haley 2013 
for a review). Among the different types of relatives, the 
most exploitable in human genetics is the comparison of 
identical and fraternal twins. In 1876, Galton (1876) pro-
posed the use of twins to distinguish between genetic and 
environmental factors in the expression of a trait. But it was 
not until the beginning of the twentieth century that the 
idea emerged that there are two kinds of twins: monozy-
gotic (MZ) and dizygotic (DZ). In 1924, Siemens (1924) 
published the first study comparing the similarity between 
MZ and DZ twins and, in 1929, Holzinger gave formulas for 
studying the relative effect of nature and nurture upon mean 
twin differences and their variability.

In 1960, Falconer showed that heritability may be simply 
estimated from the difference between MZ and DZ concord-
ance rates, provided the following assumptions hold:

(1) environmental variance is identical for MZ and DZ 
twins and remains the same throughout life,

(2) variance of interaction could be neglected.

Falconer first applied the method to quantitative traits 
such as height, weight and IQ using data on 50 MZ and 
DZ pairs from Newman et al. (1937). Shortly afterwards, 
Falconer (1965) proposed to calculate the heritability of dis-
eases that do not have a simple monogenic determinism by 
relying on the polygenic additive model for liability.

Christian et al. (1974) recalls that in practice, heritability 
estimates cannot be done without simplifying assumptions: 
the most common of which are: (1) the effect of environ-
mental influences on the trait are similar for the two types of 
twins; (2) hereditary and environmental influences are nei-
ther correlated in the same individual nor between members 
of a twin set; (3) there is no correlation between parents due 
to assortative mating; and (4) the trait in question is continu-
ously distributed with no dominance and no epistatic effect 
(narrow sense heritability).

Twin studies are widely used because of the wide avail-
ability of data from twin registries (see van Dongen et al. 
2012 for an inventory). Controversies about the heritabil-
ity of intelligence have largely been based on twin stud-
ies since the work of Holzinger (1929). Social scientists 
have applied—and still apply—the same methods to many 

behavioural traits. To cite just two recent examples, using 
data on twin girls in the UK, Tropf et al. (2015) find that 
26% of the variation in age at first child is explained by 
genetic predisposition, 14% by the environment shared by 
siblings, and 60% by the non-shared environment or meas-
urement error. Baier and Van Winkle (2020) find that the 
heritability of school performance is lower for children of 
separated parents and conclude that educational policies 
could specifically target children of separated parents to help 
them fulfill their genetic potential.

Twin studies are also ubiquitous in the field of disease 
heritability. It is impossible to give even a very partial view 
of this work in the context of this article. However, we can 
illustrate it by mentioning the work on schizophrenia, where 
a meta-analysis concludes that the heritability of the liability 
is estimated to be around 80% (Sullivan et al. 2003). Some 
authors even argue that twin studies are also “valuable for 
investigating the etiological relationships between schizo-
phrenia and other disorders, and the genetic basis of clinical 
heterogeneity within schizophrenia.” (Cardno and Gottes-
man 2000). Similarly, a meta-analysis of a sample of 34,166 
twin pairs from the International Twin Registers concluded 
that the heritability of the liability of type II diabetes was 
72% (Willemsen et al. 2015).

From correlation between relatives to the use 
of genetic markers

With the development of molecular techniques to detect 
variations in the human genome, methods were developed 
to gain information on individual relatedness from observed 
genotypes at genetic markers. Building on this idea, Ritland 
(1996, 2000) first proposed a marker-based method for esti-
mating heritability of quantitative traits from genetic and 
phenotypic data on individuals of unknown relationship. 
The method however could not really be used at that time as 
there were not enough genetic markers covering the human 
genome. After the first sequence of the human genome was 
released (McPherson et al. 2001), efforts were put on char-
acterizing the distribution of common genetic variants in 
different worldwide populations, their frequency and cor-
relation patterns—see Hapmap project launched in 2002 
(Couzin 2002). Hundreds of thousands of Single Nucleotide 
Polymorphisms (SNP) spanning the entire human genome 
were characterized and the first SNP-arrays were developed 
to easily genotype them. These SNP-arrays were used in 
large samples of cases and controls to perform Genome-
Wide Association Studies (GWAS) and to find the genetic 
risk factors involved in common diseases. Using these 
GWAS data, it was possible to directly quantify the contri-
bution of genetic variants to phenotypic variance. This was 
first done by Visscher et al. (2006) for the case of sibpairs 
where instead of using the expected identity-by-descent 
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(IBD) sharing, they used the observed IBD sharing among 
the sibs to estimate the heritability of height. The method 
was further extended to allow estimation of heritability from 
unrelated individuals by measuring the proportion of phe-
notype variance that can be explained by a linear regression 
on the set of genetic markers found significantly associated 
with the phenotype and used as explanatory variables. This 
was done for human height after the first GWAS were per-
formed. The proportion of human height variance explained 
by the 54 genome-wide significant SNPs however, was very 
low, around 5%, much smaller than the 80% heritability 
found from family and twin studies (Visscher 2008). There 
was thus a problem of “missing heritability” (Maher 2008; 
Manolio et al. 2009) that led investigators to suggest differ-
ent explanations for this missing heritability (Genin 2020 
for a review). Among these different explanations was the 
possibility that there were some other loci contributing to 
the heritability than the GWAS top signals. This led Yang 
et al. (2010) to propose to estimate heritability based on 
the information from all SNPs present on the SNP-array 
using a mixed linear model where SNP effects are treated 
as random variable. This method was latter implemented 
in the GTCA software (Yang et al. 2011) and referred to as 
Genomic Relatedness matrix restricted Maximum Likeli-
hood (GREML). It was then extended to estimate heritability 
for dichotomous traits (Lee et al. 2011) and extensively used 
to estimate the so-called SNP-based heritability of many 
different common diseases (Yang et al. 2017 for a review 
of the concept of SNP-based heritability and its estimation 
methods).

Errors of interpretation and limitations 
of the models and methods

While the concept of heritability may seem relatively simple, 
in practice it is subject of misuse and misinterpretation. It 
also relies on strong assumptions that are not always met in 
natural populations.

Errors of interpretation of heritability

First, the terminology itself is misleading. Indeed, as dis-
cussed by Stoltenberg (1997), terms such as “heritable”, 
“inherited” or “heredity” have folk meanings that are dif-
ferent from the scientific notions they are supposed to rep-
resent. This contributes to misinterpretations. In particular, 
the term “heritability” is used in the common language as 
a synonym of “inheritance”, with the idea that something 
heritable is something that passed from parents to offspring. 
As we have seen, heritability is not an individual character-
istic but a population measure. It does not tell anything on 
the genetic determinism of the trait under study. To avoid 

any ambiguity and insist on the fact that the primary use of 
heritability estimates is to predict the results of selective 
breeding, Stoltenberg (1997) suggested replacing the term 
“heritability” by “selectability”.

Second, there is often a confusion between the contribu-
tion of genetic factors to the phenotype and their contribu-
tion to the phenotype variability. Heritability says nothing 
about the causes, the mechanisms at the origin of differences 
between populations, nor about the etiology of diseases. As 
Lewontin (1974) reminded us, there is a crucial distinction 
between the analysis of variance and the analysis of causes. 
A strong heritability does not mean that the main factors 
involved in the trait are genetic factors. In a population 
where there is no environmental variability, the heritability 
is 100%. Similarly, in a homogeneous social environment, 
heritability estimates may be high for traits which are mainly 
due to social environmental factors. This error of interpre-
tation is also prevalent in the literature on GWAS and the 
discussion around the so-called missing heritability. It is pre-
sent in the famous paper by Manolio et al. (2009) when they 
list a number of diseases, for which the proportion of herit-
ability currently explained by the loci detected by GWAS is 
low and conclude that other relevant genetic loci remain to 
be detected (see discussion by Vieneis and Pearce (2011)).

Third, heritability is often reported as if it were a uni-
versal measure for the trait under study. This is wrong as 
heritability is a local measure in space and time, specific 
to the studied population. Two groups of individuals, with 
exactly the same genetic background, will have, for a given 
trait, a different heritability according to whether they are 
placed in a context where the environment is constant or 
variable. Heritability can also vary through time with envi-
ronmental changes. Differences in heritability can be found 
depending on the age of the individuals under study. This is 
well illustrated for Body Mass Index (BMI) with estimates 
that are systematically larger in children than in adults and 
also larger when derived from twin studies than from fam-
ily studies (Elk et al. 2012). Note however that in this latter 
meta-analysis of BMI heritability studies, estimates were 
found to vary of almost two folds, ranging from 0.47 to 0.90 
in twin studies and from 0.24 to 0.81 in family studies. It 
clearly shows that the measure is not universal and does not 
have much utility in human populations. It also seriously 
questioned the missing heritability problem that makes the 
underlying assumption that heritability should remain the 
same for a given trait whatever the population context and 
the sample on which it is measured.

Validity of the assumptions underlying heritability 
estimates

Heritability estimates rely on strong assumptions that could 
not be tested and are disputable in human genetics.
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A first assumption that is inherent in the polygenic addi-
tive model is the existence of many genetic and environmen-
tal factors that each have a small contribution. It is assumed 
that there are no single genetic or environmental factor that 
makes a major contribution. This is not true for many dis-
eases where major genetic and/or environmental factors have 
been found. Examples include the contribution of specific 
HLA heterodimers in celiac disease or other autoimmune 
disease and diet and physical activity in obesity and type-2 
diabetes (for a review on the limit of these assumptions in 
the context of diabetes, see Génin and Clerget-Darpoux 
2015b). For a trait such as IQ, even if Herrnstein and Mur-
ray (1994) suggested a limited malleability by schooling, 
it is now well recognized that school attendance plays an 
important role. Different studies have shown that education 
has a direct role on IQ and that it is not reverse causation 
due, for example, to the fact that people with higher IQ tend 
to have higher school attendance (see for example the study 
by Brinch and Galloway (2012) where compulsory schooling 
in Norway in the 1960s was found to have an effect on IQ 
scores of early adult men.

A second assumption is the absence of interaction 
between genetic and environmental factors. It would mean 
that genetic variance could be estimated without any knowl-
edge on the environment. Yet, contemporary biology has 
demonstrated that traits are the product of interactions 
between genetic and non-genetic factors at every point of 
the development (Moore and Shenk 2017). Genes are part 
of a “developmental system” (Gottlieb 2001). Moreover, 
epigenetic phenomena—imprinted genes, methylation, 
etc.—cannot be ignored. As outlined by Burt (2015): “the 
conceptual (biological) model on which heritability studies 
depend—that of identifiable separate effects of genes vs. the 
environment on phenotype variance—is unsound”.

Another assumption is that of random environment. For 
most human behavioral traits, this hypothesis is of course not 
valid (Vetta et Courgeau 2003; Courgeau 2017). Parents pass 
on alleles to their children with whom they also share envi-
ronmental factors that can be involved in studied traits, lead-
ing to some “co-transmission” of genetic and environmental 
factors. This is for example the case of educational level for 
cognitive traits or dietary habits for traits linked to BMI. As 
shown by Cavalli-Sforza and Feldman (1973), ignoring the 
co-transmission of genetic and environmental factors could 
lead to strong bias in heritability estimates. Vertical cultural 
transmission has a profound effect on correlations between 
relatives and this effect can be misinterpreted as being due 
to genetic variation.

The additivity assumption is also not relevant both at the 
level of the alleles within a genotype but also between genes. 
Indeed, for many traits and in particular diseases, there exist 
dominance effects as well as epistasis. The effect of a geno-
type on phenotype often depends on the genetic background 

and on the genotypes at other loci (Carlborg and Haley 2004; 
Mackay and Moore 2014).

Another underlying assumption is random mating and 
Hardy–Weinberg equilibrium that is not true, especially for 
cognitive and cultural traits where homogamy is often the 
rule (Courgeau 2017).

Besides these assumptions that are inherent to the model 
underlying heritability and thus to all the methods to esti-
mate heritability in twin studies, it is further assumed that 
environment is similarly shared between monozygotic and 
dizygotic twins. This equal sharing of environment is prob-
ably the most debated hypothesis. Since the 1960s, empiri-
cal evidence has accumulated that monozygotic twins live 
in more similar social environments than dizygotic twins. 
For example, they are more likely to be treated the same by 
their parents, have the same friends, be in the same class, 
spend time together, be more attached to each other through 
their whole life, etc. (Joseph 2013; Burt and Simons 2014). 
Furthermore, the prenatal (intrauterine) environment of 
monozygotic and dizygotic twins is different: the prenatal 
environments of MZ twins (who often share the same pla-
centa) are more similar than those of DZ twins (who never 
share the same placenta). Most advocates of twin studies 
recognize that the environments of MZ twins are more simi-
lar than those of DZ twins. However, they suggest that, for 
the model to remain valid, it is only necessary that the envi-
ronmental factors directly related to the trait under study are 
the same in MZ and DZ twins (“trait-relevant equal environ-
ment assumption”). In doing so they divert potential criti-
cism on the very strong hypothesis of equal environment.

Finally, we see that none of the hypotheses inherent in 
heritability estimates are verified in humans. More funda-
mentally, if heritability is used routinely and usefully for 
plant and animal breeding (to predict the effectiveness of this 
selection), it is in the context of experimental devices that 
allow the environment to be controlled, which is impossible 
in nature and in the case of humans.

From heritability to risk prediction: 
polygenic risk scores

Besides the questions raised on the usefulness of heritability 
estimates in human genetics, they continue to be reported in 
many articles published in major journals and they are some-
times even required by reviewers and/or editors. Even worst, 
in 2007, a new impetus was given to heritability estimates. 
It was proposed to extract the genetic variability from the 
phenotypic variability with, at the end of the day, a pheno-
typic prediction.

Wray et al. (2007) promoted a new predictive tool for 
clinicians: the polygenic risk score (PRS). They proposed 
the use of SNP associations to estimate the genetic variance 
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of multifactorial diseases. The underlying idea was that 
each SNP association reflects a genetic risk variability in its 
neighborhood. Assuming an intrinsic value of the disease 
heritability under study, they claimed that the best predictor 
of the disease is obtained when all genetic variations, i.e. the 
whole heritability, is captured and pooled. This triggered a 
long search for “missing heritability” (Manolio et al. 2009), 
together with an endless extension of GWAS sample sizes. 
Different methods were developed to better estimate herit-
ability from genome-wide association studies (Speed et al. 
2020 for a review): Lasso (Tibshirani 1996), Ridge regres-
sion (Meuwissen et al. 2001), Bayesian mixed -model (Loh 
et al. 2015; Moser et al. 2015), and MegaPRS, a summary 
statistic that allows the user to specify the heritability model 
(Zhang et al. 2020). The number of papers praising the ben-
efits of using PRS for different complex diseases has grown 
exponentially during the last decade (1,684 results on Pub-
med when searching for “Polygenic Risk Score(s)” on April 
28, 2021). Software applications computing individual PRS 
for numerous diseases and intended to help clinical decision, 
were also developed.

However, all the limits given for heritability estimation 
also apply to PRS estimation. The validity of PRS estima-
tions depends on the validity of the polygenic additive liabil-
ity under which they are computed. Let us just recall that 
adopting this simple model implies that the genetic variance 
can be extracted from the phenotypic variance without any 
knowledge on the environment. The shift from genetics to 
genomics and from family studies to population studies has 
led to a shift in causal inference. Once again, association 
does not mean causation. Indeed, associations may reflect 
the indirect effect of associated traits or environmental fac-
tors. For example, SNPs associated to breast cancer may 
include SNPs associated to BMI, some of them reflecting 
environmental factors and socio-cultural stratification. As 
underlined by Janssens (2019), PRS are not independent of 
observed clinical factors, they contain indirect information 
on clinical, familial and environmental factors. Associations 
can also be due to the effect of ubiquitous genes, such as 
regulator or transcriptor genes having trans effect on causal 
genes (Boyle et al. 2017).

Besides, like heritability, PRS are not universal measures. 
Even in a population considered as genetically homogene-
ous, such as the UK biobank, a simple change on a variable 
such as age, sex, socio-economic status may impact PRS 
(Mostafavi et al. 2020; Abdellaoui et al. 2021).

Nevertheless, the most important misconception comes, 
here again, from the confusion between gene effect on the 
trait and effect of gene polymorphism on the trait variance. 
Many consider that the polygenic risk score of an individual 
for a given disease represents the genetic part of his liability. 
In fact, the PRS curve measures the relative risk of each 
genotype compared to the genotype without any risk allele 

(often extremely rare and unobserved when the number of 
SNPs including in the PRS is large) whereas the liability 
curve is meant to measure absolute risk. Some research-
ers have claimed that the risks of high PRS individuals 
are equivalent to the one of rare disease mutation carriers 
(Khera et al. 2018). This statement is wrong because the 
absolute risks are very different in the two situations. Even 
for high PRS value, the absolute risk may be very low. This 
makes PRS a very poor predictor test in terms of specificity 
and sensitivity, as shown and well-illustrated on coronary 
artery disease by Wald and Old (2019).

In a recent paper, Wray et al. (2019) pointed out the 
similarity between the Estimated Breeding Value (EBV) in 
livestock and PRS in human. In their comparison, they con-
sidered that both PRS and EBV are estimates of the additive 
genetic value of a trait. They explained why genetic vari-
ance is easier to estimate in a livestock than in humans and 
called for an increase in GWAS sample sizes to maximize 
the accuracy of PRS. However, they did not raise the most 
important and critical points:

• the validity of the assumptions made for human diseases 
or traits in PRS estimation.

• the simplistic interpretation of SNP associations as 
reflecting the effect of genetic factors

• the different potential uses of EBV and PRS estimates. 
While EBV offers reliable classification to predict a 
global improvement of a trait in the next generation, PRS 
classification could not be used to predict an individual 
disease risk.

Conclusion

Acknowledging the limitations of the notion of heritability, 
many authors have pointed out the impasse it constitutes 
for human genetics. Lewontin suggested as early as 1974 
“to stop the endless search for better methods of estimat-
ing useless quantities” (Lewontin 1974), while Jacquard 
emphasized in 1978 that “the complexity of the mathematics 
used to answer is not enough to give meaning to an absurd 
question […], devoid of any meaning” (Jacquard 1978). The 
centrality of heritability in human genetics research more 
than forty years later could thus be a manifestation of the 
“Garbage In, Garbage Out” syndrome (Génin and Clerget-
Darpoux 2015a).

There are growing voices calling for revising and moving 
beyond the polygenic additive model (Nelson et al. 2013; 
Génin and Clerget-Darpoux 2015b). The “omnigenic model” 
of Boyle et al. (2017) stands as a proposal in this direc-
tion. The authors build on the observations that, in genome-
wide association studies, statistical associations between 
genetic variants and disease identify a large number of genes 
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scattered throughout the genome, including many genes with 
no obvious link to disease. This is in contrast to the expecta-
tion that causal variants would be clustered in major disease-
related pathways. Boyle et al. suggest that gene regulatory 
networks are so interconnected that all genes are likely to 
influence the functions of the core disease genes. Thus, a 
distinction is made between regulatory genes and core genes. 
But above all, according to the omnigenic model, most of 
the heritability is explained by the effect of genes located 
outside the central pathways.

Confusion between measuring a genetic effect on the trait 
or on its variance is the basis of erroneous interpretations of 
heritability and PRS. In many articles, PRS is confused with 
genetic liability and average PRS with average liability. This 
resulted in the development of a very deterministic view of 
human traits with false and dangerous predictions of our 
medical and social future.

In animal or plant populations, where crossbreeding and 
environment can be controlled, information on genetic vari-
ance is central to improving a trait from one generation to 
the next. Fortunately, human populations are not subject 
to these same constraints and the objectives of geneticists 
are totally different. Regarding diseases of complex aetiol-
ogy, geneticists seek to identify the responsible factors and 
to understand the complex and heterogeneous interactions 
between these factors. There is a huge gap between observ-
ing associations in a population and understanding the role 
of genes in the disease development process (Bourgain et al. 
2007). Sticking to a very simplistic model for all diseases 
will not allow to reach this goal.
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